1
|
Baird MC, Likhite SB, Vetter TA, Caporale JR, Girard HB, Roussel FS, Howard AE, Schwartz MK, Reed AR, Kaleem A, Zhang X, Meyer KC. Combination AAV therapy with galectin-1 and SOD1 downregulation demonstrates superior therapeutic effect in a severe ALS mouse model. Mol Ther Methods Clin Dev 2024; 32:101312. [PMID: 39257530 PMCID: PMC11385756 DOI: 10.1016/j.omtm.2024.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/02/2024] [Indexed: 09/12/2024]
Abstract
Neuroinflammation is a miscreant in accelerating progression of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, treatments targeting neuroinflammation alone have led to disappointing results in clinical trials. Both neuronal and non-neuronal cell types have been implicated in the pathogenesis of ALS, and multiple studies have shown correction of each cell type has beneficial effects on disease outcome. Previously, we shown that AAV9-mediated superoxide dismutase 1 (SOD1) suppression in motor neurons and astrocytes significantly improves motor function and extends survival in ALS mouse models. Despite neuron and astrocyte correction, ALS mice still succumb to death with microgliosis observed in endpoint tissue. Therefore, we hypothesized that the optimal therapeutic approach will target and simultaneously correct motor neurons, astrocytes, and microglia. Here, we developed a novel approach to indirectly target microglia with galectin-1 (Gal1) and combined this with our previously established AAV9.SOD1.short hairpin RNA treatment. We show Gal1 conditioning of SOD1 G93A microglia decreases inflammatory markers and rescues motor neuron death in vitro. When paired with SOD1 downregulation, we found a synergistic effect of combination treatment in vivo and show a significant extension of survival of SOD1 G93A mice over SOD1 suppression alone. These results highlight the importance of targeting inflammatory microglia as a critical component in future therapeutic development.
Collapse
Affiliation(s)
- Megan C Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Shibi B Likhite
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph R Caporale
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Holly B Girard
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Florence S Roussel
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Abigail E Howard
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Maura K Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Addison R Reed
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Abuzar Kaleem
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Xiaojin Zhang
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kathrin C Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Hou L, Ma J, Feng X, Chen J, Dong BH, Xiao L, Zhang X, Guo B. Caffeic acid and diabetic neuropathy: Investigating protective effects and insulin-like growth factor 1 (IGF-1)-related antioxidative and anti-inflammatory mechanisms in mice. Heliyon 2024; 10:e32623. [PMID: 38975173 PMCID: PMC11225750 DOI: 10.1016/j.heliyon.2024.e32623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Diabetic neuropathy (DN) represents a common and debilitating complication of diabetes, affecting a significant proportion of patients. Despite available treatments focusing on symptom management, there remains an unmet need for therapies that address the underlying pathophysiology. In pursuit of novel interventions, this study evaluated the therapeutic effects of caffeic acid-a natural phenolic compound prevalent in various foods-on diabetic neuropathy using a mouse model, particularly examining its interaction with the Insulin-like Growth Factor 1 (IGF-1) signaling pathway. Caffeic acid was administered orally at two dosages (5 mg/kg and 10 mg/kg), and a comprehensive set of outcomes including fasting blood glucose levels, body weight, sensory behavior, spinal cord oxidative stress markers, inflammatory cytokines, and components of the IGF-1 signaling cascade were assessed. Additionally, to determine the specific contribution of IGF-1 signaling to the observed benefits, IGF1R inhibitor Picropodophyllin (PPP) was co-administered with caffeic acid. Our results demonstrated that caffeic acid, at both dosages, effectively reduced hyperglycemia and alleviated sensory behavioral deficits in diabetic mice. This was accompanied by a marked decrease in oxidative stress markers and an increase in antioxidant enzyme activities within the spinal cord. Significantly lowered microglial activation and inflammatory cytokine expression highlighted the potent antioxidative and anti-inflammatory effects of caffeic acid. Moreover, increases in both serum and spinal levels of IGF-1, along with elevated phosphorylated IGF1R, implicated the IGF-1 signaling pathway as a mediator of caffeic acid's neuroprotective actions. The partial reversal of caffeic acid's benefits by PPP substantiated the pivotal engagement of IGF-1 signaling in mediating its effects. Our findings delineate the capability of caffeic acid to mitigate DN symptoms, particularly through reducing spinal oxidative stress and inflammation, and pinpoint the integral role of IGF-1 signaling in these protective mechanisms. The insights gleaned from this study not only position caffeic acid as a promising dietary adjunct for managing diabetic neuropathy but also highlight the therapeutic potential of targeting spinal IGF-1 signaling as part of a strategic treatment approach.
Collapse
Affiliation(s)
- Leina Hou
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Jiaqi Ma
- Department of Radiology, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Xugang Feng
- Department of General Surgery, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Jing Chen
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Bu-huai Dong
- Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China
| | - Li Xiao
- Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China
| | - Xi Zhang
- Department of Pediatric Neurology, Northwest Women and Children's Hospital, Xi'an, 710049, China
| | - Bin Guo
- Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China
| |
Collapse
|
3
|
Murdock BJ, Zhao B, Pawlowski KD, Famie JP, Piecuch CE, Webber-Davis IF, Teener SJ, Feldman EL, Zhao L, Goutman SA. Peripheral Immune Profiles Predict ALS Progression in an Age- and Sex-Dependent Manner. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200241. [PMID: 38626361 PMCID: PMC11087030 DOI: 10.1212/nxi.0000000000200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/12/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND AND OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease whose pathobiology associates with peripheral blood immune cell levels and activation patterns in an age and sex-dependent manner. This study's objective was to identify immune profile associations with ALS progression, whether the associations are age and sex-specific, and whether immune profiles can predict a future disease course. METHODS Flow cytometry immune profiles (a combination of 22 peripheral blood immune markers) were generated for 241 participants with ALS and linked to ALS progression, using progression-free survival, which is a composite combining the revised ALS Functional Rating Scale and survival. Participants were first grouped by immune profiles using unsupervised hierarchical clustering, and clusters were associated with subsequent progression-free survival. Next, individual immune markers were associated with progression-free survival using least absolute shrinkage and selection operator-Cox regression. Analyses were stratified by age and sex to identify demographic-specific immune mechanisms. Finally, random forest determined the predictive power of immune profiles on ALS progression in the whole population and again stratified by age and sex. RESULTS Progression-free survival differed between clusters of participants with similar immune profiles, particularly reduced natural killer (NK)-cell activation associated with slower progression. Individual markers such as neutrophil levels and NK-cell NKp46 expression associated with faster ALS progression while overall NK-cell levels and NK-cell subpopulations associated with slower progression; the strength of these associations varied by age and sex. Adding these immune markers to prediction models dramatically increased short-term prediction compared with routine clinical prognostic variables alone, and the addition of NK-cell markers further improved the prediction accuracy in female participants. DISCUSSION Specific immune profiles likely contribute to ALS progression in an age and sex-dependent manner, and peripheral immune markers enhance the prediction of short-term clinical outcomes. These findings suggest a complex milieu of immune profiles associated with ALS progression, and more detailed immunophenotyping in ALS will facilitate personalized immunotherapeutics in ALS.
Collapse
Affiliation(s)
- Benjamin J Murdock
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Bangyao Zhao
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Kristen D Pawlowski
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Joshua P Famie
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Caroline E Piecuch
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Ian F Webber-Davis
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Samuel J Teener
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Eva L Feldman
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Lili Zhao
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Stephen A Goutman
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| |
Collapse
|
4
|
Zhang DD, Zhang CY, Zhang YX, Cui HP, Jiao Chen, Wen-Zhi Ma, Jia H. G-CSF reduces loss of dopaminergic neurons by inhibiting TNF-α and IL-1β in mouse model of Parkinson's disease. Int J Neurosci 2023; 133:278-289. [PMID: 33781148 DOI: 10.1080/00207454.2021.1910259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE OF THE STUDY granulocyte-colony stimulating factor (G-CSF) is a hematopoietic growth factor existing in neutrophils, glial cells and neurons. Increasing researches discovered that G-CSF improved cell survival in neurodegenerative diseases by its anti-inflammatory effect. However, the effect of G-CSF in suppressing inflammation in Parkinson's disease (PD) remains unclear. Thus, the purpose of this study is to explored the anti-inflammatory effect of G-CSF in mouse model of PD. MATERIALS AND METHODS G-CSF was administrated in the PD model induced by MPTP. Subsequently, the protein of tyrosine hydroxylase (TH), ionized calcium-binding adaptor molecule 1 (Iba-1) and the inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in the midbrain were examined. In addition, the phosphorylated mitogen-activated protein kinases (MAPK) including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 MAPK in the midbrain were investigated. RESULTS Compared with the MPTP group, the protein of TH in the midbrain was increased, while the Iba-1 and the inflammatory factors were decreased. In addition, the expression of phosphorylated JNK (p-JNK) in the midbrain of the MPTP + G-CSF group was decreased, while the phosphorylated ERK (p-ERK) levels were elevated. CONCLUSIONS These findings emphasize that G-CSF inhibited the degradation of DA neurons. The protective effect is associated with the reduction of the inflammatory factors caused by the inhibition of the microglial activation. Moreover, G-CSF may decrease the inflammatory factors through the decrease of P-JNK and the increase of P-ERK.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Department of physiology, School of Basic Medical Sciences, Chengde Medical University, Chengde, China
| | - Cheng-Yun Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Chengde Medical University, Chengde, China
| | - Yu-Xin Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Hai-Peng Cui
- Department of Pathophysiology, School of Basic Medical Sciences, Chengde Medical University, Chengde, China
| | - Jiao Chen
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Wen-Zhi Ma
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China.,Center for Reproductive Biology and Health, School of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Hua Jia
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.,Center for Reproductive Biology and Health, School of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Biundo F, Chitu V, Tindi J, Burghardt NS, Shlager GGL, Ketchum HC, DeTure MA, Dickson DW, Wszolek ZK, Khodakhah K, Stanley ER. Elevated granulocyte colony stimulating factor (CSF) causes cerebellar deficits and anxiety in a model of CSF-1 receptor related leukodystrophy. Glia 2023; 71:775-794. [PMID: 36433736 PMCID: PMC9868112 DOI: 10.1002/glia.24310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022]
Abstract
Colony stimulating factor (CSF) receptor-1 (CSF-1R)-related leukoencephalopathy (CRL) is an adult-onset, demyelinating and neurodegenerative disease caused by autosomal dominant mutations in CSF1R, modeled by the Csf1r+/- mouse. The expression of Csf2, encoding granulocyte-macrophage CSF (GM-CSF) and of Csf3, encoding granulocyte CSF (G-CSF), are elevated in both mouse and human CRL brains. While monoallelic targeting of Csf2 has been shown to attenuate many behavioral and histological deficits of Csf1r+/- mice, including cognitive dysfunction and demyelination, the contribution of Csf3 has not been explored. In the present study, we investigate the behavioral, electrophysiological and histopathological phenotypes of Csf1r+/- mice following monoallelic targeting of Csf3. We show that Csf3 heterozygosity normalized the Csf3 levels in Csf1r+/- mouse brains and ameliorated anxiety-like behavior, motor coordination and social interaction deficits, but not the cognitive impairment of Csf1r+/- mice. Csf3 heterozygosity failed to prevent callosal demyelination. However, consistent with its effects on behavior, Csf3 heterozygosity normalized microglial morphology in the cerebellum and in the ventral, but not in the dorsal hippocampus. Csf1r+/- mice exhibited altered firing activity in the deep cerebellar nuclei (DCN) associated with increased engulfment of glutamatergic synapses by DCN microglia and increased deposition of the complement factor C1q on glutamatergic synapses. These phenotypes were significantly ameliorated by monoallelic deletion of Csf3. Our current and earlier findings indicate that G-CSF and GM-CSF play largely non-overlapping roles in CRL-like disease development in Csf1r+/- mice.
Collapse
Affiliation(s)
- Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaafar Tindi
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nesha S. Burghardt
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA
| | - Gabriel G. L. Shlager
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Harmony C. Ketchum
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | - Kamran Khodakhah
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
6
|
Jiang Z, Wang Z, Wei X, Yu XF. Inflammatory checkpoints in amyotrophic lateral sclerosis: From biomarkers to therapeutic targets. Front Immunol 2022; 13:1059994. [PMID: 36618399 PMCID: PMC9815501 DOI: 10.3389/fimmu.2022.1059994] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron damage. Due to the complexity of the ALS, so far the etiology and underlying pathogenesis of sporadic ALS are not completely understood. Recently, many studies have emphasized the role of inflammatory networks, which are comprised of various inflammatory molecules and proteins in the pathogenesis of ALS. Inflammatory molecules and proteins may be used as independent predictors of patient survival and might be used in patient stratification and in evaluating the therapeutic response in clinical trials. This review article describes the latest advances in various inflammatory markers in ALS and its animal models. In particular, this review discusses the role of inflammatory molecule markers in the pathogenesis of the disease and their relationship with clinical parameters. We also highlight the advantages and disadvantages of applying inflammatory markers in clinical manifestations, animal studies, and drug clinical trials. Further, we summarize the potential application of some inflammatory biomarkers as new therapeutic targets and therapeutic strategies, which would perhaps expand the therapeutic interventions for ALS.
Collapse
|
7
|
Durankuş F, Albayrak Y, Erdoğan F, Albayrak N, Erdoğan MA, Erbaş O. Granulocyte Colony-Stimulating Factor Has a Sex-Dependent Positive Effect in the Maternal Immune Activation-Induced Autism Model. Int J Dev Neurosci 2022; 82:716-726. [PMID: 35904498 DOI: 10.1002/jdn.10221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The medical intervention for autism spectrum disorder (ASD) is restricted to ameliorating comorbid situations. Granulocyte colony-stimulating factor (G-CSF) is a growth factor that enhances the proliferation, differentiation and survival of hematopoietic progenitor cells. In the present study, we aimed to investigate the effects of G-CSF in a maternal immune activation-induced autism model. METHODS Sixteen female and 6 male Wistar adult rats were included in the study. After 21 days, forty-eight littermates (8 male controls, 8 female controls, 16 male lipopolysaccharide (LPS)-exposed rats and 16 female LPS-exposed rats) were divided into groups. Sixteen male LPS-exposed and 16 female LPS-exposed rats were divided into saline and G-CSF treatment groups. RESULTS In male rats, the LPS-exposed group was found to have significantly higher levels of TNF-α, IL-2, and IL-17 than the LPS-exposed G-CSF group. Levels of nerve growth factor, brain PSD-95 and brain GAD67 were higher in the LPS-exposed G-CSF group than in the LPS-exposed group in male rats. In female rats, brain NGF levels were similar between groups. There was no difference between groups in terms of brain GAD 67 levels. Brain PSD-95 levels were higher in the control group than in both the LPS-exposed and LPS-exposed G-CSF groups in female rats. Both neuronal CA1 and neuronal CA2 levels were lower, and the GFAP immunostaining index (CA1) and GFAP immunostaining index (CA3) were higher in the LPS-exposed group than in the LPS-exposed G-CSF group in male rats. However, neuronal count CA1 and Neuronal count CA3 values were found to be similar between groups in female rats. CONCLUSIONS The present research is the first to demonstrate the beneficial effects of G-CSF on core symptoms of ASD experimentally depending on male sex. G-CSF can be a good candidate for ameliorating the core symptoms of ASD without serious side effects in males.
Collapse
Affiliation(s)
- Ferit Durankuş
- Department of Pediatrics, Istanbul Medeniyet University, İstanbul, Turkey
| | - Yakup Albayrak
- Faculty of Medicine, Department of Psychiatry, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Fırat Erdoğan
- Department of Pediatrics, Istanbul Medeniyet University, İstanbul, Turkey
| | | | - Mümin Alper Erdoğan
- Department of Physiology, Katip Çelebi University Medical School, İzmir, Turkey
| | - Oytun Erbaş
- Medical School, Department of Physiology, Demiroğlu Bilim University, İstanbul, Turkey
| |
Collapse
|
8
|
Vafaei Mastanabad M, Nooraei A, Hassan Zadeh Tabatabaei MS, Akbari Fakhrabadi A, Jafarzadeh F. Granulocyte-colony stimulating factor (G-CSF): an emerging therapeutic approach for amyotrophic lateral sclerosis (ALS). Acta Neurol Belg 2022:10.1007/s13760-022-01996-z. [PMID: 35737276 DOI: 10.1007/s13760-022-01996-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by neuronal degeneration and inflammation in the nerves. G-CSF is a 19.6-kDa hematopoietic growth factor which is essential for the proliferation and differentiation of granulocyte hematopoietic progenitors. G-CSF exerts neuroprotective activities by induction of neuronal regeneration, inhibition of neuronal apoptosis, mobilization of Hematopoietic stem cells (HSCs), regulation of pro and anti-inflammatory cytokines, and activation of angiogenesis. Pre-clinical studies have shown significant efficacy of G-CSF therapy in mSOD1G93A mice models. G-CSF treatments were able to increase the survival of mice. However, clinical studies on ALS patients failed to clone pre-clinical results. Considering the potential role of G-CSF in nervous system regeneration, this study aimed to comprehensively review the clinical and pre-clinical studies addressing G-CSF in ALS treatment.
Collapse
Affiliation(s)
| | - Aref Nooraei
- Comparative Anatomy and Embryology, School of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | | - Faria Jafarzadeh
- Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran.
| |
Collapse
|
9
|
Zamani A, Walker AK, Rollo B, Ayers KL, Farah R, O'Brien TJ, Wright DK. Impaired glymphatic function in the early stages of disease in a TDP-43 mouse model of amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:17. [PMID: 35287738 PMCID: PMC8922788 DOI: 10.1186/s40035-022-00291-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multiple lines of evidence suggest possible impairment of the glymphatic system in amyotrophic lateral sclerosis (ALS). To investigate this, we used in vivo magnetic resonance imaging (MRI) to assess glymphatic function early in the course of disease in a transgenic mouse with doxycycline (Dox)-controlled expression of cytoplasmic human TDP-43 (hTDP-43ΔNLS), mimicking the key pathology implicated in ALS. METHODS Adult TDP-43 transgenic and littermate monogenic control mice underwent longitudinal multimodal MRI one and three weeks after the cessation of Dox feed, together with weekly rotarod assessments of motor performance. Glymphatic function was assessed using dynamic contrast-enhanced MRI to track the clearance of an MR contrast agent injected into the cisterna magna. RESULTS Compared to their littermate controls, TDP-43 mice exhibited progressive neurodegeneration including that within the primary motor cortex, primary somatosensory cortex and corticospinal tract, significant weight loss including gastrocnemius atrophy, and shortened telomere length. Furthermore, in the presence of this ALS-like phenotype, these mice have significantly disrupted glymphatic function. CONCLUSIONS Although the relationship between glymphatic clearance and ALS disease progression remains to be elucidated, these changes occurred very early in the disease course. This provides initial evidence to suggest that the glymphatic system might be a potential therapeutic target in the treatment of ALS.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Adam K Walker
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Katie L Ayers
- The Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.,Department of Pediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Raysha Farah
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
10
|
Chitu V, Biundo F, Stanley ER. Colony stimulating factors in the nervous system. Semin Immunol 2021; 54:101511. [PMID: 34743926 DOI: 10.1016/j.smim.2021.101511] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023]
Abstract
Although traditionally seen as regulators of hematopoiesis, colony-stimulating factors (CSFs) have emerged as important players in the nervous system, both in health and disease. This review summarizes the cellular sources, patterns of expression and physiological roles of the macrophage (CSF-1, IL-34), granulocyte-macrophage (GM-CSF) and granulocyte (G-CSF) colony stimulating factors within the nervous system, with a particular focus on their actions on microglia. CSF-1 and IL-34, via the CSF-1R, are required for the development, proliferation and maintenance of essentially all CNS microglia in a temporal and regional specific manner. In contrast, in steady state, GM-CSF and G-CSF are mainly involved in regulation of microglial function. The alterations in expression of these growth factors and their receptors, that have been reported in several neurological diseases, are described and the outcomes of their therapeutic targeting in mouse models and humans are discussed.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
11
|
Muzio L, Viotti A, Martino G. Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Front Neurosci 2021; 15:742065. [PMID: 34630027 PMCID: PMC8497816 DOI: 10.3389/fnins.2021.742065] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Microglia are the resident macrophages of the central nervous system (CNS) acting as the first line of defense in the brain by phagocytosing harmful pathogens and cellular debris. Microglia emerge from early erythromyeloid progenitors of the yolk sac and enter the developing brain before the establishment of a fully mature blood-brain barrier. In physiological conditions, during brain development, microglia contribute to CNS homeostasis by supporting cell proliferation of neural precursors. In post-natal life, such cells contribute to preserving the integrity of neuronal circuits by sculpting synapses. After a CNS injury, microglia change their morphology and down-regulate those genes supporting homeostatic functions. However, it is still unclear whether such changes are accompanied by molecular and functional modifications that might contribute to the pathological process. While comprehensive transcriptome analyses at the single-cell level have identified specific gene perturbations occurring in the "pathological" microglia, still the precise protective/detrimental role of microglia in neurological disorders is far from being fully elucidated. In this review, the results so far obtained regarding the role of microglia in neurodegenerative disorders will be discussed. There is solid and sound evidence suggesting that regulating microglia functions during disease pathology might represent a strategy to develop future therapies aimed at counteracting brain degeneration in multiple sclerosis, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Luca Muzio
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | | | | |
Collapse
|
12
|
Angelova PR. Sources and triggers of oxidative damage in neurodegeneration. Free Radic Biol Med 2021; 173:52-63. [PMID: 34224816 DOI: 10.1016/j.freeradbiomed.2021.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Neurodegeneration describes a group of more than 300 neurological diseases, characterised by neuronal loss and intra- or extracellular protein depositions, as key neuropathological features. Multiple factors play role in the pathogenesis of these group of disorders: mitochondrial dysfunction, membrane damage, calcium dyshomeostasis, metallostasis, defect clearance and renewal mechanisms, to name a few. All these factors, without exceptions, have in common the involvement of immensely increased generation of free radicals and occurrence of oxidative stress, and as a result - exhaustion of the scavenging potency of the cellular redox defence mechanisms. Besides genetic predisposition and environmental exposure to toxins, the main risk factor for developing neurodegeneration is age. And although the "Free radical theory of ageing" was declared dead, it is undisputable that accumulation of damage occurs with age, especially in systems that are regulated by free radical messengers and those that oppose oxidative stress, protein oxidation and the accuracy in protein synthesis and degradation machinery has difficulties to be maintained. This brief review provides a comprehensive summary on the main sources of free radical damage, occurring in the setting of neurodegeneration.
Collapse
|
13
|
Mortada I, Farah R, Nabha S, Ojcius DM, Fares Y, Almawi WY, Sadier NS. Immunotherapies for Neurodegenerative Diseases. Front Neurol 2021; 12:654739. [PMID: 34163421 PMCID: PMC8215715 DOI: 10.3389/fneur.2021.654739] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
The current treatments for neurodegenerative diseases are mostly symptomatic without affecting the underlying cause of disease. Emerging evidence supports a potential role for immunotherapy in the management of disease progression. Numerous reports raise the exciting prospect that either the immune system or its derivative components could be harnessed to fight the misfolded and aggregated proteins that accumulate in several neurodegenerative diseases. Passive and active vaccinations using monoclonal antibodies and specific antigens that induce adaptive immune responses are currently under evaluation for their potential use in the development of immunotherapies. In this review, we aim to shed light on prominent immunotherapeutic strategies being developed to fight neuroinflammation-induced neurodegeneration, with a focus on innovative immunotherapies such as vaccination therapy.
Collapse
Affiliation(s)
- Ibrahim Mortada
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Raymond Farah
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, United States
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Wassim Y Almawi
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Najwane Said Sadier
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
Clarke BE, Patani R. The microglial component of amyotrophic lateral sclerosis. Brain 2021; 143:3526-3539. [PMID: 33427296 PMCID: PMC7805793 DOI: 10.1093/brain/awaa309] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Abstract
Microglia are the primary immune cells of the CNS, carrying out key homeostatic roles and undergoing context-dependent and temporally regulated changes in response to injury and neurodegenerative diseases. Microglia have been implicated in playing a role in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by extensive motor neuron loss leading to paralysis and premature death. However, as the pathomechansims of ALS are increasingly recognized to involve a multitude of different cell types, it has been difficult to delineate the specific contribution of microglia to disease. Here, we review the literature of microglial involvement in ALS and discuss the evidence for the neurotoxic and neuroprotective pathways that have been attributed to microglia in this disease. We also discuss accumulating evidence for spatiotemporal regulation of microglial activation in this context. A deeper understanding of the role of microglia in the ‘cellular phase’ of ALS is crucial in the development of mechanistically rationalized therapies.
Collapse
Affiliation(s)
- Benjamin E Clarke
- Department of Neuromuscular disease, Institute of Neurology, University College London, Queen Square, London, UK.,The Francis Crick Institute, 1 Midland Road, London, UK
| | - Rickie Patani
- Department of Neuromuscular disease, Institute of Neurology, University College London, Queen Square, London, UK.,The Francis Crick Institute, 1 Midland Road, London, UK
| |
Collapse
|
15
|
Rhea EM, Logsdon AF, Banks WA, Erickson ME. Intranasal Delivery: Effects on the Neuroimmune Axes and Treatment of Neuroinflammation. Pharmaceutics 2020; 12:pharmaceutics12111120. [PMID: 33233734 PMCID: PMC7699866 DOI: 10.3390/pharmaceutics12111120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023] Open
Abstract
This review highlights the pre-clinical and clinical work performed to use intranasal delivery of various compounds from growth factors to stem cells to reduce neuroimmune interactions. We introduce the concept of intranasal (IN) delivery and the variations of this delivery method based on the model used (i.e., rodents, non-human primates, and humans). We summarize the literature available on IN delivery of growth factors, vitamins and metabolites, cytokines, immunosuppressants, exosomes, and lastly stem cells. We focus on the improvement of neuroimmune interactions, such as the activation of resident central nervous system (CNS) immune cells, expression or release of cytokines, and detrimental effects of signaling processes. We highlight common diseases that are linked to dysregulations in neuroimmune interactions, such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, and traumatic brain injury.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-764-2938
| | - Aric F. Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William A. Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Michelle E. Erickson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Szabó Z, Vainio L, Lin R, Swan J, Hulmi JJ, Rahtu-Korpela L, Serpi R, Laitinen M, Pasternack A, Ritvos O, Kerkelä R, Magga J. Systemic blockade of ACVR2B ligands attenuates muscle wasting in ischemic heart failure without compromising cardiac function. FASEB J 2020; 34:9911-9924. [PMID: 32427381 DOI: 10.1096/fj.201903074rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Signaling through activin receptors regulates skeletal muscle mass and activin receptor 2B (ACVR2B) ligands are also suggested to participate in myocardial infarction (MI) pathology in the heart. In this study, we determined the effect of systemic blockade of ACVR2B ligands on cardiac function in experimental MI, and defined its efficacy to revert muscle wasting in ischemic heart failure (HF). Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) to study its effect on post-MI cardiac remodeling and on later HF. Cardiac function was determined with echocardiography, and myocardium analyzed with histological and biochemical methods for hypertrophy and fibrosis. Pharmacological blockade of ACVR2B ligands did not rescue the heart from ischemic injury or alleviate post-MI remodeling and ischemic HF. Collectively, ACVR2B-Fc did not affect cardiomyocyte hypertrophy, fibrosis, angiogenesis, nor factors associated with cardiac regeneration except modification of certain genes involved in metabolism or cell growth/survival. ACVR2B-Fc, however, was able to reduce skeletal muscle wasting in chronic ischemic HF, accompanied by reduced LC3II as a marker of autophagy and increased mTOR signaling and Cited4 expression as markers of physiological hypertrophy in quadriceps muscle. Our results ascertain pharmacological blockade of ACVR2B ligands as a possible therapy for skeletal muscle wasting in ischemic HF. Pharmacological blockade of ACVR2B ligands preserved myofiber size in ischemic HF, but did not compromise cardiac function nor exacerbate cardiac remodeling after ischemic injury.
Collapse
Affiliation(s)
- Zoltán Szabó
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Laura Vainio
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Ruizhu Lin
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Julia Swan
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lea Rahtu-Korpela
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Mika Laitinen
- Department of Medicine, University of Helsinki, Helsinki, Finland.,Department of Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
17
|
Salamone P, Fuda G, Casale F, Marrali G, Lunetta C, Caponnetto C, Mazzini L, La Bella V, Mandrioli J, Simone IL, Moglia C, Calvo A, Tarella C, Chio A. G-CSF (filgrastim) treatment for amyotrophic lateral sclerosis: protocol for a phase II randomised, double-blind, placebo-controlled, parallel group, multicentre clinical study (STEMALS-II trial). BMJ Open 2020; 10:e034049. [PMID: 32209625 PMCID: PMC7202695 DOI: 10.1136/bmjopen-2019-034049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurological disorder characterised by a selective degeneration of motor neurons (MNs). Stem cell transplantation is considered as a promising strategy in neurological disorders therapy and the possibility of inducing bone marrow cells (BMCs) to circulate in the peripheral blood is suggested to investigate stem cells migration in degenerated ALS nerve tissues where potentially repair MN damage. Granulocyte-colony stimulating factor (G-CSF) is a growth factor which stimulates haematopoietic progenitor cells, mobilises BMCs into injured brain and it is itself a neurotrophic factor for MN. G-CSF safety in humans has been demonstrated and many observations suggest that it may affect neural cells. Therefore, we decided to use G-CSF to mobilise BMCs into the peripheral circulation in patients with ALS, planning a clinical trial to evaluate the effect of G-CSF administration in ALS patients compared with placebo. METHODS AND ANALYSIS STEMALS-II is a phase II multicentre, randomised double-blind, placebo-controlled, parallel group clinical trial on G-CSF (filgrastim) and mannitol in ALS patients. Specifically, we investigate safety, tolerability and efficacy of four repeated courses of intravenous G-CSF and mannitol administered in 76 ALS patients in comparison with placebo (indistinguishable glucose solution 5%). We determine increase of G-CSF levels in serum and cerebrospinal fluid as CD34+ cells and leucocyte count after treatment; reduction in ALS Functional Rating Scale-Revised Score, forced vital capacity, Scale for Testing Muscle Strength Score and quality of life; the adverse events/reactions during the treatment; changes in neuroinflammation biomarkers before and after treatment. ETHICS AND DISSEMINATION The study protocol was approved by the Ethics Committee of Azienda Ospedaliera Universitaria 'Città della Salute e della Scienza', Torino, Italy. Results will be presented during scientific symposia or published in scientific journals. TRIAL REGISTRATION NUMBER Eudract 2014-002228-28.
Collapse
Affiliation(s)
- Paolina Salamone
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Giuseppe Fuda
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Federico Casale
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Giuseppe Marrali
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, Milan, Italy
| | - Claudia Caponnetto
- Neurological Clinic, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Mazzini
- Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Vincenzo La Bella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Sicilia, Italy
| | - Jessica Mandrioli
- Department of Neuroscience, Azienda Ospedaliera Universitaria Modena, St. Agostino-Estense Hospital, Modena, Italy
| | - Isabella Laura Simone
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Puglia, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
- ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
- ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| | - Corrado Tarella
- Oncohematology Division, IEO European Institute of Oncology, IRCCS, University of Milan, Milano, Lombardia, Italy
| | - Adriano Chio
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Torino, Piemonte, Italy
- ALS Center, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Piemonte, Italy
| |
Collapse
|
18
|
Jiao J, Zhao G, Wang Y, Ren P, Wu M. MCC950, a Selective Inhibitor of NLRP3 Inflammasome, Reduces the Inflammatory Response and Improves Neurological Outcomes in Mice Model of Spinal Cord Injury. Front Mol Biosci 2020; 7:37. [PMID: 32195267 PMCID: PMC7062868 DOI: 10.3389/fmolb.2020.00037] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a serious condition that affects bodily function; however, there is no effective therapy in clinical practice. MCC950, a selective NOD-like receptor protein-3 (NLRP3) inflammasome inhibitor, has been reported to alleviate canonical and non-canonical NLRP3 inflammasome activation of the inflammatory response in vitro and in vivo. However, the effect of MCC950 treatment on neurological post-SCI recovery remains unclear. In this study, we assessed the pharmacological effect of MCC950 on an experimental SCI model in vivo and neuronal injury in vitro. We found that MCC950 improved the grip strength, hind limb movements, spinal cord edema, and pathological injury in the SCI mice. We demonstrated that it exerted this effect by blocking NLRP3 inflammasome assembly, including NLRP3-ASC and NLRP3-Caspase-1 complexes, as well as the release of pro-inflammatory cytokines TNF-α, IL-1β, and IL-18. Moreover, we found that MCC950 reduced spinal neuron injury and NLRP3 inflammasome activation, which had been induced by oxygen–glucose deprivation (OGD) or lipopolysaccharides (LPS) in vitro. In conclusion, our findings indicate that MCC950 alleviates inflammatory response and improves functional recovery in the acute mice model of SCI by blocking NLRP3 inflammasome assembly and alleviating downstream neuroinflammation. Therefore, these findings could prove useful in the development of effective therapeutic strategies for the treatment and prognosis of SCI.
Collapse
Affiliation(s)
- Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Guanjie Zhao
- Department of Kidney Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Pengfei Ren
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Moreno-Martinez L, Calvo AC, Muñoz MJ, Osta R. Are Circulating Cytokines Reliable Biomarkers for Amyotrophic Lateral Sclerosis? Int J Mol Sci 2019; 20:ijms20112759. [PMID: 31195629 PMCID: PMC6600567 DOI: 10.3390/ijms20112759] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that has no effective treatment. The lack of any specific biomarker that can help in the diagnosis or prognosis of ALS has made the identification of biomarkers an urgent challenge. Multiple panels have shown alterations in levels of numerous cytokines in ALS, supporting the contribution of neuroinflammation to the progressive motor neuron loss. However, none of them is fully sensitive and specific enough to become a universal biomarker for ALS. This review gathers the numerous circulating cytokines that have been found dysregulated in both ALS animal models and patients. Particularly, it highlights the opposing results found in the literature to date, and points out another potential application of inflammatory cytokines as therapeutic targets.
Collapse
Affiliation(s)
- Laura Moreno-Martinez
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Ana Cristina Calvo
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - María Jesús Muñoz
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Rosario Osta
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary-IIS Aragón, IA2-CITA, CIBERNED, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
20
|
Chemotherapeutic agent 5-fluorouracil increases survival of SOD1 mouse model of ALS. PLoS One 2019; 14:e0210752. [PMID: 30640943 PMCID: PMC6331125 DOI: 10.1371/journal.pone.0210752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal motor neuron disease with no cure. Currently there are only two ALS drugs approved by the FDA, both with a limited therapeutic effect. In the search for drug candidates for ALS, we studied the effect of known stem cell mobilizing agents (treatment) and antimetabolite 5-fluorouracil (5-FU) (anti-treatment) in SOD1G93A model of ALS. Surprisingly, we found that anti-cancer drug 5-FU increases lifespan, delays the disease onset and improves motor performance in ALS mice. Although we were not able to demonstrate the mechanistic basis of the beneficial 5-FU action in ALS mice, our findings suggest that 5-FU or similar drugs are possible drug candidates for the treatment of motor neuron diseases through drug repurposing.
Collapse
|
21
|
Korhonen P, Pollari E, Kanninen KM, Savchenko E, Lehtonen Š, Wojciechowski S, Pomeshchik Y, Van Den Bosch L, Goldsteins G, Koistinaho J, Malm T. Long-term interleukin-33 treatment delays disease onset and alleviates astrocytic activation in a transgenic mouse model of amyotrophic lateral sclerosis. IBRO Rep 2019; 6:74-86. [PMID: 30705990 PMCID: PMC6348738 DOI: 10.1016/j.ibror.2019.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Th2-type cytokine IL-33 delayed the disease onset of female SOD1-G93 A transgenic ALS mice. IL-33 decreased the proportion of T cells in the spleens and lymph nodes of female mice. IL-33 decreased astrocytic activation in the spinal cord of female mice. Male mice were unresponsive to the treatment.
Inflammation is a prominent feature of the neuropathology of amyotrophic lateral sclerosis (ALS). Emerging evidence suggests that inflammatory cascades contributing to the disease progression are not restricted to the central nervous system (CNS) but also occur peripherally. Indeed, alterations in T cell responses and their secreted cytokines have been detected in ALS patients and in animal models of ALS. One key cytokine responsible for the shift in T cell responses is interleukin-33 (IL-33), which stimulates innate type 2 immune cells to produce a large amount of Th2 cytokines that are possibly beneficial in the recovery processes of CNS injuries. Since the levels of IL-33 have been shown to be decreased in patients affected with ALS, we sought to determine whether a long-term recombinant IL-33 treatment of a transgenic mouse model of ALS expressing G93A-superoxide dismutase 1 (SOD1-G93A) alters the disease progression and ameliorates the ALS-like disease pathology. SOD1-G93A mice were treated with intraperitoneal injections of IL-33 and effects on disease onset and inflammatory status were determined. Spinal cord (SC) neurons, astrocytes and T-cells were exposed to IL-33 to evaluate the cell specific responses to IL-33. Treatment of SOD1-G93A mice with IL-33 delayed the disease onset in female mice, decreased the proportion of CD4+ and CD8 + T cell populations in the spleen and lymph nodes, and alleviated astrocytic activation in the ventral horn of the lumbar SC. Male SOD1-G93A mice were unresponsive to the treatment. In vitro studies showed that IL-33 is most likely not acting directly on neurons and astrocytes, but rather conveying its effects through peripheral T-cells. Our results suggest that strategies directed to the peripheral immune system may have therapeutic potential in ALS. The effect of gender dimorphisms to the treatment efficacy needs to be taken into consideration when designing new therapeutic strategies for CNS diseases.
Collapse
Key Words
- ALS
- ALS, amyotrophic lateral sclerosis
- ANOVA, analysis of variance
- Arg-1, arginine-1
- Astrocyte
- CM, conditioned medium
- CNS, central nervous system
- Cytokine
- DMEM, Dulbecco’s minimum essential medium
- EAE, experimental autoimmune encephalomyelitis
- GFAP, glial fibrillary acidic protein
- HO-1, hemeoxygenase-1
- IFN-γ, interferon gamma
- IL-10, interleukin-10
- IL-1RAcP, interleukin-1 receptor accessory protein
- IL-33, interleukin-33
- IL-33R, interleukin-33 receptor
- IL-6, interleukin-6
- Iba-1, ionized calcium binding adaptor molecule-1
- Inflammation
- Interleukin-33
- MCP-1, monocyte chemoattractant protein-1
- Microglia
- NFE2L2, the gene encoding Nrf2
- Nrf2, nuclear factor (erythroid-derived 2)-like 2
- PBS, phosphate buffered saline
- RT, room temperature
- SC, spinal cord
- SD, standard deviation
- SOD1, superoxide dismutase 1
- Spinal cord
- T cell
- TG, transgenic
- TNF, tumor necrosis factor
- WT, wildtype
- fALS, familial ALS
- sALS, sporadic ALS
Collapse
Affiliation(s)
- Paula Korhonen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Eveliina Pollari
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology, VIB Center for Brain & Disease Research, Box 912, B-3000 Leuven, Belgium
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ekaterina Savchenko
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Šárka Lehtonen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Sara Wojciechowski
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Yuriy Pomeshchik
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ludo Van Den Bosch
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology, VIB Center for Brain & Disease Research, Box 912, B-3000 Leuven, Belgium
| | - Gundars Goldsteins
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
22
|
Johannesen S, Budeus B, Peters S, Iberl S, Meyer AL, Kammermaier T, Wirkert E, Bruun TH, Samara VC, Schulte-Mattler W, Herr W, Schneider A, Grassinger J, Bogdahn U. Biomarker Supervised G-CSF (Filgrastim) Response in ALS Patients. Front Neurol 2018; 9:971. [PMID: 30534107 PMCID: PMC6275232 DOI: 10.3389/fneur.2018.00971] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/29/2018] [Indexed: 01/16/2023] Open
Abstract
Objective: To evaluate safety, tolerability and feasibility of long-term treatment with Granulocyte-colony stimulating factor (G-CSF), a well-known hematopoietic stem cell factor, guided by assessment of mobilized bone marrow derived stem cells and cytokines in the serum of patients with amyotrophic lateral sclerosis (ALS) treated on a named patient basis. Methods: 36 ALS patients were treated with subcutaneous injections of G-CSF on a named patient basis and in an outpatient setting. Drug was dosed by individual application schemes (mean 464 Mio IU/month, range 90-2160 Mio IU/month) over a median of 13.7 months (range from 2.7 to 73.8 months). Safety, tolerability, survival and change in ALSFRS-R were observed. Hematopoietic stem cells were monitored by flow cytometry analysis of circulating CD34+ and CD34+CD38− cells, and peripheral cytokines were assessed by electrochemoluminescence throughout the intervention period. Analysis of immunological and hematological markers was conducted. Results: Long term and individually adapted treatment with G-CSF was well tolerated and safe. G-CSF led to a significant mobilization of hematopoietic stem cells into the peripheral blood. Higher mobilization capacity was associated with prolonged survival. Initial levels of serum cytokines, such as MDC, TNF-beta, IL-7, IL-16, and Tie-2 were significantly associated with survival. Continued application of G-CSF led to persistent alterations in serum cytokines and ongoing measurements revealed the multifaceted effects of G-CSF. Conclusions: G-CSF treatment is feasible and safe for ALS patients. It may exert its beneficial effects through neuroprotective and -regenerative activities, mobilization of hematopoietic stem cells and regulation of pro- and anti-inflammatory cytokines as well as angiogenic factors. These cytokines may serve as prognostic markers when measured at the time of diagnosis. Hematopoietic stem cell numbers and cytokine levels are altered by ongoing G-CSF application and may potentially serve as treatment biomarkers for early monitoring of G-CSF treatment efficacy in ALS in future clinical trials.
Collapse
Affiliation(s)
- Siw Johannesen
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | | | - Sebastian Peters
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Sabine Iberl
- Department of Hematology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Anne-Louise Meyer
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Tina Kammermaier
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Eva Wirkert
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Tim-Henrik Bruun
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Verena C Samara
- Stanford Neuroscience Health Center, Palo Alto, CA, United States
| | | | - Wolfgang Herr
- Department of Hematology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | | | - Jochen Grassinger
- Department of Hematology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
El-Esawy R, Balaha M, Kandeel S, Hadya S, El-Rahman MNA. Filgrastim (G-CSF) ameliorates Parkinsonism l -dopa therapy’s drawbacks in mice. BASAL GANGLIA 2018; 13:17-26. [DOI: 10.1016/j.baga.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
24
|
Azmy MS, Menze ET, El-Naga RN, Tadros MG. Neuroprotective Effects of Filgrastim in Rotenone-Induced Parkinson's Disease in Rats: Insights into its Anti-Inflammatory, Neurotrophic, and Antiapoptotic Effects. Mol Neurobiol 2018; 55:6572-6588. [PMID: 29327204 DOI: 10.1007/s12035-017-0855-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
All current treatments of Parkinson's disease (PD) focus on enhancing the dopaminergic effects and providing symptomatic relief; however, they cannot delay the disease progression. Filgrastim, a recombinant methionyl granulocyte colony-stimulating factor, demonstrated neuroprotection in many neurodegenerative and neurological diseases. This study aimed to assess the neuroprotective effects of filgrastim in rotenone-induced rat model of PD and investigate the potential underlying mechanisms of filgrastim actions. The effects of two doses of filgrastim (20 and 40 μg/kg) on spontaneous locomotion, catalepsy, body weight, histology, and striatal dopamine (DA) content, as well as tyrosine hydroxylase (TH) and α-synuclein expression, were evaluated. Then, the effective dose was further tested for its potential anti-inflammatory, neurotrophic, and antiapoptotic effects. Filgrastim (40 μg/kg) prevented rotenone-induced motor deficits, weight reduction, striatal DA depletion, and histological damage. Besides, it significantly inhibited rotenone-induced decrease in TH expression and increase in α-synuclein immunoreactivity in the midbrains and striata of the rats. These effects were associated with reduction of rotenone-induced neuroinflammation, apoptosis, and brain-derived neurotrophic factor depletion. Collectively, these results suggest that filgrastim might be a good candidate for management of PD.
Collapse
Affiliation(s)
- Mariama S Azmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
25
|
Granulocyte Colony-Stimulating Factor and Its Potential Application for Skeletal Muscle Repair and Regeneration. Mediators Inflamm 2017; 2017:7517350. [PMID: 29362521 PMCID: PMC5738577 DOI: 10.1155/2017/7517350] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) was originally discovered in the context of hematopoiesis. However, the identification of the G-CSF receptor (G-CSFR) being expressed outside the hematopoietic system has revealed wider roles for G-CSF, particularly in tissue repair and regeneration. Skeletal muscle damage, including that following strenuous exercise, induces an elevation in plasma G-CSF, implicating it as a potential mediator of skeletal muscle repair. This has been supported by preclinical studies and clinical trials investigating G-CSF as a potential therapeutic agent in relevant disease states. This review focuses on the growing literature associated with G-CSF and G-CSFR in skeletal muscle under healthy and disease conditions and highlights the current controversies.
Collapse
|
26
|
Baldaranov D, Khomenko A, Kobor I, Bogdahn U, Gorges M, Kassubek J, Müller HP. Longitudinal Diffusion Tensor Imaging-Based Assessment of Tract Alterations: An Application to Amyotrophic Lateral Sclerosis. Front Hum Neurosci 2017; 11:567. [PMID: 29259550 PMCID: PMC5723297 DOI: 10.3389/fnhum.2017.00567] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/07/2017] [Indexed: 12/03/2022] Open
Abstract
Objective: The potential of magnetic resonance imaging (MRI) as a technical biomarker for cerebral microstructural alterations in neurodegenerative diseases is under investigation. In this study, a framework for the longitudinal analysis of diffusion tensor imaging (DTI)-based mapping was applied to the assessment of predefined white matter tracts in amyotrophic lateral sclerosis (ALS), as an example for a rapid progressive neurodegenerative disease. Methods: DTI was performed every 3 months in six patients with ALS (mean (M) = 7.7; range 3 to 15 scans) and in six controls (M = 3; range 2–5 scans) with the identical scanning protocol, resulting in a total of 65 longitudinal DTI datasets. Fractional anisotropy (FA), mean diffusivity (MD), axonal diffusivity (AD), radial diffusivity (RD), and the ratio AD/RD were studied to analyze alterations within the corticospinal tract (CST) which is a prominently affected tract structure in ALS and the tract correlating with Braak’s neuropathological stage 1. A correlation analysis was performed between progression rates based on DTI metrics and the revised ALS functional rating scale (ALS-FRS-R). Results: Patients with ALS showed an FA and AD/RD decline along the CST, while DTI metrics of controls did not change in longitudinal DTI scans. The FA and AD/RD decrease progression correlated significantly with ALS-FRS-R decrease progression. Conclusion: On the basis of the longitudinal assessment, DTI-based metrics can be considered as a possible noninvasive follow-up marker for disease progression in neurodegeneration. This finding was demonstrated here for ALS as a fast progressing neurodegenerative disease.
Collapse
Affiliation(s)
- Dobri Baldaranov
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Andrei Khomenko
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Ines Kobor
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Martin Gorges
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
27
|
Khalid SI, Ampie L, Kelly R, Ladha SS, Dardis C. Immune Modulation in the Treatment of Amyotrophic Lateral Sclerosis: A Review of Clinical Trials. Front Neurol 2017; 8:486. [PMID: 28993751 PMCID: PMC5622209 DOI: 10.3389/fneur.2017.00486] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the degeneration of motor neurons. Though many molecular and genetic causes are thought to serve as predisposing or disease propagating factors, the underlying pathogenesis of the disease is not known. Recent discoveries have demonstrated the presence of inflammation propagating substrates in the central nervous system of patients afflicted with ALS. Over the past decade, this hypothesis has incited an effort to better understand the role of the immune system in ALS and has led to the trial of several potential immune-modulating therapies. Here, we briefly review advances in the role of such therapies. The clinical trials discussed here are currently ongoing or have been concluded at the time of writing.
Collapse
Affiliation(s)
| | - Leonel Ampie
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, United States.,Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA, United States.,Georgetown University School of Medicine, Washington, DC, United States
| | - Ryan Kelly
- Georgetown University School of Medicine, Washington, DC, United States
| | - Shafeeq S Ladha
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Christopher Dardis
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
28
|
Kemp KC, Cerminara N, Hares K, Redondo J, Cook AJ, Haynes HR, Burton BR, Pook M, Apps R, Scolding NJ, Wilkins A. Cytokine therapy-mediated neuroprotection in a Friedreich's ataxia mouse model. Ann Neurol 2017; 81:212-226. [PMID: 28009062 PMCID: PMC5324580 DOI: 10.1002/ana.24846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/06/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Friedreich's ataxia is a devastating neurological disease currently lacking any proven treatment. We studied the neuroprotective effects of the cytokines, granulocyte-colony stimulating factor (G-CSF) and stem cell factor (SCF) in a humanized murine model of Friedreich's ataxia. METHODS Mice received monthly subcutaneous infusions of cytokines while also being assessed at monthly time points using an extensive range of behavioral motor performance tests. After 6 months of treatment, neurophysiological evaluation of both sensory and motor nerve conduction was performed. Subsequently, mice were sacrificed for messenger RNA, protein, and histological analysis of the dorsal root ganglia, spinal cord, and cerebellum. RESULTS Cytokine administration resulted in significant reversal of biochemical, neuropathological, neurophysiological, and behavioural deficits associated with Friedreich's ataxia. Both G-CSF and SCF had pronounced effects on frataxin levels (the primary molecular defect in the pathogenesis of the disease) and a regulators of frataxin expression. Sustained improvements in motor coordination and locomotor activity were observed, even after onset of neurological symptoms. Treatment also restored the duration of sensory nerve compound potentials. Improvements in peripheral nerve conduction positively correlated with cytokine-induced increases in frataxin expression, providing a link between increases in frataxin and neurophysiological function. Abrogation of disease-related pathology was also evident, with reductions in inflammation/gliosis and increased neural stem cell numbers in areas of tissue injury. INTERPRETATION These experiments show that cytokines already clinically used in other conditions offer the prospect of a novel, rapidly translatable, disease-modifying, and neuroprotective treatment for Friedreich's ataxia. Ann Neurol 2017;81:212-226.
Collapse
Affiliation(s)
- Kevin C. Kemp
- Multiple Sclerosis and Stem Cell Group, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| | - Nadia Cerminara
- Sensory and Motor Systems Group, School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUnited Kingdom
| | - Kelly Hares
- Multiple Sclerosis and Stem Cell Group, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| | - Juliana Redondo
- Multiple Sclerosis and Stem Cell Group, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| | - Amelia J. Cook
- Multiple Sclerosis and Stem Cell Group, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| | - Harry R. Haynes
- Brain Tumour Research Group, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| | - Bronwen R. Burton
- Infection and Immunity, School of Cellular and Molecular MedicineUniversity of BristolBristolUnited Kingdom
| | - Mark Pook
- Synthetic Biology Theme, Institute of Environment, Health & Societies, Biosciences, Dept. of Life Sciences, College of Health & Life SciencesBrunel University LondonLondonUnited Kingdom
| | - Richard Apps
- Sensory and Motor Systems Group, School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUnited Kingdom
| | - Neil J. Scolding
- Multiple Sclerosis and Stem Cell Group, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| | - Alastair Wilkins
- Multiple Sclerosis and Stem Cell Group, School of Clinical SciencesUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
29
|
Rando A, Gasco S, de la Torre M, García-Redondo A, Zaragoza P, Toivonen JM, Osta R. Granulocyte Colony-Stimulating Factor Ameliorates Skeletal Muscle Dysfunction in Amyotrophic Lateral Sclerosis Mice and Improves Proliferation of SOD1-G93A Myoblasts in vitro. NEURODEGENER DIS 2017; 17:1-13. [DOI: 10.1159/000446113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
<b><i>Background:</i></b> Amyotrophic lateral sclerosis (ALS) causes loss of upper and lower motor neurons as well as skeletal muscle (SKM) dysfunction and atrophy. SKM is one of the tissues involved in the development of ALS pathology, and studies in a SOD1-G93A mouse model of ALS have demonstrated alterations in SKM degeneration/regeneration marker expression in vivo and defective mutant myoblast proliferation in vitro. Granulocyte colony-stimulating factor (G-CSF) has been shown to alleviate SOD1-G93A pathology. However, it is unknown whether G-CSF may have a direct effect on SKM or derived myoblasts. <b><i>Objective:</i></b> To investigate effects of G-CSF and its analog pegfilgrastim (PEGF) on SOD1-G93A- associated SKM markers in vivo and those of G-CSF on myoblast proliferation in vitro. <b><i>Methods:</i></b> The effect of PEGF treatment on hematopoietic stem cell mobilization, survival, and motor function was determined. RNA expression of SKM markers associated with mutant SOD1 expression was quantified in response to PEGF treatment in vivo, and the effect of G-CSF on the proliferation of myoblasts derived from mutant and control muscles was determined in vitro. <b><i>Results:</i></b> Positive effects of PEGF on hematopoietic stem cell mobilization, survival, and functional assays in SOD1-G93A animals were confirmed. In vivo PEGF treatment augmented the expression of its receptor Csf3r and alleviated typical markers for mutant SOD1 muscle. Additionally, G-CSF was found to directly increase the proliferation of SOD1-G93A, but not wild-type primary myoblasts in vitro. <b><i>Conclusion:</i></b> Our results support the beneficial role of the G-CSF analog PEGF in a SOD1-G93A model of ALS. Thus, G-CSF and<b> </b>its analogs may be directly beneficial in diseases where the SKM function is compromised.
Collapse
|
30
|
Gasco S, Rando A, Zaragoza P, García-Redondo A, Calvo AC, Osta R. Hematopoietic stem and progenitor cells as novel prognostic biomarkers of longevity in a murine model for amyotrophic lateral sclerosis. Am J Physiol Cell Physiol 2016; 311:C910-C919. [PMID: 27681176 DOI: 10.1152/ajpcell.00081.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/21/2016] [Indexed: 11/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a difficult diagnosis and prognosis. In this regard, new and more reliable biomarkers for the disease are needed. We propose peripheral blood, and, more specifically, the hematopoietic stem and progenitor cells (HSPCs) as potential prognostic biomarkers in the SOD1G93A murine model of ALS. We accurately and serially studied three HSPCs-hematopoietic stem cells (HSCs), common lymphoid progenitors (CLPs), and common myeloid progenitors (CMPs)-in both control and SOD1G93A mice along the disease's progression by RT-PCR and flow cytometry analysis. We found interesting differences for every HSPC type in the transgenic mice compared with the control mice at every time point selected, as well as differences along the disease course. The results showed a maintained compensatory increase of HSCs along disease progression. However, the downregulated levels of CLPs and CMPs suggested an exit of these cell populations to the peripheral tissues, probably due to their supporting role to the damaged tissues. In addition, a positive correlation of the percentage of CLPs and CMPs with the longevity was found, as well as a positive correlation of HSCs and CMPs with motor function and weight, thus reinforcing the idea that HSPCs play a relevant role in the longevity of the SOD1G93A mice. On the basis of these results, both CLPs and CMPs could be considered prognostic biomarkers of longevity in this animal model, opening the door to future studies in human patients for their potential clinical use.
Collapse
Affiliation(s)
- Samanta Gasco
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Amaya Rando
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Alberto García-Redondo
- Biochemistry Department, Centre for Biomedical Network Research on Rare Diseases, Health Research Institute, October 12th Hospital, Madrid, Spain
| | - Ana Cristina Calvo
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Rosario Osta
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| |
Collapse
|
31
|
Affiliation(s)
- Fumito Endo
- Department of Neuroscience and Pathobiology; Research Institute of Environmental Medicine; Nagoya University; Nagoya Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology; Research Institute of Environmental Medicine; Nagoya University; Nagoya Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology; Research Institute of Environmental Medicine; Nagoya University; Nagoya Japan
| |
Collapse
|
32
|
Targeting the prodromal stage of spinocerebellar ataxia type 17 mice: G-CSF in the prevention of motor deficits via upregulating chaperone and autophagy levels. Brain Res 2016; 1639:132-48. [PMID: 26972528 DOI: 10.1016/j.brainres.2016.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/13/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
Spinocerebellar ataxia type 17 (SCA17), an autosomal dominant cerebellar ataxia, is a devastating, incurable disease caused by the polyglutamine (polyQ) expansion of transcription factor TATA binding protein (TBP). The polyQ expansion causes misfolding and aggregation of the mutant TBP, further leading to cytotoxicity and cell death. The well-recognized prodromal phase in many forms of neurodegeneration suggests a prolonged period of partial neuronal dysfunction prior to cell loss that may be amenable to therapeutic intervention. The objective of this study was to assess the effects and molecular mechanisms of granulocyte-colony stimulating factor (G-CSF) therapy during the pre-symptomatic stage in SCA17 mice. Treatment with G-CSF at the pre-symptomatic stage improved the motor coordination of SCA17 mice and reduced the cell loss, insoluble mutant TBP protein, and vacuole formation in the Purkinje neurons of these mice. The neuroprotective effects of G-CSF may be produced by increases in Hsp70, Beclin-1, LC3-II and the p-ERK survival pathway. Upregulation of chaperone and autophagy levels further enhances the clearance of mutant protein aggregation, slowing the progression of pathology in SCA17 mice. Therefore, we showed that the early intervention of G-CSF has a neuroprotective effect, delaying the progression of SCA17 in mutant mice via increases in the levels of chaperone expression and autophagy.
Collapse
|
33
|
Lemarchant S, Pomeshchik Y, Kidin I, Kärkkäinen V, Valonen P, Lehtonen S, Goldsteins G, Malm T, Kanninen K, Koistinaho J. ADAMTS-4 promotes neurodegeneration in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener 2016; 11:10. [PMID: 26809777 PMCID: PMC4727317 DOI: 10.1186/s13024-016-0078-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/20/2016] [Indexed: 12/14/2022] Open
Abstract
Background A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) proteoglycanases are specialized in the degradation of chondroitin sulfate proteoglycans and participate in mechanisms mediating neuroplasticity. Despite the beneficial effect of ADAMTS-4 on neurorepair after spinal cord injury, the functions of ADAMTS proteoglycanases in other CNS disease states have not been studied. Therefore, we investigated the expression, effects and associated mechanisms of ADAMTS-4 during amyotrophic lateral sclerosis (ALS) in the SOD1G93A mouse model. Results ADAMTS-4 expression and activity were reduced in the spinal cord of SOD1G93A mice at disease end-stage when compared to WT littermates. To counteract the loss of ADAMTS-4, SOD1G93A and WT mice were treated with saline or a recombinant ADAMTS-4 before symptom onset. Administration of ADAMTS-4 worsened the prognosis of SOD1G93A mice by accelerating clinical signs of neuromuscular dysfunctions. The worsened prognosis of ADAMTS-4-treated SOD1G93A mice was accompanied by increased degradation of perineuronal nets enwrapping motoneurons and increased motoneuron degeneration in the lumbar spinal cord. Motoneurons of ADAMTS-4-treated SOD1G93A mice were more vulnerable to degeneration most likely due to the loss of their extracellular matrix envelopes. The decrease of neurotrophic factor production induced by ADAMTS-4 in vitro and in vivo may also contribute to a hostile environment for motoneuron especially when devoid of a net. Conclusions This study suggests that the reduction of ADAMTS-4 activity during the progression of ALS pathology may be an adaptive change to mitigate its neurodegenerative impact in CNS tissues. Therapies compensating the compromized ADAMTS-4 activity are likely not promising approaches for treating ALS.
Collapse
Affiliation(s)
- Sighild Lemarchant
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Yuriy Pomeshchik
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Iurii Kidin
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Virve Kärkkäinen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Piia Valonen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Sarka Lehtonen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Gundars Goldsteins
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Tarja Malm
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Katja Kanninen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Jari Koistinaho
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
34
|
Jeyachandran A, Mertens B, McKissick EA, Mitchell CS. Type I Vs. Type II Cytokine Levels as a Function of SOD1 G93A Mouse Amyotrophic Lateral Sclerosis Disease Progression. Front Cell Neurosci 2015; 9:462. [PMID: 26648846 PMCID: PMC4664727 DOI: 10.3389/fncel.2015.00462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal motoneuron disease that is characterized by the degradation of neurons throughout the central nervous system. Inflammation have been cited a key contributor to ALS neurodegeneration, but the timeline of cytokine upregulation remains unresolved. The goal of this study was to temporally examine the correlation between the varying levels of pro-inflammatory type I cytokines (IL-1β, IL-1α, IL-12, TNF-α, and GFAP) and anti-inflammatory type II cytokines (IL-4, IL-6, IL-10) throughout the progression of ALS in the SOD1 G93A mouse model. Cytokine level data from high copy SOD1 G93A transgenic mice was collected from 66 peer-reviewed studies. For each corresponding experimental time point, the ratio of transgenic to wild type (TG/WT) cytokine was calculated. One-way ANOVA and t-tests with Bonferonni correction were used to analyze the data. Meta-analysis was performed for four discrete stages: early, pre-onset, post-onset, and end stage. A significant increase in TG cytokine levels was found when compared to WT cytokine levels across the entire SOD1 G93A lifespan for majority of the cytokines. The rates of change of the individual cytokines, and type I and type II were not significantly different; however, the mean fold change of type I was expressed at significantly higher levels than type II levels across all stages with the difference between the means becoming more pronounced at the end stage. An overexpression of cytokines occurred both before and after the onset of ALS symptoms. The trend between pro-inflammatory type I and type II cytokine mean levels indicate a progressive instability of the dynamic balance between pro- and anti-inflammatory cytokines as anti-inflammatory cytokines fail to mediate the pronounced increase in pro-inflammatory cytokines. Very early immunoregulatory treatment is necessary to successfully interrupt ALS-induced neuroinflammation.
Collapse
Affiliation(s)
- Amilia Jeyachandran
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Benjamin Mertens
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Eric A McKissick
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| |
Collapse
|
35
|
Wallner S, Peters S, Pitzer C, Resch H, Bogdahn U, Schneider A. The Granulocyte-colony stimulating factor has a dual role in neuronal and vascular plasticity. Front Cell Dev Biol 2015; 3:48. [PMID: 26301221 PMCID: PMC4528279 DOI: 10.3389/fcell.2015.00048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/23/2015] [Indexed: 12/13/2022] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF) is a growth factor that has originally been identified several decades ago as a hematopoietic factor required mainly for the generation of neutrophilic granulocytes, and is in clinical use for that. More recently, it has been discovered that G-CSF also plays a role in the brain as a growth factor for neurons and neural stem cells, and as a factor involved in the plasticity of the vasculature. We review and discuss these dual properties in view of the neuroregenerative potential of this growth factor.
Collapse
Affiliation(s)
- Stephanie Wallner
- Department of Traumatology and Sports Injuries, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
| | - Sebastian Peters
- Department of Neurology, University Hospital RegensburgRegensburg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Ruprecht-Karls-UniversityHeidelberg, Germany
| | - Herbert Resch
- Department of Traumatology and Sports Injuries, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
- University Clinic of Traumatology and Sports Injuries Salzburg, Paracelsus Medical University SalzburgSalzburg, Austria
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital RegensburgRegensburg, Germany
| | | |
Collapse
|
36
|
Amirzagar N, Nafissi S, Tafakhori A, Modabbernia A, Amirzargar A, Ghaffarpour M, Siroos B, Harirchian MH. Granulocyte colony-stimulating factor for amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled study of Iranian patients. J Clin Neurol 2015; 11:164-71. [PMID: 25851895 PMCID: PMC4387482 DOI: 10.3988/jcn.2015.11.2.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose The aim of this study was to determine the efficacy and tolerability of granulocyte colony-stimulating factor (G-CSF) in subjects with amyotrophic lateral sclerosis (ALS). Methods Forty subjects with ALS were randomly assigned to two groups, which received either subcutaneous G-CSF (5 µg/kg/q12h) or placebo for 5 days. The subjects were then followed up for 3 months using the ALS Functional Rating Scale-Revised (ALSFRS-R), manual muscle testing, ALS Assessment Questionnaire-40, and nerve conduction studies. CD34+/CD133+ cell count and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated at baseline. Results The rate of disease progression did not differ significantly between the two groups. The reduction in ALSFRS-R scores was greater in female subjects in the G-CSF group than in their counterparts in the placebo group. There was a trend toward a positive correlation between baseline CSF MCP-1 levels and the change in ALSFRS-R scores in both groups (Spearman's ρ=0.370, p=0.070). Conclusions With the protocol implemented in this study, G-CSF is not a promising option for the treatment of ALS. Furthermore, it may accelerate disease progression in females.
Collapse
Affiliation(s)
- Nasibeh Amirzagar
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Neurology Department, Tehran Shariati Hospital, University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Aliakbar Amirzargar
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Ghaffarpour
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahaddin Siroos
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Harirchian
- Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Adjuvant granulocyte colony-stimulating factor therapy results in improved spatial learning and stimulates hippocampal neurogenesis in a mouse model of pneumococcal meningitis. J Neuropathol Exp Neurol 2015; 74:85-94. [PMID: 25470346 DOI: 10.1097/nen.0000000000000152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Despite the development of new antibiotic agents, mortality of pneumococcal meningitis remains high. In addition, meningitis results in severe long-term morbidity, most prominently cognitive deficits. Granulocyte colony-stimulating factor (G-CSF) stimulates proliferation and differentiation of hematopoietic progenitor cells and increases the number of circulating neutrophil granulocytes. This study investigated the effect of adjuvant G-CSF treatment on cognitive function after pneumococcal meningitis. C57BL/6 mice were infected by subarachnoid injection of Streptococcus pneumoniae serotype 3 and treated with ceftriaxone and G-CSF subcutaneously or ceftriaxone alone for 5 days. Clinical scores, motor performance, and mortality during bacterial meningitis were unaffected by adjuvant G-CSF treatment. No effect of G-CSF treatment on production of proinflammatory cytokines or activation of microglia or astrocytes was observed. The G-CSF treatment did, however, result in hippocampal neurogenesis and improved spatial learning performance 6 weeks after meningitis. These results suggest that G-CSF might offer a new adjuvant therapeutic approach in bacterial meningitis to reduce long-term cognitive deficits.
Collapse
|
38
|
Henriques A, Kastner S, Chatzikonstantinou E, Pitzer C, Plaas C, Kirsch F, Wafzig O, Krüger C, Spoelgen R, Gonzalez De Aguilar JL, Gretz N, Schneider A. Gene expression changes in spinal motoneurons of the SOD1(G93A) transgenic model for ALS after treatment with G-CSF. Front Cell Neurosci 2015; 8:464. [PMID: 25653590 PMCID: PMC4299451 DOI: 10.3389/fncel.2014.00464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/20/2014] [Indexed: 12/12/2022] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3–5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1G93A mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. Results: Motoneurons from SOD1G93A mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age), when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age). Upon G-CSF treatment, transcriptomic deregulations of SOD1G93A motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12. Conclusions: Our data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1G93A motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS.
Collapse
Affiliation(s)
- Alexandre Henriques
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence Strasbourg, France ; UMRS1118, Fédération de Médecine Translationnelle de Strasbourg Université de Strasbourg, France
| | | | | | | | | | | | | | | | | | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence Strasbourg, France ; UMRS1118, Fédération de Médecine Translationnelle de Strasbourg Université de Strasbourg, France
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | | |
Collapse
|
39
|
Simões GF, Benitez SU, Oliveira ALR. Granulocyte colony-stimulating factor (G-CSF) positive effects on muscle fiber degeneration and gait recovery after nerve lesion in MDX mice. Brain Behav 2014; 4:738-53. [PMID: 25328849 PMCID: PMC4188366 DOI: 10.1002/brb3.250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/20/2014] [Accepted: 06/09/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. AIMS The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. METHODS Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75(NTR) and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. RESULTS Both groups treated with G-CSF showed increased p75(NTR) and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. CONCLUSIONS The reduction in p75(NTR) and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF.
Collapse
Affiliation(s)
- Gustavo F Simões
- Departament of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP) CP 6109, CEP 13083-907, Campinas, SP, Brazil
| | - Suzana U Benitez
- Departament of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP) CP 6109, CEP 13083-907, Campinas, SP, Brazil
| | - Alexandre L R Oliveira
- Departament of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP) CP 6109, CEP 13083-907, Campinas, SP, Brazil
| |
Collapse
|
40
|
Terashima T, Kojima H, Urabe H, Yamakawa I, Ogawa N, Kawai H, Chan L, Maegawa H. Stem cell factor-activated bone marrow ameliorates amyotrophic lateral sclerosis by promoting protective microglial migration. J Neurosci Res 2014; 92:856-69. [PMID: 24936617 PMCID: PMC4061499 DOI: 10.1002/jnr.23368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive disease associated with motor neuron death. Several experimental treatments, including cell therapy using hematopoietic or neuronal stem cells, have been tested in ALS animal models, but therapeutic benefits have been modest. Here we used a new therapeutic strategy, bone marrow transplantation (BMT) with stem cell factor (SCF)- or FMS-like tyrosine kinase 3 (flt3)-activated bone marrow (BM) cells for the treatment of hSOD1(G93A) transgenic mice. Motor function and survival showed greater improvement in the SCF group than in the group receiving BM cells that had not been activated (BMT alone group), although no improvement was shown in the flt3 group. In addition, larger numbers of BM-derived cells that expressed the microglia marker Iba1 migrated to the spinal cords of recipient mice compared with the BMT alone group. Moreover, after SCF activation, but not flt3 activation or no activation, the migrating microglia expressed glutamate transporter-1 (GLT-1). In spinal cords in the SCF group, inflammatory cytokines tumor necrosis factor-α and interleukin-1β were suppressed and the neuroprotective molecule insulin-like growth factor-1 increased relative to nontreatment hSOD1(G93A) transgenic mice. Therefore, SCF activation changed the character of the migrating donor BM cells, which resulted in neuroprotective effects. These studies have identified SCF-activated BM cells as a potential new therapeutic agent for the treatment of ALS.
Collapse
Affiliation(s)
- Tomoya Terashima
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Hideto Kojima
- Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Hiroshi Urabe
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Isamu Yamakawa
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Nobuhiro Ogawa
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Hiromichi Kawai
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Lawrence Chan
- Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| |
Collapse
|
41
|
Pollari E, Goldsteins G, Bart G, Koistinaho J, Giniatullin R. The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8:131. [PMID: 24860432 PMCID: PMC4026683 DOI: 10.3389/fncel.2014.00131] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/27/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of motoneurons and degradation of the neuromuscular junctions (NMJ). Consistent with the dying-back hypothesis of motoneuron degeneration the decline in synaptic function initiates from the presynaptic terminals in ALS. Oxidative stress is a major contributory factor to ALS pathology and affects the presynaptic transmitter releasing machinery. Indeed, in ALS mouse models nerve terminals are sensitive to reactive oxygen species (ROS) suggesting that oxidative stress, along with compromised mitochondria and increased intracellular Ca(2+) amplifies the presynaptic decline in NMJ. This initial dysfunction is followed by a neurodegeneration induced by inflammatory agents and loss of trophic support. To develop effective therapeutic approaches against ALS, it is important to identify the mechanisms underlying the initial pathological events. Given the role of oxidative stress in ALS, targeted antioxidant treatments could be a promising therapeutic approach. However, the complex nature of ALS and failure of monotherapies suggest that an antioxidant therapy should be accompanied by anti-inflammatory interventions to enhance the restoration of the redox balance.
Collapse
Affiliation(s)
- Eveliina Pollari
- Molecular Brain Research Laboratory, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland ; Experimental Neurology - Laboratory of Neurobiology, Department of Neurosciences, Vesalius Research Center, KULeuven - University of Leuven Leuven, Belgium
| | - Gundars Goldsteins
- Molecular Brain Research Laboratory, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| | - Geneviève Bart
- Cell Biology Laboratory, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| | - Jari Koistinaho
- Molecular Brain Research Laboratory, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| | - Rashid Giniatullin
- Cell Biology Laboratory, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland ; Laboratory of Neurobiology, Department of Physiology, Kazan Federal University Kazan, Russia
| |
Collapse
|
42
|
Do BH, Ryu HB, Hoang P, Koo BK, Choe H. Soluble prokaryotic overexpression and purification of bioactive human granulocyte colony-stimulating factor by maltose binding protein and protein disulfide isomerase. PLoS One 2014; 9:e89906. [PMID: 24594699 PMCID: PMC3940694 DOI: 10.1371/journal.pone.0089906] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/24/2014] [Indexed: 01/17/2023] Open
Abstract
Human granulocyte colony-stimulating factor (hGCSF), a neutrophil-promoting cytokine, is an effective therapeutic agent for neutropenia patients who have undergone several cancer treatments. Efficient production of hGCSF using E. coli is challenging because the hormone tends to aggregate and forms inclusion bodies. This study examined the ability of seven different N-terminal fusion tags to increase expression of soluble hGCSF in E. coli. Four tag proteins, namely maltose-binding protein (MBP), N-utilization substance protein A, protein disulfide isomerase (PDI), and the b'a' domain of PDI (PDIb'a'), increased the solubility of hGCSF under normal conditions. Lowering the expression temperature from 30°C to 18°C also increased the solubility of thioredoxin-tagged and glutathione S-transferase-tagged hGCSF. By contrast, hexahistidine-tagged hGCSF was insoluble at both temperatures. Simple conventional chromatographic methods were used to purify hGCSF from the overexpressed PDIb'a'-hGCSF and MBP-hGCSF proteins. In total, 11.3 mg or 10.2 mg of pure hGCSF were obtained from 500 mL cultures of E. coli expressing PDIb'a'-hGCSF or MBP-hGCSF, respectively. SDS-PAGE analysis and silver staining confirmed high purity of the isolated hGCSF proteins, and the endotoxin levels were less than 0.05 EU/µg of protein. Subsequently, the bioactivity of the purified hGCSF proteins similar to that of the commercially available hGCSF was confirmed using the mouse M-NFS-60 myelogenous leukemia cell line. The EC50s of the cell proliferation dose-response curves for hGCSF proteins purified from MBP-hGCSF and PDIb'a'-hGCSF were 2.83±0.31 pM, and 3.38±0.41 pM, respectively. In summary, this study describes an efficient method for the soluble overexpression and purification of bioactive hGCSF in E. coli.
Collapse
Affiliation(s)
- Bich Hang Do
- Department of Physiology and Biomedical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Bong Ryu
- Department of Physiology and Biomedical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Phuong Hoang
- Department of Physiology and Biomedical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Bon-Kyung Koo
- Department of Physiology and Biomedical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Han Choe
- Department of Physiology and Biomedical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
43
|
Grassinger J, Khomenko A, Hart C, Baldaranov D, Johannesen SW, Mueller G, Schelker R, Schulte-Mattler W, Andreesen R, Bogdahn U. Safety and feasibility of long term administration of recombinant human granulocyte-colony stimulating factor in patients with amyotrophic lateral sclerosis. Cytokine 2014; 67:21-8. [PMID: 24680478 DOI: 10.1016/j.cyto.2014.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 01/26/2014] [Accepted: 02/02/2014] [Indexed: 01/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neuronal disease resulting in a loss of the upper and lower motor neurons and subsequent death within three to four years after diagnosis. Mouse models and preliminary human exposure data suggest that the treatment with granulocyte-colony stimulating factor (G-CSF) has neuro-protective effects and may delay ALS progression. As data on long-term administration of G-CSF in patients with normal bone marrow (BM) function are scarce, we initiated a compassionate use program including 6 ALS patients with monthly G-CSF treatment cycles. Here we demonstrate that G-CSF injection was safe and feasible throughout our observation period up to three years. Significant decrease of mobilization efficiency occurred in one patient and a loss of immature erythroid progenitors was observed in all six patients. These data imply that follow-up studies analyzing BM function during long-term G-CSF stimulation are required.
Collapse
Affiliation(s)
- Jochen Grassinger
- University Hospital Regensburg, Department of Internal Medicine III, Regensburg, Germany.
| | - Andrei Khomenko
- University Hospital Regensburg, Department of Neurology, Regensburg, Germany
| | - Christina Hart
- University Hospital Regensburg, Department of Internal Medicine III, Regensburg, Germany
| | - Dobri Baldaranov
- University Hospital Regensburg, Department of Neurology, Regensburg, Germany
| | - Siw W Johannesen
- University Hospital Regensburg, Department of Neurology, Regensburg, Germany
| | - Gunnar Mueller
- University Hospital Regensburg, Department of Internal Medicine III, Regensburg, Germany
| | - Roland Schelker
- University Hospital Regensburg, Department of Internal Medicine III, Regensburg, Germany
| | | | - Reinhard Andreesen
- University Hospital Regensburg, Department of Internal Medicine III, Regensburg, Germany
| | - Ulrich Bogdahn
- University Hospital Regensburg, Department of Neurology, Regensburg, Germany
| |
Collapse
|
44
|
Protection of granulocyte-colony stimulating factor to hemorrhagic brain injuries and its involved mechanisms: Effects of vascular endothelial growth factor and aquaporin-4. Neuroscience 2014; 260:59-72. [DOI: 10.1016/j.neuroscience.2013.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 01/27/2023]
|
45
|
Kallmünzer B, Tauchi M, Schlachetzki JC, Machold K, Schmidt A, Winkler J, Schwab S, Kollmar R. Granulocyte colony-stimulating factor does not promote neurogenesis after experimental intracerebral haemorrhage. Int J Stroke 2013; 9:783-8. [PMID: 24920160 DOI: 10.1111/ijs.12217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hematopoietic growth factors have been suggested to induce neuroprotective and regenerative effects in various animal models of cerebral injury. However, the pathways involved remain widely unexplored. AIMS This study aimed to investigate effects of local and systemic administration of granulocyte colony-stimulating factor on brain damage, functional recovery, and cerebral neurogenesis in an intracerebral haemorrhage whole blood injection model in rats. METHODS Eight-week-old male Wistar rats (n = 100) underwent induction of striatal intracerebral haemorrhage by autologous whole blood injection or sham procedure and were randomly assigned to either (a) systemic treatment with granulocyte colony-stimulating factor (60 μg/kg) for five-days; (b) single intracerebral injection of granulocyte colony-stimulating factor (60 μg/kg) into the cavity; or (c) application of vehicle for five-days. Bromodeoxyuridine-labelling and immunohistochemistry were used to analyze proliferation and survival of newly born cells in the sub-ventricular zone and the hippocampal dentate gyrus. Moreover, functional deficits and lesion volume were assessed until day 42 after intracerebral haemorrhage. RESULTS Differences in lesion size or hemispheric atrophy between granulocyte colony-stimulating factor-treated and control groups did not reach statistical significance. Neither systemic, nor local granulocyte colony-stimulating factor administration induced neurogenesis within the dentate gyrus or the sub-ventricular zone. The survival of newborn cells in these regions was prevented by intracerebral granulocyte colony-stimulating factor application. A subtle benefit in functional recovery at day 14 after intracerebral haemorrhage induction was observed after granulocyte colony-stimulating factor treatment. CONCLUSION There was a lack of neuroprotective or neuroregenerative effects of granulocyte colony-stimulating factor in the present rodent model of intracerebral haemorrhage. Conflicting results from functional outcome assessment require further research.
Collapse
Affiliation(s)
- Bernd Kallmünzer
- Department of Neurology, University Medical Center Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kobeleva X, Petri S. Barriers to novel therapeutics in amyotrophic lateral sclerosis. Neurodegener Dis Manag 2013. [DOI: 10.2217/nmt.13.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Amyotrophic lateral sclerosis is a devastating neurodegenerative condition primarily involving the motor system in the cerebral cortex, brain stem and spinal cord, but can, in later disease stages, also affect distinct extramotor brain regions. In this article, we discuss the prevalent barriers, including clinical and genetic variability of amyotrophic lateral sclerosis, frailty of the current mouse model and inadequateness of clinical trials, in the search for novel therapeutics. Approaches in terms of understanding the pathogenesis, and the search for biomarkers to initiate early or even presymptomatic treatment and monitor treatment effects are highlighted.
Collapse
Affiliation(s)
- Xenia Kobeleva
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
47
|
THEME 11 THERAPEUTIC STRATEGIES. Amyotroph Lateral Scler Frontotemporal Degener 2013. [DOI: 10.3109/21678421.2013.838426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Rodrigues MCO, Sanberg PR, Cruz LE, Garbuzova-Davis S. The innate and adaptive immunological aspects in neurodegenerative diseases. J Neuroimmunol 2013; 269:1-8. [PMID: 24161471 DOI: 10.1016/j.jneuroim.2013.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/03/2013] [Accepted: 09/30/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases affect a considerable percentage of the elderly population. New therapeutic approaches are warranted, aiming to at least delay and possibly reverse disease progression. Strategies to elaborate such approaches require knowledge of specific immune system involvement in disease pathogenesis. In this review, innate and adaptive immunological aspects of neurodegenerative disorders, in particular Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis (ALS), are discussed. Initiating disease factors, as well as common mechanistic pathways, are detailed and potential immunological therapeutic targets are identified.
Collapse
Affiliation(s)
- Maria C O Rodrigues
- Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto School of Medicine, University of Sao Paulo, Brazil
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States
| | - Luis Eduardo Cruz
- Cryopraxis, Cell Praxis, BioRio, Polo de Biotechnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States.
| |
Collapse
|
49
|
McGoldrick P, Joyce PI, Fisher EMC, Greensmith L. Rodent models of amyotrophic lateral sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1421-36. [PMID: 23524377 DOI: 10.1016/j.bbadis.2013.03.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by the degeneration of upper and lower motor neurons. Recent advances in our understanding of some of the genetic causes of ALS, such as mutations in SOD1, TARDBP, FUS and VCP have led to the generation of rodent models of the disease, as a strategy to help our understanding of the pathophysiology of ALS and to assist in the development of therapeutic strategies. This review provides detailed descriptions of TDP-43, FUS and VCP models of ALS, and summarises potential therapeutics which have been recently trialled in rodent models of the disease. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Philip McGoldrick
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK.
| | | | | | | |
Collapse
|
50
|
RNA helicase signaling is critical for type i interferon production and protection against Rift Valley fever virus during mucosal challenge. J Virol 2013; 87:4846-60. [PMID: 23408632 DOI: 10.1128/jvi.01997-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging RNA virus with devastating economic and social consequences. Clinically, RVFV induces a gamut of symptoms ranging from febrile illness to retinitis, hepatic necrosis, hemorrhagic fever, and death. It is known that type I interferon (IFN) responses can be protective against severe pathology; however, it is unknown which innate immune receptor pathways are crucial for mounting this response. Using both in vitro assays and in vivo mucosal mouse challenge, we demonstrate here that RNA helicases are critical for IFN production by immune cells and that signaling through the helicase adaptor molecule MAVS (mitochondrial antiviral signaling) is protective against mortality and more subtle pathology during RVFV infection. In addition, we demonstrate that Toll-like-receptor-mediated signaling is not involved in IFN production, further emphasizing the importance of the RNA cellular helicases in type I IFN responses to RVFV.
Collapse
|