1
|
Yuan NY, Medders KE, Sanchez AB, Shah R, de Rozieres CM, Ojeda-Juárez D, Maung R, Williams R, Gelman BB, Baaten BJ, Roberts AJ, Kaul M. A critical role for Macrophage-derived Cysteinyl-Leukotrienes in HIV-1 induced neuronal injury. Brain Behav Immun 2024; 118:149-166. [PMID: 38423397 PMCID: PMC11173376 DOI: 10.1016/j.bbi.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Macrophages (MΦ) infected with human immunodeficiency virus (HIV)-1 or activated by its envelope protein gp120 exert neurotoxicity. We found previously that signaling via p38 mitogen-activated protein kinase (p38 MAPK) is essential to the neurotoxicity of HIVgp120-stimulated MΦ. However, the associated downstream pathways remained elusive. Here we show that cysteinyl-leukotrienes (CysLT) released by HIV-infected or HIVgp120 stimulated MΦ downstream of p38 MAPK critically contribute to neurotoxicity. SiRNA-mediated or pharmacological inhibition of p38 MAPK deprives MΦ of CysLT synthase (LTC4S) and, pharmacological inhibition of the cysteinyl-leukotriene receptor 1 (CYSLTR1) protects cerebrocortical neurons against toxicity of both gp120-stimulated and HIV-infected MΦ. Components of the CysLT pathway are differentially regulated in brains of HIV-infected individuals and a transgenic mouse model of NeuroHIV (HIVgp120tg). Moreover, genetic ablation of LTC4S or CysLTR1 prevents neuronal damage and impairment of spatial memory in HIVgp120tg mice. Altogether, our findings suggest a novel critical role for cysteinyl-leukotrienes in HIV-associated brain injury.
Collapse
Affiliation(s)
- Nina Y Yuan
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, 900 University Ave, Riverside, CA 92521, USA.
| | - Kathryn E Medders
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Ana B Sanchez
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Rohan Shah
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, 900 University Ave, Riverside, CA 92521, USA.
| | - Cyrus M de Rozieres
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Daniel Ojeda-Juárez
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, 900 University Ave, Riverside, CA 92521, USA; Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Ricky Maung
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, 900 University Ave, Riverside, CA 92521, USA; Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Roy Williams
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0419 USA; Department of Neurobiology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0419 USA.
| | - Bas J Baaten
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Amanda J Roberts
- Animal Models Core, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Marcus Kaul
- University of California Riverside, School of Medicine, Division of Biomedical Sciences, 900 University Ave, Riverside, CA 92521, USA; Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Gupta S, Singh P, Sharma B. Montelukast Ameliorates 2K1C-Hypertension Induced Endothelial Dysfunction and Associated Vascular Dementia. Curr Hypertens Rev 2024; 20:23-35. [PMID: 38192137 DOI: 10.2174/0115734021276985231204092425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Declined kidney function associated with hypertension is a danger for cognitive deficits, dementia, and brain injury. Cognitive decline and vascular dementia (VaD) are serious public health concerns, which highlights the urgent need for study on the risk factors for cognitive decline. Cysteinyl leukotriene (CysLT1) receptors are concerned with regulating cognition, motivation, inflammatory processes, and neurogenesis. OBJECTIVE This research aims to examine the consequence of montelukast (specific CysLT1 antagonist) in renovascular hypertension 2-kidney-1-clip-2K1C model-triggered VaD in experimental animals. METHODS 2K1C tactics were made to prompt renovascular hypertension in mature male rats. Morris water maze was employed to measure cognition. Mean arterial pressure (MAP), serum nitrite levels, aortic superoxide content, vascular endothelial activity, brain's oxidative stress (diminished glutathione, raised lipid peroxides), inflammatory markers (IL-10, IL-6, TNF-α), cholinergic activity (raised acetylcholinesterase), and cerebral injury (staining of 2, 3, 5- triphenylterazolium chloride) were also examined. RESULTS Montelukast in doses of 5.0 and 10.0 mg kg-1 was used intraperitoneally as the treatment drug. Along with cognitive deficits, 2K1C-operated rats showed elevated MAP, endothelial dysfunction, brain oxidative stress, inflammation, and cerebral damage with diminished serum nitrite/nitrate. Montelukast therapy significantly and dose-dependently mitigated the 2K1Chypertension- provoked impaired behaviors, biochemistry, endothelial functions, and cerebral infarction. CONCLUSION The 2K1C tactic caused renovascular hypertension and associated VaD, which was mitigated via targeted regulation of CysLT1 receptors by montelukast administration. Therefore, montelukast may be taken into consideration for the evaluation of its complete potential in renovascular-hypertension-induced VaD.
Collapse
MESH Headings
- Animals
- Sulfides
- Cyclopropanes
- Acetates/pharmacology
- Quinolines/pharmacology
- Male
- Dementia, Vascular/physiopathology
- Dementia, Vascular/drug therapy
- Dementia, Vascular/metabolism
- Dementia, Vascular/psychology
- Leukotriene Antagonists/pharmacology
- Oxidative Stress/drug effects
- Hypertension, Renovascular/physiopathology
- Hypertension, Renovascular/drug therapy
- Hypertension, Renovascular/metabolism
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/metabolism
- Receptors, Leukotriene/metabolism
- Inflammation Mediators/metabolism
- Cognition/drug effects
- Rats, Wistar
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Rats
- Maze Learning/drug effects
Collapse
Affiliation(s)
- Surbhi Gupta
- Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, Uttar Pradesh, India
| | - Prabhat Singh
- Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
3
|
Khodabakhsh P, Khoie N, Dehpour AR, Abdollahi A, Ghazi-Khansari M, Shafaroodi H. Montelukast suppresses the development of irritable bowel syndrome phenotype possibly through modulating NF-κB signaling in an experimental model. Inflammopharmacology 2022; 30:313-325. [PMID: 35013876 DOI: 10.1007/s10787-021-00907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional gut disorder with multi-factorial pathophysiology that causes recurring pain or discomfort in the abdomen, as well as altered bowel habits. Montelukast, a well-known cysteinyl leukotriene receptor 1 (CysLT1R) antagonist, is widely used for the anti-inflammatory management of asthma. The present study aimed to evaluate the effects of pharmacological inhibition of CysLT1R on acetic acid-induced diarrhea-predominant IBS (D-IBS) in rats. Behavioral pain responses to noxious mechanical stimulation were decreased in the montelukast-treated rats as compared to the model animals following colorectal distension (CRD)-induced visceral hypersensitivity. Stool frequency decreased dose-dependently by montelukast in IBS rats exposed to restraint stress. A significantly shorter immobility time was also observed in IBS rats who received montelukast vs IBS group in the forced swimming test (depression-like behavior). Furthermore, there were significant decreases in the NF-κB protein expression, inflammatory cytokine (TNF-α, and IL-1ß) levels, and histopathological inflammatory injuries concomitant with increased anti-inflammatory cytokine, IL-10, in montelukast-treated rats compared with the IBS group. Cysteinyl leukotriene production and CysLT1R mRNA expression showed no remarkable differences among the experimental groups. The present results suggest the possible beneficial effects of montelukast in the management of D-IBS symptoms. The molecular mechanism underlying such effects, at least to some extent, might be through modulating CysLT1R-mediated NF-κB signaling. Yet, more studies are required to demonstrate the clinical potential of this drug for IBS therapy.
Collapse
Affiliation(s)
- Pariya Khodabakhsh
- Student Research Committee, Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nilgoon Khoie
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, IKHC, Teheran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Choi Y, Sim S, Lee DH, Lee HR, Ban GY, Shin YS, Kim YK, Park HS. Effect of TGF-β1 on eosinophils to induce cysteinyl leukotriene E4 production in aspirin-exacerbated respiratory disease. PLoS One 2021; 16:e0256237. [PMID: 34437574 PMCID: PMC8389430 DOI: 10.1371/journal.pone.0256237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cysteinyl leukotriene (cysLT) overproduction and eosinophil activation are hallmarks of aspirin-exacerbated respiratory disease (AERD). However, pathogenic mechanisms of AERD remain to be clarified. Here, we aimed to find the significance of transforming growth factor beta 1 (TGF-β1) in association with cysteinyl leukotriene E4 (LTE4) production, leading to eosinophil degranulation. To evaluate levels of serum TGF-β1, first cohort enrolled AERD (n = 336), ATA (n = 442) patients and healthy control subjects (HCs, n = 253). In addition, second cohort recruited AERD (n = 34) and ATA (n = 25) patients to investigate a relation between levels of serum TGF-β1 and urinary LTE4. The function of TGF-β1 in LTE4 production was further demonstrated by ex vivo (human peripheral eosinophils) or in vivo (BALB/c mice) experiment. As a result, the levels of serum TGF-β1 were significantly higher in AERD patients than in ATA patients or HCs (P = .001; respectively). Moreover, levels of serum TGF-β1 and urinary LTE4 had a positive correlation (r = 0.273, P = .037). In the presence of TGF-β1, leukotriene C4 synthase (LTC4S) expression was enhanced in peripheral eosinophils to produce LTE4, which sequentially induced eosinophil degranulation via the p38 pathway. When mice were treated with TGF-β1, significantly induced eosinophilia with increased LTE4 production in the lung tissues were noted. These findings suggest that higher levels of TGF-β1 in AERD patients may contribute to LTE4 production via enhancing LTC4S expression which induces eosinophil degranulation, accelerating airway inflammation.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Dong-Hyun Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | | | - Ga-Young Ban
- Department of Pulmonology and Allergy, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | | | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- * E-mail:
| |
Collapse
|
5
|
An JM, Ju Y, Kim JH, Lee H, Jung Y, Kim J, Kim YJ, Kim J, Kim D. A metastasis suppressor Pt-dendrimer nanozyme for the alleviation of glioblastoma. J Mater Chem B 2021; 9:4015-4023. [PMID: 33954328 DOI: 10.1039/d1tb00425e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanozymes are nanostructure-based materials which mimic the enzymatic characteristics of natural enzymes. Biological applications of nanozymes have been highlighted in basic research, industry, and translational medicine as a new cutting-edge tool. In this work, and for the first time, we disclose a tumor alleviation property of a nanozyme that is made up of amine-terminated sixth-generation polyamidoamine dendrimers with encapsulated tiny platinum nanoparticles. We systematically conducted the synthesis and characterization of the dendrimer-encapsulated Pt nanoparticles (denoted Pt-dendrimer) and confirmed their enzymatic function (hydrogen peroxide (H2O2) decomposition) within various cell lines (normal, cancerous), including glioblastoma (GBM) cells. By understanding the effects of the Pt-dendrimer at the gene level, especially related to cancer cell metastasis, we have thoroughly demonstrated its ability for tumor alleviation and suppressing GBM migration, invasion, and adhesion. The present findings show great promise for the application of the nanozyme for use in GBM-related basic research as well as at clinical sites.
Collapse
Affiliation(s)
- Jong Min An
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Youngwon Ju
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jeong Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Yuna Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jaehoon Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Yong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea. and Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea. and KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea. and KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea and Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea and Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea and Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Yan M, Zhang S, Li C, Liu Y, Zhao J, Wang Y, Yang Y, Zhang L. 5-Lipoxygenase as an emerging target against age-related brain disorders. Ageing Res Rev 2021; 69:101359. [PMID: 33984528 DOI: 10.1016/j.arr.2021.101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/30/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Neuroinflammation is a common feature of age-related brain disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and cerebral ischemia. 5-lipoxygenase (5-LOX), a proinflammatory enzyme, modulates inflammation by generating leukotrienes. Abnormal activation of 5-LOX and excessive production of leukotrienes have been detected in the development of age-related brain pathology. In this review, we provide an update on the current understanding of 5-LOX activation and several groups of functionally related inhibitors. In addition, the modulatory roles of 5-LOX in the pathogenesis and progression of the age-related brain disorders have been comprehensively highlighted and discussed. Inhibition of 5-LOX activation may represent a promising therapeutic strategy for AD, PD and cerebral ischemia.
Collapse
|
7
|
Singh RK. Recent Trends in the Management of Alzheimer's Disease: Current Therapeutic Options and Drug Repurposing Approaches. Curr Neuropharmacol 2021; 18:868-882. [PMID: 31989900 PMCID: PMC7569317 DOI: 10.2174/1570159x18666200128121920] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/14/2020] [Accepted: 01/27/2020] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease is one of the most progressive forms of dementia, ultimately leading to death in aged populations. The major hallmarks of Alzheimer's disease include deposition of extracellular amyloid senile plaques and intracellular neurofibrillary tangles in brain neuronal cells. Although there are classical therapeutic options available for the treatment of the diseases, however, they provide only a symptomatic relief and do not modify the molecular pathophysiological course of the disease. Recent research advances in Alzheimer's disease have highlighted the potential role of anti-amyloid, anti-tau, and anti-inflammatory therapies. However, these therapies are still in different phases of pre-clinical/clinical development. In addition, drug repositioning/repurposing is another interesting and promising approach to explore rationalized options for the treatment of Alzheimer's disease. This review discusses the different aspects of the pathophysiological mechanism involved in the progression of Alzheimer's disease along with the limitations of current therapies. Furthermore, this review also highlights emerging investigational drugs along with recent drug repurposing approaches for Alzheimer's disease.
Collapse
Affiliation(s)
- Rakesh K Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Manesar, Gurgaon-122413, Haryana, India,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research,
Raebareli. Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow-226002, Uttar Pradesh, India
| |
Collapse
|
8
|
Bringmann A, Unterlauft JD, Barth T, Wiedemann R, Rehak M, Wiedemann P. Müller cells and astrocytes in tractional macular disorders. Prog Retin Eye Res 2021; 86:100977. [PMID: 34102317 DOI: 10.1016/j.preteyeres.2021.100977] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/04/2023]
Abstract
Tractional deformations of the fovea mainly arise from an anomalous posterior vitreous detachment and contraction of epiretinal membranes, and also occur in eyes with cystoid macular edema or high myopia. Traction to the fovea may cause partial- and full-thickness macular defects. Partial-thickness defects are foveal pseudocysts, macular pseudoholes, and tractional, degenerative, and outer lamellar holes. The morphology of the foveal defects can be partly explained by the shape of Müller cells and the location of tissue layer interfaces of low mechanical stability. Because Müller cells and astrocytes provide the structural scaffold of the fovea, they are active players in mediating tractional alterations of the fovea, in protecting the fovea from such alterations, and in the regeneration of the foveal structure. Tractional and degenerative lamellar holes are characterized by a disruption of the Müller cell cone in the foveola. After detachment or disruption of the cone, Müller cells of the foveal walls support the structural stability of the foveal center. After tractional elevation of the inner layers of the foveal walls, possibly resulting in foveoschisis, Müller cells transmit tractional forces from the inner to the outer retina leading to central photoreceptor layer defects and a detachment of the neuroretina from the retinal pigment epithelium. This mechanism plays a role in the widening of outer lameller and full-thickness macular holes, and contributes to visual impairment in eyes with macular disorders caused by conractile epiretinal membranes. Müller cells of the foveal walls may seal holes in the outer fovea and mediate the regeneration of the fovea after closure of full-thickness holes. The latter is mediated by the formation of temporary glial scars whereas persistent glial scars impede regular foveal regeneration. Further research is required to improve our understanding of the roles of glial cells in the pathogenesis and healing of tractional macular disorders.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103, Leipzig, Germany.
| | - Jan Darius Unterlauft
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103, Leipzig, Germany
| | - Thomas Barth
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103, Leipzig, Germany
| | - Renate Wiedemann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103, Leipzig, Germany
| | - Matus Rehak
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103, Leipzig, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
9
|
Dong C, Wen S, Zhao S, Sun S, Zhao S, Dong W, Han P, Chen Q, Gong T, Chen W, Liu W, Liu X. Salidroside Inhibits Reactive Astrogliosis and Glial Scar Formation in Late Cerebral Ischemia via the Akt/GSK-3β Pathway. Neurochem Res 2021; 46:755-769. [PMID: 33389472 DOI: 10.1007/s11064-020-03207-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia leads to reactive astrogliosis and glial scar formation. Glial scarring can impede functional restoration during the recovery phase of stroke. Salidroside has been shown to have neuroprotective effects after ischemic stroke, but its impact on long-term neurological recovery, especially whether it regulates reactive astrogliosis and glial scar formation, is unclear. In this study, male adult C57/BL6 mice were subjected to transient cerebral ischemia injury followed by intravenous salidroside treatment. Primary astrocytes were treated with lipopolysaccharide (LPS) or conditioned medium from cultured primary neurons subjected to oxygen-glucose deprivation (CM-OGD). Salidroside significantly improved long-term functional outcomes following ischemic stroke in the rotarod and corner tests. It also reduced brain glial scar volume and decreased expression of the glial scar marker, glial fibrillary acidic protein (GFAP) and inhibited astrocyte proliferation. In primary astrocyte cultures, salidroside protected astrocytes from CM-OGD injury-induced reactive astroglial proliferation, increasing the percentage of cells in G0/G1 phase and reducing the S populations. The inhibitory effect of salidroside on the cell cycle was related to downregulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4) mRNA expression and increased p27Kip1 mRNA expression. Similar results were found in the LPS-stimulated injury model in astroglial cultures. Western blot analysis demonstrated that salidroside attenuated the CM-OGD-induced upregulation of phosphorylated Akt and glycogen synthase kinase 3β (GSK-3β). Taken together, these results suggested that salidroside can inhibit reactive astrocyte proliferation, ameliorate glial scar formation and improve long-term recovery, probably through its effects on the Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Chengya Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Shaohong Wen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Shunying Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Si Sun
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100176, People's Republic of China
| | - Shangfeng Zhao
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100176, People's Republic of China
| | - Wen Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Pingxin Han
- Department of Biomedicine, Beijing City University, Beijing, 100094, People's Republic of China
| | - Qingfang Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Ting Gong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
- Department of Biomedicine, Beijing City University, Beijing, 100094, People's Republic of China
| | - Wentao Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Wenqian Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Xiangrong Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.
| |
Collapse
|
10
|
Dattilo MA, Benzo Y, Herrera LM, Prada JG, Lopez PF, Caruso CM, Lasaga M, García CI, Paz C, Maloberti PM. Regulation and role of Acyl-CoA synthetase 4 in glial cells. J Steroid Biochem Mol Biol 2021; 208:105792. [PMID: 33246155 DOI: 10.1016/j.jsbmb.2020.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
Acyl-CoA synthetase 4 (Acsl4), an enzyme involved in arachidonic acid (AA) metabolism, participates in physiological and pathological processes such as steroidogenesis and cancer. The role of Acsl4 in neurons and in nervous system development has also been documented but little is known regarding its functionality in glial cells. In turn, several processes in glial cells, including neurosteroidogenesis, stellation and AA uptake, are regulated by cyclic adenosine monophosphate (cAMP) signal. In this context, the aim of this work was to analyze the expression and functional role of Acsl4 in primary rat astrocyte cultures and in the C6 glioma cell line by chemical inhibition and stable silencing, respectively. Results show that Acsl4 expression was regulated by cAMP in both models and that cAMP stimulation of steroidogenic acute regulatory protein mRNA levels was reduced by Acsl4 inhibition or silencing. Also, Acsl4 inhibition reduced progesterone synthesis stimulated by cAMP and also affected cAMP-induced astrocyte stellation, decreasing process elongation and increasing branching complexity. Similar effects were observed for Acsl4 silencing on cAMP-induced C6 cell morphological shift. Moreover, Acsl4 inhibition and silencing reduced proliferation and migration of both cell types. Acsl4 silencing in C6 cells reduced the capacity for colony proliferation and neurosphere formation, the latter ability also being abolished by Acsl4 inhibition. In sum, this work presents novel evidence of Acsl4 involvement in neurosteroidogenesis and the morphological changes of glial cells promoted by cAMP. Furthermore, Acsl4 participates in migration and proliferation, also affecting cell self-renewal. Altogether, these findings provide insights into Acsl4 functions in glial cells.
Collapse
Affiliation(s)
- Melina A Dattilo
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Yanina Benzo
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Lucia M Herrera
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Jesica G Prada
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Paula F Lopez
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Carla M Caruso
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología, Buenos Aires, Argentina
| | - Corina I García
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina; Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cristina Paz
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Paula M Maloberti
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Lee JS, Hsu YH, Chiu YS, Jou IM, Chang MS. Anti-IL-20 antibody improved motor function and reduced glial scar formation after traumatic spinal cord injury in rats. J Neuroinflammation 2020; 17:156. [PMID: 32408881 PMCID: PMC7227062 DOI: 10.1186/s12974-020-01814-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) causes devastating neurological consequences, which can result in partial or total paralysis. Irreversible neurological deficits and glial scar formation are characteristic of SCI. Inflammatory responses are a major component of secondary injury and play a central role in regulating the pathogenesis of SCI. IL-20 is a proinflammatory cytokine involved in renal fibrosis and liver cirrhosis through its role in upregulating TGF-β1 production. However, the role of IL-20 in SCI remains unclear. We hypothesize that IL-20 is upregulated after SCI and is involved in regulating the neuroinflammatory response. METHODS The expression of IL-20 and its receptors was examined in SCI rats. The regulatory roles of IL-20 in astrocytes and neuron cells were examined. The therapeutic effects of anti-IL-20 monoclonal antibody (mAb) 7E in SCI rats were evaluated. RESULTS Immunofluorescence staining showed that IL-20 and its receptors were expressed in astrocytes, oligodendrocytes, and microglia in the spinal cord after SCI in rats. In vitro, IL-20 enhanced astrocyte reactivation and cell migration in human astrocyte (HA) cells by upregulating glial fibrillary acidic protein (GFAP), TGF-β1, TNF-α, MCP-1, and IL-6 expression. IL-20 inhibited cell proliferation and nerve growth factor (NGF)-derived neurite outgrowth in PC-12 cells through Sema3A/NRP-1 upregulation. In vivo, treating SCI rats with anti-IL-20 mAb 7E remarkably inhibited the inflammatory responses. 7E treatment not only improved motor and sensory functions but also improved spinal cord tissue preservation and reduced glial scar formation in SCI rats. CONCLUSIONS IL-20 might regulate astrocyte reactivation and axonal regeneration and result in the secondary injury in SCI. These findings demonstrated that IL-20 may be a promising target for SCI treatment.
Collapse
Affiliation(s)
- Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Shu Chiu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ming-Shi Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| |
Collapse
|
12
|
Falero-Perez J, Sorenson CM, Sheibani N. Retinal astrocytes transcriptome reveals Cyp1b1 regulates the expression of genes involved in cell adhesion and migration. PLoS One 2020; 15:e0231752. [PMID: 32330152 PMCID: PMC7182235 DOI: 10.1371/journal.pone.0231752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/01/2020] [Indexed: 12/20/2022] Open
Abstract
Astrocytes (AC) are the most abundant cells in the central nervous system. In the retina, astrocytes play important roles in the development and integrity of the retinal neurovasculature. Astrocytes dysfunction contributes to pathogenesis of a variety of neurovascular diseases including diabetic retinopathy. Recent studies have demonstrated the expression of Cyp1b1 in the neurovascular cells of the central nervous system including AC. We recently showed retinal AC constitutively express Cyp1b1, and global Cyp1b1-deficiency (Cyp1b1-/-) attenuates retinal ischemia-mediated neovascularization in vivo and the pro-angiogenic activity of retinal vascular cells in vitro. We also demonstrated that Cyp1b1 expression is a key regulator of retinal AC function. However, the underlying mechanisms involved need further investigation. Here we determined changes in the transcriptome profiles of Cyp1b1+/+ and Cyp1b1-/- retinal AC by RNA sequencing. We identified 585 differentially expressed genes, whose pathway enrichment analysis revealed the most significant pathways impacted in Cyp1b1-/- AC. These genes included those of axon guidance, extracellular matrix proteins and their receptors, cancer, cell adhesion molecules, TGF-β signaling, and the focal adhesion modulation. The expression of a selected set of differentially expressed genes was confirmed by RT-qPCR analysis. To our knowledge, this is the first report of RNAseq investigation of the retinal AC transcriptome and the molecular pathways impacted by Cyp1b1 expression. These results demonstrated an important role for Cyp1b1 expression in the regulation of various retinal AC functions, which are important in neurovascular development and integrity.
Collapse
Affiliation(s)
- Juliana Falero-Perez
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Christine M. Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
13
|
Antagonism of cysteinyl leukotrienes and their receptors as a neuroinflammatory target in Alzheimer's disease. Neurol Sci 2020; 41:2081-2093. [PMID: 32281039 DOI: 10.1007/s10072-020-04369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 03/21/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer's disease is a complex multifaceted neurodegenerative disorder. It is characterized by the deposition of extracellular amyloid senile plaques and intracellular neurofibrillary tangles leading to progressive dementia and death in aged adult population. Recent emerging research has highlighted a potential pharmacological role of 5-lipoxyenase-cysteinyl leukotriene pathway in molecular pathogenesis of Alzheimer's disease. OBJECTIVE Although cysteinyl leukotrienes and their receptors have a major clinical role in chronic respiratory inflammation, their roles in chronic neuroinflammation in Alzheimer's disease need a detailed and careful exploration. RESULTS AND CONCLUSION This review article highlights a novel role of cysteinyl leukotrienes and their receptors in pathophysiology of Alzheimer's disease in order to understand the underlying molecular mechanism. In addition, it summarizes the recent advances in various pre-clinical and clinical strategies used to modulate this pathway for therapeutic targeting of Alzheimer's disease.
Collapse
|
14
|
Modulation of neuroinflammation by cysteinyl leukotriene 1 and 2 receptors: implications for cerebral ischemia and neurodegenerative diseases. Neurobiol Aging 2019; 87:1-10. [PMID: 31986345 DOI: 10.1016/j.neurobiolaging.2019.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 12/21/2022]
Abstract
Neuroinflammation is a complex biological process and has been known to play an important role in age-related cerebrovascular and neurodegenerative disorders, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Cysteinyl leukotrienes (CysLTs) are potent inflammatory lipid mediators that exhibit actions mainly through activating type 1 and type 2 CysLT receptors (CysLT1 and CysLT2). Accumulating evidence shows that CysLT1 and CysLT2 are activated at different stages of pathological process in various cell types in the brain such as vascular endothelial cells, astrocytes, microglia, and neurons in response to insults. However, the precise roles and mechanisms of CysLT1 and CysLT2 in regulating the pathogenesis of cerebral ischemia, Alzheimer's disease, and Parkinson's disease are not fully understood. In this article, we focus on current advances that link activation of CysLT1 and CysLT2 to the pathological process during brain ischemia and neurodegeneration and discuss mechanisms by which CysLT1 and CysLT2 mediate inflammatory process and brain injury. Multitarget anti-inflammatory potentials of CysLT1 and CysLT2 antagonism for neuroinflammation and brain injury will also be reviewed.
Collapse
|
15
|
Investigation of Neuregulin-1 and Glial Cell-Derived Neurotrophic Factor in Rodent Astrocytes and Microglia. J Mol Neurosci 2019; 67:484-493. [PMID: 30680593 DOI: 10.1007/s12031-019-1258-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
Growth factors play a crucial role during de- and remyelination of the central nervous system (CNS) due to their neurotrophic functions. We have previously shown that the growth factors neuregulin-1 (Nrg-1) and glial cell-derived neurotrophic factor (Gdnf) are upregulated during the first 2 weeks after induction of toxic demyelination in the CNS. Nevertheless, the factors responsible for Nrg-1/Gdnf upregulation and their effects on glia cells are unknown. We investigated the effect on Nrg-1 and Gdnf expressions after stimulation of primary mouse microglia or astrocytes with various pro- and anti-inflammatory factors. Additionally, primary cells were incubated with NRG-1 and/or GDNF followed by determining the gene expression level of their receptors, chemokines, and other growth factors. We demonstrate that inflammatory stimuli have a distinct impact on the expression of Gdnf, Nrg-1, and their receptors in astrocytes and microglia. In microglia, LPS or simultaneous treatment with IFNγ plus TNFα led to downregulation of Nrg-1, whereas LPS treatment slightly increased Nrg-1 expression in astrocytes. Furthermore, Gdnf was slightly upregulated after TFG-β treatment in microglia, while Gdnf was significantly upregulated after LPS treatment in astrocytes. In contrast, treatment with GDNF or/and NRG-1 did not alter any measured gene expression in microglia or astrocytes. Taken together, our in vitro studies show that Nrg-1, Gdnf, and their receptors are differently regulated in astrocytes and microglia upon inflammatory stimuli. The lack of response of astrocytes and microglia to NRG-1 and GDNF suggests that both factors exert their effects directly on neurons.
Collapse
|
16
|
Luo D, Zhang Y, Yuan X, Pan Y, Yang L, Zhao Y, Zhuo R, Chen C, Peng L, Li W, Jin X, Zhou Y. Oleoylethanolamide inhibits glial activation via moudulating PPARα and promotes motor function recovery after brain ischemia. Pharmacol Res 2019; 141:530-540. [PMID: 30660821 DOI: 10.1016/j.phrs.2019.01.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/29/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
Abstract
Glial activation and scar formation impede the neurological function recovery after cerebral ischemia. Oleoylethanolamide (OEA), a bioactive lipid mediator, shows neuroprotection against acute brain ischemia, however, its long-term effect, especially on glial scar formation, has not been characterized. In this research, we investigate the effect of OEA on glial activation and scar formation after cerebral ischemia in vitro and in vivo experiments. Glial scar formation in vitro model was induced by transforming growth factor β1 (TGF-β1) in C6 glial cell culture, and experiment model in vivo was induced by middle cerebral artery occlusion (MCAO) in mice. The protein expressions of the markers of glial activation (S100β, GFAP, or pSmads) and glial scar (neurocan) were detected by Western blot and/or immunofluorescence staining; To evaluate the role of PPARɑ in the effect of OEA on glial activation, the PPARɑ antagonist GW6471 was used. Behavior tests were used to assay the effect of OEA on motor function recovery 14 days after brain ischemia in mice. Our results show that OEA (10-50 μM) concentration-dependently inhibited the upregulation of S100β, GFAP, pSmads and neurocan induced by TGF-β1 in C6 glial cells. At the same time, OEA promoted the protein expression and nuclear transportation of PPARɑ in glial cells. PPARα antagonist GW6471 abolished the effect of OEA on glial activation. In addition, we found that delay administration of OEA inhibited the astrocyte activation and promoted the recovery of motor function after brain ischemia in mice. These results indicate that OEA may be developed into a new candidate for attenuating astrocytic scar formation and improving motor function after ischemic stroke.
Collapse
Affiliation(s)
- Doudou Luo
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Yali Zhang
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China; Medical College, Xuchang University, Xuchang, 461000, PR China
| | - Xiaoqian Yuan
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Yilin Pan
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China
| | - Lichao Yang
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Yun Zhao
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Rengong Zhuo
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Caixia Chen
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Lu Peng
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Wenjun Li
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China
| | - Xin Jin
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China.
| | - Yu Zhou
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Key Laboratory of Chiral Drugs, Xiamen, 361102, PR China.
| |
Collapse
|
17
|
Rahman SO, Singh RK, Hussain S, Akhtar M, Najmi AK. A novel therapeutic potential of cysteinyl leukotrienes and their receptors modulation in the neurological complications associated with Alzheimer's disease. Eur J Pharmacol 2018; 842:208-220. [PMID: 30389631 DOI: 10.1016/j.ejphar.2018.10.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 01/28/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) are member of eicosanoid inflammatory lipid mediators family produced by oxidation of arachidonic acid by action of the enzyme 5-lipoxygenase (5-LOX). 5-LOX is activated by enzyme 5-Lipoxygenase-activating protein (FLAP), which further lead to production of cysLTs i.e. leukotriene C4 (LTC4), leukotriene D4 (LTD4) and leukotriene E4 (LTE4). CysLTs then produce their potent inflammatory actions by activating CysLT1 and CysLT2 receptors. Inhibitors of cysLTs are indicated in asthma, allergic rhinitis and other inflammatory disorders. Earlier studies have associated cysLTs and their receptors in several neurodegenerative disorders diseases like, multiple sclerosis, Parkinson's disease, Huntington's disease, epilepsy and Alzheimer's disease (AD). These inflammatory lipid mediators have previously shown effects on various aggravating factors of AD. However, not much data has been elucidated to test their role against AD clinically. Herein, through this review, we have provided the current and emerging information on the role of cysLTs and their receptors in various neurological complications responsible for the development of AD. In addition, literature evidences for the effect of cysLT inhibitors on distinct aspects of abnormalities in AD has also been reviewed. Promising advancement in understanding on the role of cysLTs on the various neuromodulatory processes and mechanisms may contribute to the development of newer and safer therapy for the treatment of AD in future.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Rakesh Kumar Singh
- School of Pharmaceutical Sciences, Apeejay Stya University, Sohna-Palwal Road, Sohna, Gurgaon 122013, Haryana, India.
| | - Salman Hussain
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
18
|
Extracellular Vesicles Released by Glioblastoma Cells Stimulate Normal Astrocytes to Acquire a Tumor-Supportive Phenotype Via p53 and MYC Signaling Pathways. Mol Neurobiol 2018; 56:4566-4581. [PMID: 30353492 PMCID: PMC6505517 DOI: 10.1007/s12035-018-1385-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
The role of astrocytes is becoming increasingly important to understanding how glioblastoma (GBM) tumor cells diffusely invade the brain. Yet, little is known of the contribution of extracellular vesicle (EV) signaling in GBM/astrocyte interactions. We modeled GBM-EV signaling to normal astrocytes in vitro to assess whether this mode of intercellular communication could support GBM progression. EVs were isolated and characterized from three patient-derived GBM stem cells (NES+/CD133+) and their differentiated (diff) progeny cells (NES−/CD133−). Uptake of GBM-EVs by normal primary astrocytes was confirmed by fluorescence microscopy, and changes in astrocyte podosome formation and gelatin degradation were measured. Quantitative mass spectrometry-based proteomics was performed on GBM-EV stimulated astrocytes. Interaction networks were generated from common, differentially abundant proteins using Ingenuity® (Qiagen Bioinformatics) and predicted upstream regulators were tested by qPCR assays. Podosome formation and Cy3-gelatin degradation were induced in astrocytes following 24-h exposure to GBM-stem and -diff EVs, with EVs released by GBM-stem cells eliciting a greater effect. More than 1700 proteins were quantified, and bioinformatics predicted activations of MYC, NFE2L2, FN1, and TGFβ1 and inhibition of TP53 in GBM-EV stimulated astrocytes that were then confirmed by qPCR. Further qPCR studies identified significantly decreased Δ133p53 and increased p53β in astrocytes exposed to GBM-EVs that might indicate the acquisition of a pro-inflammatory, tumor-promoting senescence-associated secretory phenotype (SASP). Inhibition of TP53 and activation of MYC signaling pathways in normal astrocytes exposed to GBM-EVs may be a mechanism by which GBM manipulates astrocytes to acquire a phenotype that promotes tumor progression.
Collapse
|
19
|
Khophai S, Thanee M, Techasen A, Namwat N, Klanrit P, Titapun A, Jarearnrat A, Sa-Ngiamwibool P, Loilome W. Zileuton suppresses cholangiocarcinoma cell proliferation and migration through inhibition of the Akt signaling pathway. Onco Targets Ther 2018; 11:7019-7029. [PMID: 30410359 PMCID: PMC6198876 DOI: 10.2147/ott.s178942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Inflammatory lipid mediators play an important role in several cancer types. Leukotrienes (LTs), pro-inflammatory lipid mediators, are involved in chronic inflammation and cancer progression. They are derived from arachidonic acid by 5-lipoxygenase (5-LOX) activity. On the other hand, 15-lipoxygenase (15-LOX-1) converts LTs into lipoxins (LXs), pro-resolving lipid mediators. LXs are involved in the attenuation of inflammation and cancer development. Purpose We aimed to investigate the lipid mediator pathways, especially the LTs and LXs pathways, by studying 5-LOX and 15-LOX-1 expression in human cholangiocarcinoma (CCA) tissue. We also investigated the efficiency of zileuton (5-LOX inhibitor) treatment and BML-111 (LXA4 analog) addition on CCA cell lines properties. Patients and methods The expression of 5-LOX and 15-LOX-1 in fifty human cholangiocarcinoma (CCA) tissue was analyzed using immunohistochemical staining. In addition, the effect of zileuton and BML-111 on CCA cell growth and migration was demonstrated using a cell viability assay and wound-healing assay, respectively. Furthermore, the molecular mechanism by which zileuton inhibits CCA cell migration was revealed using immunofluorescent staining and western blot analysis, respectively. Results We demonstrate that the upregulation of 5-LOX is significantly correlated with CCA recurrent status. A positive 15-LOX-1 signal was significantly associated with a longer survival time in CCA patients. We found that co-expression of 5-LOX and 15-LOX-1 resulted in a relatively good prognosis in CCA patients. In addition, zileuton could inhibit CCA cell migration as well as BML-111. Interestingly, zileuton treatment not only downregulated 5-LOX, but also upregulated 15-LOX-1, together with reversing the epithelial-mesenchymal transition to mesenchymal-epithelial transition phenotype as observed in EMT marker western blot. Conclusion These findings suggest that 5-LOX and 15-LOX-1 play a key role in CCA and may serve as targets for CCA therapy.
Collapse
Affiliation(s)
- Sasikamon Khophai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,
| | - Malinee Thanee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand, .,Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand, .,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apiwat Jarearnrat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand, .,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Prakasit Sa-Ngiamwibool
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand, .,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand,
| |
Collapse
|
20
|
Zhao B, Wang H, Li CX, Song SW, Fang SH, Wei EQ, Shi QJ. GPR17 mediates ischemia-like neuronal injury via microglial activation. Int J Mol Med 2018; 42:2750-2762. [PMID: 30226562 PMCID: PMC6192776 DOI: 10.3892/ijmm.2018.3848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/23/2018] [Indexed: 01/18/2023] Open
Abstract
GPR17 is a G (i)-coupled dual receptor, linked to P2Y and CysLT receptors stimulated by uracil nucleotides and cysteinyl leukotrienes, respectively. Recent evidence has demonstrated that GPR17 inhibition ameliorates the progression of cerebral ischemic injury by regulating neuronal death and microglial activation. The present study aimed to assess the detailed regulatory roles of this receptor in oxygen-glucose deprivation/recovery (OGD/R)-induced ischemia-like injury in vitro and explore the underlying mechanism. The results demonstrated that OGD/R induced ischemic neuronal injury and microglial activation, including enhanced phagocytosis and increased inflammatory cytokine release in neuron‑glial mixed cultures of cortical cells. GPR17 upregulation during OGD/R was spatially and temporally correlated with neuronal injury and microglial activation. In addition, GPR17 knockdown inhibited OGD/R-induced responses in neuron-glial mixed cultures. GPR17 knockdown also attenuated cell injury induced by the agonist leukotriene D4 (LTD4) or uridine 5′-diphosphate (UDP) in neuron-glial mixed cultures. However, GPR17 knockdown did not affect OGD/R-induced ischemic neuronal injury in primary cultures of neurons. In primary astrocyte cultures, neither GPR17 nor OGD/R induced injury. By contrast, GPR17 knockdown ameliorated OGD/R-induced microglial activation, boosting phagocytosis and inflammatory cytokine release in primary microglia cultures. Finally, the results demonstrated that the conditioned medium of microglia pretreated with OGD/R induced neuronal death, and the neuronal injury was significantly inhibited by GPR17 knockdown. These findings suggested that GPR17 may mediate ischemia-like neuronal injury and microglial activation in vitro; however, the protective effects on ischemic neuronal injury might depend upon microglial activation. Whether GPR17 regulates neuronal injury mediated by oligodendrocyte linkage remains to be investigated.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hao Wang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Cai-Xia Li
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Sheng-Wen Song
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - San-Hua Fang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Er-Qing Wei
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Qiao-Juan Shi
- Experimental Animal Center, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
21
|
RGMa mediates reactive astrogliosis and glial scar formation through TGFβ1/Smad2/3 signaling after stroke. Cell Death Differ 2018; 25:1503-1516. [PMID: 29396549 PMCID: PMC6113216 DOI: 10.1038/s41418-018-0058-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 01/11/2023] Open
Abstract
In response to stroke, astrocytes become reactive astrogliosis and are a major component of a glial scar. This results in the formation of both a physical and chemical (production of chondroitin sulfate proteoglycans) barrier, which prevent neurite regeneration that, in turn, interferes with functional recovery. However, the mechanisms of reactive astrogliosis and glial scar formation are poorly understood. In this work, we hypothesized that repulsive guidance molecule a (RGMa) regulate reactive astrogliosis and glial scar formation. We first found that RGMa was strongly expressed by reactive astrocytes in the glial scar in a rat model of middle cerebral artery occlusion/reperfusion. Genetic or pharmacologic inhibition of RGMa in vivo resulted in a strong reduction of reactive astrogliosis and glial scarring as well as in a pronounced improvement in functional recovery. Furthermore, we showed that transforming growth factor β1 (TGFβ1) stimulated RGMa expression through TGFβ1 receptor activin-like kinase 5 (ALK5) in primary cultured astrocytes. Knockdown of RGMa abrogated key steps of reactive astrogliosis and glial scar formation induced by TGFβ1, including cellular hypertrophy, glial fibrillary acidic protein upregulation, cell migration, and CSPGs secretion. Finally, we demonstrated that RGMa co-immunoprecipitated with ALK5 and Smad2/3. TGFβ1-induced ALK5-Smad2/3 interaction and subsequent phosphorylation of Smad2/3 were impaired by RGMa knockdown. Taken together, we identified that after stroke, RGMa promotes reactive astrogliosis and glial scar formation by forming a complex with ALK5 and Smad2/3 to promote ALK5-Smad2/3 interaction to facilitate TGFβ1/Smad2/3 signaling, thereby inhibiting neurological functional recovery. RGMa may be a new therapeutic target for stroke.
Collapse
|
22
|
WANG H, GUO H, LOU Q, SHI Q. [Effects of cysteinyl leukotrienes receptor antagonists on chronic brain injury after global cerebral ischemia/reperfusion]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2018; 47:19-26. [PMID: 30146807 PMCID: PMC10393723 DOI: 10.3785/j.issn.1008-9292.2018.02.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/27/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE : To investigate the effects of cysteinyl leukotrienes receptor (CysLTR) antagonists on global cerebral ischemia/reperfusion (CI/R) injury in gerbils, and to explore its mechanism. METHODS : Totally 40 gerbils weighting 45-65 g were randomized into sham, saline, Pranlukast and HAMI 3379 groups with 10 animals in each. The CI/R model was established in gerbils by bilateral common carotid occlusion for 10 min followed by reperfusion. After ischemia, the CysLTR antagonists Pranlukast (0.1 mg/kg) and HAMI 3379 (0.1 mg/kg) were injected intraperitoneally for 5 consecutive days in the last two groups,while the former two groups were injected with saline only (10 mL/kg). After 24 h or 14 d reperfusion, neurological deficit score was evaluated and the behavioral dysfunction was assessed, respectively. And 14 d after reperfusion, the neuron morphology of cerebral cortex was observed in brain sections stained with Cresyl violet. In addition, the Iba-1 (microgila) and GFAP (astrocyte) positive cells in cerebral cortex were observed by using immunohistochemitry method. RESULTS : CI/R models were successfully established in 21 out of 30 gerbils with 7 in saline group, 6 in Pranlukast group, and 8 in HAMI 3379 group. Compared with saline group, Pranlukast and HAMI 3379 significantly attenuated neurological deficits, improved the behavioral function 24 h after reperfusion(all P<0.01); Pranlukast and HAMI 3379 also significantly improved the behavioral function 14 days after reperfusion(P<0.05 or P<0.01). Compared with saline group, the neurological symptom scores in Pranlukast and HAMI 3379 groups presented a trend of amelioration 14 d after reperfusion, but it was not significant(P>0.05). In addition, Pranlukast and HAMI 3379 also inhibited the neuron loss and injury, suppressed microgila and astrocyte activation 14 d after reperfusion(all P<0.01). CONCLUSIONS : CysLTR antagonists Pranlukast and HAMI 3379 have long-term neuroprotective effect on chronic brain injury induced by global cerebral ischemia/reperfusion in gerbils.
Collapse
Affiliation(s)
| | | | | | - Qiaojuan SHI
- 石巧娟(1979-), 女, 博士, 副研究员, 主要从事实验动物学研究; E-mail:
;
https://orcid.org/0000-0002-1788-1241
| |
Collapse
|
23
|
Fex Svenningsen Å, Löring S, Sørensen AL, Huynh HUB, Hjæresen S, Martin N, Moeller JB, Elkjær ML, Holmskov U, Illes Z, Andersson M, Nielsen SB, Benedikz E. Macrophage migration inhibitory factor (MIF) modulates trophic signaling through interaction with serine protease HTRA1. Cell Mol Life Sci 2017; 74:4561-4572. [PMID: 28726057 PMCID: PMC5663815 DOI: 10.1007/s00018-017-2592-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF), a small conserved protein, is abundant in the immune- and central nervous system (CNS). MIF has several receptors and binding partners that can modulate its action on a cellular level. It is upregulated in neurodegenerative diseases and cancer although its function is far from clear. Here, we report the finding of a new binding partner to MIF, the serine protease HTRA1. This enzyme cleaves several growth factors, extracellular matrix molecules and is implicated in some of the same diseases as MIF. We show that the function of the binding between MIF and HTRA1 is to inhibit the proteolytic activity of HTRA1, modulating the availability of molecules that can change cell growth and differentiation. MIF is therefore the first endogenous inhibitor ever found for HTRA1. It was found that both molecules were present in astrocytes and that the functional binding has the ability to modulate astrocytic activities important in development and disease of the CNS.
Collapse
Affiliation(s)
- Åsa Fex Svenningsen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark.
| | - Svenja Löring
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | - Anna Lahn Sørensen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Ha Uyen Buu Huynh
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Simone Hjæresen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Nellie Martin
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Jesper Bonnet Moeller
- Department of Molecular Medicine-Cancer and Inflammation, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
- Weill Cornell Medicine, Cornell University, 413 East 69th Street, New York, 10021, USA
| | - Maria Louise Elkjær
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Uffe Holmskov
- Department of Molecular Medicine-Cancer and Inflammation, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Malin Andersson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 59, 751 24, Uppsala, Sweden
| | - Solveig Beck Nielsen
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
| | - Eirikur Benedikz
- Department of Molecular Medicine-Neurobiology Research, University of Southern Denmark, J.B. Winslows Vej 21.1, 5000, Odense, Denmark
- Faculty of Health, University College Zealand, Parkvej 190, 4700, Næstved, Denmark
| |
Collapse
|
24
|
Baez-Jurado E, Hidalgo-Lanussa O, Guio-Vega G, Ashraf GM, Echeverria V, Aliev G, Barreto GE. Conditioned Medium of Human Adipose Mesenchymal Stem Cells Increases Wound Closure and Protects Human Astrocytes Following Scratch Assay In Vitro. Mol Neurobiol 2017; 55:5377-5392. [PMID: 28936798 DOI: 10.1007/s12035-017-0771-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022]
Abstract
Astrocytes perform essential functions in the preservation of neural tissue. For this reason, these cells can respond with changes in gene expression, hypertrophy, and proliferation upon a traumatic brain injury event (TBI). Different therapeutic strategies may be focused on preserving astrocyte functions and favor a non-generalized and non-sustained protective response over time post-injury. A recent strategy has been the use of the conditioned medium of human adipose mesenchymal stem cells (CM-hMSCA) as a therapeutic strategy for the treatment of various neuropathologies. However, although there is a lot of information about its effect on neuronal protection, studies on astrocytes are scarce and its specific action in glial cells is not well explored. In the present study, the effects of CM-hMSCA on human astrocytes subjected to scratch assay were assessed. Our findings indicated that CM-hMSCA improved cell viability, reduced nuclear fragmentation, and preserved mitochondrial membrane potential. These effects were accompanied by morphological changes and an increased polarity index thus reflecting the ability of astrocytes to migrate to the wound stimulated by CM-hMSCA. In conclusion, CM-hMSCA may be considered as a promising therapeutic strategy for the protection of astrocyte function in brain pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Gina Guio-Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Valentina Echeverria
- Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, 33744, USA.,Fac. Cs de la Salud, Universidad San Sebastián, Lientur 1457, 4080871, Concepción, Chile
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia.,GALLY International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA.,School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia. .,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
25
|
Cysteinyl Leukotriene Receptor Antagonists Inhibit Migration, Invasion, and Expression of MMP-2/9 in Human Glioblastoma. Cell Mol Neurobiol 2017; 38:559-573. [DOI: 10.1007/s10571-017-0507-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022]
|
26
|
Cysteinyl Leukotrienes as Potential Pharmacological Targets for Cerebral Diseases. Mediators Inflamm 2017; 2017:3454212. [PMID: 28607533 PMCID: PMC5451784 DOI: 10.1155/2017/3454212] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) are potent lipid mediators widely known for their actions in asthma and in allergic rhinitis. Accumulating data highlights their involvement in a broader range of inflammation-associated diseases such as cancer, atopic dermatitis, rheumatoid arthritis, and cardiovascular diseases. The reported elevated levels of CysLTs in acute and chronic brain lesions, the association between the genetic polymorphisms in the LTs biosynthesis pathways and the risk of cerebral pathological events, and the evidence from animal models link also CysLTs and brain diseases. This review will give an overview of how far research has gone into the evaluation of the role of CysLTs in the most prevalent neurodegenerative disorders (ischemia, Alzheimer's and Parkinson's diseases, multiple sclerosis/experimental autoimmune encephalomyelitis, and epilepsy) in order to understand the underlying mechanism by which they might be central in the disease progression.
Collapse
|
27
|
Qi XT, Zhan JS, Xiao LM, Li L, Xu HX, Fu ZB, Zhang YH, Zhang J, Jia XH, Ge G, Chai RC, Gao K, Yu ACH. The Unwanted Cell Migration in the Brain: Glioma Metastasis. Neurochem Res 2017; 42:1847-1863. [PMID: 28478595 DOI: 10.1007/s11064-017-2272-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/19/2022]
Abstract
Cell migration is identified as a highly orchestrated process. It is a fundamental and essential phenomenon underlying tissue morphogenesis, wound healing, and immune response. Under dysregulation, it contributes to cancer metastasis. Brain is considered to be the most complex organ in human body containing many types of neural cells with astrocytes playing crucial roles in monitoring both physiological and pathological functions. Astrocytoma originates from astrocytes and its most malignant type is glioblastoma multiforme (WHO Grade IV astrocytoma), which is capable to infiltrate widely into the neighboring brain tissues making a complete resection of tumors impossible. Very recently, we have reviewed the mechanisms for astrocytes in migration. Given the fact that astrocytoma shares many histological features with astrocytes, we therefore attempt to review the mechanisms for glioma cells in migration and compare them to normal astrocytes, hoping to obtain a better insight into the dysregulation of migratory mechanisms contributing to their metastasis in the brain.
Collapse
Affiliation(s)
- Xue Tao Qi
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Jiang Shan Zhan
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Li Ming Xiao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Li
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
| | - Han Xiao Xu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, Guizhou, 550025, China
| | - Zi Bing Fu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Hao Zhang
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Zhang
- Department of Pathology, Peking University Health Science Center and Peking University Third Hospital, Beijing, 100191, China
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Xi Hua Jia
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Guo Ge
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, Guizhou, 550025, China
| | - Rui Chao Chai
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Kai Gao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Albert Cheung Hoi Yu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
- Laboratory of Translational Medicine, Institute of Systems Biomedicine, Peking University, Beijing, 100191, China.
| |
Collapse
|
28
|
Hoxha M, Rovati GE, Cavanillas AB. The leukotriene receptor antagonist montelukast and its possible role in the cardiovascular field. Eur J Clin Pharmacol 2017; 73:799-809. [PMID: 28374082 DOI: 10.1007/s00228-017-2242-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes (LTC4, LTD4, and LTE4) are pro-inflammatory mediators of the 5-lipooxygenase (5-LO) pathway, that play an important role in bronchoconstriction, but can also enhance endothelial cell permeability and myocardial contractility, and are involved in many other inflammatory conditions. In the late 1990s, leukotriene receptor antagonists (LTRAs) were introduced in therapy for asthma and later on, approved for the relief of the symptoms of allergic rhinitis, chronic obstructive pulmonary disease, and urticaria. In addition, it has been shown that LTRAs may have a potential role in preventing atherosclerosis progression. PURPOSE The aims of this short review are to delineate the potential cardiovascular protective role of a LTRA, montelukast, beyond its traditional use, and to foster the design of appropriate clinical trials to test this hypothesis. RESULTS AND CONCLUSIONS What it is known about leukotriene receptor antagonists? •Leukotriene receptor antagonist, such as montelukast and zafirlukast, is used in asthma, COPD, and allergic rhinitis. • Montelukast is the most prescribed CysLT1 antagonist used in asthmatic patients. • Different in vivo animal studies have shown that leukotriene receptor antagonists can prevent the atherosclerosis progression, and have a protective role after cerebral ischemia. What we still need to know? • Today, there is a need for conducting clinical trials to assess the role of montelukast in reducing cardiovascular risk and to further understand the mechanism of action behind this effect.
Collapse
Affiliation(s)
- Malvina Hoxha
- Department of Chemical, Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, Rruga. D. Hoxha, Tirana, Albania.
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9-20133, Milan, Italy.
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9-20133, Milan, Italy
| | - Aurora Bueno Cavanillas
- IBS Granada, University of Granada, CIBER of Epidemiology and Public Health (CIBERESP), Granada, Spain
| |
Collapse
|
29
|
Monteagudo A, Ji C, Akbar A, Keillor JW, Johnson GVW. Inhibition or ablation of transglutaminase 2 impairs astrocyte migration. Biochem Biophys Res Commun 2016; 482:942-947. [PMID: 27899316 DOI: 10.1016/j.bbrc.2016.11.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022]
Abstract
Astrocytes play numerous complex roles that support and facilitate the function of neurons. Further, when there is an injury to the central nervous system (CNS) they can both facilitate or ameliorate functional recovery depending on the location and severity of the injury. When a CNS injury is relatively severe a glial scar is formed, which is primarily composed of astrocytes. The glial scar can be both beneficial, by limiting inflammation, and detrimental, by preventing neuronal projections, to functional recovery. Thus, understanding the processes and proteins that regulate astrocyte migration in response to injury is still of fundamental importance. One protein that is likely involved in astrocyte migration is transglutaminase 2 (TG2); a multifunctional protein expressed ubiquitously throughout the brain. Its functions include transamidation and GTPase activity, among others, and previous studies have implicated TG2 as a regulator of migration. Therefore, we examined the role of TG2 in primary astrocyte migration subsequent to injury. Using wild type or TG2-/- astrocytes, we manipulated the different functions and conformation of TG2 with novel irreversible inhibitors or mutant versions of the protein. Results showed that both inhibition and ablation of TG2 in primary astrocytes significantly inhibit migration. Additionally, we show that the deficiency in migration caused by deletion of TG2 can only be rescued with the native protein and not with mutants. Finally, the addition of TGFβ rescued the migration deficiency independent of TG2. Taken together, our study shows that transamidation and GTP/GDP-binding are necessary for inhibiting astrocyte migration and it is TGFβ independent.
Collapse
Affiliation(s)
- Alina Monteagudo
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Changyi Ji
- Department of Anesthesiology, University of Rochester, Rochester, NY 14642, USA
| | - Abdullah Akbar
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Gail V W Johnson
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA; Department of Anesthesiology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
30
|
Ghosh A, Chen F, Thakur A, Hong H. Cysteinyl Leukotrienes and Their Receptors: Emerging Therapeutic Targets in Central Nervous System Disorders. CNS Neurosci Ther 2016; 22:943-951. [PMID: 27542570 DOI: 10.1111/cns.12596] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Cysteinyl leukotrienes are a group of the inflammatory lipid molecules well known as mediators of inflammatory signaling in the allergic diseases. Although they are traditionally known for their role in allergic asthma, allergic rhinitis, and others, recent advances in the field of biomedical research highlighted the role of these inflammatory mediators in a broader range of diseases such as in the inflammation associated with the central nervous system (CNS) disorders, vascular inflammation (atherosclerotic), and in cancer. Among the CNS diseases, they, along with their synthesis precursor enzyme 5-lipoxygenase and their receptors, have been shown to be associated with brain injury, Multiple sclerosis, Alzheimer's disease, Parkinson's disease, brain ischemia, epilepsy, and others. However, a lot more remains elusive as the research in these areas is emerging and only a little has been discovered. Herein, through this review, we first provided a general up-to-date information on the synthesis pathway and the receptors for the molecules. Next, we summarized the current findings on their role in the brain disorders, with an insight given to the future perspectives.
Collapse
Affiliation(s)
- Arijit Ghosh
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Fang Chen
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Hao Hong
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
31
|
CysLT 2 receptor mediates lipopolysaccharide-induced microglial inflammation and consequent neurotoxicity in vitro. Brain Res 2015; 1624:433-445. [DOI: 10.1016/j.brainres.2015.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/17/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023]
|
32
|
Shi QJ, Wang H, Liu ZX, Fang SH, Song XM, Lu YB, Zhang WP, Sa XY, Ying HZ, Wei EQ. HAMI 3379, a CysLT2R antagonist, dose- and time-dependently attenuates brain injury and inhibits microglial inflammation after focal cerebral ischemia in rats. Neuroscience 2015; 291:53-69. [PMID: 25681271 DOI: 10.1016/j.neuroscience.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/19/2015] [Accepted: 02/02/2015] [Indexed: 12/29/2022]
Abstract
Cysteinyl leukotrienes (CysLTs) induce inflammatory responses by activating their receptors, CysLT1R and CysLT2R. We have reported that CysLT2R is involved in neuronal injury, astrocytosis, and microgliosis, and that intracerebroventricular (i.c.v.) injection of the selective CysLT2R antagonist HAMI 3379 protects against acute brain injury after focal cerebral ischemia in rats. In the present study, we clarified features of the protective effect of intraperitoneally-injected HAMI 3379 in rats. We found that HAMI 3379 attenuated the acute brain injury 24 h after middle cerebral artery occlusion (MCAO) with effective doses of 0.1-0.4 mg/kg and a therapeutic window of ∼1h. It attenuated the neurological deficits, and reduced infarct volume, brain edema, and neuronal loss and degeneration 24 and 72h after MCAO. RNA interference with i.c.v. injection of CysLT2R short hairpin RNA (shRNA) attenuated the acute injury as well. Also, HAMI 3379 inhibited release of the cytokines IL-1β, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) into the serum and cerebrospinal fluid 24h after MCAO. Moreover, HAMI 3379 ameliorated the microglial activation and neutrophil accumulation in the ischemic regions, but did not affect astrocyte proliferation 72h after MCAO. In comparison, the CysLT1R antagonist pranlukast did not affect microglial activation and IFN-γ release, but inhibited astrocyte proliferation and reduced serum IL-4. Thus, we conclude that HAMI 3379 has a protective effect on acute and subacute ischemic brain injury, and attenuates microglia-related inflammation. CysLT2R antagonist(s) alone or in combination with CysLT1R antagonists may be a novel class of therapeutic agents in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Q J Shi
- Department of Pharmacology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Experimental Animal Center, Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou 310013, China
| | - H Wang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Z X Liu
- Department of Pharmacology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - S H Fang
- Department of Pharmacology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - X M Song
- Experimental Animal Center, Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou 310013, China
| | - Y B Lu
- Department of Pharmacology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - W P Zhang
- Department of Pharmacology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - X Y Sa
- Experimental Animal Center, Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou 310013, China
| | - H Z Ying
- Experimental Animal Center, Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou 310013, China
| | - E Q Wei
- Department of Pharmacology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
33
|
Izraely S, Sagi-Assif O, Klein A, Meshel T, Ben-Menachem S, Zaritsky A, Ehrlich M, Prieto VG, Bar-Eli M, Pirker C, Berger W, Nahmias C, Couraud PO, Hoon DS, Witz IP. The metastatic microenvironment: Claudin-1 suppresses the malignant phenotype of melanoma brain metastasis. Int J Cancer 2014; 136:1296-307. [DOI: 10.1002/ijc.29090] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/07/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Sivan Izraely
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Anat Klein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Tsipi Meshel
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Shlomit Ben-Menachem
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Assaf Zaritsky
- Blavatnik School of Computer Science; Tel Aviv University; Tel Aviv Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Victor G. Prieto
- Department of Pathology; The University of Texas M.D. Anderson Cancer Center; Houston TX
| | - Menashe Bar-Eli
- Department of Cancer Biology; The University of Texas MD Anderson Cancer Center; Houston TX
| | - Christine Pirker
- Institute of Cancer Research, Department of Medicine I; Medical University Vienna; Vienna Austria
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I; Medical University Vienna; Vienna Austria
| | - Clara Nahmias
- Inserm, U1016, Institut Cochin; Paris France
- Cnrs, UMR8104; Paris France
- University Paris Descartes; UMR-S 1016, Paris France
| | - Pierre-Olivier Couraud
- Inserm, U1016, Institut Cochin; Paris France
- Cnrs, UMR8104; Paris France
- University Paris Descartes; UMR-S 1016, Paris France
| | - Dave S.B. Hoon
- Department of Molecular Oncology; John Wayne Cancer Institute, Saint John's Health Center; Santa Monica CA
| | - Isaac P. Witz
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
34
|
Magi S, Takemoto Y, Kobayashi H, Kasamatsu M, Akita T, Tanaka A, Takano K, Tashiro E, Igarashi Y, Imoto M. 5-Lipoxygenase and cysteinyl leukotriene receptor 1 regulate epidermal growth factor-induced cell migration through Tiam1 upregulation and Rac1 activation. Cancer Sci 2014; 105:290-6. [PMID: 24350867 PMCID: PMC4317946 DOI: 10.1111/cas.12340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 12/18/2022] Open
Abstract
Cell migration is an essential step for tumor metastasis. The small GTPase Rac1 plays an important role in cell migration. Previously, we reported that epidermal growth factor (EGF) induced two waves of Rac1 activation; namely, at 5 min and 12 h after stimulation. A second wave of EGF-induced Rac1 activation was required for EGF-induced cell migration, however, the spatiotemporal regulation of the second wave of EGF-induced Rac1 activation remains largely unclear. In this study, we found that 5-lipoxygenase (5-LOX) is activated in the process of EGF-induced cell migration, and that leukotriene C4 (LTC4) produced by 5-LOX mediated the second wave of Rac1 activation, as well as cell migration. Furthermore, these effects caused by LTC4 were found to be blocked in the presence of the antagonist of cysteinyl leukotriene receptor 1 (CysLT1). This blockage indicates that LTC4-mediated CysLT1 signaling regulates the second EGF-induced wave of Rac1 activation. We also found that 5-LOX inhibitors, CysLT1 antagonists and the knockdown of CysLT1 inhibited EGF-induced T cell lymphoma invasion and metastasis-inducing protein 1 (Tiam1) expression. Tiam1 expression is required for the second wave of EGF-induced Rac1 activation in A431 cells. Therefore, our results indicate that the 5-LOX/LTC4/CysLT1 signaling pathway regulates EGF-induced cell migration by increasing Tiam1 expression, leading to a second wave of Rac1 activation. Thus, CysLT1 may serve as a new molecular target for antimetastatic therapy. In addition, the CysLT1 antagonist, montelukast, which is used clinically for allergy treatment, might have great potential as a novel type of antimetastatic agent.
Collapse
Affiliation(s)
- Shigeyuki Magi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|