1
|
Félix-Martínez GJ, Godínez-Fernández JR. A primer on modelling pancreatic islets: from models of coupled β-cells to multicellular islet models. Islets 2023; 15:2231609. [PMID: 37415423 PMCID: PMC10332213 DOI: 10.1080/19382014.2023.2231609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Pancreatic islets are mini-organs composed of hundreds or thousands of ɑ, β and δ-cells, which, respectively, secrete glucagon, insulin and somatostatin, key hormones for the regulation of blood glucose. In pancreatic islets, hormone secretion is tightly regulated by both internal and external mechanisms, including electrical communication and paracrine signaling between islet cells. Given its complexity, the experimental study of pancreatic islets has been complemented with computational modeling as a tool to gain a better understanding about how all the mechanisms involved at different levels of organization interact. In this review, we describe how multicellular models of pancreatic cells have evolved from the early models of electrically coupled β-cells to models in which experimentally derived architectures and both electrical and paracrine signals have been considered.
Collapse
Affiliation(s)
- Gerardo J. Félix-Martínez
- Investigador por México CONAHCYT-Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico, Mexico
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico, Mexico
| | | |
Collapse
|
2
|
Luchetti N, Filippi S, Loppini A. Multilevel synchronization of human β-cells networks. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1264395. [PMID: 37808419 PMCID: PMC10557430 DOI: 10.3389/fnetp.2023.1264395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
β-cells within the endocrine pancreas are fundamental for glucose, lipid and protein homeostasis. Gap junctions between cells constitute the primary coupling mechanism through which cells synchronize their electrical and metabolic activities. This evidence is still only partially investigated through models and numerical simulations. In this contribution, we explore the effect of combined electrical and metabolic coupling in β-cell clusters using a detailed biophysical model. We add heterogeneity and stochasticity to realistically reproduce β-cell dynamics and study networks mimicking arrangements of β-cells within human pancreatic islets. Model simulations are performed over different couplings and heterogeneities, analyzing emerging synchronization at the membrane potential, calcium, and metabolites levels. To describe network synchronization, we use the formalism of multiplex networks and investigate functional network properties and multiplex synchronization motifs over the structural, electrical, and metabolic layers. Our results show that metabolic coupling can support slow wave propagation in human islets, that combined electrical and metabolic synchronization is realized in small aggregates, and that metabolic long-range correlation is more pronounced with respect to the electrical one.
Collapse
Affiliation(s)
- Nicole Luchetti
- Center for Life Nano and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Simonetta Filippi
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
- National Institute of Optics, National Research Council, Florence, Italy
- International Center for Relativistic Astrophysics Network, Pescara, Italy
| | - Alessandro Loppini
- Center for Life Nano and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
3
|
Stamper IJ, Wang X. Integrated multiscale mathematical modeling of insulin secretion reveals the role of islet network integrity for proper oscillatory glucose-dose response. J Theor Biol 2019; 475:1-24. [PMID: 31078658 DOI: 10.1016/j.jtbi.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023]
Abstract
The integrated multiscale mathematical model we present in this paper is built on two of our previous ones: a model of electrical oscillation in β-cells connected to neighboring cells within a three-dimensional (3D) network, and a model of glucose-induced β-cell intracellular insulin granule trafficking and insulin secretion. In order to couple these two models, we assume that the rate at which primed and release-ready insulin granules fuse at the cell membrane increases with the intracellular calcium concentration. Moreover, by assuming that the fraction of free KATP-channels decreases with increasing glucose concentration, we take into account the effect of glucose dose on membrane potential and, indirectly via the effect on the potential, on intracellular calcium. Numerical analysis of our new model shows that a single step increase in glucose concentration yields the experimentally observed characteristic biphasic insulin release. We find that the biphasic response is typically oscillatory in nature for low and moderate glucose concentrations. The plateau fraction (the time that the β-cells spend in their active firing phase) increases with increasing glucose dose, as does the total insulin secretion. At high glucose concentrations, the oscillations tend to vanish due to a constantly elevated membrane potential of the β-cells. Our results also demonstrate how insulin secretion characteristics in various glucose protocols depend on the degree of β-cell loss, highlighting the potential impact from disease. In particular, both the secretory capacity (average insulin secretion rate per β-cell) and the oscillatory response diminish as the islet cell network becomes compromised.
Collapse
Affiliation(s)
- I Johanna Stamper
- The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Xujing Wang
- The Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM), the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), of the National Institutes of Health(NIH), Bethesda, Maryland 20817, United States.
| |
Collapse
|
4
|
Farashi S, Sasanpour P, Rafii-Tabar H. Investigation of the role of ion channels in human pancreatic β-cell hubs: A mathematical modeling study. Comput Biol Med 2018; 97:50-62. [PMID: 29705290 DOI: 10.1016/j.compbiomed.2018.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022]
Abstract
In many cellular networks, the structure of the network follows a scale-free organization, where a limited number of cells are strongly coupled to other cells. These cells are called hub cells and their critical roles are well accepted. Despite their importance, there have been only a few studies investigating the characteristic features of these cells. In this paper, a computational approach is proposed to study the possible role of different ion channels in distinguishing between the hub and non-hub cells. The results show that the P/Q-type and T-type calcium channels may have an especial role in the β-cell hubs because the high-level expressions of these channels make a pancreatic β-cell more potent to force other coupled cells to follow it. In addition, in order to consider the variation of the coupling strength with voltage, a novel mathematical model is proposed for the gap junction coupling between the pancreatic β-cells. The proposed approach is validated based on the data from the literature.
Collapse
Affiliation(s)
- Sajjad Farashi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Computational Nano-Bioelectromagnetics Research Group, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Hashem Rafii-Tabar
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Cherubini C, Filippi S, Gizzi A, Loppini A. Role of topology in complex functional networks of beta cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042702. [PMID: 26565267 DOI: 10.1103/physreve.92.042702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 06/05/2023]
Abstract
The activity of pancreatic β cells can be described by biological networks of coupled nonlinear oscillators that, via electrochemical synchronization, release insulin in response to augmented glucose levels. In this work, we analyze the emergent behavior of regular and percolated β-cells clusters through a stochastic mathematical model where "functional" networks arise. We show that the emergence and robustness of the synchronized dynamics depend both on intrinsic and extrinsic parameters. In particular, cellular noise level, glucose concentration, network spatial architecture, and cell-to-cell coupling strength are the key factors for the generation of a rhythmic and robust activity. Their role in the functional network topology associated with β-cells clusters is analyzed and discussed.
Collapse
Affiliation(s)
- Christian Cherubini
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, I-00128, Rome, Italy
- International Center for Relativistic Astrophysics Network-I.C.R.A.Net, University Campus Bio-Medico of Rome, I-00128, Rome, Italy
| | - Simonetta Filippi
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, I-00128, Rome, Italy
- International Center for Relativistic Astrophysics Network-I.C.R.A.Net, University Campus Bio-Medico of Rome, I-00128, Rome, Italy
| | - Alessio Gizzi
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, I-00128, Rome, Italy
| | - Alessandro Loppini
- Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, I-00128, Rome, Italy
| |
Collapse
|
6
|
Khadra A, Schnell S. Development, growth and maintenance of β-cell mass: models are also part of the story. Mol Aspects Med 2015; 42:78-90. [PMID: 25720614 DOI: 10.1016/j.mam.2015.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/09/2023]
Abstract
Pancreatic β-cells in the islets of Langerhans play a crucial role in regulating glucose homeostasis in the circulation. Loss of β-cell mass or function due to environmental, genetic and immunological factors leads to the manifestation of diabetes mellitus. The mechanisms regulating the dynamics of pancreatic β-cell mass during normal development and diabetes progression are complex. To fully unravel such complexity, experimental and clinical approaches need to be combined with mathematical and computational models. In the natural sciences, mathematical and computational models have aided the identification of key mechanisms underlying the behavior of systems comprising multiple interacting components. A number of mathematical and computational models have been proposed to explain the development, growth and death of pancreatic β-cells. In this review, we discuss some of these models and how their predictions provide novel insight into the mechanisms controlling β-cell mass during normal development and diabetes progression. Lastly, we discuss a handful of the major open questions in the field.
Collapse
Affiliation(s)
- Anmar Khadra
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA; Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA; Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA.
| |
Collapse
|
7
|
Stamper IJ, Jackson E, Wang X. Phase transitions in pancreatic islet cellular networks and implications for type-1 diabetes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012719. [PMID: 24580269 PMCID: PMC4172977 DOI: 10.1103/physreve.89.012719] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Indexed: 06/03/2023]
Abstract
In many aspects the onset of a chronic disease resembles a phase transition in a complex dynamic system: Quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. In this study we examine a special case, the onset of type-1 diabetes (T1D), a disease that results from loss of the insulin-producing pancreatic islet β cells. Within each islet, the β cells are electrically coupled to each other via gap-junctional channels. This intercellular coupling enables the β cells to synchronize their insulin release, thereby generating the multiscale temporal rhythms in blood insulin that are critical to maintaining blood glucose homeostasis. Using percolation theory we show how normal islet function is intrinsically linked to network connectivity. In particular, the critical amount of β-cell death at which the islet cellular network loses site percolation is consistent with laboratory and clinical observations of the threshold loss of β cells that causes islet functional failure. In addition, numerical simulations confirm that the islet cellular network needs to be percolated for β cells to synchronize. Furthermore, the interplay between site percolation and bond strength predicts the existence of a transient phase of islet functional recovery after onset of T1D and introduction of treatment, potentially explaining the honeymoon phenomenon. Based on these results, we hypothesize that the onset of T1D may be the result of a phase transition of the islet β-cell network.
Collapse
Affiliation(s)
- I. J. Stamper
- Department of Physics, the University of Alabama at Birmingham, Birmingham, Alabama, USA
- The Comprehensive Diabetes Center, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elais Jackson
- Department of Computer and Information Sciences, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xujing Wang
- Department of Physics, the University of Alabama at Birmingham, Birmingham, Alabama, USA
- The Comprehensive Diabetes Center, the University of Alabama at Birmingham, Birmingham, Alabama, USA
- Systems Biology Center, the National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Portuesi R, Cherubini C, Gizzi A, Buzzetti R, Pozzilli P, Filippi S. A stochastic mathematical model to study the autoimmune progression towards type 1 diabetes. Diabetes Metab Res Rev 2013; 29:194-203. [PMID: 23229223 DOI: 10.1002/dmrr.2382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 11/19/2012] [Accepted: 11/30/2012] [Indexed: 11/11/2022]
Abstract
BACKGROUND The integrity of the interactions and the 3D architecture among beta cell populations in pancreatic islets is critical for proper biosynthesis, storage and release of insulin. The aim of this study was to evaluate the effect on electrophysiological signalling of beta cells that is produced by progressive lymphocytic islet cell infiltration (insulitis), by modelling the disruption of pancreatic islet anatomy as a consequence of insulitis and altered glucose concentrations. METHODS On the basis of histopathological images of murine islets from non-obese diabetic mice, we simulated the electrophysiological dynamics of a 3D cluster of mouse beta cells via a stochastic model. Progressive damage was modelled at different glucose concentrations, representing the different glycaemic states in the autoimmune progression towards type 1 diabetes. RESULTS At 31% of dead beta cells (normoglycaemia) and 69% (hyperglycaemia), the system appeared to be biologically robust to maintain regular Ca(2+) ion oscillations guaranteeing an effective insulin release. Simulations at 84%, 94% and 98% grades (severe hyperglycemia) showed that intracellular calcium oscillations were absent. In such conditions, insulin pulsatility is not expected to occur. CONCLUSIONS Our results suggest that the islet tissue is biophysically robust enough to compensate for high rates of beta cell loss. These predictions can be experimentally tested in vitro by quantifying space and time electrophysiological dynamics of animal islets kept at different glucose gradients. The model indicates the necessity of maintaining glycaemia within the physiological range as soon as possible after diabetes onset to avoid a dramatic interruption of Ca(2+) pulsatility and the consequent drop of insulin release.
Collapse
Affiliation(s)
- R Portuesi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Stamper IJ, Wang X. Mathematical modeling of insulin secretion and the role of glucose-dependent mobilization, docking, priming and fusion of insulin granules. J Theor Biol 2012; 318:210-25. [PMID: 23154190 DOI: 10.1016/j.jtbi.2012.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 10/28/2012] [Accepted: 11/02/2012] [Indexed: 01/08/2023]
Abstract
In this paper we develop a new mathematical model of glucose-induced insulin secretion from pancreatic islet β-cells, and we use this model to investigate the rate limiting factors. We assume that insulin granules reside in different pools inside each β-cell, and that all β-cells respond homogeneously to glucose with the same recruitment thresholds. Consistent with recent experimental observations, our model also accounts for the fusion of newcomer granules that are not pre-docked at the plasma membrane. In response to a single step increase in glucose concentration, our model reproduces the characteristic biphasic insulin release observed in multiple experimental systems, including perfused pancreata and isolated islets of rodent or human origin. From our model analysis we note that first-phase insulin secretion depends on rapid depletion of the primed, release-ready granule pools, while the second phase relies on granule mobilization from the reserve. Moreover, newcomers have the potential to contribute significantly to the second phase. When the glucose protocol consists of multiple changes in sequence (a so-called glucose staircase), our model predicts insulin spikes of increasing height, as has been seen experimentally. This increase stems from the glucose-dependent increase in the fusion rate of insulin granules at the plasma membrane of single β-cells. In contrast, previous mathematical models reproduced the staircase experiment by assuming heterogeneous β-cell activation. In light of experimental data indicating limited heterogeneous activation for β-cells within intact islets, our findings suggest that a graded, dose-dependent cell response to glucose may contribute to insulin secretion patterns observed in multiple experiments, and thus regulate in vivo insulin release. In addition, the strength of insulin granule mobilization, priming and fusion are critical limiting factors in determining the total amount of insulin release.
Collapse
Affiliation(s)
- I Johanna Stamper
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama, AL 35294, USA.
| | | |
Collapse
|