1
|
Wagner JT, Müller-Schmucker SM, Wang W, Arnold P, Uhlig N, Issmail L, Eberlein V, Damm D, Roshanbinfar K, Ensser A, Oltmanns F, Peter AS, Temchura V, Schrödel S, Engel FB, Thirion C, Grunwald T, Wuhrer M, Grimm D, Überla K. Influence of AAV vector tropism on long-term expression and Fc-γ receptor binding of an antibody targeting SARS-CoV-2. Commun Biol 2024; 7:865. [PMID: 39009807 PMCID: PMC11250830 DOI: 10.1038/s42003-024-06529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Long-acting passive immunization strategies are needed to protect immunosuppressed vulnerable groups from infectious diseases. To further explore this concept for COVID-19, we constructed Adeno-associated viral (AAV) vectors encoding the human variable regions of the SARS-CoV-2 neutralizing antibody, TRES6, fused to murine constant regions. An optimized vector construct was packaged in hepatotropic (AAV8) or myotropic (AAVMYO) AAV capsids and injected intravenously into syngeneic TRIANNI-mice. The highest TRES6 serum concentrations (511 µg/ml) were detected 24 weeks after injection of the myotropic vector particles and mean TRES6 serum concentrations remained above 100 µg/ml for at least one year. Anti-drug antibodies or TRES6-specific T cells were not detectable. After injection of the AAV8 particles, vector mRNA was detected in the liver, while the AAVMYO particles led to high vector mRNA levels in the heart and skeletal muscle. The analysis of the Fc-glycosylation pattern of the TRES6 serum antibodies revealed critical differences between the capsids that coincided with different binding activities to murine Fc-γ-receptors. Concomitantly, the vector-based immune prophylaxis led to protection against SARS-CoV-2 infection in K18-hACE2 mice. High and long-lasting expression levels, absence of anti-drug antibodies and favourable Fc-γ-receptor binding activities warrant further exploration of myotropic AAV vector-based delivery of antibodies and other biologicals.
Collapse
Affiliation(s)
- Jannik T Wagner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sandra M Müller-Schmucker
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin Ensser
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Antonia Sophia Peter
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Preclinical Validation, Leipzig, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty and Faculty of Engineering Sciences, University of Heidelberg; BioQuant Center, BQ0030, University of Heidelberg; German Center for Infection Research (DZIF), German Center for Cardiovascular Research (DZHK), partner site, Heidelberg, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
2
|
Di Vincenzo R, Beutel J, Arnold P, Wang Y, Damm D, Tannig P, Lux A, Temchura V, Eichler J, Überla K. Oriented display of HIV-1 Env trimers by a novel coupling strategy enhances B cell activation and phagocytosis. Front Immunol 2024; 15:1344346. [PMID: 38390320 PMCID: PMC10882061 DOI: 10.3389/fimmu.2024.1344346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Conformationally stabilized Env trimers have been developed as antigens for the induction of neutralizing antibodies against HIV-1. However, the non-glycosylated immunodominant base of these soluble antigens may compete with the neutralizing antibody response. This has prompted attempts to couple Env trimers to organic or inorganic nanoparticles with the base facing towards the carrier. Such a site-directed coupling could not only occlude the base of the trimer, but also enhance B cell activation by repetitive display. Methods To explore the effect of an ordered display of HIV-1 Env on microspheres on the activation of Env-specific B cells we used Bind&Bite, a novel covalent coupling approach for conformationally sensitive antigens based on heterodimeric coiled-coil peptides. By engineering a trimeric HIV-1 Env protein with a basic 21-aa peptide (Peptide K) extension at the C-terminus, we were able to covalently biotinylate the antigen in a site-directed fashion using an acidic complementary peptide (Peptide E) bearing a reactive site and a biotin molecule. This allowed us to load our antigen onto streptavidin beads in an oriented manner. Results Microspheres coated with HIV-1 Env through our Bind&Bite system showed i) enhanced binding by conformational anti-HIV Env broadly neutralizing antibodies (bNAbs), ii) reduced binding activity by antibodies directed towards the base of Env, iii) higher Env-specific B cell activation, and iv) were taken-up more efficiently after opsonization compared to beads presenting HIV-1 Env in an undirected orientation. Discussion In comparison to site-directed biotinylation via the Avi-tag, Bind&Bite, offers greater flexibility with regard to alternative covalent protein modifications, allowing selective modification of multiple proteins via orthogonal coiled-coil peptide pairs. Thus, the Bind&Bite coupling approach via peptide K and peptide E described in this study offers a valuable tool for nanoparticle vaccine design where surface conjugation of correctly folded antigens is required.
Collapse
Affiliation(s)
- Riccardo Di Vincenzo
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jannis Beutel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yu Wang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Pierre Tannig
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Lux
- Chair of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Takeuchi R, Ogihara K, Fujimoto J, Sato K, Mase N, Yoshimura K, Harada S, Narumi T. Design, synthesis, and bio-evaluation of novel triterpenoid derivatives as anti-HIV-1 compounds. Bioorg Med Chem Lett 2022; 69:128768. [PMID: 35513221 DOI: 10.1016/j.bmcl.2022.128768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/02/2022]
Abstract
Two betulinic acid derivatives, RPR103611 (2) and IC9564 (3) were previously reported to be potent HIV-1 entry inhibitors. In this current study, a SAR study of the triterpenoid moiety of 2 and 3 has been performed and an oleanolic acid derivative (4) was identified as a novel HIV-1 entry inhibitor. In addition, the combination of 4 with several-type of HIV-1 neutralizing antibodies provided significant synergistic effects. The synthetic utility of the CC double bond in the C-ring of 4 was also demonstrated to develop the 12-keto-type oleanolic acid derivative (5) as a potent anti-HIV compound. This simple transformation led to a significantly increased anti-HIV activity and a reduced cytotoxicity of the compound.
Collapse
Affiliation(s)
- Reon Takeuchi
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
| | - Kasumi Ogihara
- Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
| | - Junko Fujimoto
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka, Japan
| | - Kohei Sato
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan; Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan; Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka, Japan
| | - Nobuyuki Mase
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan; Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan; Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan
| | - Kazuhisa Yoshimura
- Institute of Public Health, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, Japan; AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan.
| | - Tetsuo Narumi
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan; Course of Applied Chemistry and Biochemical Engineering, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan; Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, Japan.
| |
Collapse
|
4
|
Damm D, Suleiman E, Theobald H, Wagner JT, Batzoni M, Ahlfeld (née Kohlhauser) B, Walkenfort B, Albrecht JC, Ingale J, Yang L, Hasenberg M, Wyatt RT, Vorauer-Uhl K, Überla K, Temchura V. Design and Functional Characterization of HIV-1 Envelope Protein-Coupled T Helper Liposomes. Pharmaceutics 2022; 14:1385. [PMID: 35890282 PMCID: PMC9318220 DOI: 10.3390/pharmaceutics14071385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
Functionalization of experimental HIV-1 virus-like particle vaccines with heterologous T helper epitopes (T helper VLPs) can modulate the humoral immune response via intrastructural help (ISH). Current advances in the conjugation of native-like HIV-1 envelope trimers (Env) onto liposomes and encapsulation of peptide epitopes into these nanoparticles renders this GMP-scalable liposomal platform a feasible alternative to VLP-based vaccines. In this study, we designed and analyzed customizable Env-conjugated T helper liposomes. First, we passively encapsulated T helper peptides into a well-characterized liposome formulation displaying a dense array of Env trimers on the surface. We confirmed the closed pre-fusion state of the coupled Env trimers by immunogold staining with conformation-specific antibodies. These peptide-loaded Env-liposome conjugates efficiently activated Env-specific B cells, which further induced proliferation of CD4+ T cells by presentation of liposome-derived peptides on MHC-II molecules. The peptide encapsulation process was then quantitatively improved by an electrostatically driven approach using an overall anionic lipid formulation. We demonstrated that peptides delivered by liposomes were presented by DCs in secondary lymphoid organs after intramuscular immunization of mice. UFO (uncleaved prefusion optimized) Env trimers were covalently coupled to peptide-loaded anionic liposomes by His-tag/NTA(Ni) interactions and EDC/Sulfo-NHS crosslinking. EM imaging revealed a moderately dense array of well-folded Env trimers on the liposomal surface. The conformation was verified by liposomal surface FACS. Furthermore, anionic Env-coupled T helper liposomes effectively induced Env-specific B cell activation and proliferation in a comparable range to T helper VLPs. Taken together, we demonstrated that T helper VLPs can be substituted with customizable and GMP-scalable liposomal nanoparticles as a perspective for future preclinical and clinical HIV vaccine applications. The functional nanoparticle characterization assays shown in this study can be applied to other systems of synthetic nanoparticles delivering antigens derived from various pathogens.
Collapse
Affiliation(s)
- Dominik Damm
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (D.D.); (H.T.); (J.T.W.); (J.-C.A.); (K.Ü.)
| | - Ehsan Suleiman
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (E.S.); (M.B.); (B.A.); (K.V.-U.)
| | - Hannah Theobald
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (D.D.); (H.T.); (J.T.W.); (J.-C.A.); (K.Ü.)
| | - Jannik T. Wagner
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (D.D.); (H.T.); (J.T.W.); (J.-C.A.); (K.Ü.)
| | - Mirjam Batzoni
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (E.S.); (M.B.); (B.A.); (K.V.-U.)
| | - Bianca Ahlfeld (née Kohlhauser)
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (E.S.); (M.B.); (B.A.); (K.V.-U.)
| | - Bernd Walkenfort
- Electron Microscopy Unit (EMU), Imaging Center Essen (IMCES), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany; (B.W.); (M.H.)
| | - Jens-Christian Albrecht
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (D.D.); (H.T.); (J.T.W.); (J.-C.A.); (K.Ü.)
| | - Jidnyasa Ingale
- Vaccine Business Unit, Takeda Pharmaceuticals, Cambridge, MA 02139, USA;
| | - Lifei Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.Y.); (R.T.W.)
| | - Mike Hasenberg
- Electron Microscopy Unit (EMU), Imaging Center Essen (IMCES), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany; (B.W.); (M.H.)
| | - Richard T. Wyatt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.Y.); (R.T.W.)
| | - Karola Vorauer-Uhl
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (E.S.); (M.B.); (B.A.); (K.V.-U.)
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (D.D.); (H.T.); (J.T.W.); (J.-C.A.); (K.Ü.)
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (D.D.); (H.T.); (J.T.W.); (J.-C.A.); (K.Ü.)
| |
Collapse
|
5
|
Prieto Huarcaya S, Drobny A, Marques ARA, Di Spiezio A, Dobert JP, Balta D, Werner C, Rizo T, Gallwitz L, Bub S, Stojkovska I, Belur NR, Fogh J, Mazzulli JR, Xiang W, Fulzele A, Dejung M, Sauer M, Winner B, Rose-John S, Arnold P, Saftig P, Zunke F. Recombinant pro-CTSD (cathepsin D) enhances SNCA/α-Synuclein degradation in α-Synucleinopathy models. Autophagy 2022; 18:1127-1151. [PMID: 35287553 PMCID: PMC9196656 DOI: 10.1080/15548627.2022.2045534] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by the abnormal intracellular accumulation of SNCA/α-synuclein. While the exact mechanisms underlying SNCA pathology are not fully understood, increasing evidence suggests the involvement of autophagy as well as lysosomal deficiencies. Because CTSD (cathepsin D) has been proposed to be the major lysosomal protease involved in SNCA degradation, its deficiency has been linked to the presence of insoluble SNCA conformers in the brain of mice and humans as well as to the transcellular transmission of SNCA aggregates. We here postulate that SNCA degradation can be enhanced by the application of the recombinant human proform of CTSD (rHsCTSD). Our results reveal that rHsCTSD is efficiently endocytosed by neuronal cells, correctly targeted to lysosomes and matured to an enzymatically active protease. In dopaminergic neurons derived from induced pluripotent stem cells (iPSC) of PD patients harboring the A53T mutation within the SNCA gene, we confirm the reduction of insoluble SNCA after treatment with rHsCTSD. Moreover, we demonstrate a decrease of pathological SNCA conformers in the brain and within primary neurons of a ctsd-deficient mouse model after dosing with rHsCTSD. Boosting lysosomal CTSD activity not only enhanced SNCA clearance in human and murine neurons as well as tissue, but also restored endo-lysosome and autophagy function. Our findings indicate that CTSD is critical for SNCA clearance and function. Thus, enzyme replacement strategies utilizing CTSD may also be of therapeutic interest for the treatment of PD and other synucleinopathies aiming to decrease the SNCA burden.Abbreviations: aa: amino acid; SNCA/α-synuclein: synuclein alpha; APP: amyloid beta precursor protein; BBB: blood brain barrier; BF: basal forebrain; CBB: Coomassie Brilliant Blue; CLN: neuronal ceroid lipofuscinosis; CNL10: neuronal ceroid lipofuscinosis type 10; Corr.: corrected; CTSD: cathepsin D; CTSB: cathepsin B; DA: dopaminergic; DA-iPSn: induced pluripotent stem cell-derived dopaminergic neurons; dox: doxycycline; ERT: enzyme replacement therapy; Fx: fornix, GBA/β-glucocerebrosidase: glucosylceramidase beta; h: hour; HC: hippocampus; HT: hypothalamus; i.c.: intracranially; IF: immunofluorescence; iPSC: induced pluripotent stem cell; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LSDs: lysosomal storage disorders; MAPT: microtubule associated protein tau; M6P: mannose-6-phosphate; M6PR: mannose-6-phosphate receptor; MB: midbrain; mCTSD: mature form of CTSD; neurofil.: neurofilament; PD: Parkinson disease; proCTSD: proform of CTSD; PRNP: prion protein; RFU: relative fluorescence units; rHsCTSD: recombinant human proCTSD; SAPC: Saposin C; SIM: structured illumination microscopy; T-insol: Triton-insoluble; T-sol: Triton-soluble; TEM: transmission electron microscopy, TH: tyrosine hydroxylase; Thal: thalamus.
Collapse
Affiliation(s)
| | - Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - André R A Marques
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), Nova Medical School, Nms, Nova University Lisbon, Lisboa, Portugal
| | | | - Jan Philipp Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Tania Rizo
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Gallwitz
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Simon Bub
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Iva Stojkovska
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | - Nandkishore R Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | | | - Joseph R Mazzulli
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| | - Amitkumar Fulzele
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (Fau), Erlangen, Germany
| |
Collapse
|
6
|
Kluge A, Bunk J, Schaeffer E, Drobny A, Xiang W, Knacke H, Bub S, Lückstädt W, Arnold P, Lucius R, Berg D, Zunke F. OUP accepted manuscript. Brain 2022; 145:3058-3071. [PMID: 35722765 DOI: 10.1093/brain/awac115] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/12/2022] [Accepted: 03/13/2022] [Indexed: 11/13/2022] Open
Abstract
To date, no reliable clinically applicable biomarker has been established for Parkinson's disease. Our results indicate that a long anticipated blood test for Parkinson's disease may be realized. Following the isolation of neuron-derived extracellular vesicles of Parkinson's disease patients and non-Parkinson's disease individuals, immunoblot analyses were performed to detect extracellular vesicle-derived α-synuclein. Pathological α-synuclein forms derived from neuronal extracellular vesicles could be detected under native conditions and were significantly increased in all individuals with Parkinson's disease and clearly distinguished disease from the non-disease state. By performing an α-synuclein seeding assay these soluble conformers could be amplified and seeding of pathological protein folding was demonstrated. Amplified α-synuclein conformers exhibited β-sheet-rich structures and a fibrillary appearance. Our study demonstrates that the detection of pathological α-synuclein conformers from neuron-derived extracellular vesicles from blood plasma samples has the potential to evolve into a blood-biomarker of Parkinson's disease that is still lacking so far. Moreover, the distribution of seeding-competent α-synuclein within blood exosomes sheds a new light of pathological disease mechanisms in neurodegenerative disorders.
Collapse
Affiliation(s)
- Annika Kluge
- Department of Neurology, University Hospital Kiel, 24105 Kiel, Germany
| | - Josina Bunk
- Institute of Biochemistry, Christian-Albrecht-University Kiel, 24118 Kiel, Germany
| | - Eva Schaeffer
- Department of Neurology, University Hospital Kiel, 24105 Kiel, Germany
| | - Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Henrike Knacke
- Department of Neurology, University Hospital Kiel, 24105 Kiel, Germany
| | - Simon Bub
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Wiebke Lückstädt
- Institute of Anatomy, Christian-Albrecht-University Kiel, 24118 Kiel, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ralph Lucius
- Institute of Anatomy, Christian-Albrecht-University Kiel, 24118 Kiel, Germany
| | - Daniela Berg
- Department of Neurology, University Hospital Kiel, 24105 Kiel, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
7
|
Lückstädt W, Bub S, Koudelka T, Pavlenko E, Peters F, Somasundaram P, Becker-Pauly C, Lucius R, Zunke F, Arnold P. Cell Surface Processing of CD109 by Meprin β Leads to the Release of Soluble Fragments and Reduced Expression on Extracellular Vesicles. Front Cell Dev Biol 2021; 9:622390. [PMID: 33738281 PMCID: PMC7960916 DOI: 10.3389/fcell.2021.622390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
Cluster of differentiation 109 (CD109) is a glycosylphosphatidylinositol (GPI)-anchored protein expressed on primitive hematopoietic stem cells, activated platelets, CD4+ and CD8+ T cells, and keratinocytes. In recent years, CD109 was also associated with different tumor entities and identified as a possible future diagnostic marker linked to reduced patient survival. Also, different cell signaling pathways were proposed as targets for CD109 interference including the TGFβ, JAK-STAT3, YAP/TAZ, and EGFR/AKT/mTOR pathways. Here, we identify the metalloproteinase meprin β to cleave CD109 at the cell surface and thereby induce the release of cleavage fragments of different size. Major cleavage was identified within the bait region of CD109 residing in the middle of the protein. To identify the structural localization of the bait region, homology modeling and single-particle analysis were applied, resulting in a molecular model of membrane-associated CD109, which allows for the localization of the newly identified cleavage sites for meprin β and the previously published cleavage sites for the metalloproteinase bone morphogenetic protein-1 (BMP-1). Full-length CD109 localized on extracellular vesicles (EVs) was also identified as a release mechanism, and we can show that proteolytic cleavage of CD109 at the cell surface reduces the amount of CD109 sorted to EVs. In summary, we identified meprin β as the first membrane-bound protease to cleave CD109 within the bait region, provide a first structural model for CD109, and show that cell surface proteolysis correlates negatively with CD109 released on EVs.
Collapse
Affiliation(s)
- Wiebke Lückstädt
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Simon Bub
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Tomas Koudelka
- Systematic Proteomics and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Egor Pavlenko
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Florian Peters
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Prasath Somasundaram
- Systematic Proteomics and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Ralph Lucius
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
8
|
Peñate Medina T, Gerle M, Humbert J, Chu H, Köpnick AL, Barkmann R, Garamus VM, Sanz B, Purcz N, Will O, Appold L, Damm T, Suojanen J, Arnold P, Lucius R, Willumeit-Römer R, Açil Y, Wiltfang J, Goya GF, Glüer CC, Peñate Medina O. Lipid-Iron Nanoparticle with a Cell Stress Release Mechanism Combined with a Local Alternating Magnetic Field Enables Site-Activated Drug Release. Cancers (Basel) 2020; 12:cancers12123767. [PMID: 33327621 PMCID: PMC7765112 DOI: 10.3390/cancers12123767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Most available cancer chemotherapies are based on systemically administered small organic molecules, and only a tiny fraction of the drug reaches the disease site. The approach causes significant side effects and limits the outcome of the therapy. Targeted drug delivery provides an alternative to improve the situation. However, due to the poor release characteristics of the delivery systems, limitations remain. This report presents a new approach to address the challenges using two fundamentally different mechanisms to trigger the release from the liposomal carrier. We use an endogenous disease marker, an enzyme, combined with an externally applied magnetic field, to open the delivery system at the correct time only in the disease site. This site-activated release system is a novel two-switch nanomachine that can be regulated by a cell stress-induced enzyme at the cellular level and be remotely controlled using an applied magnetic field. We tested the concept using sphingomyelin-containing liposomes encapsulated with indocyanine green, fluorescent marker, or the anticancer drug cisplatin. We engineered the liposomes by adding paramagnetic beads to act as a receiver of outside magnetic energy. The developed multifunctional liposomes were characterized in vitro in leakage studies and cell internalization studies. The release system was further studied in vivo in imaging and therapy trials using a squamous cell carcinoma tumor in the mouse as a disease model. In vitro studies showed an increased release of loaded material when stress-related enzyme and magnetic field was applied to the carrier liposomes. The theranostic liposomes were found in tumors, and the improved therapeutic effect was shown in the survival studies.
Collapse
Affiliation(s)
- Tuula Peñate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, 24105 Kiel, Germany;
| | - Mirko Gerle
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
| | - Jana Humbert
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Hanwen Chu
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| | - Anna-Lena Köpnick
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, 24105 Kiel, Germany;
| | - Reinhard Barkmann
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Vasil M. Garamus
- Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Max Planck Straße 1, 21502 Geesthacht, Germany; (V.M.G.); (R.W.-R.)
| | - Beatriz Sanz
- Institute of Nanoscience of Aragon (INA) and Condensed Matter Physics Dept., University of Zaragoza, C.P. 50.018 Zaragoza, Spain; (B.S.); (G.F.G.)
| | - Nicolai Purcz
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
| | - Olga Will
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Lia Appold
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, 24105 Kiel, Germany;
| | - Timo Damm
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Juho Suojanen
- Cleft Palate and Craniofacial Center, Department of Plastic Surgery, Helsinki University Hospital, 00029 HUS Helsinki, Finland;
- Päijät-Häme Joint Authority for Health and Wellbeing, Department of Oral and Maxillo-Facial Surgery, 15850 Lahti, Finland
| | - Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University Kiel, 24105 Kiel, Germany or (P.A.); (R.L.)
| | - Ralph Lucius
- Anatomical Institute, Christian-Albrechts-University Kiel, 24105 Kiel, Germany or (P.A.); (R.L.)
| | - Regina Willumeit-Römer
- Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Max Planck Straße 1, 21502 Geesthacht, Germany; (V.M.G.); (R.W.-R.)
| | - Yahya Açil
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
| | - Joerg Wiltfang
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
| | - Gerardo F. Goya
- Institute of Nanoscience of Aragon (INA) and Condensed Matter Physics Dept., University of Zaragoza, C.P. 50.018 Zaragoza, Spain; (B.S.); (G.F.G.)
| | - Claus C. Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Oula Peñate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, 24105 Kiel, Germany;
- Correspondence: ; Tel.: +491605559588
| |
Collapse
|
9
|
Eymsh B, Drobny A, Heyn TR, Xiang W, Lucius R, Schwarz K, Keppler JK, Zunke F, Arnold P. Toxic Metamorphosis-How Changes from Lysosomal to Cytosolic pH Modify the Alpha-Synuclein Aggregation Pattern. Biomacromolecules 2020; 21:4673-4684. [PMID: 32986422 DOI: 10.1021/acs.biomac.0c00629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alpha-synuclein (aSyn) is a cytosolic, aggregation-prone protein that is associated with neurodegenerative disorders like Parkinson's disease. Interestingly, the protein can appear in different conformations, including monomeric and oligomeric forms as well as amyloid fibrils. Its individual structural constituents seem to be dependent on various factors and the composition of the respective cellular surroundings. Although under physiological conditions, most aSyn is found in the cytosol and synapses of neurons, aSyn can also be found in lysosomal compartments, where it gets degraded. We here compare the assembly speed, morphology, folding state, and spreading of aSyn at cytosolic pH (pH 7.4) and lysosomal pH (pH 5) using Thioflavin T, transmission electron microscopy, circular dichroism, and Fourier transform infrared spectroscopy. Interestingly, we found substantial differences between aSyn aggregation under neutral and acidic pH conditions, like those present in cytosolic and lysosomal cellular compartments. Also, lysosomal aSyn enriched from an aSyn-overexpressing cell line was able to seed aggregation in a concentration-dependent manner. Moreover, we observed that aSyn aggregates formed under in vitro lysosomal pH (pH 5) conditions were not stable at neutral pH and collapsed into partly soluble aggregates with changed structural characteristics. Our findings have meaningful implications in intracellular toxicity events as well as in lysis procedures for molecular and structural characterization of intracellular aSyn conformers.
Collapse
Affiliation(s)
- Bisher Eymsh
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany.,Institute of Anatomy, Kiel University, 24118 Kiel, Germany
| | - Alice Drobny
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | - Timon R Heyn
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91045 Erlangen, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, 24118 Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany
| | - Julia K Keppler
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany.,Laboratory of Food Process Engineering, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | | | - Philipp Arnold
- Institute of Anatomy, Kiel University, 24118 Kiel, Germany.,MSH Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
| |
Collapse
|
10
|
Schmitt C, Lechanteur A, Cossais F, Bellefroid C, Arnold P, Lucius R, Held-Feindt J, Piel G, Hattermann K. Liposomal Encapsulated Curcumin Effectively Attenuates Neuroinflammatory and Reactive Astrogliosis Reactions in Glia Cells and Organotypic Brain Slices. Int J Nanomedicine 2020; 15:3649-3667. [PMID: 32547020 PMCID: PMC7259452 DOI: 10.2147/ijn.s245300] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction The polyphenolic spice and food coloring ingredient curcumin has beneficial effects in a broad variety of inflammatory diseases. Amongst them, curcumin has been shown to attenuate microglia reaction and prevent from glial scar formation in spinal cord and brain injuries. Methods We developed a protocol for the efficient encapsulation of curcumin as a model for anti-inflammatory drugs yielding long-term stable, non-toxic liposomes with favorable physicochemical properties. Subsequently, we evaluate the effects of liposomal curcumin in experimental models for neuroinflammation and reactive astrogliosis. Results We could show that liposomal curcumin can efficiently reduce the reactivity of human microglia and astrocytes and preserve tissue integrity of murine organotypic cortex slices. Discussion and Perspective In perspective, we want to administer this curcumin formulation in brain implant coatings to prevent neuroinflammation and glial scar formation as foreign body responses of the brain towards implanted materials.
Collapse
Affiliation(s)
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | | | - Coralie Bellefroid
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | - Philipp Arnold
- Institute of Anatomy, University Kiel, Kiel D-24098, Germany
| | - Ralph Lucius
- Institute of Anatomy, University Kiel, Kiel D-24098, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Kiel D-24105, Germany
| | - Geraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | | |
Collapse
|
11
|
Arnold P, Lückstädt W, Li W, Boll I, Lokau J, Garbers C, Lucius R, Rose-John S, Becker-Pauly C. Joint Reconstituted Signaling of the IL-6 Receptor via Extracellular Vesicles. Cells 2020; 9:cells9051307. [PMID: 32456348 PMCID: PMC7291149 DOI: 10.3390/cells9051307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Interleukin-6 (IL-6) signaling is a crucial regulatory event important for many biological functions, such as inflammation and tissue regeneration. Accordingly, several pathological conditions are associated with dysregulated IL-6 activity, making it an attractive therapeutic target. For instance, blockade of IL-6 or its α-receptor (IL-6R) by monoclonal antibodies has been successfully used to treat rheumatoid arthritis. However, based on different signaling modes, IL-6 function varies between pro- and anti-inflammatory activity, which is critical for therapeutic intervention. So far, three modes of IL-6 signaling have been described, the classic anti-inflammatory signaling, as well as pro-inflammatory trans-signaling, and trans-presentation. The IL-6/IL-6R complex requires an additional β-receptor (gp130), which is expressed on almost all cells of the human body, to induce STAT3 (signal transducer and activator of signal transcription 3) phosphorylation and subsequent transcriptional regulation. In contrast, the IL-6R is expressed on a limited number of cells, including hepatocytes and immune cells. However, the proteolytic release of the IL-6R enables trans-signaling on cells expressing gp130 only. Here, we demonstrate a fourth possibility of IL-6 signaling that we termed joint reconstituted signaling (JRS). We show that IL-6R on extracellular vesicles (EVs) can also be transported to and fused with other cells that lack the IL-6R on their surface. Importantly, JRS via EVs induces delayed STAT3 phosphorylation compared to the well-established trans-signaling mode. EVs isolated from human serum were already shown to carry the IL-6R, and thus this new signaling mode should be considered with regard to signal intervention.
Collapse
Affiliation(s)
- Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 8, 24118 Kiel, Germany; (W.L.); (W.L.); (R.L.)
- MSH Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
- Correspondence: (P.A.); (C.B.-P.)
| | - Wiebke Lückstädt
- Anatomical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 8, 24118 Kiel, Germany; (W.L.); (W.L.); (R.L.)
| | - Wenjia Li
- Anatomical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 8, 24118 Kiel, Germany; (W.L.); (W.L.); (R.L.)
| | - Inga Boll
- Biochemical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 9, 24118 Kiel, Germany; (I.B.); (S.R.-J.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Juliane Lokau
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (J.L.); (C.G.)
| | - Christoph Garbers
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; (J.L.); (C.G.)
| | - Ralph Lucius
- Anatomical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 8, 24118 Kiel, Germany; (W.L.); (W.L.); (R.L.)
| | - Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 9, 24118 Kiel, Germany; (I.B.); (S.R.-J.)
| | - Christoph Becker-Pauly
- Biochemical Institute, Christian-Albrechts-University Kiel, Otto-Hahn Platz 9, 24118 Kiel, Germany; (I.B.); (S.R.-J.)
- Correspondence: (P.A.); (C.B.-P.)
| |
Collapse
|
12
|
Kayser JJ, Arnold P, Steffen-Heins A, Schwarz K, Keppler JK. Functional ethanol-induced fibrils: Influence of solvents and temperature on amyloid-like aggregation of beta-lactoglobulin. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Lipinski S, Pfeuffer S, Arnold P, Treitz C, Aden K, Ebsen H, Falk-Paulsen M, Gisch N, Fazio A, Kuiper J, Luzius A, Billmann-Born S, Schreiber S, Nuñez G, Beer HD, Strowig T, Lamkanfi M, Tholey A, Rosenstiel P. Prdx4 limits caspase-1 activation and restricts inflammasome-mediated signaling by extracellular vesicles. EMBO J 2019; 38:e101266. [PMID: 31544965 PMCID: PMC6792017 DOI: 10.15252/embj.2018101266] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammasomes are cytosolic protein complexes, which orchestrate the maturation of active IL‐1β by proteolytic cleavage via caspase‐1. Although many principles of inflammasome activation have been described, mechanisms that limit inflammasome‐dependent immune responses remain poorly defined. Here, we show that the thiol‐specific peroxidase peroxiredoxin‐4 (Prdx4) directly regulates IL‐1β generation by interfering with caspase‐1 activity. We demonstrate that caspase‐1 and Prdx4 form a redox‐sensitive regulatory complex via caspase‐1 cysteine 397 that leads to caspase‐1 sequestration and inactivation. Mice lacking Prdx4 show an increased susceptibility to LPS‐induced septic shock. This effect was phenocopied in mice carrying a conditional deletion of Prdx4 in the myeloid lineage (Prdx4‐ΔLysMCre). Strikingly, we demonstrate that Prdx4 co‐localizes with inflammasome components in extracellular vesicles (EVs) from inflammasome‐activated macrophages. Purified EVs are able to transmit a robust IL‐1β‐dependent inflammatory response in vitro and also in recipient mice in vivo. Loss of Prdx4 boosts the pro‐inflammatory potential of EVs. These findings identify Prdx4 as a critical regulator of inflammasome activity and provide new insights into remote cell‐to‐cell communication function of inflammasomes via macrophage‐derived EVs.
Collapse
Affiliation(s)
- Simone Lipinski
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Steffen Pfeuffer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Treitz
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,1st Department of Internal Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Henriette Ebsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Antonella Fazio
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan Kuiper
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anne Luzius
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Susanne Billmann-Born
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- 1st Department of Internal Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Gabriel Nuñez
- Department of Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
14
|
Tuen M, Bimela JS, Banin AN, Ding S, Harkins GW, Weiss S, Itri V, Durham AR, Porcella SF, Soni S, Mayr L, Meli J, Torimiro JN, Tongo M, Wang X, Kong XP, Nádas A, Kaufmann DE, Brumme ZL, Nanfack AJ, Quinn TC, Zolla-Pazner S, Redd AD, Finzi A, Gorny MK, Nyambi PN, Duerr R. Immune Correlates of Disease Progression in Linked HIV-1 Infection. Front Immunol 2019; 10:1062. [PMID: 31139189 PMCID: PMC6527802 DOI: 10.3389/fimmu.2019.01062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/25/2019] [Indexed: 01/01/2023] Open
Abstract
Genetic and immunologic analyses of epidemiologically-linked HIV transmission enable insights into the impact of immune responses on clinical outcomes. Human vaccine trials and animal studies of HIV-1 infection have suggested immune correlates of protection; however, their role in natural infection in terms of protection from disease progression is mostly unknown. Four HIV-1+ Cameroonian individuals, three of them epidemiologically-linked in a polygamous heterosexual relationship and one incidence-matched case, were studied over 15 years for heterologous and cross-neutralizing antibody responses, antibody binding, IgA/IgG levels, antibody-dependent cellular cytotoxicity (ADCC) against cells expressing wild-type or CD4-bound Env, viral evolution, Env epitopes, and host factors including HLA-I alleles. Despite viral infection with related strains, the members of the transmission cluster experienced contrasting clinical outcomes including cases of rapid progression and long-term non-progression in the absence of strongly protective HLA-I or CCR5Δ32 alleles. Slower progression and higher CD4/CD8 ratios were associated with enhanced IgG antibody binding to native Env and stronger V1V2 antibody binding responses in the presence of viruses with residue K169 in V2. ADCC against cells expressing Env in the CD4-bound conformation in combination with low Env-specific IgA/IgG ratios correlated with better clinical outcome. This data set highlights for the first time that V1V2-directed antibody responses and ADCC against cells expressing open, CD4-exposed Env, in the presence of low plasma IgA/IgG ratios, can correlate with clinical outcome in natural infection. These parameters are comparable to the major correlates of protection, identified post-hoc in the RV144 vaccine trial; thus, they may also modulate the rate of clinical progression once infected. The findings illustrate the potential of immune correlate analysis in natural infection to guide vaccine development.
Collapse
Affiliation(s)
- Michael Tuen
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Jude S Bimela
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon
| | - Andrew N Banin
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Gordon W Harkins
- South African MRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Svenja Weiss
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vincenza Itri
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Allison R Durham
- Division of Intramural Research, National Institutes of Health-National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Stephen F Porcella
- Genomics Unit, Research Technologies Branch, Division of Intramural Research, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States
| | - Sonal Soni
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Luzia Mayr
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Josephine Meli
- Medical Diagnostic Center, Yaoundé, Cameroon.,Yaoundé General Hospital, Yaoundé, Cameroon
| | - Judith N Torimiro
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon.,"Chantal Biya" International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Marcel Tongo
- Center of Research for Emerging and Re-Emerging Diseases, Institute of Medical Research and Study of Medicinal Plants, Yaoundé, Cameroon.,School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, KwaZulu-Natal Research Innovation and Sequencing Platform, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xiaohong Wang
- Veterans Affairs New York Harbor Healthcare Systems, New York, NY, United States
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Arthur Nádas
- New York University School of Medicine, Institute of Environmental Medicine, New York, NY, United States
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montréal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.,British Columbia Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, BC, Canada
| | - Aubin J Nanfack
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Medical Diagnostic Center, Yaoundé, Cameroon.,"Chantal Biya" International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Thomas C Quinn
- Division of Intramural Research, National Institutes of Health-National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States.,Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Susan Zolla-Pazner
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew D Redd
- Division of Intramural Research, National Institutes of Health-National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States.,Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Phillipe N Nyambi
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Veterans Affairs New York Harbor Healthcare Systems, New York, NY, United States
| | - Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
15
|
Dudvarski Stanković N, Bicker F, Keller S, Jones DT, Harter PN, Kienzle A, Gillmann C, Arnold P, Golebiewska A, Keunen O, Giese A, von Deimling A, Bäuerle T, Niclou SP, Mittelbronn M, Ye W, Pfister SM, Schmidt MH. EGFL7 enhances surface expression of integrin α 5β 1 to promote angiogenesis in malignant brain tumors. EMBO Mol Med 2019; 10:emmm.201708420. [PMID: 30065025 PMCID: PMC6127886 DOI: 10.15252/emmm.201708420] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a typically lethal type of brain tumor with a median survival of 15 months postdiagnosis. This negative prognosis prompted the exploration of alternative treatment options. In particular, the reliance of GBM on angiogenesis triggered the development of anti-VEGF (vascular endothelial growth factor) blocking antibodies such as bevacizumab. Although its application in human GBM only increased progression-free periods but did not improve overall survival, physicians and researchers still utilize this treatment option due to the lack of adequate alternatives. In an attempt to improve the efficacy of anti-VEGF treatment, we explored the role of the egfl7 gene in malignant glioma. We found that the encoded extracellular matrix protein epidermal growth factor-like protein 7 (EGFL7) was secreted by glioma blood vessels but not glioma cells themselves, while no major role could be assigned to the parasitic miRNAs miR-126/126*. EGFL7 expression promoted glioma growth in experimental glioma models in vivo and stimulated tumor vascularization. Mechanistically, this was mediated by an upregulation of integrin α5β1 on the cellular surface of endothelial cells, which enhanced fibronectin-induced angiogenic sprouting. Glioma blood vessels that formed in vivo were more mature as determined by pericyte and smooth muscle cell coverage. Furthermore, these vessels were less leaky as measured by magnetic resonance imaging of extravasating contrast agent. EGFL7-inhibition using a specific blocking antibody reduced the vascularization of experimental gliomas and increased the life span of treated animals, in particular in combination with anti-VEGF and the chemotherapeutic agent temozolomide. Data allow for the conclusion that this combinatorial regimen may serve as a novel treatment option for GBM.
Collapse
Affiliation(s)
- Nevenka Dudvarski Stanković
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Bicker
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Keller
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Tw Jones
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Germany.,Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurological Institute (Edinger Institute), Goethe University, Frankfurt am Main, Germany
| | - Arne Kienzle
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clarissa Gillmann
- Institute of Radiology, University Medical Center Erlangen, Erlangen, Germany
| | | | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg
| | - Olivier Keunen
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg
| | - Alf Giese
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas von Deimling
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Germany.,Department of Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Medical Center Erlangen, Erlangen, Germany
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.,KG Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway
| | - Michel Mittelbronn
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), Luxembourg, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Laboratoire National de Santé (LNS), Dudelange, Luxembourg.,Luxembourg Centre of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Weilan Ye
- Vascular Biology Program, Molecular Oncology Division, Genentech, San Francisco, CA, USA
| | - Stefan M Pfister
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, Germany.,Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mirko H Schmidt
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University, Mainz, Germany .,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
16
|
Hajek P, Bader A, Helmstetter F, Henke B, Arnold P, Beitz E. Cell-Free and Yeast-Based Production of the Malarial Lactate Transporter, PfFNT, Delivers Comparable Yield and Protein Quality. Front Pharmacol 2019; 10:375. [PMID: 31024323 PMCID: PMC6467934 DOI: 10.3389/fphar.2019.00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/26/2019] [Indexed: 11/16/2022] Open
Abstract
Cell-free protein production is an attractive alternative to cell-based expression. Rapid results, small-volume reactions, irrelevance of protein toxicity, flexibility, and openness of the system are strong points in favor of the cell-free system. However, the in vitro situation lacks the cellular quality control machinery comprising e.g., the translocon for inserting membrane proteins into lipid bilayers, and chaperon-assisted protein degradation pathways. Here, we compare yield and protein quality of the lactate transporter, PfFNT, from malaria parasites when produced in Pichia pastoris yeast, or in an Escherichia coli S30-extract-based cell-free system. Besides solubilization and correct folding, PfFNT requires oligomerization into homopentamers. We assessed PfFNT folding/oligomerization and function by transmission electron microscopy imaging, transport assays, and binding of small-molecule inhibitors. For the latter, we used chromatography of the PfFNT-inhibitor complex with dual-wavelength detection, and biolayer interferometry. Our data show, that PfFNT possesses an intrinsic capability for assuming the correct fold, oligomerization pattern, and functionality during in vitro translation. This competence depended on the detergent present in the cell-free reaction. The choice of detergent further affected purification and inhibitor binding. In conclusion, in the presence of a suitable detergent, cell-free systems are very well capable of producing high quality membrane proteins.
Collapse
Affiliation(s)
- Philipp Hajek
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Annika Bader
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Folknand Helmstetter
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Björn Henke
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
17
|
Helmstetter F, Arnold P, Höger B, Petersen LM, Beitz E. Formate-nitrite transporters carrying nonprotonatable amide amino acids instead of a central histidine maintain pH-dependent transport. J Biol Chem 2018; 294:623-631. [PMID: 30455351 DOI: 10.1074/jbc.ra118.006340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/09/2018] [Indexed: 01/25/2023] Open
Abstract
Microbial formate-nitrite transporter-type proteins (FNT) exhibit dual transport functionality. At neutral pH, electrogenic anion currents are detectable, whereas upon acidification transport of the neutral, protonated monoacid predominates. Physiologically, FNT-mediated proton co-transport is vital when monocarboxylic acid products of the energy metabolism, such as l-lactate, are released from the cell. Accordingly, Plasmodium falciparum malaria parasites can be killed by small-molecule inhibitors of PfFNT. Two opposing hypotheses on the site of substrate protonation are plausible. The proton relay mechanism postulates proton transfer from a highly conserved histidine centrally positioned in the transport path. The dielectric slide mechanism assumes decreasing acidity of substrates entering the lipophilic vestibules and protonation via the bulk water. Here, we defined the transport mechanism of the FNT from the amoebiasis parasite Entamoeba histolytica, EhFNT, and also show that BtFdhC from Bacillus thuringiensis is a functional formate transporter. Both FNTs carry a nonprotonatable amide amino acid, asparagine or glutamine, respectively, at the central histidine position. Despite having a nonprotonatable residue, EhFNT displayed the same substrate selectivity for larger monocarboxylates including l-lactate, a low substrate affinity as is typical for FNTs, and, strikingly, proton motive force-dependent transport as observed for PfFNT harboring a central histidine. These results argue against a proton relay mechanism, indicating that substrate protonation must occur outside of the central histidine region, most likely in the vestibules. Furthermore, EhFNT is the sole annotated FNT in the Entamoeba genome suggesting that it could be a putative new drug target with similar utility as that of the malarial PfFNT.
Collapse
Affiliation(s)
| | - Philipp Arnold
- the Anatomical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Bastian Höger
- From the Department of Pharmaceutical and Medicinal Chemistry, and
| | | | - Eric Beitz
- From the Department of Pharmaceutical and Medicinal Chemistry, and
| |
Collapse
|