1
|
Duggan NN, Dragic T, Chanda SK, Pache L. Breaking the Silence: Regulation of HIV Transcription and Latency on the Road to a Cure. Viruses 2023; 15:2435. [PMID: 38140676 PMCID: PMC10747579 DOI: 10.3390/v15122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Antiretroviral therapy (ART) has brought the HIV/AIDS epidemic under control, but a curative strategy for viral eradication is still needed. The cessation of ART results in rapid viral rebound from latently infected CD4+ T cells, showing that control of viral replication alone does not fully restore immune function, nor does it eradicate viral reservoirs. With a better understanding of factors and mechanisms that promote viral latency, current approaches are primarily focused on the permanent silencing of latently infected cells ("block and lock") or reactivating HIV-1 gene expression in latently infected cells, in combination with immune restoration strategies to eliminate HIV infected cells from the host ("shock and kill"). In this review, we provide a summary of the current, most promising approaches for HIV-1 cure strategies, including an analysis of both latency-promoting agents (LPA) and latency-reversing agents (LRA) that have shown promise in vitro, ex vivo, and in human clinical trials to reduce the HIV-1 reservoir.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tatjana Dragic
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Sumit K. Chanda
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Lars Pache
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Yandrapally S, Sarkar S, Banerjee S. HIV-1 Tat commandeers nuclear export of Rev-viral RNA complex by controlling hnRNPA2-mediated splicing. J Virol 2023; 97:e0104423. [PMID: 37905837 PMCID: PMC10688328 DOI: 10.1128/jvi.01044-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE HIV-infected host cells impose varied degrees of regulation on viral replication, from very high to abortive. Proliferation of HIV in astrocytes is limited when compared to immune cells, such as CD4+ T lymphocytes. Understanding such differential regulation is one of the key questions in the field as these cells permit HIV persistence and rebound viremia, challenging HIV treatment and clinical cure. This study focuses on understanding the molecular mechanism behind such cell-specific disparities. We show that one of the key mechanisms is the regulation of heterogenous nuclear ribonucleoprotein A2, a host factor involved in alternative splicing and RNA processing, by HIV-1 Tat in CD4+ T lymphocytes, not observed in astrocytes. This regulation causes an increase in the levels of unspliced/partially spliced viral RNA and nuclear export of Rev-RNA complexes which results in high viral propagation in CD4+ T lymphocytes. The study reveals a new mechanism imposed by HIV on host cells that determines the fate of infection.
Collapse
Affiliation(s)
- Sriram Yandrapally
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Satarupa Sarkar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Pharmacological Inhibition of IKK to Tackle Latency and Hyperinflammation in Chronic HIV-1 Infection. Int J Mol Sci 2022; 23:ijms232315000. [PMID: 36499329 PMCID: PMC9741028 DOI: 10.3390/ijms232315000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
HIV latent infection may be associated with disrupted viral RNA sensing, interferon (IFN) signaling, and/or IFN stimulating genes (ISG) activation. Here, we evaluated the use of compounds selectively targeting at the inhibitor of nuclear factor-κB (IκB) kinase (IKK) complex subunits and related kinases (TBK1) as a novel pathway to reverse HIV-1 latency in latently infected non-clonal lymphoid and myeloid cell in vitro models. IKK inhibitors (IKKis) triggered up to a 1.8-fold increase in HIV reactivation in both, myeloid and lymphoid cell models. The best-in-class IKKis, targeting TBK-1 (MRT67307) and IKKβ (TCPA-1) respectively, were also able to significantly induce viral reactivation in CD4+ T cells from people living with HIV (PLWH) ex vivo. More importantly, although none of the compounds tested showed antiviral activity, the combination of the distinct IKKis with ART did not affect the latency reactivation nor blockade of HIV infection by ART. Finally, as expected, IKKis did not upregulate cell activation markers in primary lymphocytes and innate immune signaling was blocked, resulting in downregulation of inflammatory cytokines. Overall, our results support a dual role of IKKis as immune modulators being able to tackle the HIV latent reservoir in lymphoid and myeloid cellular models and putatively control the hyperinflammatory responses in chronic HIV-1 infection.
Collapse
|
4
|
McAllister JJ, Dahiya S, Berman R, Collins M, Nonnemacher MR, Burdo TH, Wigdahl B. Altered recruitment of Sp isoforms to HIV-1 long terminal repeat between differentiated monoblastic cell lines and primary monocyte-derived macrophages. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.971293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) transcription in cells of the monocyte-macrophage lineage is regulated by interactions between the HIV-1 long terminal repeat (LTR) and a variety of host cell and viral proteins. Binding of the Sp family of transcription factors (TFs) to the G/C box array of the LTR governs both basal as well as activated LTR-directed transcriptional activity. The effect of monocytic differentiation on Sp factor binding and transactivation was examined with respect to the HIV-1 LTR. The binding of Sp1, full-length Sp3 and truncated Sp3 to a high affinity HIV-1 Sp element was specifically investigated and results showed that Sp1 binding increased relative to the binding of the sum of full-length and truncated Sp3 binding following chemically-induced monocytic differentiation in monoblastic (U-937, THP-1) and myelomonocytic (HL-60) cells. In addition, Sp binding ratios from PMA-induced cell lines were shown to more closely approximate those derived from primary monocyte-derived macrophages (MDMs) than did ratios derived from uninduced cell lines. The altered Sp binding phenotype associated with changes in the transcriptional activation mediated by the HIV-1 G/C box array. Additionally, analysis of post-translational modifications on Sp1 and Sp3 revealed a loss of phosphorylation on serine and threonine residues with chemically-induced differentiation indicating that the activity of Sp factors is additionally regulated at the level of post-translational modifications (PTMs).
Collapse
|
5
|
Zipper interacting protein kinase (ZIPK) is a negative regulator of HIV-1 replication that is restricted by viral nef protein through proteasomal degradation. Biochem Biophys Res Commun 2022; 625:122-127. [DOI: 10.1016/j.bbrc.2022.07.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/30/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022]
|
6
|
de Jesus MSM, Macabeo APG, Ramos JDA, de Leon VNO, Asamitsu K, Okamoto T. Voacanga globosa Spirobisindole Alkaloids Exert Antiviral Activity in HIV Latently Infected Cell Lines by Targeting the NF-kB Cascade: In Vitro and In Silico Investigations. Molecules 2022; 27:1078. [PMID: 35164343 PMCID: PMC8840767 DOI: 10.3390/molecules27031078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Since the efficiency in the transcription of the HIV genome contributes to the success of viral replication and infectivity, we investigated the downregulating effects of the spirobisindole alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) from the endemic Philippine medicinal plant, Voacanga globosa, during HIV gene transcription. Alkaloids 1-3 were explored for their inhibitory activity on TNF-α-induced viral replication in two latently HIV-infected cell lines, OM10.1 and J-Lat. The induction of HIV replication from OM10.1 and J-Lat cells elicited by TNF-α was blocked by globospiramine (1) within noncytotoxic concentrations. Furthermore, globospiramine (1) was found to target the NF-ĸB activation cascade in a dose-dependent manner when the transcriptional step at which inhibitory activity is exerted was examined in TNF-α-induced 293 human cells using transient reporter (luciferase) gene expression systems (HIV LTR-luc, ĸB-luc, and mutant ĸB-luc). Interrogation through molecular docking against the NF-ĸB p50/p65 heterodimer and target sites of the subunits comprising the IKK complex revealed high binding affinities of globospiramine (1) against the S281 pocket of the p65 subunit (BE = -9.2 kcal/mol) and the IKKα activation loop (BE = -9.1 kcal/mol). These findings suggest globospiramine (1) as a molecular inspiration to discover new alkaloid-based anti-HIV derivatives.
Collapse
Affiliation(s)
- Ma. Sheila M. de Jesus
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
| | - John Donnie A. Ramos
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Molecular Diagnostics and Therapeutics Laboratory, Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines
| | - Von Novi O. de Leon
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
| | - Kaori Asamitsu
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 4678601, Japan; (K.A.); (T.O.)
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 4678601, Japan; (K.A.); (T.O.)
| |
Collapse
|
7
|
Nosik M, Ryzhov K, Rymanova I, Sobkin A, Kravtchenko A, Kuimova U, Pokrovsky V, Zverev V, Svitich O. Dynamics of Plasmatic Levels of Pro- and Anti-Inflammatory Cytokines in HIV-Infected Individuals with M. tuberculosis Co-Infection. Microorganisms 2021; 9:microorganisms9112291. [PMID: 34835417 PMCID: PMC8624412 DOI: 10.3390/microorganisms9112291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/24/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis (TB) and HIV have profound effects on the immune system, which can lead to the activation of viral replication and negatively regulate the activation of T cells. Dysregulation in the production of cytokines necessary to fight HIV and M. tuberculosis may ultimately affect the results of the treatment and be important in the pathogenesis of HIV infection and TB. This work presents the results of a study of the expression of pro- and anti-inflammatory cytokines (IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10, IL-1RA) in drug-naïve patients with dual infection of HIV/TB at the late stages of HIV-infection, with newly diagnosed HIV and TB, and previously untreated HIV in the process of receiving antiretroviral (ART) and TB treatment vs. a cohort of patients with HIV monoinfection and TB monoinfection. The study revealed that during a double HIV/TB infection, both Th1 and Th2 immune responses are suppressed, and a prolonged dysregulation of the immune response and an increased severity of the disease in pulmonary/extrapulmonary tuberculosis is observed in HIV/TB co-infection. Moreover, it was revealed that a double HIV/TB infection is characterized by delayed and incomplete recovery of immune activity. High levels of IL-6 were detected in patients with HIV/TB co-infection before initiation of dual therapy (2.1-fold increase vs. HIV), which persisted even after 6 months of treatment (8.96-fold increase vs. HIV), unlike other cytokines. The persistent enhanced expression of IL-6 in patients with dual HIV/TB co-infection allows the consideration of it as a potential marker of early detection of M. tuberculosis infection in HIV-infected individuals. The results of multivariate regression analysis showed a statistical trend towards an increase in the incidence of IRIS in patients with high IL-1Ra levels (in the range of 1550–2500 pg/mL): OR = 4.3 (95%CI 3.7–14.12, p = 0.53), which also allows IL-1Ra to be considered as a potential predictive biomarker of the development of TB-IRIS and treatment outcomes.
Collapse
Affiliation(s)
- Marina Nosik
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
- Correspondence:
| | - Konstantin Ryzhov
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Irina Rymanova
- G.A. Zaharyan Moscow Tuberculosis Clinic, Department for Treatment of TB Patients with HIV Infection, 125466 Moscow, Russia; (I.R.); (A.S.)
| | - Alexandr Sobkin
- G.A. Zaharyan Moscow Tuberculosis Clinic, Department for Treatment of TB Patients with HIV Infection, 125466 Moscow, Russia; (I.R.); (A.S.)
| | - Alexey Kravtchenko
- Central Research Institute of Epidemiology, 111123 Moscow, Russia; (A.K.); (U.K.); (V.P.)
| | - Ulyana Kuimova
- Central Research Institute of Epidemiology, 111123 Moscow, Russia; (A.K.); (U.K.); (V.P.)
| | - Vadim Pokrovsky
- Central Research Institute of Epidemiology, 111123 Moscow, Russia; (A.K.); (U.K.); (V.P.)
| | - Vitaly Zverev
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| | - Oxana Svitich
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia; (K.R.); (V.Z.); (O.S.)
| |
Collapse
|
8
|
Khan N, Geiger JD. Role of Viral Protein U (Vpu) in HIV-1 Infection and Pathogenesis. Viruses 2021; 13:1466. [PMID: 34452331 PMCID: PMC8402909 DOI: 10.3390/v13081466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 and HIV-2 originated from cross-species transmission of simian immunodeficiency viruses (SIVs). Most of these transfers resulted in limited spread of these viruses to humans. However, one transmission event involving SIVcpz from chimpanzees gave rise to group M HIV-1, with M being the principal strain of HIV-1 responsible for the AIDS pandemic. Vpu is an HIV-1 accessory protein generated from Env/Vpu encoded bicistronic mRNA and localized in cytosolic and membrane regions of cells capable of being infected by HIV-1 and that regulate HIV-1 infection and transmission by downregulating BST-2, CD4 proteins levels, and immune evasion. This review will focus of critical aspects of Vpu including its zoonosis, the adaptive hurdles to cross-species transmission, and future perspectives and broad implications of Vpu in HIV-1 infection and dissemination.
Collapse
Affiliation(s)
| | - Jonathan D. Geiger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 504 Hamline Street, Room 110, Grand Forks, ND 58203, USA;
| |
Collapse
|
9
|
Mehta G, Sharma A, Arora SK. Short Communication: Acquisition of Additional Nuclear Factor Kappa B Binding Sites in Long Terminal Repeat of Genetically Evolving HIV-1 Subtype C Viral Species in Host with Comorbidities. AIDS Res Hum Retroviruses 2021; 37:380-384. [PMID: 33307941 DOI: 10.1089/aid.2020.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 causes millions of deaths around the world. Higher disease progression and mortality are seen in HIV positive individuals with comorbidities. Two of the most pertinent conditions are coinfection with Mycobacterium tuberculosis and Intravenous Drug abuse. The mechanisms involved, however, still remain unresolved. To elucidate the mechanisms involved, we evaluated the genetic alterations in terms of additional nuclear factor kappa B (NF-κB) sites in the long terminal repeat (LTR) of HIV-1 subtype-C isolates from infected human individuals from North India, supposedly acquired by the emerging viral quasi-species in the infected host in presence of these two comorbid conditions. Interestingly the results indicate higher number of NF-κB sites in the viral isolates from HIV-tuberculosis coinfected (n = 26, 16 isolates with 3 sites and 10 isolates with 2 sites) and intravenous drug users (n = 20, 13 isolates with 3 sites and 7 isolates with 2 sites) compared to the mono-infected hosts (n = 30, 10 isolates with 3 sites, 18 isolates with 2 sites, 2 isolates with 1 site). The biological relevance of these alterations in the NF-κB sites within the HIV-1 LTR with respect to viral replicative capacity and HIV disease progression needs to be studied further.
Collapse
Affiliation(s)
- Gurleen Mehta
- Department of Immunopathology and Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil K. Arora
- Department of Immunopathology and Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
10
|
Intra-Clade C signature polymorphisms in HIV-1 LTR region: The Indian and African lookout. Virus Res 2021; 297:198370. [PMID: 33684417 DOI: 10.1016/j.virusres.2021.198370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 01/28/2023]
Abstract
Polymorphisms occurring in LTR (Long Terminal Repeat) region can profoundly impact pathogenicity, transmission and biology of Human Immunodeficiency Virus Type 1 (HIV-1). We investigated intra-clade polymorphisms, associated with HIV-1 clade-C infections that occur in India and Africa. Plasma samples were obtained from 24 HIV-infected ART-experienced individuals. Next Generation Sequencing was performed on Illumina Hi Seq X system. Sequence analysis was done using MEGA v7. Transcription factor binding sites (TFBS) were investigated to unveil signature sequences. Signature nucleotides in Indian sequences were observed at 19 positions, of which 7 nucleotide signatures occurred in transcription binding sites (TFBS), namely NF-AT-II, NF-AT-III, USF, TCF- 1alpha, Sp1-I and TAR. Intra-clade C variations in HIV-1 LTR that inscribe signature nucleotides in Indian sequences lead to formation monophyletic cluster of Indian sequences. Moreover, occurrence of intra-clade signature nucleotides was observed at the key positions in the transcription factor binding sites in Indian and African clade-C sequences.
Collapse
|
11
|
Veenhuis RT, Abreu CM, Shirk EN, Gama L, Clements JE. HIV replication and latency in monocytes and macrophages. Semin Immunol 2021; 51:101472. [PMID: 33648815 PMCID: PMC10171083 DOI: 10.1016/j.smim.2021.101472] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022]
Abstract
The relevance of monocyte and macrophage reservoirs in virally suppressed people with HIV (vsPWH) has previously been debatable. Macrophages were assumed to have a moderate life span and lack self-renewing potential. However, recent studies have challenged this dogma and now suggest an important role of these cell as long-lived HIV reservoirs. Lentiviruses have a long-documented association with macrophages and abundant evidence exists that macrophages are important target cells for HIV in vivo. A critical understanding of HIV infection, replication, and latency in macrophages is needed in order to determine the appropriate method of measuring and eliminating this cellular reservoir. This review provides a brief discussion of the biology and acute and chronic infection of monocytes and macrophages, with a more substantial focus on replication, latency and measurement of the reservoir in cells of myeloid origin.
Collapse
Affiliation(s)
- Rebecca T Veenhuis
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Celina M Abreu
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erin N Shirk
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lucio Gama
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| | - Janice E Clements
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
12
|
Balance between Retroviral Latency and Transcription: Based on HIV Model. Pathogens 2020; 10:pathogens10010016. [PMID: 33383617 PMCID: PMC7824405 DOI: 10.3390/pathogens10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
The representative of the Lentivirus genus is the human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS). To date, there is no cure for AIDS because of the existence of the HIV-1 reservoir. HIV-1 infection can persist for decades despite effective antiretroviral therapy (ART), due to the persistence of infectious latent viruses in long-lived resting memory CD4+ T cells, macrophages, monocytes, microglial cells, and other cell types. However, the biology of HIV-1 latency remains incompletely understood. Retroviral long terminal repeat region (LTR) plays an indispensable role in controlling viral gene expression. Regulation of the transcription initiation plays a crucial role in establishing and maintaining a retrovirus latency. Whether and how retroviruses establish latency and reactivate remains unclear. In this article, we describe what is known about the regulation of LTR-driven transcription in HIV-1, that is, the cis-elements present in the LTR, the role of LTR transcription factor binding sites in LTR-driven transcription, the role of HIV-1-encoded transactivator protein, hormonal effects on virus transcription, impact of LTR variability on transcription, and epigenetic control of retrovirus LTR. Finally, we focus on a novel clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/dCas9)-based strategy for HIV-1 reservoir purging.
Collapse
|
13
|
Chung CH, Allen AG, Sullivan NT, Atkins A, Nonnemacher MR, Wigdahl B, Dampier W. Computational Analysis Concerning the Impact of DNA Accessibility on CRISPR-Cas9 Cleavage Efficiency. Mol Ther 2020; 28:19-28. [PMID: 31672284 PMCID: PMC6953893 DOI: 10.1016/j.ymthe.2019.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Defining the variables that impact the specificity of CRISPR/Cas9 has been a major research focus. Whereas sequence complementarity between guide RNA and target DNA substantially dictates cleavage efficiency, DNA accessibility of the targeted loci has also been hypothesized to be an important factor. In this study, functional data from two genome-wide assays, genome-wide, unbiased identification of DSBs enabled by sequencing (GUIDE-seq) and circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq), have been computationally analyzed in conjunction with DNA accessibility determined via DNase I-hypersensitive sequencing from the Encyclopedia of DNA Elements (ENCODE) Database and transcriptome from the Sequence Read Archive to determine whether cellular factors influence CRISPR-induced cleavage efficiency. CIRCLE-seq and GUIDE-seq datasets were selected to represent the absence and presence of cellular factors, respectively. Data analysis revealed that correlations between sequence similarity and CRISPR-induced cleavage frequency were altered by the presence of cellular factors that modulated the level of DNA accessibility. The above-mentioned correlation was abolished when cleavage sites were located in less accessible regions. Furthermore, CRISPR-mediated edits were permissive even at regions that were insufficient for most endogenous genes to be expressed. These results provide a strong basis to dissect the contribution of local chromatin modulation markers on CRISPR-induced cleavage efficiency.
Collapse
Affiliation(s)
- Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Alexander G Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Neil T Sullivan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Andrew Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Epigenetics, N-myrystoyltransferase-1 and casein kinase-2-alpha modulates the increased replication of HIV-1 CRF02_AG, compared to subtype-B viruses. Sci Rep 2019; 9:10689. [PMID: 31337802 PMCID: PMC6650493 DOI: 10.1038/s41598-019-47069-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/05/2019] [Indexed: 02/04/2023] Open
Abstract
HIV subtypes distribution varies by geographic regions; this is likely associated with differences in viral fitness but the predictors and underlying mechanisms are unknown. Using in-vitro, in-vivo, and ex-vivo approaches, we found significantly higher transactivation and replication of HIV-1-CRF02_AG (prevalent throughout West-Central Africa), compared to subtype-B. While CRF02_AG-infected animals showed higher viremia, subtype-B-infected animals showed significantly more weight loss, lower CD4+ T-cells and lower CD4/CD8 ratios, suggesting that factors other than viremia contribute to immunosuppression and wasting syndrome in HIV/AIDS. Compared to HIV-1-subtype-B and its Tat proteins(Tat.B), HIV-1-CRF02_AG and Tat.AG significantly increased histone acetyl-transferase activity and promoter histones H3 and H4 acetylation. Silencing N-myrystoyltransferase(NMT)-1 and casein-kinase-(CK)-II-alpha prevented Tat.AG- and HIV-1-CRF02_AG-mediated viral transactivation and replication, but not Tat.B- or HIV-1-subtype-B-mediated effects. Tat.AG and HIV-1-CRF02_AG induced the expression of NMT-1 and CKII-alpha in human monocytes and macrophages, but Tat.B and HIV-1-subtype-B had no effect. These data demonstrate that NMT1, CKII-alpha, histone acetylation and histone acetyl-transferase modulate the increased replication of HIV-1-CRF02_AG. These novel findings demonstrate that HIV genotype influence viral replication and provide insights into the molecular mechanisms of differential HIV-1 replication. These studies underline the importance of considering the influence of viral genotypes in HIV/AIDS epidemiology, replication, and eradication strategies.
Collapse
|
15
|
Warren CJ, Meyerson NR, Dirasantha O, Feldman ER, Wilkerson GK, Sawyer SL. Selective use of primate CD4 receptors by HIV-1. PLoS Biol 2019; 17:e3000304. [PMID: 31181085 PMCID: PMC6586362 DOI: 10.1371/journal.pbio.3000304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/20/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Individuals chronically infected with HIV-1 harbor complex viral populations within their bloodstreams. Recently, it has come to light that when these people infect others, the new infection is typically established by only one or a small number of virions from within this complex viral swarm. An important goal is to characterize the biological properties of HIV-1 virions that seed and exist early in new human infections because these are potentially the only viruses against which a prophylactic HIV-1 vaccine would need to elicit protection. This includes understanding how the Envelope (Env) protein of these virions interacts with the T-cell receptor CD4, which supports attachment and entry of HIV-1 into target cells. We examined early HIV-1 isolates for their ability to infect cells via the CD4 receptor of 15 different primate species. Primates were the original source of HIV-1 and now serve as valuable animal models for studying HIV-1. We find that most primary isolates of HIV-1 from the blood, including early isolates, are highly selective and enter cells through some primate CD4 receptor orthologs but not others. This phenotype is remarkably consistent, regardless of route of transmission, viral subtype, or time of isolation post infection. We show that the weak CD4 binding affinity of blood-derived HIV-1 isolates is what makes them sensitive to the small sequence differences in CD4 from one primate species to the next. To substantiate this, we engineered an early HIV-1 Env to have high, medium, or low binding affinity to CD4, and we show that it loses the ability to enter cells via the CD4 receptor of many primate species as the binding affinity gets weaker. Based on the phenotype of selective use of primate CD4, we find that weak CD4 binding appears to be a nearly universal property of HIV-1 circulating in the bloodstream. Therefore, weak binding to CD4 must be a selected and important property in the biology of HIV-1 in the body. We identify six primate species that encode CD4 receptors that fully support the entry of early HIV-1 isolates despite their low binding affinity for CD4. These findings will help inform long-standing efforts to model HIV-1 transmission and early disease in primates. The current animal model for HIV, the macaque, encodes a CD4 receptor that is non-permissive for HIV entry. This paper reveals that six primate species encode CD4 receptors compatible with HIV infection, potentially making them powerful tools for the study of HIV biology. Furthermore, weak CD4 binding is a nearly constant, and apparently selected, property of HIV circulating in the human bloodstream.
Collapse
Affiliation(s)
- Cody J. Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Nicholas R. Meyerson
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Obaiah Dirasantha
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Emily R. Feldman
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Gregory K. Wilkerson
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
16
|
Hai-Lan C, Hong-Lian T, Jian Y, Manling S, Heyu F, Na K, Wenyue H, Si-Yu C, Ying-Yi W, Ting-Jun H. Inhibitory effect of polysaccharide of Sargassum weizhouense on PCV2 induced inflammation in mice by suppressing histone acetylation. Biomed Pharmacother 2019; 112:108741. [PMID: 30970528 DOI: 10.1016/j.biopha.2019.108741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Seaweeds are excellent source of bioactive compounds and seaweed-derived polysaccharides have demonstrated an array of biological effects. Here, we investigated the effect of polysaccharide of Sargassum weizhouense (PSW) on the inflammatory response in porcine circovirus type 2 (PCV2) infected mice and the underlying mechanism was studied according to the histone acetylation. After PCV2 infection, the levels of TNF-α, IL-1β, IL-6, IL-8, IL-10, MCP-1, COX-1, COX-2 and HAT in both serum and spleen were significantly increased (P <0.05). The mRNA expression of TNF-α, IL-6, IL-10 and NF-κB p65 were elevated in PCV2 infected mice (P <0.05). The HDAC content in both serum and spleen as well the mRNA expression of HDAC1 were greatly decreased (P <0.05). PSW treatment dramatically inhibited the secretions of inflammatory cytokines and HATs, reduced mRNA expression of TNF-α, IL-6, IL-10 and NF-κB p65, but promoted HDAC secretion and mRNA expression of HDAC1 in PCV2-infected mice. The acetylation of both H3 and H4 was significantly up-regulated in PCV2-infected mice, and strongly inhibited by PSW treatment (P <0.01). These results suggested that PCV2 mediate the equilibrium between HATs and HDACs, alternate the histone acetylation and thus DNA packaging, and then activate the transcription of inflammatory cytokines. PSW could inhibit the histone acetylation and the production of inflammatory cytokines, showing excellent potentials in improving the resistance of host against PCV2 infection.
Collapse
Affiliation(s)
- Chen Hai-Lan
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Tan Hong-Lian
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China; Guangxi Academy of Fishery Science, Nanning, Guangxi, 530021, China
| | - Yang Jian
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Song Manling
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Feng Heyu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Kuang Na
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - Hu Wenyue
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chen Si-Yu
- Laboratory of Land Ecology, Field Science Center, Graduate School of Agricultural Science, Tohoku University, Miyagi 9896711, Japan
| | - Wei Ying-Yi
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Hu Ting-Jun
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| |
Collapse
|
17
|
Spector C, Mele AR, Wigdahl B, Nonnemacher MR. Genetic variation and function of the HIV-1 Tat protein. Med Microbiol Immunol 2019; 208:131-169. [PMID: 30834965 DOI: 10.1007/s00430-019-00583-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes a transactivator of transcription (Tat) protein, which has several functions that promote viral replication, pathogenesis, and disease. Amino acid variation within Tat has been observed to alter the functional properties of Tat and, depending on the HIV-1 subtype, may produce Tat phenotypes differing from viruses' representative of each subtype and commonly used in in vivo and in vitro experimentation. The molecular properties of Tat allow for distinctive functional activities to be determined such as the subcellular localization and other intracellular and extracellular functional aspects of this important viral protein influenced by variation within the Tat sequence. Once Tat has been transported into the nucleus and becomes engaged in transactivation of the long terminal repeat (LTR), various Tat variants may differ in their capacity to activate viral transcription. Post-translational modification patterns based on these amino acid variations may alter interactions between Tat and host factors, which may positively or negatively affect this process. In addition, the ability of HIV-1 to utilize or not utilize the transactivation response (TAR) element within the LTR, based on genetic variation and cellular phenotype, adds a layer of complexity to the processes that govern Tat-mediated proviral DNA-driven transcription and replication. In contrast, cytoplasmic or extracellular localization of Tat may cause pathogenic effects in the form of altered cell activation, apoptosis, or neurotoxicity. Tat variants have been shown to differentially induce these processes, which may have implications for long-term HIV-1-infected patient care in the antiretroviral therapy era. Future studies concerning genetic variation of Tat with respect to function should focus on variants derived from HIV-1-infected individuals to efficiently guide Tat-targeted therapies and elucidate mechanisms of pathogenesis within the global patient population.
Collapse
Affiliation(s)
- Cassandra Spector
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Gerlach SL, Chandra PK, Roy U, Gunasekera S, Göransson U, Wimley WC, Braun SE, Mondal D. The Membrane-Active Phytopeptide Cycloviolacin O2 Simultaneously Targets HIV-1-infected Cells and Infectious Viral Particles to Potentiate the Efficacy of Antiretroviral Drugs. MEDICINES 2019; 6:medicines6010033. [PMID: 30823453 PMCID: PMC6473583 DOI: 10.3390/medicines6010033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/25/2022]
Abstract
Background: Novel strategies to increase the efficacy of antiretroviral (ARV) drugs will be of crucial importance. We hypothesize that membranes of HIV-1-infected cells and enveloped HIV-1 particles may be preferentially targeted by the phytopeptide, cycloviolacin O2 (CyO2) to significantly enhance ARV efficacy. Methods: Physiologically safe concentrations of CyO2 were determined via red blood cell (RBC) hemolysis. SYTOX-green dye-uptake and radiolabeled saquinavir (³H-SQV) uptake assays were used to measure pore-formation and drug uptake, respectively. ELISA, reporter assays and ultracentrifugation were conducted to analyze the antiviral efficacy of HIV-1 protease and fusion inhibitors alone and co-exposed to CyO2. Results: CyO2 concentrations below 0.5 μM did not show substantial hemolytic activity, yet these concentrations enabled rapid pore-formation in HIV-infected T-cells and monocytes and increased drug uptake. ELISA for HIV-1 p24 indicated that CyO2 enhances the antiviral efficacy of both SQV and nelfinavir. CyO2 (< 0.5 μM) alone decreases HIV-1 p24 production, but it did not affect the transcription regulatory function of the HIV-1 long terminal repeat (LTR). Ultracentrifugation studies clearly showed that CyO2 exposure disrupted viral integrity and decreased the p24 content of viral particles. Furthermore, direct HIV-1 inactivation by CyO2 enhanced the efficacy of enfuvirtide. Conclusions: The membrane-active properties of CyO2 may help suppress viral load and augment antiretroviral drug efficacy.
Collapse
Affiliation(s)
- Samantha L Gerlach
- Department of Biology, Division of Science, Technology, Engineering and Mathematics, Dillard University, New Orleans, LA 70122, USA.
- Department of Pharmacology, Tulane University Medical Center, New Orleans, LA 70112, USA.
| | - Partha K Chandra
- Department of Pharmacology, Tulane University Medical Center, New Orleans, LA 70112, USA.
| | - Upal Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Sunithi Gunasekera
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden.
| | - Ulf Göransson
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden.
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, LA 70112, USA.
| | - Stephen E Braun
- Tulane National Primate Research Center, Covington, LA 70112, USA.
| | - Debasis Mondal
- Department of Pharmacology, Tulane University Medical Center, New Orleans, LA 70112, USA.
| |
Collapse
|
19
|
Chen HL, Tan HL, Yang J, Wei YY, Hu TJ. Sargassum polysaccharide inhibits inflammatory response in PCV2 infected-RAW264.7 cells by regulating histone acetylation. Carbohydr Polym 2018; 200:633-640. [PMID: 30177210 DOI: 10.1016/j.carbpol.2018.06.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/11/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
Toxic inflammatory response is frequently introduced upon virus infection. In this study, RAW264.7 cells were infected with porcine circovirus type 2 (PCV2) and treated with Sargassum polysaccharide SP. It was found that PCV2 infection induced increased significant inflammation response represented with increased secretion of inflammatory cytokines, corresponding with promoted HAT activity, inhibited HDAC activity, elevated HDAC1 mRNA levels, and up-regulated acetylation levels of H3 and H4 in RAW264.7 cells. SP treatment significantly inhibited the increase of inflammatory cytokines, HAT activity and the acetylation of histones, but dramatically increased the HDAC activity and the expression of HDAC1. From these results, SP might be able to protect immune cells from virus induced damages through inhibiting the inflammatory responds by maintaining an equilibrium between the activity of HATs and HDACs which contributes to an appropriate level of histone acetylation.
Collapse
Affiliation(s)
- Hai-Lan Chen
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Hong-Lian Tan
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Jian Yang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Ying-Yi Wei
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| | - Ting-Jun Hu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China.
| |
Collapse
|
20
|
Semen Exosomes Promote Transcriptional Silencing of HIV-1 by Disrupting NF-κB/Sp1/Tat Circuitry. J Virol 2018; 92:JVI.00731-18. [PMID: 30111566 DOI: 10.1128/jvi.00731-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Exosomes play various roles in host responses to cancer and infective agents, and semen exosomes (SE) inhibit HIV-1 infection and transmission, although the mechanism(s) by which this occurs is unclear. Here, we show that SE block HIV-1 proviral transcription at multiple transcriptional checkpoints, including transcription factor recruitment to the long terminal repeat (LTR), transcription initiation, and elongation. Biochemical and functional studies show that SE inhibit HIV-1 LTR-driven viral gene expression and virus replication. Through partitioning of the HIV-1 RNA, we found that SE reduced the optimal expression of various viral RNA species. Chromatin immunoprecipitation-real-time quantitative PCR (ChIP-RT-qPCR) and electrophoretic mobility shift assay (EMSA) analysis of infected cells identified the human transcription factors NF-κB and Sp1, as well as RNA polymerase (Pol) II and the viral protein transcriptional activator (Tat), as targets of SE. Of interest, SE inhibited HIV-1 LTR activation mediated by HIV-1 or Tat, but not by the mitogen phorbol myristate acetate (PMA) or tumor necrosis factor alpha (TNF-α). SE inhibited the DNA binding activities of NF-κB and Sp1 and blocked the recruitment of these transcription factors and Pol II to the HIV-1 LTR promoter. Importantly, SE directly blocked NF-κB, Sp1, and Pol II binding to the LTR and inhibited the interactions of Tat/NF-κB and Tat/Sp1, suggesting that SE-mediated inhibition of the functional quadripartite complex NF-κB-Sp1-Pol II-Tat may be a novel mechanism of proviral transcription repression. These data provide a novel molecular basis for SE-mediated inhibition of HIV-1 and identify Tat as a potential target of SE.IMPORTANCE HIV is most commonly transmitted sexually, and semen is the primary vector. Despite progress in studies of HIV pathogenesis and the success of combination antiretroviral therapy in controlling viral replication, current therapy cannot completely control sexual transmission. Thus, there is a need to identify effective methods of controlling HIV replication and transmission. Recently, it was shown that human semen contains exosomes that protect against HIV infection in vitro In this study, we identified a mechanism by which semen exosomes inhibited HIV-1 RNA expression. We found that semen exosomes inhibit recruitment of transcription factors NF-κB and Sp1, as well as RNA Pol II, to the promoter region in the 5' long terminal repeat (LTR) of HIV-1. The HIV-1 early protein transcriptional activator (Tat) was a target of semen exosomes, and semen exosomes inhibited the binding and recruitment of Tat to the HIV-1 LTR.
Collapse
|
21
|
Robust Enhancement of Lentivirus Production by Promoter Activation. Sci Rep 2018; 8:15036. [PMID: 30310119 PMCID: PMC6181906 DOI: 10.1038/s41598-018-33042-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/22/2018] [Indexed: 12/15/2022] Open
Abstract
Lentiviral vectors are a valuable tool to deliver exogenous genes for stable expression in cells. While much progress has been made in processing lentiviral vector-containing culture medium, it remains to be explored how the production of lentiviral vector from producer cells can be increased. We initially found that co-expression of the SPRY domain-containing SOCS box protein 1 (SPSB1) promotes the production of human immunodeficiency virus type 1 (HIV-1) and lentiviral vector with increased expression of the Gag and envelope proteins and activation of the HIV-1 LTR and CMV promoter. The presence of AP-1, NF-κB and CREB/ATF recognition sites in these promoters prompted us to utilize human T-lymphotropic virus type 1 (HTLV-1) Tax for lentiviral vector production because Tax activates all these transcription factors. Co-expression of a small amount of Tax markedly increased both the expression of viral structural proteins in producer cells and release of lentiviral vector particles, resulting in a more than 10-fold enhancement of transduction efficiency. Of note, the Tax protein was not detected in the lentiviral vector particles concentrated by ultracentrifugation, supporting the safety of this preparation. Collectively, these results indicate that promoter activation in producer cells represents a promising approach to preparing high-titer lentiviral vectors.
Collapse
|
22
|
Mbondji-wonje C, Dong M, Wang X, Zhao J, Ragupathy V, Sanchez AM, Denny TN, Hewlett I. Distinctive variation in the U3R region of the 5' Long Terminal Repeat from diverse HIV-1 strains. PLoS One 2018; 13:e0195661. [PMID: 29664930 PMCID: PMC5903597 DOI: 10.1371/journal.pone.0195661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Functional mapping of the 5’LTR has shown that the U3 and the R regions (U3R) contain a cluster of regulatory elements involved in the control of HIV-1 transcription and expression. As the HIV-1 genome is characterized by extensive variability, here we aimed to describe mutations in the U3R from various HIV-1 clades and CRFs in order to highlight strain specific differences that may impact the biological properties of diverse HIV-1 strains. To achieve our purpose, the U3R sequence of plasma derived virus belonging to different clades (A1, B, C, D, F2) and recombinants (CRF02_AG, CRF01_AE and CRF22_01A1) was obtained using Illumina technology. Overall, the R region was very well conserved among and across different strains, while in the U3 region the average inter-strains nucleotide dissimilarity was up to 25%. The TAR hairpin displayed a strain-distinctive cluster of mutations affecting the bulge and the loop, but mostly the stem. Like in previous studies we found a TATAA motif in U3 promoter region from the majority of HIV-1 strains and a TAAAA motif in CRF01_AE; but also in LTRs from CRF22_01A1 isolates. Although LTRs from CRF22_01A1 specimens were assigned CRF01_AE, they contained two NF-kB sites instead of the single TFBS described in CRF01_AE. Also, as previously describe in clade C isolates, we found no C/EBP binding site directly upstream of the enhancer region in CRF22_01A1 specimens. In our study, one-third of CRF02_AG LTRs displayed three NF-kB sites which have been mainly described in clade C isolates. Overall, the number, location and binding patterns of potential regulatory elements found along the U3R might be specific to some HIV-1 strains such as clade F2, CRF02_AG, CRF01_AE and CRF22_01A1. These features may be worth consideration as they may be involved in distinctive regulation of HIV-1 transcription and replication by different and diverse infecting strains.
Collapse
Affiliation(s)
- Christelle Mbondji-wonje
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- Department of Molecular Biology, Faculty of Medicine, Pharmacy and Biomedical sciences, University of Douala, Douala, Cameroon
- * E-mail: (CM); (IH)
| | - Ming Dong
- U.S. Military HIV Research Program, Silver Spring, Maryland United States of America
| | - Xue Wang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Viswanath Ragupathy
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ana M. Sanchez
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Thomas N. Denny
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Indira Hewlett
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (CM); (IH)
| |
Collapse
|
23
|
Tietjen I, Williams DE, Read S, Kuang XT, Mwimanzi P, Wilhelm E, Markle T, Kinloch NN, Naphen CN, Tenney K, Mesplède T, Wainberg MA, Crews P, Bell B, Andersen RJ, Brumme ZL, Brockman MA. Inhibition of NF-κB-dependent HIV-1 replication by the marine natural product bengamide A. Antiviral Res 2018; 152:94-103. [PMID: 29476895 DOI: 10.1016/j.antiviral.2018.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/01/2022]
Abstract
HIV-1 inhibitors that act by mechanisms distinct from existing antiretrovirals can provide novel insights into viral replication and potentially inform development of new therapeutics. Using a multi-cycle HIV-1 replication assay, we screened 252 pure compounds derived from marine invertebrates and microorganisms and identified 6 (actinomycin Z2, bastadin 6, bengamide A, haliclonacyclamine A + B, keramamine C, neopetrosiamide B) that inhibited HIV-1 with 50% effective concentrations (EC50s) of 3.8 μM or less. The most potent inhibitor, bengamide A, blocked HIV-1 in a T cell line with an EC50 of 0.015 μM and in peripheral blood mononuclear cells with an EC50 of 0.032 μM. Bengamide A was previously described to inhibit NF-κB signaling. Consistent with this mechanism, bengamide A suppressed reporter expression from an NF-κB-driven minimal promoter and an HIV-1 long terminal repeat (LTR) with conserved NF-κB response elements, but lacked activity against an LTR construct with mutation of these elements. In single-cycle HIV-1 infection assays, bengamide A also suppressed viral protein expression when viruses encoded an intact LTR but exhibited minimal activity against those with mutated NF-κB elements. Finally, bengamide A did not inhibit viral DNA accumulation, indicating that it likely acts downstream of this step in HIV-1 replication. Our study identifies multiple new antiviral compounds including an unusually potent inhibitor of HIV-1 gene expression.
Collapse
Affiliation(s)
- Ian Tietjen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Silven Read
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Xiaomei T Kuang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Philip Mwimanzi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Emmanuelle Wilhelm
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tristan Markle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Cassandra N Naphen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Karen Tenney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Thibault Mesplède
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Brendan Bell
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| |
Collapse
|
24
|
Ne E, Palstra RJ, Mahmoudi T. Transcription: Insights From the HIV-1 Promoter. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:191-243. [DOI: 10.1016/bs.ircmb.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Expression of an RNA glycosidase inhibits HIV-1 transactivation of transcription. Biochem J 2017; 474:3471-3483. [PMID: 28864671 DOI: 10.1042/bcj20170353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 11/17/2022]
Abstract
HIV-1 (human immunodeficiency virus) transcription is primarily controlled by the virally encoded Tat (transactivator of transcription) protein and its interaction with the viral TAR (transcription response element) RNA element. Specifically, binding of a Tat-containing complex to TAR recruits cellular factors that promote elongation of the host RNA polymerase engaging the viral DNA template. Disruption of this interaction halts viral RNA transcription. In the present study, we investigated the effect of pokeweed antiviral protein (PAP), an RNA glycosidase (EC#: 3.2.2.22) synthesized by the pokeweed plant (Phytolacca americana), on transcription of HIV-1 mRNA. We show that co-expression of PAP with a proviral clone in culture cells resulted in a Tat-dependent decrease in viral mRNA levels. PAP reduced HIV-1 transcriptional activity by inhibiting Tat protein synthesis. The effects of PAP expression on host factors AP-1 (activator protein 1), NF-κB (nuclear factor kappa-light-chain-enhancer of activated B-cells) and specificity protein 1, which modulate HIV-1 transcription by binding to the viral LTR (5'-long terminal repeat), were also investigated. Only AP-1 showed a modest JNK pathway-dependent increase in activity in the presence of PAP; however, this activation was not sufficient to significantly enhance transcription from a partial viral LTR containing AP-1 binding sites. Therefore, the primary effect of PAP on HIV-1 transcription is to reduce viral RNA synthesis by decreasing the abundance of Tat. These findings provide a mechanistic explanation for the observed decrease in viral RNAs in cells expressing PAP and contribute to our understanding of the antiviral effects of this plant protein.
Collapse
|
26
|
Bohn-Wippert K, Tevonian EN, Megaridis MR, Dar RD. Similarity in viral and host promoters couples viral reactivation with host cell migration. Nat Commun 2017; 8:15006. [PMID: 28462923 PMCID: PMC5418578 DOI: 10.1038/ncomms15006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/20/2017] [Indexed: 11/29/2022] Open
Abstract
Viral–host interactomes map the complex architecture of an evolved arms race during host cell invasion. mRNA and protein interactomes reveal elaborate targeting schemes, yet evidence is lacking for genetic coupling that results in the co-regulation of promoters. Here we compare viral and human promoter sequences and expression to test whether genetic coupling exists and investigate its phenotypic consequences. We show that viral–host co-evolution is imprinted within promoter gene sequences before transcript or protein interactions. Co-regulation of human immunodeficiency virus (HIV) and human C-X-C chemokine receptor-4 (CXCR4) facilitates migration of infected cells. Upon infection, HIV can actively replicate or remain dormant. Migrating infected cells reactivate from dormancy more than non-migrating cells and exhibit differential migration–reactivation responses to drugs. Cells producing virus pose a risk for reinitiating infection within niches inaccessible to drugs, and tuning viral control of migration and reactivation improves strategies to eliminate latent HIV. Viral–host genetic coupling establishes a mechanism for synchronizing transcription and guiding potential therapies. The coevolution of viruses and host cells can be mapped with interactomics. Here the authors identify coupling of human and viral promoters, and show that HIV-reactivation from dormancy is coincident with migration of HIV-infected cells owing to coupling of human CXCR4 and HIV LTR promoters.
Collapse
Affiliation(s)
- Kathrin Bohn-Wippert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA
| | - Erin N Tevonian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA
| | - Melina R Megaridis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA
| | - Roy D Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206W Gregory Drive, Urbana, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA
| |
Collapse
|
27
|
SEN SATARUPA, DESHMANE SATISHL, KAMINSKI RAFAL, AMINI SHOHREH, DATTA PRASUNK. Non-Metabolic Role of PKM2 in Regulation of the HIV-1 LTR. J Cell Physiol 2017; 232:517-525. [PMID: 27249540 PMCID: PMC5714288 DOI: 10.1002/jcp.25445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022]
Abstract
Identification of cellular proteins, in addition to already known transcription factors such as NF-κB, Sp1, C-EBPβ, NFAT, ATF/CREB, and LEF-1, which interact with the HIV-1 LTR, is critical in understanding the mechanism of HIV-1 replication in monocytes/macrophages. Our studies demonstrate upregulation of pyruvate kinase isoform M2 (PKM2) expression during HIV-1SF162 infection of monocyte/macrophages and reactivation of HIV-1 in U1 cells, a macrophage model of latency. We observed that HIV-1SF162 infection of monocyte/macrophages and reactivation of HIV-1 in U1 cells by PMA resulted in increased levels of nuclear PKM2 compared to PMA-induced U937 cells. Furthermore, there was a significant increase in the nuclear dimeric form of PKM2 in the PMA-induced U1 cells in comparison to PMA-induced U937 cells. We focused on understanding the potential role of PKM2 in HIV-1 LTR transactivation. Chromatin immunoprecipitation (ChIP) analysis in PMA-activated U1 and TZM-bl cells demonstrated the interaction of PKM2 with the HIV-1 LTR. Our studies show that overexpression of PKM2 results in transactivation of HIV-1 LTR-luciferase reporter in U937, U-87 MG, and TZM-bl cells. Using various truncated constructs of the HIV-1 LTR, we mapped the region spanning -120 bp to -80 bp to be essential for PKM2-mediated transactivation. This region contains the NF-κB binding site and deletion of this site attenuated PKM2-mediated activation of HIV-1 LTR. Immunoprecipitation experiments using U1 cell lysates demonstrated a physical interaction between PKM2 and the p65 subunit of NF-κB. These observations demonstrate for the first time that PKM2 is a transcriptional co-activator of HIV-1 LTR. J. Cell. Physiol. 232: 517-525, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- SATARUPA SEN
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
- Department of Biology, College of Science and Technology, Philadelphia, Pennsylvania
| | - SATISH L. DESHMANE
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - RAFAL KAMINSKI
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - SHOHREH AMINI
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
- Department of Biology, College of Science and Technology, Philadelphia, Pennsylvania
| | - PRASUN K. DATTA
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Alvarez-Carbonell D, Garcia-Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R, Karn J. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology 2017; 14:9. [PMID: 28166799 PMCID: PMC5294768 DOI: 10.1186/s12977-017-0335-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 01/27/2023] Open
Abstract
Background Multiple toll-like receptors (TLRs) are expressed in cells of the monocytic lineage, including microglia, which constitute the major reservoir for human immunodeficiency virus (HIV) infection in the brain. We hypothesized that TLR receptor mediated responses to inflammatory conditions by microglial cells in the central nervous system (CNS) are able to induce latent HIV proviruses, and contribute to the etiology of HIV-associated neurocognitive disorders. Results Newly developed human microglial cell lines (hµglia), obtained by immortalizing human primary microglia with simian virus-40 (SV40) large T antigen and the human telomerase reverse transcriptase, were used to generate latently infected cells using a single-round HIV virus carrying a green fluorescence protein reporter (hµglia/HIV, clones HC01 and HC69). Treatment of these cells with a panel of TLR ligands showed surprisingly that two potent TLR3 agonists, poly (I:C) and bacterial ribosomal RNA potently reactivated HIV in hμglia/HIV cells. LPS (TLR4 agonist), flagellin (TLR5 agonist), and FSL-1 (TLR6 agonist) reactivated HIV to a lesser extent, while Pam3CSK4 (TLR2/1 agonist) and HKLM (TLR2 agonist) only weakly reversed HIV latency in these cells. While agonists for TLR2/1, 4, 5 and 6 reactivated HIV through transient NF-κB induction, poly (I:C), the TLR3 agonist, did not activate NF-κB, and instead induced the virus by a previously unreported mechanism mediated by IRF3. The selective induction of IRF3 by poly (I:C) was confirmed by chromatin immunoprecipitation (ChIP) analysis. In comparison, in latently infected rat-derived microglial cells (hT-CHME-5/HIV, clone HC14), poly (I:C), LPS and flagellin were only partially active. The TLR response profile in human microglial cells is also distinct from that shown by latently infected monocyte cell lines (THP-1/HIV, clone HA3, U937/HIV, clone HUC5, and SC/HIV, clone HSCC4), where TLR2/1, 4, 5, 6 or 8, but not for TLR3, 7 or 9, reactivated HIV. Conclusions TLR signaling, in particular TLR3 activation, can efficiently reactivate HIV transcription in infected microglia, but not in monocytes or T cells. The unique response profile of microglial cells to TLR3 is fundamental to understanding how the virus responds to continuous microbial exposure, especially during inflammatory episodes, that characterizes HIV infection in the CNS. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0335-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Stephanie Milne
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Biswajit Das
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Roxana Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA.
| |
Collapse
|
29
|
Ao Z, Zhu R, Tan X, Liu L, Chen L, Liu S, Yao X. Activation of HIV-1 expression in latently infected CD4+ T cells by the small molecule PKC412. Virol J 2016; 13:177. [PMID: 27769267 PMCID: PMC5073835 DOI: 10.1186/s12985-016-0637-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022] Open
Abstract
Background HIV-1 latency is a major obstacle for HIV-1 eradication. Extensive efforts are being directed toward the reactivation of latent HIV reservoirs with the aim of eliminating latently infected cells via the host immune system and/or virus-mediated cell lysis. Results We screened over 1,500 small molecules and kinase inhibitors and found that a small molecule, PKC412 (midostaurin, a broad-spectrum kinase inhibitor), can stimulate viral transcription and expression from the HIV-1 latently infected ACH2 cell line and primary resting CD4+ T cells. PKC412 reactivated HIV-1 expression in ACH2 cells in a dose- and time-dependent manner. Our results also suggest that the nuclear factor κB (NF-κB) signaling could be one of cellular pathways activated during PKC412-mediated activation of latent HIV-1 expression. Additionally, combining PKC412 with the HDAC inhibitor vorinostat (VOR) had an additive effect on HIV-1 reactivation in both ACH2 cells and infected resting CD4+ T cells. Conclusions These studies provide evidence that PKC412 is a new compound with the potential for optimization as a latency-reactivator to eradicate HIV-1 infection.
Collapse
Affiliation(s)
- Zhujun Ao
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Rady Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Rong Zhu
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Rady Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Xiaoli Tan
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Lisa Liu
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Liyu Chen
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Shuiping Liu
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - XiaoJian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Rady Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
30
|
Lamers SL, Rose R, Maidji E, Agsalda-Garcia M, Nolan DJ, Fogel GB, Salemi M, Garcia DL, Bracci P, Yong W, Commins D, Said J, Khanlou N, Hinkin CH, Sueiras MV, Mathisen G, Donovan S, Shiramizu B, Stoddart CA, McGrath MS, Singer EJ. HIV DNA Is Frequently Present within Pathologic Tissues Evaluated at Autopsy from Combined Antiretroviral Therapy-Treated Patients with Undetectable Viral Loads. J Virol 2016; 90:8968-83. [PMID: 27466426 PMCID: PMC5044815 DOI: 10.1128/jvi.00674-16] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/20/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED HIV infection treatment strategies have historically defined effectiveness through measuring patient plasma HIV RNA. While combined antiretroviral therapy (cART) can reduce plasma viral load (pVL) to undetectable levels, the degree that HIV is eliminated from other anatomical sites remains unclear. We investigated the HIV DNA levels in 229 varied autopsy tissues from 20 HIV-positive (HIV(+)) cART-treated study participants with low or undetectable plasma VL and cerebrospinal fluid (CSF) VL prior to death who were enrolled in the National Neurological AIDS Bank (NNAB) longitudinal study and autopsy cohort. Extensive medical histories were obtained for each participant. Autopsy specimens, including at least six brain and nonbrain tissues per participant, were reviewed by study pathologists. HIV DNA, measured in tissues by quantitative and droplet digital PCR, was identified in 48/87 brain tissues and 82/142 nonbrain tissues at levels >200 HIV copies/million cell equivalents. No participant was found to be completely free of tissue HIV. Parallel sequencing studies from some tissues recovered intact HIV DNA and RNA. Abnormal histological findings were identified in all participants, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. All brain tissues demonstrated some degree of pathology. Ninety-five percent of participants had some degree of atherosclerosis, and 75% of participants died with cancer. This study assists in characterizing the anatomical locations of HIV, in particular, macrophage-rich tissues, such as the central nervous system (CNS) and testis. Additional studies are needed to determine if the HIV recovered from tissues promotes the pathogenesis of inflammatory diseases, such as HIV-associated neurocognitive disorders, cancer, and atherosclerosis. IMPORTANCE It is well-known that combined antiretroviral therapy (cART) can reduce plasma HIV to undetectable levels; however, cART cannot completely clear HIV infection. An ongoing question is, "Where is HIV hiding?" A well-studied HIV reservoir is "resting" T cells, which can be isolated from blood products and succumb to cART once activated. Less-studied reservoirs are anatomical tissue samples, which have unknown cART penetration, contain a comparably diverse spectrum of potentially HIV-infected immune cells, and are important since <2% of body lymphocytes actually reside in blood. We examined 229 varied autopsy specimens from 20 HIV(+) participants who died while on cART and identified that >50% of tissues were HIV infected. Additionally, we identified considerable pathology in participants' tissues, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. This study substantiates that tissue-associated HIV is present despite cART and can inform future studies into HIV persistence.
Collapse
Affiliation(s)
| | | | - Ekaterina Maidji
- Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California, USA
| | - Melissa Agsalda-Garcia
- The University of Hawaii, Department of Tropical Medicine, Medical Microbiology & Pharmacology and Hawaii Center for AIDS, Honolulu, Hawaii, USA
| | - David J Nolan
- Bioinfoexperts, LLC, Thibodaux, Louisiana, USA The University of Florida Emerging Pathogens Institute, Department of Pathology and Laboratory Medicine, Gainesville, Florida, USA
| | - Gary B Fogel
- Natural Selection, Inc., San Diego, California, USA
| | - Marco Salemi
- The University of Florida Emerging Pathogens Institute, Department of Pathology and Laboratory Medicine, Gainesville, Florida, USA
| | - Debra L Garcia
- The AIDS and Cancer Specimen Resource, San Francisco, California, USA University of California, San Francisco, Department of Medicine, San Francisco, California, USA
| | - Paige Bracci
- The AIDS and Cancer Specimen Resource, San Francisco, California, USA University of California, San Francisco, Department of Medicine, San Francisco, California, USA
| | - William Yong
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Deborah Commins
- University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Jonathan Said
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Negar Khanlou
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Charles H Hinkin
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA UCLA School of Medicine, Department of Psychiatry & Biobehavioral Sciences, Los Angeles, California, USA
| | - Miguel Valdes Sueiras
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Neurology, Los Angeles, California, USA
| | - Glenn Mathisen
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Suzanne Donovan
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Bruce Shiramizu
- The University of Hawaii, Department of Tropical Medicine, Medical Microbiology & Pharmacology and Hawaii Center for AIDS, Honolulu, Hawaii, USA
| | - Cheryl A Stoddart
- Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California, USA
| | - Michael S McGrath
- The AIDS and Cancer Specimen Resource, San Francisco, California, USA University of California, San Francisco, Department of Medicine, San Francisco, California, USA
| | - Elyse J Singer
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Neurology, Los Angeles, California, USA
| |
Collapse
|
31
|
Qu D, Li C, Sang F, Li Q, Jiang ZQ, Xu LR, Guo HJ, Zhang C, Wang JH. The variances of Sp1 and NF-κB elements correlate with the greater capacity of Chinese HIV-1 B'-LTR for driving gene expression. Sci Rep 2016; 6:34532. [PMID: 27698388 PMCID: PMC5048295 DOI: 10.1038/srep34532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/15/2016] [Indexed: 12/28/2022] Open
Abstract
The 5' end of HIV-1 long terminal repeat (LTR) serves as a promoter that plays an essential role in driving viral gene transcription. Manipulation of HIV-1 LTR provides a potential therapeutic strategy for suppressing viral gene expression or excising integrated provirus. Subtype-specific genetic diversity in the LTR region has been observed. The minor variance of LTR, particularly in the transcription factor binding sites, can have a profound impact on its activity. However, the LTR profiles from major endemic Chinese subtypes are not well characterized. Here, by characterizing the sequences and functions of LTRs from endemic Chinese HIV-1 subtypes, we showed that nucleotide variances of Sp1 core promoter and NF-κB element are associated with varied LTR capacity for driving viral gene transcription. The greater responsiveness of Chinese HIV-1 B'-LTR for driving viral gene transcription upon stimulation is associated with an increased level of viral reactivation. Moreover, we demonstrated that the introduction of CRISPR/dead Cas9 targeting Sp1 or NF-κB element suppressed viral gene expression. Taken together, our study characterized LTRs from endemic HIV-1 subtypes in China and suggests a potential target for the suppression of viral gene expression and a novel strategy that facilitates the accomplishment of a functional cure.
Collapse
Affiliation(s)
- Di Qu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chuan Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Feng Sang
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Qiang Li
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhi-Qiang Jiang
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Li-Ran Xu
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Hui-Jun Guo
- Key laboratory of Prevention and Treatment with Traditional Chinese Medicine on Viral Infection Disease, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Chiyu Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
32
|
Feng M, Dai M, Cao W, Tan Y, Li Z, Shi M, Zhang X. ALV-J strain SCAU-HN06 induces innate immune responses in chicken primary monocyte-derived macrophages. Poult Sci 2016; 96:42-50. [PMID: 27486255 PMCID: PMC5161024 DOI: 10.3382/ps/pew229] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022] Open
Abstract
Avian leucosis virus subgroup J (ALV-J) can cause lifelong infection and can escape from the host immune defenses in chickens. Since macrophages act as the important defense line against invading pathogens in host innate immunity, we investigated the function and innate immune responses of chicken primary monocyte-derived macrophages (MDM) after ALV-J infection in this study. Our results indicated that ALV-J was stably maintained in MDM cells but that the viral growth rate was significantly lower than that in DF-1 cells. We also found that ALV-J infection significantly increased nitric oxide (NO) production, but had no effect on MDM phagocytic capacity. Interestingly, infection with ALV-J rapidly promoted the expression levels of Myxovirus resistance 1 (Mx) (3 h, 6 h), ISG12 (6 h), and interleukin-1β (IL-1β) (3 h, 12 h) at an early infection stage, whereas it sharply decreased the expression of Mx (24 h, 36 h), ISG12 (36 h), and made little change on IL-1β (24 h, 36 h) production at a late infection stage in MDM cells. Moreover, the protein levels of interferon-β (IFN-β) and interleukin-6 (IL-6) had sharply increased in infected MDM cells from 3 to 36 h post infection (hpi) of ALV-J. And, the protein level of interleukin-10 (IL-10) was dramatically decreased at 36 hpi in MDM cells infected with ALV-J. These results demonstrate that ALV-J can induce host innate immune responses and we hypothesize that macrophages play an important role in host innate immune attack and ALV-J immune escape.
Collapse
Affiliation(s)
- Min Feng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Manman Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yan Tan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China .,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| |
Collapse
|
33
|
Le Douce V, Ait-Amar A, Forouzan Far F, Fahmi F, Quiel J, El Mekdad H, Daouad F, Marban C, Rohr O, Schwartz C. Improving combination antiretroviral therapy by targeting HIV-1 gene transcription. Expert Opin Ther Targets 2016; 20:1311-1324. [PMID: 27266557 DOI: 10.1080/14728222.2016.1198777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Combination Antiretroviral Therapy (cART) has not allowed the cure of HIV. The main obstacle to HIV eradication is the existence of quiescent reservoirs. Several other limitations of cART have been described, such as strict life-long treatment and high costs, restricting it to Western countries, as well as the development of multidrug resistance. Given these limitations and the impetus to find a cure, the development of new treatments is necessary. Areas covered: In this review, we discuss the current status of several efficient molecules able to suppress HIV gene transcription, including NF-kB and Tat inhibitors. We also assess the potential of new proteins belonging to the intriguing DING family, which have been reported to have potential anti-HIV-1 activity by inhibiting HIV gene transcription. Expert opinion: Targeting HIV-1 gene transcription is an alternative approach, which could overcome cART-related issues, such as the emergence of multidrug resistance. Improving cART will rely on the identification and characterization of new actors inhibiting HIV-1 transcription. Combining such efforts with the use of new technologies, the development of new models for preclinical studies, and improvement in drug delivery will considerably reduce drug toxicity and thus increase patient adherence.
Collapse
Affiliation(s)
- Valentin Le Douce
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France.,c UCD Centre for Research in Infectious Diseases (CRID) School of Medicine and Medical Science , University College Dublin , Dublin 4 , Ireland
| | - Amina Ait-Amar
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Faezeh Forouzan Far
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Faiza Fahmi
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Jose Quiel
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Hala El Mekdad
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Fadoua Daouad
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Céline Marban
- d Faculté de Chirurgie Dentaire , Inserm UMR 1121 , Strasbourg , France
| | - Olivier Rohr
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France.,e Institut Universitaire de France , Paris , France
| | - Christian Schwartz
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France
| |
Collapse
|
34
|
Datta PK, Deshmane S, Khalili K, Merali S, Gordon JC, Fecchio C, Barrero CA. Glutamate metabolism in HIV-1 infected macrophages: Role of HIV-1 Vpr. Cell Cycle 2016; 15:2288-98. [PMID: 27245560 DOI: 10.1080/15384101.2016.1190054] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages. We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation. The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages. Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS.
Collapse
Affiliation(s)
- Prasun K Datta
- a Department of Neuroscience and Comprehensive NeuroAIDS Center , Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA
| | - Satish Deshmane
- a Department of Neuroscience and Comprehensive NeuroAIDS Center , Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA
| | - Kamel Khalili
- a Department of Neuroscience and Comprehensive NeuroAIDS Center , Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA
| | - Salim Merali
- a Department of Neuroscience and Comprehensive NeuroAIDS Center , Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA.,b Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research , Temple University School of Pharmacy , Philadelphia , PA , USA
| | - John C Gordon
- b Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research , Temple University School of Pharmacy , Philadelphia , PA , USA
| | - Chiara Fecchio
- b Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research , Temple University School of Pharmacy , Philadelphia , PA , USA
| | - Carlos A Barrero
- a Department of Neuroscience and Comprehensive NeuroAIDS Center , Lewis Katz School of Medicine at Temple University , Philadelphia , PA , USA.,b Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research , Temple University School of Pharmacy , Philadelphia , PA , USA
| |
Collapse
|
35
|
Thierry S, Thierry E, Subra F, Deprez E, Leh H, Bury-Moné S, Delelis O. Opposite transcriptional regulation of integrated vs unintegrated HIV genomes by the NF-κB pathway. Sci Rep 2016; 6:25678. [PMID: 27167871 PMCID: PMC4863372 DOI: 10.1038/srep25678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023] Open
Abstract
Integration of HIV-1 linear DNA into host chromatin is required for high levels of viral expression, and constitutes a key therapeutic target. Unintegrated viral DNA (uDNA) can support only limited transcription but may contribute to viral propagation, persistence and/or treatment escape under specific situations. The molecular mechanisms involved in the differential expression of HIV uDNA vs integrated genome (iDNA) remain to be elucidated. Here, we demonstrate, for the first time, that the expression of HIV uDNA is mainly supported by 1-LTR circles, and regulated in the opposite way, relatively to iDNA, following NF-κB pathway modulation. Upon treatment activating the NF-κB pathway, NF-κB p65 and AP-1 (cFos/cJun) binding to HIV LTR iDNA correlates with increased iDNA expression, while uDNA expression decreases. On the contrary, inhibition of the NF-κB pathway promotes the expression of circular uDNA, and correlates with Bcl-3 and AP-1 binding to its LTR region. Finally, this study identifies NF-κB subunits and Bcl-3 as transcription factors binding the HIV promoter differently depending on viral genome topology, and opens new insights on the potential roles of episomal genomes during the HIV-1 latency and persistence.
Collapse
Affiliation(s)
- Sylvain Thierry
- LBPA, ENS Cachan, CNRS UMR8113, IDA FR3242, Université Paris-Saclay, F-94235 Cachan, France
| | - Eloïse Thierry
- LBPA, ENS Cachan, CNRS UMR8113, IDA FR3242, Université Paris-Saclay, F-94235 Cachan, France
| | - Frédéric Subra
- LBPA, ENS Cachan, CNRS UMR8113, IDA FR3242, Université Paris-Saclay, F-94235 Cachan, France
| | - Eric Deprez
- LBPA, ENS Cachan, CNRS UMR8113, IDA FR3242, Université Paris-Saclay, F-94235 Cachan, France
| | - Hervé Leh
- LBPA, ENS Cachan, CNRS UMR8113, IDA FR3242, Université Paris-Saclay, F-94235 Cachan, France
| | - Stéphanie Bury-Moné
- LBPA, ENS Cachan, CNRS UMR8113, IDA FR3242, Université Paris-Saclay, F-94235 Cachan, France
| | - Olivier Delelis
- LBPA, ENS Cachan, CNRS UMR8113, IDA FR3242, Université Paris-Saclay, F-94235 Cachan, France
| |
Collapse
|
36
|
Gray LR, Cowley D, Welsh C, Lu HK, Brew BJ, Lewin SR, Wesselingh SL, Gorry PR, Churchill MJ. CNS-specific regulatory elements in brain-derived HIV-1 strains affect responses to latency-reversing agents with implications for cure strategies. Mol Psychiatry 2016; 21:574-84. [PMID: 26303660 PMCID: PMC4804184 DOI: 10.1038/mp.2015.111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/18/2015] [Accepted: 06/25/2015] [Indexed: 12/19/2022]
Abstract
Latency-reversing agents (LRAs), including histone deacetylase inhibitors (HDACi), are being investigated as a strategy to eliminate latency in HIV-infected patients on suppressive antiretroviral therapy. The effectiveness of LRAs in activating latent infection in HIV strains derived from the central nervous system (CNS) is unknown. Here we show that CNS-derived HIV-1 strains possess polymorphisms within and surrounding the Sp transcription factor motifs in the long terminal repeat (LTR). These polymorphisms result in decreased ability of the transcription factor specificity protein 1 to bind CNS-derived LTRs, reducing the transcriptional activity of CNS-derived viruses. These mutations result in CNS-derived viruses being less responsive to activation by the HDACi panobinostat and romidepsin compared with lymphoid-derived viruses from the same subjects. Our findings suggest that HIV-1 strains residing in the CNS have unique transcriptional regulatory mechanisms, which impact the regulation of latency, the consideration of which is essential for the development of HIV-1 eradication strategies.
Collapse
Affiliation(s)
- L R Gray
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia,Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - D Cowley
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - C Welsh
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - H K Lu
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia,Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - B J Brew
- Departments of Neurology, Immunology and Infectious Diseases and Peter Duncan Neurosciences Unit, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - S R Lewin
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia,Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia,Infectious Diseases, Alfred Hospital, Melbourne, Victoria, Australia
| | - S L Wesselingh
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - P R Gorry
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia,Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia,School of Applied Sciences and Program in Metabolism, Exercise and Disease, Health Initiatives Research Institute, RMIT University, Melbourne, Victoria, Australia,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - M J Churchill
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia,Department of Medicine, Monash University, Melbourne, Victoria, Australia,Department of Microbiology, Monash University, Melbourne, Victoria, Australia,Centre for Biomedical Research, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia. E-mail:
| |
Collapse
|
37
|
Bhargavan B, Woollard SM, Kanmogne GD. Toll-like receptor-3 mediates HIV-1 transactivation via NFκB and JNK pathways and histone acetylation, but prolonged activation suppresses Tat and HIV-1 replication. Cell Signal 2015; 28:7-22. [PMID: 26569339 DOI: 10.1016/j.cellsig.2015.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 01/13/2023]
Abstract
TLR3 has been implicated in the pathogenesis of several viral infections, including SIV- and HIV-1-induced inflammation and AIDS. However the molecular mechanisms of these TLR3-mediated effects are not known, and it is not known whether HIV interacts with cellular TLR3 to affect disease process. Here we investigate the effects of TLR3 ligands on HIV-1 transactivation using both primary human macrophages and cells containing integrated copies of the HIV-1 promoter. We demonstrate that TLR3 activation induced upregulation of transcription factors such as c-Jun, CCAAT/enhancer-binding protein alpha (CEBPA), signal transducer and activator of transcription (STAT)-1, STAT-2, RELB, and nuclear factor kappa-B1 (NFκB1), most of which are known to regulate the HIV promoter activity. We also demonstrate that TLR3 activation increased HIV-1 transactivation via the c-Jun N-terminal kinase (JNK) and NFκB pathways. This was associated with epigenetic modifications, including decreased histone deacetylase activity, increased histone acetyl transferase (HAT) activity, and increased acetylation of histones H3 and H4 at lysine residues in the nucleosome-0 and nucleosome-1 of the HIV-1 promoter. However, prolonged TLR3 activation decreased HIV-1 transactivation, decreased HAT activity and Tat transcription, and suppressed viral replication. Overall, data suggests that TLR3 can act as viral sensor to mediate viral transactivation, cellular signaling, innate immune response, and inflammation in HIV-infected humans. Our study provides novel insights into the molecular basis for these TLR3-mediated effects.
Collapse
Affiliation(s)
- Biju Bhargavan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| | - Shawna M Woollard
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| | - Georgette D Kanmogne
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA.
| |
Collapse
|
38
|
Sahu G, Farley K, El-Hage N, Aiamkitsumrit B, Fassnacht R, Kashanchi F, Ochem A, Simon GL, Karn J, Hauser KF, Tyagi M. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR. Virology 2015; 483:185-202. [PMID: 25980739 DOI: 10.1016/j.virol.2015.03.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication.
Collapse
Affiliation(s)
- Geetaram Sahu
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | - Kalamo Farley
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | - Nazira El-Hage
- Virginia Commonwealth University, Richmond, VA, United States
| | - Benjamas Aiamkitsumrit
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | - Ryan Fassnacht
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | | | - Alex Ochem
- ICGEB, Wernher and Beit Building, Anzio Road, Observatory, 7925 Cape Town, South Africa
| | - Gary L Simon
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | - Jonathan Karn
- Case Western Reserve University, Cleveland, OH, United States
| | - Kurt F Hauser
- Virginia Commonwealth University, Richmond, VA, United States
| | - Mudit Tyagi
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States; Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037, United States.
| |
Collapse
|
39
|
Abstract
The gastrointestinal (GI) tract presents a major site of immune modulation by HIV, resulting in significant morbidity. Most GI processes affected during HIV infection are regulated by the enteric nervous system. HIV has been identified in GI histologic specimens in up to 40% of patients, and the presence of viral proteins, including the trans-activator of transcription (Tat), has been reported in the gut indicating that HIV itself may be an indirect gut pathogen. Little is known of how Tat affects the enteric nervous system. Here we investigated the effects of the Tat protein on enteric neuronal excitability, proinflammatory cytokine release, and its overall effect on GI motility. Direct application of Tat (100 nm) increased the number of action potentials and reduced the threshold for action potential initiation in isolated myenteric neurons. This effect persisted in neurons pretreated with Tat for 3 d (19 of 20) and in neurons isolated from Tat(+) (Tat-expressing) transgenic mice. Tat increased sodium channel isoforms Nav1.7 and Nav1.8 levels. This increase was accompanied by an increase in sodium current density and a leftward shift in the sodium channel activation voltage. RANTES, IL-6, and IL-1β, but not TNF-α, were enhanced by Tat. Intestinal transit and cecal water content were also significantly higher in Tat(+) transgenic mice than Tat(-) littermates (controls). Together, these findings show that Tat has a direct and persistent effect on enteric neuronal excitability, and together with its effect on proinflammatory cytokines, regulates gut motility, thereby contributing to GI dysmotilities reported in HIV patients.
Collapse
|
40
|
Impact of viral activators and epigenetic regulators on HIV-1 LTRs containing naturally occurring single nucleotide polymorphisms. BIOMED RESEARCH INTERNATIONAL 2015; 2015:320642. [PMID: 25629043 PMCID: PMC4299542 DOI: 10.1155/2015/320642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 12/17/2022]
Abstract
Following human immunodeficiency virus type 1 (HIV-1) integration into host cell DNA, the viral promoter can become transcriptionally silent in the absence of appropriate signals and factors. HIV-1 gene expression is dependent on regulatory elements contained within the long terminal repeat (LTR) that drive the synthesis of viral RNAs and proteins through interaction with multiple host and viral factors. Previous studies identified single nucleotide polymorphisms (SNPs) within CCAAT/enhancer binding protein (C/EBP) site I and Sp site III (3T, C-to-T change at position 3, and 5T, C-to-T change at position 5 of the binding site, respectively, when compared to the consensus B sequence) that are low affinity binding sites and correlate with more advanced stages of HIV-1 disease. Stably transfected cell lines containing the wild type, 3T, 5T, and 3T5T LTRs were developed utilizing bone marrow progenitor, T, and monocytic cell lines to explore the LTR phenotypes associated with these genotypic changes from an integrated chromatin-based microenvironment. Results suggest that in nonexpressing cell clones LTR-driven gene expression occurs in a SNP-specific manner in response to LTR activation or treatment with trichostatin A treatment, indicating a possible cell type and SNP-specific mechanism behind the epigenetic control of LTR activation.
Collapse
|
41
|
Defining differential genetic signatures in CXCR4- and the CCR5-utilizing HIV-1 co-linear sequences. PLoS One 2014; 9:e107389. [PMID: 25265194 PMCID: PMC4180074 DOI: 10.1371/journal.pone.0107389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/07/2014] [Indexed: 11/29/2022] Open
Abstract
The adaptation of human immunodeficiency virus type-1 (HIV-1) to an array of physiologic niches is advantaged by the plasticity of the viral genome, encoded proteins, and promoter. CXCR4-utilizing (X4) viruses preferentially, but not universally, infect CD4+ T cells, generating high levels of virus within activated HIV-1-infected T cells that can be detected in regional lymph nodes and peripheral blood. By comparison, the CCR5-utilizing (R5) viruses have a greater preference for cells of the monocyte-macrophage lineage; however, while R5 viruses also display a propensity to enter and replicate in T cells, they infect a smaller percentage of CD4+ T cells in comparison to X4 viruses. Additionally, R5 viruses have been associated with viral transmission and CNS disease and are also more prevalent during HIV-1 disease. Specific adaptive changes associated with X4 and R5 viruses were identified in co-linear viral sequences beyond the Env-V3. The in silico position-specific scoring matrix (PSSM) algorithm was used to define distinct groups of X4 and R5 sequences based solely on sequences in Env-V3. Bioinformatic tools were used to identify genetic signatures involving specific protein domains or long terminal repeat (LTR) transcription factor sites within co-linear viral protein R (Vpr), trans-activator of transcription (Tat), or LTR sequences that were preferentially associated with X4 or R5 Env-V3 sequences. A number of differential amino acid and nucleotide changes were identified across the co-linear Vpr, Tat, and LTR sequences, suggesting the presence of specific genetic signatures that preferentially associate with X4 or R5 viruses. Investigation of the genetic relatedness between X4 and R5 viruses utilizing phylogenetic analyses of complete sequences could not be used to definitively and uniquely identify groups of R5 or X4 sequences; in contrast, differences in the genetic diversities between X4 and R5 were readily identified within these co-linear sequences in HIV-1-infected patients.
Collapse
|
42
|
Abstract
Monocytes and macrophages play critical roles in HIV transmission, viral spread early in infection, and as a reservoir of virus throughout infection. There has been a recent resurgence of interest in the biology of monocyte subsets and macrophages and their role in HIV pathogenesis, partly fuelled by efforts to understand difficulties in achieving HIV eradication. This article examines the importance of monocyte subsets and tissue macrophages in HIV pathogenesis. Additionally, we will review the role of monocytes and macrophages in the development of serious non-AIDS events including cardiovascular disease and neurocognitive impairment, their significance in viral persistence, and how these cells represent an important obstacle to achieving HIV eradication.
Collapse
|
43
|
HIV-1 Vpr induces interferon-stimulated genes in human monocyte-derived macrophages. PLoS One 2014; 9:e106418. [PMID: 25170834 PMCID: PMC4149569 DOI: 10.1371/journal.pone.0106418] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/06/2014] [Indexed: 01/24/2023] Open
Abstract
Macrophages act as reservoirs of human immunodeficiency virus type 1 (HIV-1) and play an important role in its transmission to other cells. HIV-1 Vpr is a multi-functional protein involved in HIV-1 replication and pathogenesis; however, its exact role in HIV-1-infected human macrophages remains poorly understood. In this study, we used a microarray approach to explore the effects of HIV-1 Vpr on the transcriptional profile of human monocyte-derived macrophages (MDMs). More than 500 genes, mainly those involved in the innate immune response, the type I interferon pathway, cytokine production, and signal transduction, were differentially regulated (fold change >2.0) after infection with a recombinant adenovirus expressing HIV-1 Vpr protein. The differential expression profiles of select interferon-stimulated genes (ISGs) and genes involved in the innate immune response, including STAT1, IRF7, MX1, MX2, ISG15, ISG20, IFIT1, IFIT2, IFIT3, IFI27, IFI44L, APOBEC3A, DDX58 (RIG-I), TNFSF10 (TRAIL), and RSAD2 (viperin) were confirmed by real-time quantitative PCR and were consistent with the microarray data. In addition, at the post-translational level, HIV-1 Vpr induced the phosphorylation of STAT1 at tyrosine 701 in human MDMs. These results demonstrate that HIV-1 Vpr leads to the induction of ISGs and expand the current understanding of the function of Vpr and its role in HIV-1 immune pathogenesis.
Collapse
|
44
|
Shah S, Alexaki A, Pirrone V, Dahiya S, Nonnemacher MR, Wigdahl B. Functional properties of the HIV-1 long terminal repeat containing single-nucleotide polymorphisms in Sp site III and CCAAT/enhancer binding protein site I. Virol J 2014; 11:92. [PMID: 24886416 PMCID: PMC4047001 DOI: 10.1186/1743-422x-11-92] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 04/25/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND HIV-1 gene expression is driven by the long terminal repeat (LTR), which contains many binding sites shown to interact with an array of host and viral factors. Selective pressures within the host as well as the low fidelity of reverse transcriptase lead to changes in the relative prevalence of genetic variants within the HIV-1 genome, including the LTR, resulting in viral quasispecies that can be differentially regulated and can potentially establish niches within specific cell types and tissues. METHODS Utilizing flow cytometry and electromobility shift assays, specific single-nucleotide sequence polymorphisms (SNPs) were shown to alter both the phenotype of LTR-driven transcription and reactivation. Additional studies also demonstrated differential loading of transcription factors to probes derived from the double-variant LTR as compared to probes from the wild type. RESULTS This study has identified specific SNPs within CCAAT/enhancer binding protein (C/EBP) site I and Sp site III (3 T, C-to-T change at position 3, and 5 T, C-to-T change at position 5 of the binding site, respectively) that alter LTR-driven gene transcription and may alter the course of viral latency and reactivation. The HIV-1 LAI LTRs containing the SNPs of interest were coupled to a plasmid encoding green fluorescent protein (GFP), and polyclonal HIV-1 LTR-GFP stable cell lines utilizing bone marrow progenitor, T, and monocytic cell lines were constructed and utilized to explore the LTR phenotype associated with these genotypic changes. CONCLUSIONS Although the 3 T and 5 T SNPs have been shown to be low-affinity binding sites, the fact that they can still result in effective HIV-1 LTR-driven gene expression, particularly within the TF-1 cell line, has suggested that the low binding site affinities associated with the 3 T C/EBP site I and 5 T Sp site III are potentially compensated for by the interaction of nuclear factor-κB with its corresponding binding sites under selected physiological and cellular conditions. Additionally, tumor necrosis factor-α and Tat can enhance basal transcription of each SNP-specific HIV-1 LTR; however, differential regulation of the LTR is both SNP- and cell type-specific.
Collapse
Affiliation(s)
- Sonia Shah
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | - Aikaterini Alexaki
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | - Satinder Dahiya
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| |
Collapse
|
45
|
Kumar A, Herbein G. The macrophage: a therapeutic target in HIV-1 infection. MOLECULAR AND CELLULAR THERAPIES 2014; 2:10. [PMID: 26056579 PMCID: PMC4452058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/27/2014] [Indexed: 11/21/2023]
Abstract
Human immunodeficiency virus (HIV) is still a serious global health concern responsible for more than 25 million deaths in last three decades. More than 34 million people are living with HIV infection. Macrophages and CD4+ T cells are the principal targets of HIV-1. The pathogenesis of HIV-1 takes different routes in macrophages and CD4+ T cells. Macrophages are resistant to the cytopathic effect of HIV-1 and produce virus for longer periods of time. In addition, macrophages being present in every organ system thus can disseminate virus to the different anatomical sites leading to the formation of viral sanctuaries. Complete cure of HIV-1 needs better understanding of viral pathogenesis in these reservoirs and implementation of knowledge into robust therapeutic products. In this review we will focus on the unique relationship between HIV-1 and macrophages. Furthermore, we will describe how successful antiretroviral therapy (ART) is in suppressing HIV and novel molecular and cellular strategies against HIV-1 in macrophages.
Collapse
Affiliation(s)
- Amit Kumar
- />Department of Virology, UPRES EA4266 Pathogens & Inflammation, University of Franche-Comte, SFR FED 4234, F-25030 Besançon, France
| | - Georges Herbein
- />Department of Virology, UPRES EA4266 Pathogens & Inflammation, University of Franche-Comte, SFR FED 4234, F-25030 Besançon, France
- />Department of Virology, Hôpital Saint-Jacques, CHRU Besançon, 2 place Saint-Jacques, F-25030 Besançon cedex, France
| |
Collapse
|
46
|
Kumar A, Herbein G. The macrophage: a therapeutic target in HIV-1 infection. MOLECULAR AND CELLULAR THERAPIES 2014; 2:10. [PMID: 26056579 PMCID: PMC4452058 DOI: 10.1186/2052-8426-2-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/27/2014] [Indexed: 12/21/2022]
Abstract
Human immunodeficiency virus (HIV) is still a serious global health concern responsible for more than 25 million deaths in last three decades. More than 34 million people are living with HIV infection. Macrophages and CD4+ T cells are the principal targets of HIV-1. The pathogenesis of HIV-1 takes different routes in macrophages and CD4+ T cells. Macrophages are resistant to the cytopathic effect of HIV-1 and produce virus for longer periods of time. In addition, macrophages being present in every organ system thus can disseminate virus to the different anatomical sites leading to the formation of viral sanctuaries. Complete cure of HIV-1 needs better understanding of viral pathogenesis in these reservoirs and implementation of knowledge into robust therapeutic products. In this review we will focus on the unique relationship between HIV-1 and macrophages. Furthermore, we will describe how successful antiretroviral therapy (ART) is in suppressing HIV and novel molecular and cellular strategies against HIV-1 in macrophages.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Virology, UPRES EA4266 Pathogens & Inflammation, University of Franche-Comte, SFR FED 4234, F-25030 Besançon, France
| | - Georges Herbein
- Department of Virology, UPRES EA4266 Pathogens & Inflammation, University of Franche-Comte, SFR FED 4234, F-25030 Besançon, France ; Department of Virology, Hôpital Saint-Jacques, CHRU Besançon, 2 place Saint-Jacques, F-25030 Besançon cedex, France
| |
Collapse
|
47
|
Dahiya S, Liu Y, Nonnemacher MR, Dampier W, Wigdahl B. CCAAT enhancer binding protein and nuclear factor of activated T cells regulate HIV-1 LTR via a novel conserved downstream site in cells of the monocyte-macrophage lineage. PLoS One 2014; 9:e88116. [PMID: 24551078 PMCID: PMC3925103 DOI: 10.1371/journal.pone.0088116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 01/03/2014] [Indexed: 12/11/2022] Open
Abstract
Transcriptional control of the human immunodeficiency virus type 1 (HIV-1) promoter, the long terminal repeat (LTR), is achieved by interactions with cis-acting elements present both upstream and downstream of the start site. In silico transcription factor binding analysis of the HIV-1 subtype B LTR sequences revealed a potential downstream CCAAT enhancer binding protein (C/EBP) binding site. This binding site (+158 to+172), designated DS3, was found to be conserved in 67% of 3,858 unique subtype B LTR sequences analyzed in terms of nucleotide sequence as well as physical location in the LTR. DS3 was found to be well represented in other subtypes as well. Interestingly, DS3 overlaps with a previously identified region that bind members of the nuclear factor of activated T cells (NFAT) family of proteins. NFATc2 exhibited a higher relative affinity for DS3 as compared with members of the C/EBP family (C/EBP α and β). DS3 was able to compete efficiently with the low-affinity upstream C/EBP binding site I with respect to C/EBP binding, suggesting utilization of both NFAT and C/EBP. Moreover, cyclosporine A treatment, which has been shown to prevent dephosphorylation and nuclear translocation of NFAT isoforms, resulted in enhanced C/EBPα binding. The interactions at DS3 were also validated in an integrated HIV-1 LTR in chronically infected U1 cells. A binding knockout of DS3 demonstrated reduced HIV-1 LTR-directed transcription under both basal and interleukin-6-stimulated conditions only in cells of the monocyte-macrophage lineage cells and not in cells of T-cell origin. Thus, the events at DS3 positively regulate the HIV-1 promoter in cells of the monocyte-macrophage lineage.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yujie Liu
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Will Dampier
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
48
|
Wu JQ, Sassé TR, Saksena MM, Saksena NK. Transcriptome analysis of primary monocytes from HIV-positive patients with differential responses to antiretroviral therapy. Virol J 2013; 10:361. [PMID: 24370116 PMCID: PMC3877975 DOI: 10.1186/1743-422x-10-361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the significant contributions of monocytes to HIV persistence, the HIV-monocyte interaction remains elusive. For patients on antiretroviral therapy, previous studies observed a virological suppression rate of >70% and suggested complete viral suppression as the primary goal. Although some studies have reported genetic dysregulations associated with HIV disease progression, research on ex vivo-derived monocytic transcriptomes from HIV+ patients with differential responses to therapy is limited. This study investigated the monocytic transcriptome distinctions between patients with sustained virus suppression and those with virological failure during highly active antiretroviral therapy (HAART). METHODS Genome-wide transcriptomes of primary monocytes from five HIV+ patients on HAART who sustainably controlled HIV to below detection level (BDL), five HIV+ patients on HAART who consecutively experienced viremia, and four healthy HIV sero-negative controls were analyzed using Illumina microarray. Pairwise comparisons were performed to identify differentially expressed genes followed by quantitative PCR validation. Gene set enrichment analysis was used to check the consistency of our dataset with previous studies, as well as to detect the global dysregulations of the biological pathways in monocytes between viremic patients and BDLs. RESULTS Pairwise comparisons including viremic patients versus controls, BDL versus controls, and viremic patients versus BDLs identified 473, 76, and 59 differentially expressed genes (fold change > 2 and FDR < 0.05), respectively. The reliability of our dataset was confirmed by gene set enrichment analysis showing that 6 out of 10 published gene lists were significantly enriched (FDR < 0.01) in at least one of the three pairwise comparisons. In the comparison of viremic patients versus BDLs, gene set enrichment analysis revealed that the pathways characterizing the primary functions of monocytes including antigen processing and presentation, FcγR mediated phagocytosis, and chemokine signaling were significantly up-regulated in viremic patients. CONCLUSIONS This study revealed the first transcriptome distinctions in monocytes between viremic patients and BDLs on HAART. Our results reflected the outcome balanced between the subversion of the monocyte transcriptome by HIV and the compensatory effect adapted by host cells. The up-regulation of antigen presentation pathway in viremic patients particularly highlighted the role of the interface between innate and adaptive immunity in HIV disease progression.
Collapse
Affiliation(s)
| | | | | | - Nitin K Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute & Westmead Hospital, University of Sydney, Westmead, Sydney, NSW, 2145, Australia.
| |
Collapse
|
49
|
Swaminathan G, Navas-Martín S, Martín-García J. MicroRNAs and HIV-1 infection: antiviral activities and beyond. J Mol Biol 2013; 426:1178-97. [PMID: 24370931 DOI: 10.1016/j.jmb.2013.12.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023]
Abstract
Cellular microRNAs (miRNAs) are an important class of small, non-coding RNAs that bind to host mRNAs based on sequence complementarity and regulate protein expression. They play important roles in controlling key cellular processes including cellular inception, differentiation and death. While several viruses have been shown to encode for viral miRNAs, controversy persists over the expression of a functional miRNA encoded in the human immunodeficiency virus type 1 (HIV-1) genome. However, it has been reported that HIV-1 infectivity is influenced by cellular miRNAs. Either through directly targeting the viral genome or by targeting host cellular proteins required for successful virus replication, multiple cellular miRNAs seem to modulate HIV-1 infection and replication. Perhaps as a survival strategy, HIV-1 may modulate proteins in the miRNA biogenesis pathway to subvert miRNA-induced antiviral effects. Global expression profiles of cellular miRNAs have also identified alterations of specific miRNAs post-HIV-1 infection both in vitro and in vivo (in various infected patient cohorts), suggesting potential roles for miRNAs in pathogenesis and disease progression. However, little attention has been devoted in understanding the roles played by these miRNAs at a cellular level. In this manuscript, we review past and current findings pertaining to the field of miRNA and HIV-1 interplay. In addition, we suggest strategies to exploit miRNAs therapeutically for curbing HIV-1 infectivity, replication and latency since they hold an untapped potential that deserves further investigation.
Collapse
Affiliation(s)
- Gokul Swaminathan
- Graduate Program in Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Sonia Navas-Martín
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Julio Martín-García
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
50
|
Inflammatory lipid sphingosine-1-phosphate upregulates C-reactive protein via C/EBPβ and potentiates breast cancer progression. Oncogene 2013; 33:3583-93. [PMID: 23955082 DOI: 10.1038/onc.2013.319] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/20/2013] [Indexed: 12/25/2022]
Abstract
A crucial role of the inflammatory lipid sphingosine-1-phosphate (S1P) in breast cancer aggressiveness has been reported. Recent clinical studies have suggested that C-reactive protein (CRP) has a role in breast cancer development. However, limited information is available on the molecular basis for the expression of CRP and its functional significance in breast cell invasion. The present study aimed to elucidate the molecular link between S1P and CRP during the invasive process of breast epithelial cells. This is the first report showing that transcription of CRP was markedly activated by S1P in breast cells. Our data suggest that not only S1P treatment but also the endogenously produced S1P may upregulate CRP in breast carcinoma cells. Transcription factors CCAAT/enhancer-binding protein beta and c-fos were required for S1P-induced CRP expression. Coupling of S1P3 to heterotrimeric Gαq triggered the expression of CRP, utilizing signaling pathways involving reactive oxygen species (ROS), Ca(2+) and extracellular signal-related kinases (ERKs). S1P-induced CRP expression was crucial for the transcriptional activation of matrix metalloproteinase-9 through ERKs, ROS and c-fos, leading to breast cell invasion. Using a xenograft mice tumor model, we demonstrated that S1P induced CRP expression both in vitro and in vivo. Taken together, our findings have revealed a molecular basis for S1P-induced transcriptional activation of CRP and its functional significance in the acquisition of the invasive phenotype of human breast epithelial cells under inflammatory conditions. Our findings may provide useful information on the identification of useful therapeutic targets for inflammatory breast cancer.
Collapse
|