1
|
Erdos T, Masuda M, Venketaraman V. Glutathione in HIV-Associated Neurocognitive Disorders. Curr Issues Mol Biol 2024; 46:5530-5549. [PMID: 38921002 PMCID: PMC11202908 DOI: 10.3390/cimb46060330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
A large portion of patients with Human Immunodeficiency Virus (HIV) have neurologic sequelae. Those with better-controlled HIV via antiretroviral therapies generally have less severe neurologic symptoms. However, for many patients, antiretrovirals do not adequately resolve symptoms. Since much of the pathogenesis of HIV/AIDS (Autoimmune Deficiency Syndrome) involves oxidative stress either directly, through viral interaction, or indirectly, through inflammatory mechanisms, we have reviewed relevant trials of glutathione supplementation in each of the HIV-associated neurocognitive diseases and have found disease-specific results. For diseases for which trials have not been completed, predicted responses to glutathione supplementation are made based on relevant mechanisms seen in the literature. It is not sufficient to conclude that all HIV-associated neurocognitive disorders (HAND) will benefit from the antioxidant effects of glutathione supplementation. The potential effects of glutathione supplementation in patients with HAND are likely to differ based on the specific HIV-associated neurocognitive disease.
Collapse
Affiliation(s)
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (T.E.); (M.M.)
| |
Collapse
|
2
|
Lin N, Erdos T, Louie C, Desai R, Lin N, Ayzenberg G, Venketaraman V. The Role of Glutathione in the Management of Cell-Mediated Immune Responses in Individuals with HIV. Int J Mol Sci 2024; 25:2952. [PMID: 38474196 PMCID: PMC10932396 DOI: 10.3390/ijms25052952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Human immunodeficiency virus (HIV) is a major cause of death worldwide. Without appropriate antiretroviral therapy, the infection can develop into acquired immunodeficiency syndrome (AIDS). AIDS leads to the dysregulation of cell-mediated immunity resulting in increased susceptibility to opportunistic infections and excessive amounts of inflammatory cytokines. HIV-positive individuals also demonstrate diminished glutathione (GSH) levels which allows for increased viral replication and increased pro-inflammatory cytokine release, further contributing to the high rates of mortality seen in patients with HIV. Adequate GSH supplementation has reduced inflammation and slowed the decline of CD4+ T cell counts in HIV-positive individuals. We aim to review the current literature regarding the role of GSH in cell-mediated immune responses in individuals with HIV- and AIDS-defining illnesses.
Collapse
Affiliation(s)
- Nicole Lin
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Thomas Erdos
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Carson Louie
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Raina Desai
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Naomi Lin
- Creighton University School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Gregory Ayzenberg
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (T.E.); (C.L.); (R.D.); (G.A.)
| |
Collapse
|
3
|
Mapamba DA, Sauli E, Mrema L, Lalashowi J, Magombola D, Buza J, Olomi W, Wallis RS, Ntinginya NE. Impact of N-Acetyl Cysteine (NAC) on Tuberculosis (TB) Patients-A Systematic Review. Antioxidants (Basel) 2022; 11:2298. [PMID: 36421484 PMCID: PMC9687770 DOI: 10.3390/antiox11112298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 05/19/2024] Open
Abstract
Sustained TB infection overproduces reactive oxygen species (ROS) as a host defense mechanism. Research shows ROS is destructive to lung tissue. Glutathione (GSH) neutralizes ROS, although it is consumed. NAC is a precursor of GSH synthesis, and administering an appropriate dose of NAC to patients with respiratory conditions may enhance lung recovery and replenish GSH. The present review searched for articles reporting on the effects of NAC in TB treatment from 1960 to 31 May 2022. The PICO search strategy was used in Google Scholar, PubMed, SciFinder, and Wiley online library databases. The COVIDENCE tool was used to delete inappropriate content. We eventually discovered five clinical trials, one case report, seven reviews, in vitro research, and four experimental animal studies from the twenty-four accepted articles. The use of NAC resulted in increased GSH levels, decreased treatment time, and was safe with minimal adverse events. However, the evidence is currently insufficient to estimate the overall effects of NAC, thus the study warrants more NAC clinical trials to demonstrate its effects in TB treatment.
Collapse
Affiliation(s)
- Daniel Adon Mapamba
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya 53107, Tanzania
- The Nelson Mandela African Institution of Science and Technology, Arusha 23118, Tanzania
| | - Elingarami Sauli
- The Nelson Mandela African Institution of Science and Technology, Arusha 23118, Tanzania
| | - Lucy Mrema
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya 53107, Tanzania
| | - Julieth Lalashowi
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya 53107, Tanzania
| | - David Magombola
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya 53107, Tanzania
| | - Joram Buza
- The Nelson Mandela African Institution of Science and Technology, Arusha 23118, Tanzania
| | - Willyhelmina Olomi
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya 53107, Tanzania
| | | | - Nyanda Elias Ntinginya
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya 53107, Tanzania
| |
Collapse
|
4
|
Amaral EP, Foreman TW, Namasivayam S, Hilligan KL, Kauffman KD, Barbosa Bomfim CC, Costa DL, Barreto-Duarte B, Gurgel-Rocha C, Santana MF, Cordeiro-Santos M, Du Bruyn E, Riou C, Aberman K, Wilkinson RJ, Barber DL, Mayer-Barber KD, Andrade BB, Sher A. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med 2022; 219:e20220504. [PMID: 36069923 PMCID: PMC9458471 DOI: 10.1084/jem.20220504] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 01/15/2023] Open
Abstract
Cellular necrosis during Mycobacterium tuberculosis (Mtb) infection promotes both immunopathology and bacterial dissemination. Glutathione peroxidase-4 (Gpx4) is an enzyme that plays a critical role in preventing iron-dependent lipid peroxidation-mediated cell death (ferroptosis), a process previously implicated in the necrotic pathology seen in Mtb-infected mice. Here, we document altered GPX4 expression, glutathione levels, and lipid peroxidation in patients with active tuberculosis and assess the role of this pathway in mice genetically deficient in or overexpressing Gpx4. We found that Gpx4-deficient mice infected with Mtb display substantially increased lung necrosis and bacterial burdens, while transgenic mice overexpressing the enzyme show decreased bacterial loads and necrosis. Moreover, Gpx4-deficient macrophages exhibited enhanced necrosis upon Mtb infection in vitro, an outcome suppressed by the lipid peroxidation inhibitor, ferrostatin-1. These findings provide support for the role of ferroptosis in Mtb-induced necrosis and implicate the Gpx4/GSH axis as a target for host-directed therapy of tuberculosis.
Collapse
Affiliation(s)
- Eduardo P. Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Taylor W. Foreman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Kerry L. Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Keith D. Kauffman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Caio Cesar Barbosa Bomfim
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Diego L. Costa
- Departmento de Bioquímica e Imunologia, Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Beatriz Barreto-Duarte
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Laureate Universities, Salvador, Brazil
| | - Clarissa Gurgel-Rocha
- Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador, Bahia, Brazil
- Center for Biotechnology and Cell Therapy, D’Or Institute for Research and Education, Sao Rafael Hospital, Salvador, Bahia, Brazil
| | - Monique Freire Santana
- Departmento de Ensino e Pesquisa, Fundação Centro de Controle de Oncologia do Estado do Amazonas, Manaus, Brazil
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Marcelo Cordeiro-Santos
- Fundação Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Faculdade de Medicina, Universidade Nilton Lins, Manaus, Brazil
| | - Elsa Du Bruyn
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Catherine Riou
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kate Aberman
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Robert John Wilkinson
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, Northwick Park Hospital, Harrow, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bruno B. Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador, Laureate Universities, Salvador, Brazil
- Curso de Medicina, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Universidade Faculdade de Tecnologia e Ciências, Salvador, Bahia, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Singh A, Zhao X, Drlica K. Fluoroquinolone heteroresistance, antimicrobial tolerance, and lethality enhancement. Front Cell Infect Microbiol 2022; 12:938032. [PMID: 36250047 PMCID: PMC9559723 DOI: 10.3389/fcimb.2022.938032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
With tuberculosis, the emergence of fluoroquinolone resistance erodes the ability of treatment to interrupt the progression of MDR-TB to XDR-TB. One way to reduce the emergence of resistance is to identify heteroresistant infections in which subpopulations of resistant mutants are likely to expand and make the infections fully resistant: treatment modification can be instituted to suppress mutant enrichment. Rapid DNA-based detection methods exploit the finding that fluoroquinolone-resistant substitutions occur largely in a few codons of DNA gyrase. A second approach for restricting the emergence of resistance involves understanding fluoroquinolone lethality through studies of antimicrobial tolerance, a condition in which bacteria fail to be killed even though their growth is blocked by lethal agents. Studies with Escherichia coli guide work with Mycobacterium tuberculosis. Lethal action, which is mechanistically distinct from blocking growth, is associated with a surge in respiration and reactive oxygen species (ROS). Mutations in carbohydrate metabolism that attenuate ROS accumulation create pan-tolerance to antimicrobials, disinfectants, and environmental stressors. These observations indicate the existence of a general death pathway with respect to stressors. M. tuberculosis displays a variation on the death pathway idea, as stress-induced ROS is generated by NADH-mediated reductive stress rather than by respiration. A third approach, which emerges from lethality studies, uses a small molecule, N-acetyl cysteine, to artificially increase respiration and additional ROS accumulation. That enhances moxifloxacin lethality with M. tuberculosis in culture, during infection of cultured macrophages, and with infection of mice. Addition of ROS stimulators to fluoroquinolone treatment of tuberculosis constitutes a new direction for suppressing the transition of MDR-TB to XDR-TB.
Collapse
Affiliation(s)
- Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- *Correspondence: Amit Singh, ; Karl Drlica,
| | - Xilin Zhao
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, United States
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Karl Drlica
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, United States
- *Correspondence: Amit Singh, ; Karl Drlica,
| |
Collapse
|
6
|
Yegiazaryan A, Abnousian A, Alexander LJ, Badaoui A, Flaig B, Sheren N, Aghazarian A, Alsaigh D, Amin A, Mundra A, Nazaryan A, Guilford FT, Venketaraman V. Recent Developments in the Understanding of Immunity, Pathogenesis and Management of COVID-19. Int J Mol Sci 2022; 23:9297. [PMID: 36012562 PMCID: PMC9409103 DOI: 10.3390/ijms23169297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 02/03/2023] Open
Abstract
Coronaviruses represent a diverse family of enveloped positive-sense single stranded RNA viruses. COVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus-2, is a highly contagious respiratory disease transmissible mainly via close contact and respiratory droplets which can result in severe, life-threatening respiratory pathologies. It is understood that glutathione, a naturally occurring antioxidant known for its role in immune response and cellular detoxification, is the target of various proinflammatory cytokines and transcription factors resulting in the infection, replication, and production of reactive oxygen species. This leads to more severe symptoms of COVID-19 and increased susceptibility to other illnesses such as tuberculosis. The emergence of vaccines against COVID-19, usage of monoclonal antibodies as treatments for infection, and implementation of pharmaceutical drugs have been effective methods for preventing and treating symptoms. However, with the mutating nature of the virus, other treatment modalities have been in research. With its role in antiviral defense and immune response, glutathione has been heavily explored in regard to COVID-19. Glutathione has demonstrated protective effects on inflammation and downregulation of reactive oxygen species, thereby resulting in less severe symptoms of COVID-19 infection and warranting the discussion of glutathione as a treatment mechanism.
Collapse
Affiliation(s)
- Aram Yegiazaryan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Arbi Abnousian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Logan J. Alexander
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ali Badaoui
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Brandon Flaig
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Armin Aghazarian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Dijla Alsaigh
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Arman Amin
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Akaash Mundra
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Anthony Nazaryan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
7
|
Glutathione reductase system changes in HTLV-1 infected patients. Virusdisease 2022; 33:32-38. [PMID: 35493755 PMCID: PMC9005565 DOI: 10.1007/s13337-022-00758-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 01/28/2022] [Indexed: 10/18/2022] Open
Abstract
During chronic HTLV-1 infections oxidative stress occurs and contributes in viral pathogenesis. Glutaredoxin (Grx) system is one of the most effective antioxidant components. The system maintains the cellular redox and scavenges reactive oxygen species through the function of glutathione reductase (GR) enzyme, NADPH and reduced glutathione (GSH). This study was performed to investigate potential changes in GR gene expression and activity as well as GSH level, and their association with the viral load in HTLV-1 infection. Forty HTLV-1 seropositive patients divided into two groups: asymptomatic carriers (N = 20) and HAM/TSP (N = 20) with the same number of age and sex-matched healthy controls were recruited in this study. GR cellular gene expression and viral load in PBMCs were determined using Real-time PCR Technique. Enzyme activity and GSH level in sera were measured by commercial kits based on manufacturer's provided protocols. GR gene expression and GR enzyme activity, as well as GSH level, were significantly lower in HTLV-1 patients. A negative correlation between viral load and GR gene expression/enzyme activity was observed in HAM/TSP group. Similarly, a negative relationship between viral load and GSH levels was observed in both carrier and HAM/TSP groups. We also found that in profound complicated condition of HTLV-1 infection, HAM/TSP, Grx system components activity was significantly decreased compared to the controls. Such observation was not the case in clinically healthy HTLV-1 carriers. These findings may shed a light on the conditions contributing in pathogenesis of the complications and exacerbation of the disease in the HAM/TSP cases. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-022-00758-y.
Collapse
|
8
|
Liposomes as Carriers for the Delivery of Efavirenz in Combination with Glutathione—An Approach to Combat Opportunistic Infections. APPLIED SCIENCES-BASEL 2022; 12. [PMID: 35663347 PMCID: PMC9161618 DOI: 10.3390/app12031468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus (HIV)-infected individuals display an enhanced production of reactive oxygen species (ROS). This reduction of antioxidant capacity in host tissues has been related to the decrease in total levels of ROS scavengers such as glutathione (GSH). Prevention of opportunistic infections due to a weakened immune system is becoming a key strategy along with HIV elimination. Research in these directions is clearly warranted, especially a combination of antiretrovirals and antioxidants to ameliorate oxidative stress, improve intracellular uptake and target viral reservoirs. Hence, we aimed to formulate liposomes loaded with the antiretroviral drug efavirenz (EFA) in the presence of glutathione, as these carriers can be engineered to enhance the ability to reach the target reservoirs. The goal of the present work was to investigate the intracellular uptake of EFA-loaded liposome (with and without GSH) by human monocytic leukemia cells (THP-1 cells) and examine cell viability and ROS scavenging activity. Results obtained provided significant data as follows: (i) treatment with EFA and GSH combination could enhance the uptake and reduce cytotoxicity; (ii) encapsulation of EFA into liposomes increased its levels in the macrophages, which was further enhanced in the presence of GSH; (iii) delivery of EFA in the presence of GSH quenched the intracellular ROS, which was significantly higher when delivered via liposomes. Data revealed that a combination of EFA and GSH encompasses advantages; hence, GSH supplementation could be a safe and cost-effective treatment to slow the development of HIV infection and produce an immune-enhancing effect.
Collapse
|
9
|
The Role of NRF2 in Mycobacterial Infection. Antioxidants (Basel) 2021; 10:antiox10121861. [PMID: 34942964 PMCID: PMC8699052 DOI: 10.3390/antiox10121861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
The incidence of pulmonary nontuberculous mycobacterial (NTM) infection is increasing worldwide, and its clinical outcomes with current chemotherapies are unsatisfactory. The incidence of tuberculosis (TB) is still high in Africa, and the existence of drug-resistant tuberculosis is also an important issue for treatment. To discover and develop new efficacious anti-mycobacterial treatments, it is important to understand the host-defense mechanisms against mycobacterial infection. Nuclear erythroid 2 p45-related factor-2 (NRF2) is known to be a major regulator of various antioxidant response element (ARE)-driven cytoprotective gene expressions, and its protective role has been demonstrated in infections. However, there are not many papers or reviews regarding the role of NRF2 in mycobacterial infectious disease. Therefore, this review focuses on the role of NRF2 in the pathogenesis of Mycobacterium tuberculosis and Mycobacterium avium infection.
Collapse
|
10
|
Safe IP, Amaral EP, Araújo-Pereira M, Lacerda MVG, Printes VS, Souza AB, Beraldi-Magalhães F, Monteiro WM, Sampaio VS, Barreto-Duarte B, Andrade AMS, Spener-Gomes R, Costa AG, Cordeiro-Santos M, Andrade BB. Adjunct N-Acetylcysteine Treatment in Hospitalized Patients With HIV-Associated Tuberculosis Dampens the Oxidative Stress in Peripheral Blood: Results From the RIPENACTB Study Trial. Front Immunol 2021; 11:602589. [PMID: 33613521 PMCID: PMC7889506 DOI: 10.3389/fimmu.2020.602589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) still causes significant morbidity and mortality worldwide, especially in persons living with human immunodeficiency virus (HIV). This disease is hallmarked by persistent oxidative stress and systemic inflammation. N-acetylcysteine (NAC), a glutathione (GSH) precursor, has been shown in experimental models to limit Mycobacterium tuberculosis infection and disease both by suppression of the host oxidative response and through direct antimicrobial activity. In a recent phase II randomized clinical trial (RIPENACTB study), use of NAC as adjunct therapy during the first two months of anti-TB treatment was safe. Whether adjunct NAC therapy of patients with TB-HIV coinfection in the context of anti-TB treatment could directly affect pro-oxidation and systemic inflammation has not been yet formally demonstrated. To test this hypothesis, we leveraged existing data and biospecimens from the RIPENACTB trial to measure a number of surrogate markers of oxidative stress and of immune activation in peripheral blood of the participants at pre-treatment and at the day 60 of anti-TB treatment. Upon initiation of therapy, we found that the group of patients undertaking NAC exhibited significant increase in GSH levels and in total antioxidant status while displaying substantial reduction in lipid peroxidation compared to the control group. Only small changes in plasma concentrations of cytokines were noted. Pharmacological improvement of the host antioxidant status appears to be a reasonable strategy to reduce TB-associated immunopathology.
Collapse
Affiliation(s)
- Izabella P Safe
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Eduardo P Amaral
- Immunobiology Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mariana Araújo-Pereira
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Vitoria S Printes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Alexandra B Souza
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Vanderson S Sampaio
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Beatriz Barreto-Duarte
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Alice M S Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | - Renata Spener-Gomes
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Curso de Medicina, Universidade Federal do Amazonas, Manaus, Brazil
| | - Allyson Guimarães Costa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Marcelo Cordeiro-Santos
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Curso de Medicina, Universidade Nilton Lins, Manaus, Brazil
| | - Bruno B Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (UniFTC), Salvador, Brazil.,Curso de Medicina, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| |
Collapse
|
11
|
Palma C, La Rocca C, Gigantino V, Aquino G, Piccaro G, Di Silvestre D, Brambilla F, Rossi R, Bonacina F, Lepore MT, Audano M, Mitro N, Botti G, Bruzzaniti S, Fusco C, Procaccini C, De Rosa V, Galgani M, Alviggi C, Puca A, Grassi F, Rezzonico-Jost T, Norata GD, Mauri P, Netea MG, de Candia P, Matarese G. Caloric Restriction Promotes Immunometabolic Reprogramming Leading to Protection from Tuberculosis. Cell Metab 2021; 33:300-318.e12. [PMID: 33421383 DOI: 10.1016/j.cmet.2020.12.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/13/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
There is a strong relationship between metabolic state and susceptibility to Mycobacterium tuberculosis (MTB) infection, with energy metabolism setting the basis for an exaggerated immuno-inflammatory response, which concurs with MTB pathogenesis. Herein, we show that controlled caloric restriction (CR), not leading to malnutrition, protects susceptible DBA/2 mice against pulmonary MTB infection by reducing bacterial load, lung immunopathology, and generation of foam cells, an MTB reservoir in lung granulomas. Mechanistically, CR induced a metabolic shift toward glycolysis, and decreased both fatty acid oxidation and mTOR activity associated with induction of autophagy in immune cells. An integrated multi-omics approach revealed a specific CR-induced metabolomic, transcriptomic, and proteomic signature leading to reduced lung damage and protective remodeling of lung interstitial tightness able to limit MTB spreading. Our data propose CR as a feasible immunometabolic manipulation to control MTB infection, and this approach offers an unexpected strategy to boost immunity against MTB.
Collapse
Affiliation(s)
- Carla Palma
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy.
| | - Claudia La Rocca
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Vincenzo Gigantino
- Pathology Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, 80131 Naples, Italy
| | - Gabriella Aquino
- Pathology Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, 80131 Naples, Italy
| | - Giovanni Piccaro
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Dario Di Silvestre
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy
| | - Francesca Brambilla
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy
| | - Rossana Rossi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy
| | - Fabrizia Bonacina
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Maria Teresa Lepore
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Matteo Audano
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Nico Mitro
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Gerardo Botti
- Scientific Directorate, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, 80131 Naples, Italy
| | - Sara Bruzzaniti
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", 80126 Napoli, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Claudio Procaccini
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Roma, Italy
| | - Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Roma, Italy
| | - Mario Galgani
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Carlo Alviggi
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Department of Neuroscience, Reproductive Science, and Odontostomatology, University of Naples, Federico II, Naples, Italy
| | - Annibale Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi-Salerno, Italy; IRCCS MultiMedica, 20138 Milano, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Tanja Rezzonico-Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Giuseppe Danilo Norata
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy; Center for the Study of Atherosclerosis, Società Italiana Studio Aterosclerosi, Bassini Hospital, 20092 Cinisello Balsamo, Milano, Italy
| | - Pierluigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche (ITB-CNR), 20090 Segrate, Milano, Italy; Istituto di Scienze della Vita, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Mihai G Netea
- Radboud Center for Infectious Diseases and Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | | | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy.
| |
Collapse
|
12
|
Shiozawa A, Kajiwara C, Ishii Y, Tateda K. N-acetyl-cysteine mediates protection against Mycobacterium avium through induction of human β-defensin-2 in a mouse lung infection model. Microbes Infect 2020; 22:567-575. [PMID: 32882411 DOI: 10.1016/j.micinf.2020.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Mycobacterium avium complex is a causative organism for refractory diseases. In this study, we examined the effects of N-acetyl-cysteine on M. avium infection in vitro and in vivo. N-acetyl-cysteine treatment suppressed the growth of M. avium in A549 cells in a concentration-dependent manner. This effect was related to the induction of the antibacterial peptide human β-defensin-2. In a mouse model, N-acetyl-cysteine treatment significantly reduced the number of bacteria in the lungs and induced murine β-defensin-3. In interleukin-17-deficient mice, the effects of N-acetyl-cysteine disappeared, indicating that these mechanisms may be mediated by interleukin-17. Moreover, an additional reduction in bacterial load was observed in mice administered N-acetyl-cysteine in combination with clarithromycin. Our findings demonstrate the potent antimycobacterial effects of N-acetyl-cysteine against M. avium by inducing antimicrobial peptide, suggesting that N-acetyl-cysteine may have applications as an alternative to classical treatment regimens.
Collapse
Affiliation(s)
- Ayako Shiozawa
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Chiaki Kajiwara
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan.
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Redox homeostasis as a target for new antimycobacterial agents. Int J Antimicrob Agents 2020; 56:106148. [PMID: 32853674 DOI: 10.1016/j.ijantimicag.2020.106148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/19/2020] [Indexed: 11/20/2022]
Abstract
Despite early treatment with antimycobacterial combination therapy, drug resistance continues to emerge. Maintenance of redox homeostasis is essential for Mycobacterium avium (M. avium) survival and growth. The aim of the present study was to investigate the antimycobacterial activity of two pro-glutathione (pro-GSH) drugs that are able to induce redox stress in M. avium and to modulate cytokine production by macrophages. Hence, we investigated two molecules shown to possess antiviral and immunomodulatory properties: C4-GSH, an N-butanoyl GSH derivative; and I-152, a prodrug of N-acetyl-cysteine (NAC) and β-mercaptoethylamine (MEA). Both molecules showed activity against replicating M. avium, both in the cell-free model and inside macrophages. Moreover, they were even more effective in reducing the viability of bacteria that had been kept in water for 7 days, proving to be active both against replicating and non-replicating bacteria. By regulating the macrophage redox state, I-152 modulated cytokine production. In particular, higher levels of interferon-gamma (IFN-γ), interleukin 1 beta (IL-1β), IL-18 and IL-12, which are known to be crucial for the control of intracellular pathogens, were found after I-152 treatment. Our results show that C4-GSH and I-152, by inducing perturbation of redox equilibrium, exert bacteriostatic and bactericidal activity against M. avium. Moreover, I-152 can boost the host response by inducing the production of cytokines that serve as key regulators of the Th1 response.
Collapse
|
14
|
Ejigu DA, Abay SM. N-Acetyl Cysteine as an Adjunct in the Treatment of Tuberculosis. Tuberc Res Treat 2020; 2020:5907839. [PMID: 32411461 PMCID: PMC7210531 DOI: 10.1155/2020/5907839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/04/2020] [Accepted: 04/22/2020] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress is a common feature of tuberculosis (TB), and persons with reduced antioxidants are at more risk of TB. TB patients with relatively severe oxidative stress had also more advanced disease as measured by the Karnofsky performance index. Since adverse effects from anti-TB drugs are also mediated by free radicals, TB patients are prone to side effects, such as hearing loss. In previous articles, researchers appealed for clinical trials aiming at evaluating N-acetyl cysteine (NAC) in attenuating the dreaded hearing loss during multidrug-resistant TB (MDR-TB) treatment. However, before embarking on such trials, considerations of NAC's overall impact on TB treatment are crucial. Unfortunately, such a comprehensive report on NAC is missing in the literature and this manuscript reviews the broader effect of NAC on TB treatment. This paper discusses NAC's effect on mycobacterial clearance, hearing loss, drug-induced liver injury, and its interaction with anti-TB drugs. Based on the evidence accrued to date, NAC appears to have various beneficial effects on TB treatment. However, despite the favorable interaction between NAC and first-line anti-TB drugs, the interaction between the antioxidant and some of the second-line anti-TB drugs needs further investigations.
Collapse
Affiliation(s)
- Dawit A. Ejigu
- Department of Pharmacology, St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Solomon M. Abay
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
The role of low molecular weight thiols in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2019; 116:44-55. [PMID: 31153518 DOI: 10.1016/j.tube.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Low molecular weight (LMW) thiols are molecules with a functional sulfhydryl group that enable them to detoxify reactive oxygen species, reactive nitrogen species and other free radicals. Their roles range from their ability to modulate the immune system to their ability to prevent damage of biological molecules such as DNA and proteins by protecting against oxidative, nitrosative and acidic stress. LMW thiols are synthesized and found in both eukaryotes and prokaryotes. Due to their beneficial role to both eukaryotes and prokaryotes, their specific functions need to be elucidated, most especially in pathogenic prokaryotes such as Mycobacterium tuberculosis (M.tb), in order to provide a rationale for targeting their biosynthesis for drug development. Ergothioneine (ERG), mycothiol (MSH) and gamma-glutamylcysteine (GGC) are LMW thiols that have been shown to interplay to protect M.tb against cellular stress. Though ERG, MSH and GGC seem to have overlapping functions, studies are gradually revealing their unique physiological roles. Understanding their unique physiological role during the course of tuberculosis (TB) infection, would pave the way for the development of drugs that target their biosynthetic pathway. This review identifies the knowledge gap in the unique physiological roles of LMW thiols and proposes their mechanistic roles based on previous studies. In addition, it gives an update on identified inhibitors of their biosynthetic enzymes.
Collapse
|
16
|
Teskey G, Abrahem R, Cao R, Gyurjian K, Islamoglu H, Lucero M, Martinez A, Paredes E, Salaiz O, Robinson B, Venketaraman V. Glutathione as a Marker for Human Disease. Adv Clin Chem 2018; 87:141-159. [PMID: 30342710 DOI: 10.1016/bs.acc.2018.07.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutathione (GSH), often referred to as "the master antioxidant," participates not only in antioxidant defense systems, but many metabolic processes, and therefore its role cannot be overstated. GSH deficiency causes cellular risk for oxidative damage and thus as expected, GSH imbalance is observed in a wide range of pathological conditions including tuberculosis (TB), HIV, diabetes, cancer, and aging. Consequently, it is not surprising that GSH has attracted the attention of biological researchers and pharmacologists alike as a possible target for medical intervention. Here, we discuss the role GSH plays amongst these pathological conditions to illuminate how it can be used as a marker for human disease.
Collapse
Affiliation(s)
- Garrett Teskey
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Rachel Abrahem
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Ruoqiong Cao
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States; College of life Sciences, Hebei University, Baoding, China
| | - Karo Gyurjian
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Hicret Islamoglu
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
| | - Mariana Lucero
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Andrew Martinez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Erik Paredes
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Oscar Salaiz
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Brittanie Robinson
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Vishwanath Venketaraman
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States; Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
17
|
Compounds with Potential Activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2018; 62:AAC.02236-17. [PMID: 29437626 DOI: 10.1128/aac.02236-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/01/2018] [Indexed: 12/26/2022] Open
Abstract
The high acquisition rate of drug resistance by Mycobacterium tuberculosis necessitates the ongoing search for new drugs to be incorporated in the tuberculosis (TB) regimen. Compounds used for the treatment of other diseases have the potential to be repurposed for the treatment of TB. In this study, a high-throughput screening of compounds against thiol-deficient Mycobacterium smegmatis strains and subsequent validation with thiol-deficient M. tuberculosis strains revealed that ΔegtA and ΔmshA mutants had increased susceptibility to azaguanine (Aza) and sulfaguanidine (Su); ΔegtB and ΔegtE mutants had increased susceptibility to bacitracin (Ba); and ΔegtA, ΔmshA, and ΔegtB mutants had increased susceptibility to fusaric acid (Fu). Further analyses revealed that some of these compounds were able to modulate the levels of thiols and oxidative stress in M. tuberculosis This study reports the activities of Aza, Su, Fu, and Ba against M. tuberculosis and provides a rationale for further investigations.
Collapse
|
18
|
Sepehri Z, Mirzaei N, Sargazi A, Sargazi A, Mishkar AP, Kiani Z, Oskoee HO, Arefi D, Ghavami S. Essential and toxic metals in serum of individuals with active pulmonary tuberculosis in an endemic region. J Clin Tuberc Other Mycobact Dis 2017; 6:8-13. [PMID: 31723693 PMCID: PMC6850246 DOI: 10.1016/j.jctube.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/21/2017] [Indexed: 12/02/2022] Open
Abstract
Trace elements play an important role in tuberculosis infection because their deficiencies can be associated with impaired immunity. Blood samples were collected from a total of 320 active pulmonary tuberculosis patients and healthy individuals. The serum concentrations of Zinc, Iron, Copper, Calcium, lead, Arsenic and Selenium were analyzed by atomic absorption spectrometry. The levels of trace elements were measured after 2, 4 and 6 months of anti-TB treatment initiation in TB infected groups. Compared to the control group, the concentrations of Zinc, Selenium, and Iron were significantly lower (P < 0.001) in tuberculosis patients; however, that of Arsenic, Lead, and copper was significantly higher (P < 0.001) in the serum of patients. Cu/Zn and Cu/Se ratios were also significantly higher (P < 0.001) in TB patients compared to the control group. In addition, serum concentration calcium was similar in both TB patients and healthy controls. Our results indicated that trace elements concentrations in tuberculosis patients are related to each element role in immune system. Wherever the element is essential for the pathogenesis of bacteria, its concentration will remain low; and contrariwise, when the element is toxic for the bacteria, its level will be regulated up to provide a perfect condition for bacterial growth.
Collapse
Affiliation(s)
- Zahra Sepehri
- Department of Internal Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Nima Mirzaei
- Zabol University of Medical Sciences, Zabol, Iran
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 3P4, Canada
| | - Aliyeh Sargazi
- Medical Student, Student Research Committee, Zabol University of Medical Sciences, Zabol, Iran
| | - Alireza Sargazi
- Medical Student, Student Research Committee, Zabol University of Medical Sciences, Zabol, Iran
| | | | - Zohre Kiani
- Medical Student, Student Research Committee, Zabol University of Medical Sciences, Zabol, Iran
- Medical Student, Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Owaysee Oskoee
- Department of infectious diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Donya Arefi
- Zabol University of Medical Sciences, Zabol, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 3P4, Canada
| |
Collapse
|
19
|
Amaral EP, Conceição EL, Costa DL, Rocha MS, Marinho JM, Cordeiro-Santos M, D'Império-Lima MR, Barbosa T, Sher A, Andrade BB. N-acetyl-cysteine exhibits potent anti-mycobacterial activity in addition to its known anti-oxidative functions. BMC Microbiol 2016; 16:251. [PMID: 27793104 PMCID: PMC5084440 DOI: 10.1186/s12866-016-0872-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023] Open
Abstract
Background Mycobacterium tuberculosis infection is thought to induce oxidative stress. N-acetyl-cysteine (NAC) is widely used in patients with chronic pulmonary diseases including tuberculosis due to its mucolytic and anti-oxidant activities. Here, we tested whether NAC exerts a direct antibiotic activity against mycobacteria. Methods Oxidative stress status in plasma was compared between pulmonary TB (PTB) patients and those with latent M. tuberculosis infection (LTBI) or healthy uninfected individuals. Lipid peroxidation, DNA oxidation and cell death, as well as accumulation of reactive oxygen species (ROS) were measured in cultures of primary human monocyte-derived macrophages infected with M. tuberculosis and treated or not with NAC. M. tuberculosis, M. avium and M. bovis BCG cultures were also exposed to different doses of NAC with or without medium pH adjustment to control for acidity. The anti-mycobacterial effect of NAC was assessed in M. tuberculosis infected human THP-1 cells and bone marrow-derived macrophages from mice lacking a fully functional NADPH oxidase system. The capacity of NAC to control M. tuberculosis infection was further tested in vivo in a mouse (C57BL/6) model. Results PTB patients exhibited elevated levels of oxidation products and a reduction of anti-oxidants compared with LTBI cases or uninfected controls. NAC treatment in M. tuberculosis-infected human macrophages resulted in a decrease of oxidative stress and cell death evoked by mycobacteria. Importantly, we observed a dose-dependent reduction in metabolic activity and in vitro growth of NAC treated M. tuberculosis, M. avium and M. bovis BCG. Furthermore, anti-mycobacterial activity in infected macrophages was shown to be independent of the effects of NAC on the host NADPH oxidase system in vitro. Short-term NAC treatment of M. tuberculosis infected mice in vivo resulted in a significant reduction of mycobacterial loads in the lungs. Conclusions NAC exhibits potent anti-mycobacterial effects and may limit M. tuberculosis infection and disease both through suppression of the host oxidative response and through direct antimicrobial activity. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0872-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Immunology, Laboratory of Immunology of Infectious Diseases, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Elisabete L Conceição
- Laboratório Integrado de Microbiologia e Imunorregulação (LIMI), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Bahia, Brazil.,Instituto de Ciências da Saúde (ICS), Universidade Federal da Bahia, Salvador, 40110-100, Brazil
| | - Diego L Costa
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael S Rocha
- Laboratório Integrado de Microbiologia e Imunorregulação (LIMI), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Bahia, Brazil
| | - Jamocyr M Marinho
- Departament of Internal Medicine, School of Medicine and Public Health, Salvador, 41150-100, Brazil.,Programa de Controle da Tuberculose, Hospital Especializado Octávio Mangabeira, Salvador, 40320-350, Brazil
| | - Marcelo Cordeiro-Santos
- Departamento de Ensino e Pós-Graduação, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Maria Regina D'Império-Lima
- Department of Immunology, Laboratory of Immunology of Infectious Diseases, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Theolis Barbosa
- Laboratório Integrado de Microbiologia e Imunorregulação (LIMI), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Bahia, Brazil.,Instituto de Ciências da Saúde (ICS), Universidade Federal da Bahia, Salvador, 40110-100, Brazil
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bruno B Andrade
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA. .,Laboratório Integrado de Microbiologia e Imunorregulação (LIMI), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, 40296-710, Bahia, Brazil. .,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, 45204-040, Brazil. .,Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, 41741-590, Brazil.
| |
Collapse
|
20
|
Serra A, Schito GC, Nicoletti G, Fadda G. A Therapeutic Approach in the Treatment of Infections of the Upper Airways: Thiamphenicol Glycinate Acetylcysteinate in Sequential Treatment (Systemic-Inhalatory Route). Int J Immunopathol Pharmacol 2016; 20:607-17. [PMID: 17880774 DOI: 10.1177/039463200702000319] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Eight hundred and seventeen patients with upper respiratory tract infections were treated with thiamphenicol glycinate acetylcisteinate (TGA) or other standard antibiotics for 6–10 days in a randomised trial. In 419 out of 817 patients, the symptomatology was severe and they were treated with TGA in sequential therapy (TGA 500 mg- as thiamphenicol- b.i.d. intramuscularly on the first day and TGA 500 mg b.i.d by aerosol during the following days) (n=151), or with antibiotics of comparison (n=268) given intramuscularly. In this group the disappearance of the symptomatology with TGA ranged from 90% of the patients with otitis media to 94% in pharyngotonsillitis and rhinosinusitis; in this latter group TGA was significantly better than cefazolin. In 398 patients with mild symptomatology TGA (250 mg - as thiamphenicol- b.i.d.) was given by aerosol (n=149) and the antibiotics of comparison by oral route (n=249). In TGA patients, the disappearance of symptoms was achieved in 87% of those with rhinosinusitis, in 88% of those with pharyngotonsillitis and in 91% of those with otitis media. S. pyogenes, S. pneumoniae and H. influenzae were the most frequently isolated pathogens, and none of the isolated bacteria proved to be resistant to TGA. Microbiological eradication was obtained in TGA groups in a percentage of patients ranging from 90.2 to 96.0% in those with severe forms, and from 86.2 to 91.6% in those with a mild clinical picture. Investigators rated the TGA efficacy as “excellent” in 96–100% of the patients with severe forms and in 85.5%–100% of the patients with mild forms, whereas in the group of patients with rhinosinusitis the comparison of TGA versus other treatment was significantly in favour of TGA. The Investigator rating of treatment tolerability significantly favoured TGA in sequential treatments in comparison to the other antibiotics. No patient dropped out from the trial because of adverse events.
Collapse
Affiliation(s)
- A Serra
- Department of Otorhinolaringology, University of Catania, Catania, Italy.
| | | | | | | |
Collapse
|
21
|
Morris D, Ly J, Chi PT, Daliva J, Nguyen T, Soofer C, Chen YC, Lagman M, Venketaraman V. Glutathione synthesis is compromised in erythrocytes from individuals with HIV. Front Pharmacol 2014; 5:73. [PMID: 24782776 PMCID: PMC3990052 DOI: 10.3389/fphar.2014.00073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/28/2014] [Indexed: 02/02/2023] Open
Abstract
We demonstrated that the levels of enzymes responsible for the synthesis of glutathione (GSH) such as glutathione synthase (GSS), glutamate-cysteine ligase-catalytic subunit (GCLC), and glutathione reductase (GSR) were significantly reduced in the red blood cells (RBCs) isolated from individuals with human immunodeficiency virus (HIV) infection and this reduction correlated with decreased levels of intracellular GSH. GSH content in RBCs can be used as a marker for increased overall oxidative stress and immune dysfunctions caused by HIV infection. Our data supports our hypothesis that compromised levels of GSH in HIV infected individuals’ is due to decreased levels of GSH-synthetic enzymes. The role of GSH in combating oxidative stress and improving the functions of immune cells in HIV patients’ indicates the benefit of an antioxidant supplement which can reduce the cellular damage and promote the functions of immune cells.
Collapse
Affiliation(s)
- Devin Morris
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences Pomona, CA, USA
| | - Judy Ly
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences Pomona, CA, USA
| | - Po-Ting Chi
- Graduate College of Biomedical Sciences, Western University of Health Sciences Pomona, CA, USA
| | - John Daliva
- Graduate College of Biomedical Sciences, Western University of Health Sciences Pomona, CA, USA
| | - Truongson Nguyen
- Graduate College of Biomedical Sciences, Western University of Health Sciences Pomona, CA, USA
| | - Charleen Soofer
- Graduate College of Biomedical Sciences, Western University of Health Sciences Pomona, CA, USA
| | - Yung C Chen
- Graduate College of Biomedical Sciences, Western University of Health Sciences Pomona, CA, USA
| | - Minette Lagman
- Graduate College of Biomedical Sciences, Western University of Health Sciences Pomona, CA, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences Pomona, CA, USA
| |
Collapse
|
22
|
Characterization of dendritic cell and regulatory T cell functions against Mycobacterium tuberculosis infection. BIOMED RESEARCH INTERNATIONAL 2013; 2013:402827. [PMID: 23762843 PMCID: PMC3676983 DOI: 10.1155/2013/402827] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/28/2013] [Accepted: 05/08/2013] [Indexed: 11/17/2022]
Abstract
Glutathione (GSH) is a tripeptide that regulates intracellular redox and other vital aspects of cellular functions. GSH plays a major role in enhancing the immune system. Dendritic cells (DCs) are potent antigen presenting cells that participate in both innate and acquired immune responses against microbial infections. Regulatory T cells (Tregs) play a significant role in immune homeostasis. In this study, we investigated the effects of GSH in enhancing the innate and adaptive immune functions of DCs against Mycobacterium tuberculosis (M. tb) infection. We also characterized the functions of the sub-populations of CD4+T cells such as Tregs and non-Tregs in modulating the ability of monocytes to control the intracellular M. tb infection. Our results indicate that GSH by its direct antimycobacterial activity inhibits the growth of intracellular M. tb inside DCs. GSH also increases the expressions of costimulatory molecules such as HLA-DR, CD80 and CD86 on the cell surface of DCs. Furthermore, GSH-enhanced DCs induced a higher level of T-cell proliferation. We also observed that enhancing the levels of GSH in Tregs resulted in downregulation in the levels of IL-10 and TGF- β and reduction in the fold growth of M. tb inside monocytes. Our studies demonstrate novel regulatory mechanisms that favor both innate and adaptive control of M. tb infection.
Collapse
|
23
|
Morris D, Khurasany M, Nguyen T, Kim J, Guilford F, Mehta R, Gray D, Saviola B, Venketaraman V. Glutathione and infection. Biochim Biophys Acta Gen Subj 2013; 1830:3329-49. [DOI: 10.1016/j.bbagen.2012.10.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 01/16/2023]
|
24
|
Morris D, Guerra C, Khurasany M, Guilford F, Saviola B, Huang Y, Venketaraman V. Glutathione supplementation improves macrophage functions in HIV. J Interferon Cytokine Res 2013; 33:270-9. [PMID: 23409922 DOI: 10.1089/jir.2012.0103] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In this study, we determined the effects of glutathione (GSH)-enhancing agents in restoring the levels of GSH in isolated macrophages from individuals with HIV infection thereby resulting in improved control of Mycobacterium tuberculosis. Our results indicate that treatment with N-acetyl cysteine or a liposomal formulation of glutathione (lGSH) resulted in replenishment of reduced also known as free GSH (rGSH), and correlated with a decrease in the intracellular growth of M. tuberculosis. Finally, we observed differences in the amount of the catalytic subunit of glutamine-cysteine ligase (GCLC), glutathione synthase, and glutathione reductase present in macrophages derived from healthy and HIV-infected individuals. These changes correlated with changes in free radicals as well as rGSH levels. Our results indicate that HIV infection leads to increased production of free radicals and decreased production of GCLC resulting in depletion of rGSH and this may lead, in part, to the loss of innate immune function observed in HIV patients. These findings represent a novel mechanism for control of M. tuberculosis infection, and a possible supplement to current HIV treatments.
Collapse
Affiliation(s)
- Devin Morris
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Guerra C, Johal K, Morris D, Moreno S, Alvarado O, Gray D, Tanzil M, Pearce D, Venketaraman V. Control of Mycobacterium tuberculosis growth by activated natural killer cells. Clin Exp Immunol 2012; 168:142-52. [PMID: 22385249 DOI: 10.1111/j.1365-2249.2011.04552.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We characterized the underlying mechanisms by which glutathione (GSH)-enhanced natural killer (NK) cells inhibit the growth of Mycobacterium tuberculosis (M. tb) inside human monocytes. We observed that in healthy individuals, treatment of NK cells with N-acetyl cysteine (NAC), a GSH prodrug in conjunction with cytokines such as interleukin (IL)-2 + IL-12, resulted in enhanced expression of NK cytotoxic ligands (FasL and CD40L) with concomitant stasis in the intracellular growth of M. tb. Neutralization of FasL and CD40L in IL-2 + IL-12 + NAC-treated NK cells resulted in abrogation in the growth inhibition of M. tb inside monocytes. Importantly, we observed that the levels of GSH are decreased significantly in NK cells derived from individuals with HIV infection compared to healthy subjects, and this decrease correlated with a several-fold increase in the growth of M. tb inside monocytes. This study describes a novel innate defence mechanism adopted by NK cells to control M. tb infection.
Collapse
Affiliation(s)
- C Guerra
- College of Osteopathic Medicine of the Pacific Graduate of College of Biomedical Sciences Western University of Health Sciences, 309 East SecondStreet, Pomona, CA 91766, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Morris D, Guerra C, Donohue C, Oh H, Khurasany M, Venketaraman V. Unveiling the mechanisms for decreased glutathione in individuals with HIV infection. Clin Dev Immunol 2011; 2012:734125. [PMID: 22242038 PMCID: PMC3254057 DOI: 10.1155/2012/734125] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 02/07/2023]
Abstract
We examined the causes for decreased glutathione (GSH) in individuals with HIV infection. We observed lower levels of intracellular GSH in macrophages from individuals with HIV compared to healthy subjects. Further, the GSH composition found in macrophages from HIV(+) subjects heavily favors oxidized glutathione (GSSG) which lacks antioxidant activity, over free GSH which is responsible for GSH's antioxidant activity. This decrease correlated with an increase in the growth of Mycobacterium tuberculosis (M. tb) in macrophages from HIV(+) individuals. In addition, we observed increased levels of free radicals, interleukin-1 (IL-1), interleukin-17 (IL-17) and transforming growth factor-β (TGF-β) in plasma samples derived from HIV(+) individuals compared to healthy subjects. We observed decreased expression of the genes coding for enzymes responsible for de novo synthesis of GSH in macrophages derived from HIV(+) subjects using quantitative PCR (qPCR). Our results indicate that overproduction of proinflammatory cytokines in HIV(+) individuals lead to increased production of free radicals. This combined with the decreased expression of GSH synthesis enzymes leads to a depletion of free GSH and may lead in part to the loss of immune function observed in HIV patients.
Collapse
Affiliation(s)
- Devin Morris
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Carlos Guerra
- Science Department, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Clare Donohue
- Pitzer College, 1050 N Mills Avenue, Claremont, CA 91711, USA
| | - Hyoung Oh
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Melissa Khurasany
- College of Dental Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| |
Collapse
|
27
|
Guilford T, Morris D, Gray D, Venketaraman V. Atherosclerosis: pathogenesis and increased occurrence in individuals with HIV and Mycobacterium tuberculosis infection. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2010; 2:211-8. [PMID: 22096400 PMCID: PMC3218695 DOI: 10.2147/hiv.s11977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Atherosclerosis is a leading cause of coronary heart disease and stroke. Since 1981, more than 980,000 cases of AIDS have been reported in the United States. According to the Centers for Disease Control, more than 1 million Americans may be infected with HIV. By killing or damaging CD4+ T cells of the body’s immune system, HIV progressively destroys the body’s ability to fight infections. People diagnosed with AIDS often suffer from life-threatening diseases caused by opportunistic infections such as tuberculosis. HIV-infected individuals have increased risks for atherosclerosis. This review summarizes the effects of oxidized low density lipoproteins in impairing macrophage functions in individuals with atherosclerosis (with and without HIV infection) thereby enhancing the susceptibility to Mycobacterium tuberculosis infection.
Collapse
|
28
|
Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, Cheng TY, Moody DB, Murray M, Galagan JE. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 2009; 5:e1000489. [PMID: 19714220 PMCID: PMC2726785 DOI: 10.1371/journal.pcbi.1000489] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 07/27/2009] [Indexed: 01/08/2023] Open
Abstract
Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression), extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB). Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.
Collapse
Affiliation(s)
- Caroline Colijn
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Millman AC, Salman M, Dayaram YK, Connell ND, Venketaraman V. Natural killer cells, glutathione, cytokines, and innate immunity against Mycobacterium tuberculosis. J Interferon Cytokine Res 2008; 28:153-65. [PMID: 18338948 DOI: 10.1089/jir.2007.0095] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is becoming increasingly apparent that natural killer (NK) cells play a crucial role in innate defense mechanisms against Mycobacterium tuberculosis infection. Furthermore, NK cell functions are dependent on adequate levels of glutathione. In this study, we examined whether the NK cell-mediated growth control of intracellular M. tuberculosis is dependent on adequate levels of glutathione. We investigated the effects of glutathione both alone and in combination with interleukin-2 (IL-2) or IL-12 or both in modulating NK cell functions, such as cytolytic activity, activating receptor expression, induction of apoptosis, and cytokine synthesis. Our results strongly indicate that glutathione in combination with IL-2+IL-12 augments NK cell functions, leading to control M. tuberculosis infection.
Collapse
Affiliation(s)
- Ariel C Millman
- Division of Infectious Diseases, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
30
|
Fraternale A, Paoletti MF, Casabianca A, Orlandi C, Schiavano GF, Chiarantini L, Clayette P, Oiry J, Vogel JU, Cinatl J, Magnani M. Inhibition of murine AIDS by pro-glutathione (GSH) molecules. Antiviral Res 2007; 77:120-7. [PMID: 18164447 DOI: 10.1016/j.antiviral.2007.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/12/2007] [Accepted: 11/19/2007] [Indexed: 01/23/2023]
Abstract
Antioxidant molecules can be used both to replenish the depletion of reduced glutathione (GSH) occurring during HIV infection, and to inhibit HIV replication. The purpose of this work was to assess the efficacy of two pro-GSH molecules able to cross the cell membrane more easily than GSH. We used an experimental animal model consisting of C57BL/6 mice infected with the LP-BM5 viral complex; the treatments were based on the intramuscular administration of I-152, a pro-drug of N-acetylcysteine and S-acetyl-beta-mercaptoethylamine, and S-acetylglutathione, an acetylated GSH derivative. The results show that I-152, at a concentration of 10.7 times lower than GSH, caused a reduction in lymph node and spleen weights of about 55% when compared to infected animals and an inhibition of about 66% in spleen and lymph node virus content. S-acetylglutathione, at half the concentration of GSH, caused a reduction in lymph node weight of about 17% and in spleen and lymph node virus content of about 70% and 30%, respectively. These results show that the administration of pro-GSH molecules may favorably substitute for the use of GSH as such.
Collapse
Affiliation(s)
- A Fraternale
- Institute of Biological Chemistry Giorgio Fornaini, Via Saffi, 2, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vita F, Abbate R, Borelli V, Brochetta C, Soranzo MR, Zabucchi G. BCG-induced rabbit alveolar macrophages are endowed with strengthened antioxidant metabolic pathways. Inflammation 2007; 31:9-23. [PMID: 17909954 DOI: 10.1007/s10753-007-9045-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/23/2007] [Indexed: 10/22/2022]
Abstract
Following i.v. BCG infection, a new population of macrophages are recruited in the rabbit lung. These macrophages, known as activated macrophages, substitute the resident macrophages and can play a key role in the defence against mycobacteria. We report here that BCG-activated alveolar macrophages are equipped with a more active hexose monophosphate pathway, which can maintain an optimal intracellular concentration of NADPH and GSH, and allow to produce mycobactericidal free radicals and to become resistant to mycobacterium-induced programmed cell death. These findings suggest that sustaining the anti-oxidant properties of macrophages could represent a candidate process to be considered as a good therapeutic target in fighting Mycobacterium spp infections.
Collapse
Affiliation(s)
- Francesca Vita
- Dipartimento di Fisiologia e Patologia, Università di Trieste, Trieste, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Natarajan P, Narayanan S. Mycobacterium tuberculosisH37Rv induces monocytic release of interleukin-6 via activation of mitogen-activated protein kinases: inhibition byN-acetyl-l-cysteine. ACTA ACUST UNITED AC 2007; 50:309-18. [PMID: 17521393 DOI: 10.1111/j.1574-695x.2007.00256.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The release of proinflammatory cytokines after mycobacterial infection is a host immune response that may be propitious or deleterious to the host. Elevated levels of interleukin (IL)-6 are present in plasma of patients with active tuberculosis infection. The aim of this study was to investigate the role of mitogen-activated protein kinases in the secretion of interleukin-6 in THP-1 cells and human primary monocytes that were infected with Mycobacterium tuberculosis H37Rv, and its regulation by N-acetyl-L-cysteine, a potential antimycobacterial agent. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv induced rapidly, in a time-dependent manner, the phosphorylation of mitogen-activated protein kinase kinase 3/6 and p38 mitogen-activated protein kinase, accompanied by an upregulation of interleukin-6. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and nuclear factor-kappaB, we found that extracellular-signal regulated kinase 1/2, p38 mitogen-activated protein kinase and nuclear factor-kappaB were essential for M. tuberculosis H37Rv-induced interleukin-6 production in human primary monocytes. Pretreatment with N-acetyl-L-cysteine reduced, in a dose-dependent manner, M. tuberculosis H37Rv-induced activation of mitogen-activated protein kinase kinase 3/6 and interleukin-6 production in THP-1 cells.
Collapse
|
33
|
Garg S, Vitvitsky V, Gendelman HE, Banerjee R. Monocyte Differentiation, Activation, and Mycobacterial Killing Are Linked to Transsulfuration-dependent Redox Metabolism. J Biol Chem 2006; 281:38712-20. [PMID: 17046819 DOI: 10.1074/jbc.m606235200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Modulation of the ambient redox status by mononuclear phagocytes is central to their role in health and disease. However, little is known about the mechanism of redox regulation during mononuclear phagocyte differentiation and activation, critical cellular steps in innate immunity, and microbial clearance. An important intermediate in GSH-based redox metabolism is homocysteine, which can undergo transmethylation via methionine synthase (MS) or transsulfuration via cystathionine beta-synthase (CBS). The transsulfuration pathway generates cysteine, the limiting reagent in GSH biosynthesis. We now demonstrate that expression of CBS and MS are strongly induced during differentiation of human monocytes and are regulated at the transcriptional and posttranscriptional levels, respectively. The changes in enzyme expression are paralleled by an approximately 150% increase in S-adenosylmethionine (accompanied by a corresponding increase in phospholipid methylation) and a similar increase in GSH. Activation with lipopolysachharide or infection with Mycobacterium smegmatis diminished expression of both enzymes to a significant extent and decreased S-adenosylmethionine concentration by approximately 30% of the control value while GSH and cysteine concentrations increased approximately 100 and 300%, respectively. Blockade of the transsulfuration pathway with propargylglycine suppressed clearance of M. smegmatis by macrophages and inhibited phagolysosomal fusion, whereas N-acetylcysteine promoted phagolysosomal fusion and enhanced mycobacterial clearance 3-fold compared with untreated cells. We posit that regulation of the transsulfuration pathway during monocyte differentiation, activation, and infection can boost host defense against invading pathogens and may represent a heretofore unrecognized antimicrobial therapeutic target.
Collapse
Affiliation(s)
- Sanjay Garg
- Redox Biology Center and the Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | | | | | | |
Collapse
|