1
|
Zhang W, Yang F, Yang Y, Cao W, Shao W, Wang J, Huang M, Chen Z, Zhao X, Li W, Zhu Z, Zheng H. KIF5B-mediated internalization of FMDV promotes virus infection. Virol Sin 2024; 39:378-389. [PMID: 38499154 PMCID: PMC11279799 DOI: 10.1016/j.virs.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically important disease, which is caused by the FMD virus (FMDV). Although the cell receptor for FMDV has been identified, the specific mechanism of FMDV internalization after infection remains unknown. In this study, we found that kinesin family member 5B (KIF5B) plays a vital role during FMDV internalization. Moreover, we confirmed the interaction between KIF5B and FMDV structural protein VP1 by co-immunoprecipitation (Co-IP) and co-localization in FMDV-infected cells. In particular, the stalk [amino acids (aa) 413-678] domain of KIF5B was indispensable for KIF5B-VP1 interaction. Moreover, overexpression of KIF5B dramatically enhanced FMDV replication; consistently, knockdown or knockout of KIF5B suppressed FMDV replication. Furthermore, we also demonstrated that KIF5B promotes the internalization of FMDV via regulating clathrin uncoating. KIF5B also promotes the transmission of viral particles to early and late endosomes during the early stages of infection. In conclusion, our results demonstrate that KIF5B promotes the internalization of FMDV via regulating clathrin uncoating and intracellular transport. This study may provide a new therapeutic target for developing FMDV antiviral drugs.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Yang Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Wenhua Shao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jiali Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Mengyao Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Zhitong Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xiaoyi Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Weiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| |
Collapse
|
2
|
Mushtaq H, Shah SS, Zarlashat Y, Iqbal M, Abbas W. Cell Culture Adaptive Amino Acid Substitutions in FMDV Structural Proteins: A Key Mechanism for Altered Receptor Tropism. Viruses 2024; 16:512. [PMID: 38675855 PMCID: PMC11054764 DOI: 10.3390/v16040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 04/28/2024] Open
Abstract
The foot-and-mouth disease virus is a highly contagious and economically devastating virus of cloven-hooved animals, including cattle, buffalo, sheep, and goats, causing reduced animal productivity and posing international trade restrictions. For decades, chemically inactivated vaccines have been serving as the most effective strategy for the management of foot-and-mouth disease. Inactivated vaccines are commercially produced in cell culture systems, which require successful propagation and adaptation of field isolates, demanding a high cost and laborious time. Cell culture adaptation is chiefly indebted to amino acid substitutions in surface-exposed capsid proteins, altering the necessity of RGD-dependent receptors to heparan sulfate macromolecules for virus binding. Several amino acid substations in VP1, VP2, and VP3 capsid proteins of FMDV, both at structural and functional levels, have been characterized previously. This literature review combines frequently reported amino acid substitutions in virus capsid proteins, their critical roles in virus adaptation, and functional characterization of the substitutions. Furthermore, this data can facilitate molecular virologists to develop new vaccine strains against the foot-and-mouth disease virus, revolutionizing vaccinology via reverse genetic engineering and synthetic biology.
Collapse
Affiliation(s)
- Hassan Mushtaq
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Syed Salman Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan
| | - Yusra Zarlashat
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Wasim Abbas
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| |
Collapse
|
3
|
Aslam M, Alkheraije KA. The prevalence of foot-and-mouth disease in Asia. Front Vet Sci 2023; 10:1201578. [PMID: 37456961 PMCID: PMC10347409 DOI: 10.3389/fvets.2023.1201578] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Foot-and-mouth disease (FMD) is listed among the highly contagious diseases in animals and is endemic throughout the Asian continent. The disease is caused by the Foot-and-mouth disease virus (FMDV) and affects a wide variety of domesticated animals as well as wild ungulates. Clinically, the disease is described as a vesicular lesion on the tongue, muzzle, lips, gum, dental pad, interdigital cleft, coronary band, and heel of the foot. Sometimes these lesions give rise to lameness. Mastitis is also caused due to teat lesions. A biochemical test reveals that during FMD infection, there are elevated levels of interleukin-1 (IL-1), tumor necrosis factor-alpha, interferon-gamma (IFN-γ), interleukin-6, serum amyloid A protein, lactoferrin, mannose-binding lectin, and monocytes chemo-attractant protein-1 in the serum of infected animals. There is no specific treatment for FMD although some antivirals are given as prophylaxis and antibiotics are given to prevent secondary bacterial infection. This review presents comprehensive data on the prevalence of FMD and serotypes of FMDV that are attributable to the cause of FMD from a regional point of view. It also explains the worldwide dynamics of the seven serotypes of FMD and tries to identify epidemiological clusters of FMD in various geographical areas. Furthermore, the pathology associated with the foot and mouth disease virus along with the pathophysiology is discussed. The continent-wide prevalence and diversity patterns of FMD suggest that there is a need for stringent policies and legislation implementation regarding research and development aimed at manufacturing strain-specific vaccination, infection prevention, and control of the disease.
Collapse
Affiliation(s)
- Munazza Aslam
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Khalid A. Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
4
|
Chen S, Yang F, Zhu Z, Cao W, Lian K, Zhang W, Zhu Z, He J, Guo J, Liu X, Zhou B, Zheng H. The endocytosis of foot-and mouth disease virus requires clathrin and caveolin and is dependent on the existence of Rab5 and Rab7 in CHO-677 cells. Vet Microbiol 2022; 274:109550. [PMID: 36084386 DOI: 10.1016/j.vetmic.2022.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 10/31/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious virus that causes severe vesicular disease of cloven-hoofed animals. Various endocytosis mechanisms are involved in the entry of FMDV after binding to the integrin and heparan sulfate (HS) receptors. However, the mechanism of FMDV using other unknown receptors to enter the cells remains unclear. Here, we reported that the endocytosis and endosomal pathways are employed by FMDV to invade the Chinese hamster ovary cell line (CHO-677) without the integrin and HS receptors. We demonstrated that the internalization of FMDV into CHO-677 cells was abrogated by chlorpromazine, an inhibitor of clathrin-mediated endocytosis. Knockdown of the clathrin heavy chain decreased the viral protein abundance. Incubation of the CHO-677 cells with the inhibitors of caveolae-mediated endocytosis or transfection by caveolin-1 siRNA also limited FMDV replication. In addition, we determined that the acidic environment and the existence of dynamin were essential for FMDV infection in CHO-677 cells. The endosomal proteins Rab5 (early endosome) and Rab7 (late endosome), but not Rab11 (recycling endosome), were utilized by FMDV during infection. These data provide a new entry model of FMDV by unknown receptors which will help to better understand the pathogenesis mediated by FMDV.
Collapse
Affiliation(s)
- Shuying Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Kaiqi Lian
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Wei Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Zhijian Zhu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Jijun He
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Jianhong Guo
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Bin Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| |
Collapse
|
5
|
Yang L, Chen H, Liu L, Song J, Feng T, Li Y, Shen C, Kong L, Xin X. Foot-and-mouth disease virus VP1 promotes viral replication by regulating the expression of chemokines and GBP1. Front Vet Sci 2022; 9:937409. [PMID: 35937300 PMCID: PMC9353127 DOI: 10.3389/fvets.2022.937409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is an acute, highly contagious, and economically destructive pathogen of vesicular disease that affects domestic and wild cloven-hoofed animals. The FMDV VP1 protein is an important part of the nucleocapsid and plays a significant role during FMDV infection. However, the signal pathways mediated by VP1 in the life cycle of FMDV and the related mechanisms are not yet fully understood. Here, we performed RNA-seq to compare gene expression profiles between pCAGGS-HA-VP1 transfected PK-15 cells and pCAGGS-HA (empty vector) transfected PK-15 cells. The results showed 5,571 genes with significantly different expression levels, of which 2,981 were up-regulated and 2,590 were down-regulated. GO enrichment analysis showed that 51 GO terms were significantly enriched in cell components including protein complex, membrane and organelle part. KEGG enrichment analysis showed 11 KEGG pathways were significantly enriched which were mainly related to the immune system, infectious viral disease, and signal transduction. Among the up-regulated genes, the chemokines such as CCL5, CXCL8, and CXCL10 in turn promoted FMDV replication. In contrast, GBP1, an interferon-stimulated gene that was suppressed by VP1 and FMDV, could effectively inhibit FMDV replication. Our research provides a comprehensive overview of the response of host cells to VP1 protein and a basis for further research to understand the roles of VP1 in FMDV infection including the genes involved in FMDV replication.
Collapse
Affiliation(s)
- Li Yang
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Hong Chen
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Liqing Liu
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jingjing Song
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Tian Feng
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yihan Li
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Chao Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lingbao Kong
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiu Xin
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang, China
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Xiu Xin
| |
Collapse
|
6
|
Zhou X, Liang WF, Si GB, Li JH, Chen ZF, Cai WY, Lv DH, Wen XH, Zhai Q, Zhai SL, Liao M, He DS. Buffalo-Origin Seneca Valley Virus in China: First Report, Isolation, Genome Characterization, and Evolution Analysis. Front Vet Sci 2021; 8:730701. [PMID: 34760955 PMCID: PMC8573120 DOI: 10.3389/fvets.2021.730701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Pigs are the main host of Seneca Valley virus (SVV), previously known as Senecavirus A (SVA). Pigs affected by SVV have vesicles in the nose, hooves, and limp and may cause death in some severe cases. Occasionally, SVV has also been detected in mice, houseflies, environmental equipment, and corridors in pig farms. Moreover, it was successfully isolated from mouse tissue samples. In this study, an SVV strain (SVA/GD/China/2018) was isolated from a buffalo with mouth ulcers in the Guangdong province of China using seven mammalian cell lines (including BHK-21, NA, PK-15, ST, Vero, Marc-145, and MDBK). The genome of SVA/GD/China/2018 consists of 7,276 nucleotides. Multiple-sequence alignment showed that SVA/GD/China/2018 shared the highest nucleotide similarity (99.1%) with one wild boar-origin SVV strain (Sichuan HS-01) from the Sichuan province of China. Genetic analysis revealed that SVA/GD/China/2018 clustered with those porcine-origin SVV strains. To the best of our knowledge, this is the first report of SVV infection in buffalo, which might expand the host range of the virus. Surveillance should be expanded, and clinical significance of SVV needs to be further evaluated in cattle.
Collapse
Affiliation(s)
- Xia Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Guangzhou, China.,Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangzhou, China
| | - Wei-Fang Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guang-Bin Si
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jin-Hui Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhi-Fei Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wei-You Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dian-Hong Lv
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Guangzhou, China.,Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangzhou, China
| | - Xiao-Hui Wen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Guangzhou, China.,Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangzhou, China
| | - Qi Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Guangzhou, China.,Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangzhou, China
| | - Shao-Lun Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Guangzhou, China.,Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangzhou, China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Guangzhou, China.,Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangzhou, China
| | - Dong-Sheng He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Li K, Wang C, Yang F, Cao W, Zhu Z, Zheng H. Virus-Host Interactions in Foot-and-Mouth Disease Virus Infection. Front Immunol 2021; 12:571509. [PMID: 33717061 PMCID: PMC7952751 DOI: 10.3389/fimmu.2021.571509] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/18/2021] [Indexed: 01/12/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals, which has been regarded as a persistent challenge for the livestock industry in many countries. Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD that can spread rapidly by direct and indirect transmission. FMDV is internalized into host cell by the interaction between FMDV capsid proteins and cellular receptors. When the virus invades into the cells, the host antiviral system is quickly activated to suppress the replication of the virus and remove the virus. To retain fitness and host adaptation, various viruses have evolved multiple elegant strategies to manipulate host machine and circumvent the host antiviral responses. Therefore, identification of virus-host interactions is critical for understanding the host defense against virus infections and the pathogenesis of the viral infectious diseases. This review elaborates on the virus-host interactions during FMDV infection to summarize the pathogenic mechanisms of FMD, and we hope it can provide insights for designing effective vaccines or drugs to prevent and control the spread of FMD and other diseases caused by picornaviruses.
Collapse
Affiliation(s)
- Kangli Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Congcong Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
8
|
Single Amino Acid Substitutions Surrounding the Icosahedral Fivefold Symmetry Axis Are Critical for Alternative Receptor Usage of Foot-and-Mouth Disease Virus. Viruses 2020; 12:v12101147. [PMID: 33050303 PMCID: PMC7650640 DOI: 10.3390/v12101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022] Open
Abstract
The integrins function as the primary receptor molecules for the pathogenic infection of foot-and-mouth disease virus (FMDV) in vivo, while the acquisition of a high affinity for heparan sulfate (HS) of some FMDV variants could be privileged to facilitate viral infection and expanded cell tropism in vitro. Here, we noted that a BHK-adapted Cathay topotype derivative (O/HN/CHA/93tc) but not its genetically engineered virus (rHN), was able to infect HS-positive CHO-K1 cells and mutant pgsD-677 cells. There were one or three residue changes in the capsid proteins of O/HN/CHA/93tc and rHN, as compared with that of their tissue-originated isolate (O/HN/CHA/93wt). The phenotypic properties of a set of site-directed mutants of rHN revealed that E83K of VP1 surrounding the fivefold symmetry axis was necessary for the integrin-independent infection of O/HN/CHA/93tc. L80 in VP2 was essential for the occurrence of E83K in VP1 during the adaptation of O/HN/CHA/93wt to BHK-21 cells. L80M in VP2 and D138G in VP1 of rHN was deleterious, which could be compensated by K83R of VP1 for restoring an efficient infection of integrin-negative CHO cell lines. These might have important implications for understanding the molecular and evolutionary mechanisms of the recognition and binding of FMDV with alternative cellular receptors.
Collapse
|
9
|
Cell culture propagation of foot-and-mouth disease virus: adaptive amino acid substitutions in structural proteins and their functional implications. Virus Genes 2019; 56:1-15. [PMID: 31776851 PMCID: PMC6957568 DOI: 10.1007/s11262-019-01714-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/13/2019] [Indexed: 11/18/2022]
Abstract
Foot-and-mouth disease is endemic in livestock in large parts of Africa and Asia, where it is an important driver of food insecurity and a major obstacle to agricultural development and the international trade in animal products. Virtually all commercially available vaccines are inactivated whole-virus vaccines produced in cell culture, but the adaptation of a field isolate of the virus to growth in culture is laborious and time-consuming. This is of particular concern for the development of vaccines to newly emerging virus lineages, where long lead times from virus isolate to vaccine can delay the implementation of effective control programs. High antigen yields in production cells are also necessary to make vaccines affordable for less developed countries in endemic areas. Therefore, a rational approach to cell culture adaptation that combines prior knowledge of common adaptive mutations and reverse genetics techniques is urgently required. This review provides an overview of amino acid exchanges in the viral capsid proteins in the context of adaptation to cell culture.
Collapse
|
10
|
Hägglund S, Laloy E, Näslund K, Pfaff F, Eschbaumer M, Romey A, Relmy A, Rikberg A, Svensson A, Huet H, Gorna K, Zühlke D, Riedel K, Beer M, Zientara S, Bakkali-Kassimi L, Blaise-Boisseau S, Valarcher JF. Model of persistent foot-and-mouth disease virus infection in multilayered cells derived from bovine dorsal soft palate. Transbound Emerg Dis 2019; 67:133-148. [PMID: 31419374 PMCID: PMC7003861 DOI: 10.1111/tbed.13332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
Abstract
Foot‐and‐mouth disease virus (FMDV) causes a highly contagious vesicular disease in livestock, with serious consequences for international trade. The virus persists in the nasopharynx of cattle and this slows down the process to obtain an FMDV‐free status after an outbreak. To study biological mechanisms, or to identify molecules that can be targeted to diagnose or interfere with persistence, we developed a model of persistent FMDV infection in bovine dorsal soft palate (DSP). Primary DSP cells were isolated after commercial slaughter and were cultured in multilayers at the air‐liquid interface. After 5 weeks of culture without further passage, the cells were infected with FMDV strain O/FRA/1/2001. Approximately, 20% of cells still had a polygonal morphology and displayed tight junctions as in stratified squamous epithelia. Subsets of cells expressed cytokeratin and most or all cells expressed vimentin. In contrast to monolayers in medium, multilayers in air demonstrated only a limited cytopathic effect. Integrin αVβ6 expression was observed in mono‐ but not in multilayers. FMDV antigen, FMDV RNA and live virus were detected from day 1 to 28, with peaks at day 1 and 2. The proportion of infected cells was highest at 24 hr (3% and 36% of cells at an MOI of 0.01 and 1, respectively). At day 28 after infection, at a time when animals that still harbour FMDV are considered carriers, FMDV antigen was detected in 0.2%–2.1% of cells, in all layers, and live virus was isolated from supernatants of 6/8 cultures. On the consensus level, the viral genome did not change within the first 24 hr after infection. Only a few minor single nucleotide variants were detected, giving no indication of the presence of a viral quasispecies. The air‐liquid interface model of DSP brings new possibilities to investigate FMDV persistence in a controlled manner.
Collapse
Affiliation(s)
- Sara Hägglund
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Eve Laloy
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Katarina Näslund
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Aurore Romey
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Anthony Relmy
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Annika Rikberg
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Anna Svensson
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Helene Huet
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Kamila Gorna
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Daniela Zühlke
- Institute of Microbiology, Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Stephan Zientara
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Labib Bakkali-Kassimi
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Jean François Valarcher
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
11
|
Bai XW, Bao HF, Li PH, Ma XQ, Sun P, Bai QF, Zhang M, Yuan H, Chen DD, Li K, Chen YL, Cao YM, Fu YF, Zhang J, Li D, Lu ZJ, Liu ZX, Luo JX. Engineering Responses to Amino Acid Substitutions in the VP0- and VP3-Coding Regions of PanAsia-1 Strains of Foot-and-Mouth Disease Virus Serotype O. J Virol 2019; 93:e02278-18. [PMID: 30700601 PMCID: PMC6430551 DOI: 10.1128/jvi.02278-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/15/2019] [Indexed: 12/05/2022] Open
Abstract
The presence of sequence divergence through adaptive mutations in the major capsid protein VP1, and also in VP0 (VP4 and VP2) and VP3, of foot-and-mouth disease virus (FMDV) is relevant to a broad range of viral characteristics. To explore the potential role of isolate-specific residues in the VP0 and VP3 coding regions of PanAsia-1 strains in genetic and phenotypic properties of FMDV, a series of recombinant full-length genomic clones were constructed using Cathay topotype infectious cDNA as the original backbone. The deleterious and compensatory effects of individual amino acid substitutions at positions 4008 and 3060 and in several different domains of VP2 illustrated that the chain-based spatial interaction patterns of VP1, VP2, and VP3 (VP1-3), as well as between the internal VP4 and the three external capsid proteins of FMDV, might contribute to the assembly of eventually viable viruses. The Y2079H site-directed mutants dramatically induced a decrease in plaque size on BHK-21 cells and viral pathogenicity in suckling mice. Remarkably, the 2079H-encoding viruses displayed a moderate increase in acid sensitivity correlated with NH4Cl resistance compared to the Y2079-encoding viruses. Interestingly, none of all the 16 rescued viruses were able to infect heparan sulfate-expressing CHO-K1 cells. However, viral infection in BHK-21 cells was facilitated by utilizing non-integrin-dependent, heparin-sensitive receptor(s) and replacements of four uncharged amino acids at position 3174 in VP3 of FMDV had no apparent influence on heparin affinity. These results provide particular insights into the correlation of evolutionary biology with genetic diversity in adapting populations of FMDV.IMPORTANCE The sequence variation within the capsid proteins occurs frequently in the infection of susceptible tissue cultures, reflecting the high levels of genetic diversity of FMDV. A systematic study for the functional significance of isolate-specific residues in VP0 and VP3 of FMDV PanAsia-1 strains suggested that the interaction of amino acid side chains between the N terminus of VP4 and several potential domains of VP1-3 had cascading effects on the viability and developmental characteristics of progeny viruses. Y2079H in VP0 of the indicated FMDVs could affect plaque size and pathogenicity, as well as acid sensitivity correlated with NH4Cl resistance, whereas there was no inevitable correlation in viral plaque and acid-sensitive phenotypes. The high affinity of non-integrin-dependent FMDVs for heparin might be explained by the differences in structures of heparan sulfate proteoglycans on the surfaces of different cell lines. These results may contribute to our understanding of the distinct phenotypic properties of FMDV in vitro and in vivo.
Collapse
Affiliation(s)
- Xing-Wen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hui-Fang Bao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ping-Hua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xue-Qing Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Qi-Feng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Meng Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Dong-Dong Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Kun Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ying-Li Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yi-Mei Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yuan-Fang Fu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zeng-Jun Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zai-Xin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jian-Xun Luo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Kalaska B, Miklosz J, Kamiński K, Musielak B, Yusa SI, Pawlak D, Nowakowska M, Szczubiałka K, Mogielnicki A. The neutralization of heparan sulfate by heparin-binding copolymer as a potential therapeutic target. RSC Adv 2019; 9:3020-3029. [PMID: 35518950 PMCID: PMC9059929 DOI: 10.1039/c8ra09724k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
Besides regulating ligand–receptor and cell–cell interactions, heparan sulfate (HS) may participate in the development of many diseases, such as cancer, bacterial or viral infections, and their complications, like bleeding or inflammation. In these cases, the neutralization of HS could be a potential therapeutic target. The heparin-binding copolymer (HBC, PEG41-PMAPTAC53) was previously reported by us as a fully synthetic compound for efficient and safe neutralization of heparins and synthetic anticoagulants. In a search for molecular antagonists of HS, we examined the activity of HBC as an HS inhibitor both in vitro and in vivo and characterized HBC/HS complexes. Using a colorimetric Azure A method, isothermal titration calorimetry and dynamic light scattering techniques we found that HBC binds HS by forming complexes below 200 nm with less than 1 : 1 stoichiometry. We confirmed the HBC inhibitory effect in rats by measuring activated partial thromboplastin time, prothrombin time, anti-factor Xa activity, anti-factor IIa activity, and platelet aggregation. HBC reversed the enhancement of all tested parameters caused by HS demonstrating that cationic synthetic block copolymers may have a therapeutic value in various disorders involving overproduction of HS. The neutralization of heparan sulfate (HS) by a heparin-binding copolymer (HBC) could be a promising treating option for bacterial or viral infections or bleeding related to overproduction of HS in cancer or other diseases.![]()
Collapse
Affiliation(s)
- Bartlomiej Kalaska
- Department of Pharmacodynamics
- Medical University of Bialystok
- 15-089 Bialystok
- Poland
| | - Joanna Miklosz
- Department of Pharmacodynamics
- Medical University of Bialystok
- 15-089 Bialystok
- Poland
| | - Kamil Kamiński
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - Bogdan Musielak
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - Shin-Ichi Yusa
- Department of Applied Chemistry
- Graduate School of Engineering
- University of Hyogo
- Himeji
- Japan
| | - Dariusz Pawlak
- Department of Pharmacodynamics
- Medical University of Bialystok
- 15-089 Bialystok
- Poland
| | | | | | - Andrzej Mogielnicki
- Department of Pharmacodynamics
- Medical University of Bialystok
- 15-089 Bialystok
- Poland
| |
Collapse
|
13
|
Zou X, Zhu Y, Bao H, Guo X, Sun P, Liu Z, Mason PW, Xu L, Li C, Zhang Q, Wang Q, Zhu H, Zhao Q. Recombination of host cell mRNA with the Asia 1 foot-and-mouth disease virus genome in cell suspension culture. Arch Virol 2018; 164:41-50. [PMID: 30232612 DOI: 10.1007/s00705-018-4008-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/14/2018] [Indexed: 01/22/2023]
Abstract
Foot-and-mouth disease virus (FMDV) exhibits high mutation rates during replication. In this study, an isolate of FMDV serotype Asia-1 was serially passaged in a BHK-21 cell monolayer and then adapted to serum-free BHK-21 cell suspension culture to produce a seed virus for production of an inactivated vaccine. Analysis of the sequence encoding the structural proteins of the virus at various passages showed the presence of overlapping peaks in sequencing electropherograms after nucleotide 619 of VP1 in viruses recovered from the fourth passage in suspension culture, suggesting the possible introduction of an insertion or deletion into this portion of the viral genome of our seed virus stock. To evaluate this phenomenon, a virus designated "Vac-Asia1-VDLV", was isolated by plaque purification from the tenth passage in suspension culture. Sequencing results showed that a 12-nt-long exogenous sequence was inserted into the 3' end of the VP1 coding region at the position where the original overlapping peaks were identified. Analysis of the host cell transcriptome showed that the 12-nt sequence was identical to a highly expressed sequence in BHK-21 cells, strongly suggesting that recombination between the FMDV genome and host cell mRNA produced the recombinant virus. A growth curve showed that the virus with the 12-nt insertion reached a peak earlier than the parental strain and that this virus had acquired the ability to bind to the cell surface by a mechanism that was not dependent on integrin or the heparan sulfate receptor. This novel pathogen-host cell recombination event is discussed in terms of the mechanism of viral RNA replication and the phenotypic constraints of FMDV biology and evolution.
Collapse
Affiliation(s)
- Xingqi Zou
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, No. 2 Yuanmingyuan west Street, Haidian, Beijing, 100193, People's Republic of China.,Department of Veterinary Reference Substance Research, China Institute of Veterinary Drug Control, 8 Nandajie, Zhongguancun, Haidian, Beijing, 100081, People's Republic of China
| | - Yuanyuan Zhu
- Department of Veterinary Reference Substance Research, China Institute of Veterinary Drug Control, 8 Nandajie, Zhongguancun, Haidian, Beijing, 100081, People's Republic of China
| | - Huifang Bao
- Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Gansu, People's Republic of China
| | - Xiaoyu Guo
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, No. 2 Yuanmingyuan west Street, Haidian, Beijing, 100193, People's Republic of China
| | - Pu Sun
- Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Gansu, People's Republic of China
| | - Zaixin Liu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Gansu, People's Republic of China
| | - Peter W Mason
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, 77555, USA
| | - Lu Xu
- Department of Veterinary Reference Substance Research, China Institute of Veterinary Drug Control, 8 Nandajie, Zhongguancun, Haidian, Beijing, 100081, People's Republic of China
| | - Cui Li
- Department of Veterinary Reference Substance Research, China Institute of Veterinary Drug Control, 8 Nandajie, Zhongguancun, Haidian, Beijing, 100081, People's Republic of China
| | - Qianyi Zhang
- Department of Veterinary Reference Substance Research, China Institute of Veterinary Drug Control, 8 Nandajie, Zhongguancun, Haidian, Beijing, 100081, People's Republic of China
| | - Qin Wang
- Department of Veterinary Reference Substance Research, China Institute of Veterinary Drug Control, 8 Nandajie, Zhongguancun, Haidian, Beijing, 100081, People's Republic of China
| | - Hongfei Zhu
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, No. 2 Yuanmingyuan west Street, Haidian, Beijing, 100193, People's Republic of China.
| | - Qizu Zhao
- Department of Veterinary Reference Substance Research, China Institute of Veterinary Drug Control, 8 Nandajie, Zhongguancun, Haidian, Beijing, 100081, People's Republic of China.
| |
Collapse
|
14
|
Saeng-Chuto K, Stott CJ, Wegner M, Kaewprommal P, Piriyapongsa J, Nilubol D. The full-length genome characterization, genetic diversity and evolutionary analyses of Senecavirus A isolated in Thailand in 2016. INFECTION GENETICS AND EVOLUTION 2018; 64:32-45. [PMID: 29890334 DOI: 10.1016/j.meegid.2018.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
Senecavirus A (SVA) is a novel picornavirus that causes porcine idiopathic vesicular disease characterized by lameness, coronary band hyperemia, and vesicles on the snout and coronary bands. An increase in the detection rate of SVA in several countries suggests that the disease has become a widespread problem. Herein, we report the detection of SVA in Thailand and the characterization of full-length genomic sequences of six Thai SVA isolates. Phylogenetic, genetic, recombination, and evolutionary analyses were performed. The full-length genome, excluding the poly (A) tail of the Thai SVA isolates, was 7282 nucleotides long, with the genomic organization resembling other previously reported SVA isolates. Phylogenetic and genetic analyses based on full-length genome demonstrated that the Thai SVA isolates were grouped in a novel cluster, separated from SVA isolates from other countries. Although the Thai SVA isolates were closely related to 11-55910-3, the first SVA isolate from Canada, with 97.9-98.2%, but they are different. Evolutionary and recombinant analyses suggested that the Thai SVA isolates shared a common ancestor with the 11-55910-3 isolate. The positive selection in the VP4 and 3D genes suggests that the virus was not externally introduced, but rather continuously evolved in the population prior to the first detection. Addition, the presence of SVA could have been ignored due to the presence of other pathogens causing similar clinical diseases. This study warrants further investigations into molecular epidemiology and genetic evolution of the SVA in Thailand.
Collapse
Affiliation(s)
- Kepalee Saeng-Chuto
- Department of Veterinary Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Matthew Wegner
- Department of Veterinary Pathology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavita Kaewprommal
- Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Jittima Piriyapongsa
- Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|