1
|
Boucher J, Rousseau A, Boucher C, Subra C, Bazié WW, Hubert A, Bourgeault E, Benmoussa A, Goyer B, Tessier PA, Gilbert C. Immune Cells Release MicroRNA-155 Enriched Extracellular Vesicles That Promote HIV-1 Infection. Cells 2023; 12:cells12030466. [PMID: 36766808 PMCID: PMC9914104 DOI: 10.3390/cells12030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
The hallmark of HIV-1 infection is the rapid dysregulation of immune functions. Recent investigations for biomarkers of such dysregulation in people living with HIV (PLWH) reveal a strong correlation between viral rebound and immune activation with an increased abundance of extracellular vesicles (EVs) enriched with microRNA-155. We propose that the activation of peripheral blood mononuclear cells (PBMCs) leads to an increased miR-155 expression and production of miR-155-rich extracellular vesicles (miR-155-rich EVs), which can exacerbate HIV-1 infection by promoting viral replication. PBMCs were incubated with either HIV-1 (NL4.3Balenv), a TLR-7/8 agonist, or TNF. EVs were harvested from the cell culture supernatant by differential centrifugation, and RT-qPCR quantified miR-155 in cells and derived EVs. The effect of miR-155-rich EVs on replication of HIV-1 in incubated PBMCs was then measured by viral RNA and DNA quantification. HIV-1, TLR7/8 agonist, and TNF each induced the release of miR-155-rich EVs by PBMCs. These miR-155-rich EVs increased viral replication in PBMCs infected in vitro. Infection with HIV-1 and inflammation promote the production of miR-155-rich EVs, enhancing viral replication. Such autocrine loops, therefore, could influence the course of HIV-1 infection by promoting viral replication.
Collapse
Affiliation(s)
- Julien Boucher
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Alyssa Rousseau
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Catherine Boucher
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Caroline Subra
- U.S. Military HIV Research Program, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Wilfried W. Bazié
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Programme de Recherche sur les Maladies Infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso 01 BP 390, Burkina Faso
| | - Audrey Hubert
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Emma Bourgeault
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Abderrahim Benmoussa
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Benjamin Goyer
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Philippe A. Tessier
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Caroline Gilbert
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 46107); Fax: +1-418-654-2765
| |
Collapse
|
2
|
Esteban-Cantos A, Rodríguez-Centeno J, Silla JC, Barruz P, Sánchez-Cabo F, Saiz-Medrano G, Nevado J, Mena-Garay B, Jiménez-González M, de Miguel R, Bernardino JI, Montejano R, Cadiñanos J, Marcelo C, Gutiérrez-García L, Martínez-Martín P, Wallet C, Raffi F, Rodés B, Arribas JR. Effect of HIV infection and antiretroviral therapy initiation on genome-wide DNA methylation patterns. EBioMedicine 2023; 88:104434. [PMID: 36640455 PMCID: PMC9842861 DOI: 10.1016/j.ebiom.2022.104434] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Previous epigenome-wide association studies have shown that HIV infection can disrupt the host DNA methylation landscape. However, it remains unclear how antiretroviral therapy (ART) affects the HIV-induced epigenetic modifications. METHODS 184 individuals with HIV from the NEAT001/ANRS143 clinical trial (with pre-ART and post-ART samples [96 weeks of follow-up]) and 44 age-and-sex matched individuals without HIV were included. We compared genome-wide DNA methylation profiles in whole blood between groups adjusting for age, sex, batch effects, and DNA methylation-based estimates of leucocyte composition. FINDINGS We identified 430 differentially methylated positions (DMPs) between HIV+ pre-ART individuals and HIV-uninfected controls. In participants with HIV, ART initiation modified the DNA methylation levels at 845 CpG positions and restored 49.3% of the changes found between HIV+ pre-ART and HIV-uninfected individuals. We only found 15 DMPs when comparing DNA methylation profiles between HIV+ post-ART individuals and participants without HIV. The Gene Ontology enrichment analysis of DMPs associated with untreated HIV infection revealed an enrichment in biological processes regulating the immune system and antiviral responses. In participants with untreated HIV infection, DNA methylation levels at top HIV-related DMPs were associated with CD4/CD8 ratios and viral loads. Changes in DNA methylation levels after ART initiation were weakly correlated with changes in CD4+ cell counts and the CD4/CD8 ratio. INTERPRETATION Control of HIV viraemia after 96 weeks of ART initiation partly restores the host DNA methylation changes that occurred before antiretroviral treatment of HIV infection. FUNDING NEAT-ID Foundation and Instituto de Salud Carlos III, co-funded by European Union.
Collapse
Affiliation(s)
- Andrés Esteban-Cantos
- CIBER of Infectious Diseases (CIBERINFEC), Madrid, Spain; HIV/AIDS and Infectious Diseases Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Javier Rodríguez-Centeno
- CIBER of Infectious Diseases (CIBERINFEC), Madrid, Spain; HIV/AIDS and Infectious Diseases Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Juan C Silla
- Bioinformatics Unit, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | - Pilar Barruz
- Genomics Laboratory, Institute of Medical and Molecular Genetics, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | - Gabriel Saiz-Medrano
- HIV/AIDS and Infectious Diseases Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Julián Nevado
- Genomics Laboratory, Institute of Medical and Molecular Genetics, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Beatriz Mena-Garay
- HIV/AIDS and Infectious Diseases Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - María Jiménez-González
- HIV/AIDS and Infectious Diseases Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Rosa de Miguel
- CIBER of Infectious Diseases (CIBERINFEC), Madrid, Spain; Department of Internal Medicine, Infectious Diseases Unit, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Jose I Bernardino
- CIBER of Infectious Diseases (CIBERINFEC), Madrid, Spain; Department of Internal Medicine, Infectious Diseases Unit, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Rocío Montejano
- CIBER of Infectious Diseases (CIBERINFEC), Madrid, Spain; Department of Internal Medicine, Infectious Diseases Unit, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Julen Cadiñanos
- CIBER of Infectious Diseases (CIBERINFEC), Madrid, Spain; Department of Internal Medicine, Infectious Diseases Unit, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Cristina Marcelo
- Department of Internal Medicine, Infectious Diseases Unit, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Lucía Gutiérrez-García
- HIV/AIDS and Infectious Diseases Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Patricia Martínez-Martín
- Department of Internal Medicine, Infectious Diseases Unit, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Cédrick Wallet
- University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, CHU de Bordeaux, Bordeaux, France
| | - François Raffi
- Centre Hospitalier Universitaire de Nantes and CIC 1413 INSERM, Nantes, France
| | - Berta Rodés
- CIBER of Infectious Diseases (CIBERINFEC), Madrid, Spain; HIV/AIDS and Infectious Diseases Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.
| | - José R Arribas
- CIBER of Infectious Diseases (CIBERINFEC), Madrid, Spain; Department of Internal Medicine, Infectious Diseases Unit, La Paz University Hospital, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.
| |
Collapse
|
3
|
Chlamydia trachomatis suppresses host cell store-operated Ca 2+ entry and inhibits NFAT/calcineurin signaling. Sci Rep 2022; 12:21406. [PMID: 36496532 PMCID: PMC9741641 DOI: 10.1038/s41598-022-25786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The obligate intracellular bacterium, Chlamydia trachomatis, replicates within a parasitophorous vacuole termed an inclusion. During development, host proteins critical for regulating intracellular calcium (Ca2+) homeostasis interact with the inclusion membrane. The inclusion membrane protein, MrcA, interacts with the inositol-trisphosphate receptor (IP3R), an ER cationic channel that conducts Ca2+. Stromal interaction molecule 1 (STIM1), an ER transmembrane protein important for regulating store-operated Ca2+ entry (SOCE), localizes to the inclusion membrane via an uncharacterized interaction. We therefore examined Ca2+ mobilization in C. trachomatis infected cells. Utilizing a variety of Ca2+ indicators to assess changes in cytosolic Ca2+ concentration, we demonstrate that C. trachomatis impairs host cell SOCE. Ca2+ regulates many cellular signaling pathways. We find that the SOCE-dependent NFAT/calcineurin signaling pathway is impaired in C. trachomatis infected HeLa cells and likely has major implications on host cell physiology as it relates to C. trachomatis pathogenesis.
Collapse
|
4
|
Bisht P, Das B, Borodianskiy-Shteinberg T, Kinchington PR, Goldstein RS. Studies of Infection and Experimental Reactivation by Recombinant VZV with Mutations in Virally-Encoded Small Non-Coding RNA. Viruses 2022; 14:1015. [PMID: 35632756 PMCID: PMC9144856 DOI: 10.3390/v14051015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Locked-nucleotide analog antagonists (LNAA) to four varicella zoster virus small non-coding RNA (VZVsncRNA 10-13) derived from the mRNA of the open reading frame (ORF) 61 gene individually reduce VZV replication in epithelial cells and fibroblasts. To study the potential roles VZVsncRNA 10-13 have in neuronal infection we generated two recombinant VZV; one in which 8 nucleotides were changed in VZVsncRNA10 without altering the encoded residues of ORF61 (VZVsnc10MUT) and a second containing a 12-nucleotide deletion of the sequence common to VZVsncRNA12 and 13, located in the ORF61 mRNA leader sequence (VZVsnc12-13DEL). Both were developed from a VZV BAC with a green fluorescent protein (GFP) reporter fused to the N terminal of the capsid protein encoded by ORF23. The growth of both mutant VZV in epithelial cells and fibroblasts was similar to that of the parental recombinant virus. Both mutants established productive infections and experimental latency in neurons derived from human embryonic stem cells (hESC). However, neurons that were latently infected with both VZV mutant viruses showed impaired ability to reactivate when given stimuli that successfully reactivated the parental virus. These results suggest that these VZVsncRNA may have a role in VZV latency maintenance and/or reactivation. The extension of these studies and confirmation of such roles could potentially inform the development of a non-reactivating, live VZV vaccine.
Collapse
Affiliation(s)
- Punam Bisht
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel; (P.B.); (B.D.); (T.B.-S.)
| | - Biswajit Das
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel; (P.B.); (B.D.); (T.B.-S.)
| | | | - Paul R. Kinchington
- Departments of Ophthalmology and of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213-2588, USA;
| | - Ronald S. Goldstein
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel; (P.B.); (B.D.); (T.B.-S.)
| |
Collapse
|
5
|
Robertson H, Li J, Kim HJ, Rhodes JW, Harman AN, Patrick E, Rogers NM. Transcriptomic Analysis Identifies A Tolerogenic Dendritic Cell Signature. Front Immunol 2021; 12:733231. [PMID: 34745103 PMCID: PMC8564488 DOI: 10.3389/fimmu.2021.733231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DC) are central to regulating innate and adaptive immune responses. Strategies that modify DC function provide new therapeutic opportunities in autoimmune diseases and transplantation. Current pharmacological approaches can alter DC phenotype to induce tolerogenic DC (tolDC), a maturation-resistant DC subset capable of directing a regulatory immune response that are being explored in current clinical trials. The classical phenotypic characterization of tolDC is limited to cell-surface marker expression and anti-inflammatory cytokine production, although these are not specific. TolDC may be better defined using gene signatures, but there is no consensus definition regarding genotypic markers. We address this shortcoming by analyzing available transcriptomic data to yield an independent set of differentially expressed genes that characterize human tolDC. We validate this transcriptomic signature and also explore gene differences according to the method of tolDC generation. As well as establishing a novel characterization of tolDC, we interrogated its translational utility in vivo, demonstrating this geneset was enriched in the liver, a known tolerogenic organ. Our gene signature will potentially provide greater understanding regarding transcriptional regulators of tolerance and allow researchers to standardize identification of tolDC used for cellular therapy in clinical trials.
Collapse
Affiliation(s)
- Harry Robertson
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Jennifer Li
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, Westmead, NSW, Australia.,School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia
| | - Jake W Rhodes
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Andrew N Harman
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Ellis Patrick
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia.,Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Natasha M Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW, Australia.,Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Das B, Bisht P, Kinchington PR, Goldstein RS. Locked-nucleotide antagonists to varicella zoster virus small non-coding RNA block viral growth and have potential as an anti-viral therapy. Antiviral Res 2021; 193:105144. [PMID: 34303746 DOI: 10.1016/j.antiviral.2021.105144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022]
Abstract
Herpes zoster (HZ) remains a significant health burden with millions of cases in North America and Europe annually. HZ is frequently followed by long-term pain or post-herpetic neuralgia (PHN). Although effective vaccines for HZ are available, currently used nucleotide analogues often have limited effectiveness against HZ and especially PHN, so there remains a need for additional antiviral therapies for HZ. We recently identified a population of small non-coding RNA (sncRNA) encoded by Varicella Zoster Virus (VZV) and showed that single locked-nucleic acid antagonists (LNAA) to some sncRNA can modulate VZV replication in cell culture. In this work, we explored the antiviral effects of combinations of LNAA oligonucleotides targeting VZVsncRNA. Combinations of LNAA targeting three VZVsncRNA encoded in and near a critical viral regulatory gene were additive, achieving 96 % reduction in virus growth in a cell line. VZV growth was also inhibited by more than 90 % in primary human skin fibroblast cultures by individual and combinations of LNAA to VZVsncRNA. The inhibition by VZVsncRNA was specific and not a consequence of innate immune responses since LNAA to a different VZVsncRNA enhanced VZV growth. Targeted VZVsncRNA lack homologous sequences in the human transcriptome suggesting that LNAA to them would have reduced cytotoxicity if used as therapeutics. These results support further development of oligonucleotides targeting VZVsncRNA as a novel treatment for HZ.
Collapse
Affiliation(s)
- Biswajit Das
- Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 5900002, Israel
| | - Punam Bisht
- Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 5900002, Israel
| | - Paul R Kinchington
- Departments of Ophthalmology and of Microbiology and Molecular Genetics, University of Pittsburgh, 1020 EEI 203 Lothrop Street, Pittsburgh, PA, 15213-2588, USA
| | - Ronald S Goldstein
- Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 5900002, Israel.
| |
Collapse
|
7
|
Tomac J, Mazor M, Lisnić B, Golemac M, Kveštak D, Bralić M, Bilić Zulle L, Brinkmann MM, Dölken L, Reinert LS, Paludan SR, Krmpotić A, Jonjić S, Juranić Lisnić V. Viral infection of the ovaries compromises pregnancy and reveals innate immune mechanisms protecting fertility. Immunity 2021; 54:1478-1493.e6. [PMID: 34015257 DOI: 10.1016/j.immuni.2021.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/29/2020] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Viral infections during pregnancy are a considerable cause of adverse outcomes and birth defects, and the underlying mechanisms are poorly understood. Among those, cytomegalovirus (CMV) infection stands out as the most common intrauterine infection in humans, putatively causing early pregnancy loss. We employed murine CMV as a model to study the consequences of viral infection on pregnancy outcome and fertility maintenance. Even though pregnant mice successfully controlled CMV infection, we observed highly selective, strong infection of corpus luteum (CL) cells in their ovaries. High infection densities indicated complete failure of immune control in CL cells, resulting in progesterone insufficiency and pregnancy loss. An abundance of gap junctions, absence of vasculature, strong type I interferon (IFN) responses, and interaction of innate immune cells fully protected the ovarian follicles from viral infection. Our work provides fundamental insights into the effect of CMV infection on pregnancy loss and mechanisms protecting fertility.
Collapse
Affiliation(s)
- Jelena Tomac
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Marija Mazor
- Center for Proteomics, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Berislav Lisnić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia; Center for Proteomics, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Mijo Golemac
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Daria Kveštak
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Marina Bralić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Lidija Bilić Zulle
- Clinical Hospital Rijeka, University of Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Melanie M Brinkmann
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research, 97080 Würzburg, Germany
| | - Line S Reinert
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Soren R Paludan
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Astrid Krmpotić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia; Center for Proteomics, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia.
| | - Vanda Juranić Lisnić
- Department of Histology and Embryology, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia; Center for Proteomics, University of Rijeka, Faculty of Medicine, B. Branchetta 20, 51000 Rijeka, Croatia.
| |
Collapse
|
8
|
Dharmaratnam A, Sudhagar A, Nithianantham SR, Das S, Swaminathan TR. Evaluation of candidate reference genes for quantitative RTqPCR analysis in goldfish (Carassius auratus L.) in healthy and CyHV-2 infected fish. Vet Immunol Immunopathol 2021; 237:110270. [PMID: 34015681 DOI: 10.1016/j.vetimm.2021.110270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
The accuracy of quantitative real time PCR (RTqPCR) can be attained only when a suitable reference gene is used. The gene expression for a particular gene may vary within different cells at different conditions. Hence, the suitability and stability of various potential reference genes have to be determined for expression studies. In this study, we have examined the potential of four different reference genes including β-Actin (ACTB), 18S ribosomal RNA (18S), glyceraldehyde-3P-dehydrogenase (GAPDH), and elongation factor 1 alpha (EF1AA) in seven different tissues including gill, liver, kidney, spleen, heart, muscle and intestine of goldfish (Carassius auratus). The housekeeping genes were analyzed from healthy fish and in CyHV-2 challenged fish. Based upon the real time PCR results the gene expression varied among the genes and in tissues. The expression levels of the housekeeping genes were then compared and evaluated with the RefFinder web tool which analyses results using four different algorithms - BestKeeper, delta Ct, geNorm and NormFinder. EF1AA was ranked to be the best gene in healthy fish by BestKeeper and geNorm analysis. The delta Ct and NormFinder algorithm have found 18S to be a stable gene in healthy fish but 18S was given to be least expressed in challenged fish. ACTB was also given as a stable gene by geNorm analysis in both healthy and challenged fish. Also, in CyHV-2 challenged fish, EF1AA was identified as the best gene by all the three analysis except by BestKeeper analysis, where it has ranked GADPH as the best housekeeping gene. Expression of the four candidate reference genes differed across all tissue types tested, inferring that a thorough study of the reference genes is necessary for cross tissue comparison. These results can be further used in the immune gene response study of goldfish infected with any viral pathogen to develop better health strategies in the disease management of goldfish aquaculture.
Collapse
Affiliation(s)
- Arathi Dharmaratnam
- Peninsular and Marine Fish Genetic Resources Centre, ICAR- National Bureau of Fish Genetic Resources, ICAR CMFRI Campus, Kochi - 682 018, Kerala, India.
| | - Arun Sudhagar
- Peninsular and Marine Fish Genetic Resources Centre, ICAR- National Bureau of Fish Genetic Resources, ICAR CMFRI Campus, Kochi - 682 018, Kerala, India
| | - Sundar Raj Nithianantham
- Peninsular and Marine Fish Genetic Resources Centre, ICAR- National Bureau of Fish Genetic Resources, ICAR CMFRI Campus, Kochi - 682 018, Kerala, India
| | - Sweta Das
- Peninsular and Marine Fish Genetic Resources Centre, ICAR- National Bureau of Fish Genetic Resources, ICAR CMFRI Campus, Kochi - 682 018, Kerala, India
| | - Thangaraj Raja Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre, ICAR- National Bureau of Fish Genetic Resources, ICAR CMFRI Campus, Kochi - 682 018, Kerala, India.
| |
Collapse
|
9
|
Implication of Pseudo Reference Genes in Normalization of Data from Reverse Transcription-Quantitative PCR. Gene 2020; 757:144948. [DOI: 10.1016/j.gene.2020.144948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/17/2023]
|
10
|
Cyclin-Dependent Kinases 8 and 19 Regulate Host Cell Metabolism during Dengue Virus Serotype 2 Infection. Viruses 2020; 12:v12060654. [PMID: 32560467 PMCID: PMC7354599 DOI: 10.3390/v12060654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Dengue virus infection is associated with the upregulation of metabolic pathways within infected cells. This effect is common to infection by a broad array of viruses. These metabolic changes, including increased glucose metabolism, oxidative phosphorylation and autophagy, support the demands of viral genome replication and infectious particle formation. The mechanisms by which these changes occur are known to be, in part, directed by viral nonstructural proteins that contact and control cellular structures and metabolic enzymes. We investigated the roles of host proteins with overarching control of metabolic processes, the transcriptional regulators, cyclin-dependent kinase 8 (CDK8) and its paralog, CDK19, as mediators of virally induced metabolic changes. Here, we show that expression of CDK8, but not CDK19, is increased during dengue virus infection in Huh7 human hepatocellular carcinoma cells, although both are required for efficient viral replication. Chemical inhibition of CDK8 and CDK19 with Senexin A during infection blocks virus-induced expression of select metabolic and autophagic genes, hexokinase 2 (HK2) and microtubule-associated protein 1 light chain 3 (LC3), and reduces viral genome replication and infectious particle production. The results further define the dependence of virus replication on increased metabolic capacity in target cells and identify CDK8 and CDK19 as master regulators of key metabolic genes. The common inhibition of CDK8 and CDK19 offers a host-directed therapeutic intervention that is unlikely to be overcome by viral evolution.
Collapse
|
11
|
Varicella-Zoster Virus (VZV) Small Noncoding RNAs Antisense to the VZV Latency-Encoded Transcript VLT Enhance Viral Replication. J Virol 2020; 94:JVI.00123-20. [PMID: 32295909 DOI: 10.1128/jvi.00123-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/07/2020] [Indexed: 01/22/2023] Open
Abstract
Small noncoding RNAs (sncRNA), including microRNA (miR), are expressed by many viruses to provide an additional layer of gene expression regulation. Our work has shown that varicella-zoster virus (VZV; also called human herpesvirus 3 [HHV3]), the human alphaherpesvirus causing varicella and herpes zoster, expresses 24 virally encoded sncRNA (VZVsncRNA) in infected cells. Here, we demonstrate that several VZVsncRNA can modulate VZV growth, including four VZVsncRNA (VZVsncRNA10, -11, -12, and -13) that are antisense to VLT, a transcript made in lytic infections and associated with VZV latency. The influence on productive VZV growth and spread was assessed in epithelial cells transfected with locked nucleotide analog antagonists (LNAA). LNAA to the four VZVsncRNA antisense to VLT significantly reduced viral spread and progeny titers of infectious virus, suggesting that these sncRNA promoted lytic infection. The LNAA to VZVsncRNA12, encoded in the leader to ORF61, also significantly increased the levels of VLT transcripts. Conversely, overexpression of VZVsncRNA13 using adeno-associated virus consistently increased VZV spread and progeny titers. These results suggest that sncRNA antisense to VZV may regulate VZV growth, possibly by affecting VLT expression. Transfection of LNAA to VZVsncRNA14 and VZVsncRNA9 decreased and increased VZV growth, respectively, while LNAA to three other VZVsncRNA had no significant effects on replication. These data strongly support the conclusion that VZV replication is modulated by multiple virally encoded sncRNA, revealing an additional layer of complexity of VZV regulation of lytic infections. This may inform the development of novel anti-sncRNA-based therapies for treatment of VZV diseases.IMPORTANCE Varicella-zoster virus (VZV) causes herpes zoster, a major health issue in the aging and immunocompromised populations. Small noncoding RNAs (sncRNA) are recognized as important actors in modulating gene expression. This study extends our previous work and shows that four VZVsncRNA clustering in and near ORF61 and antisense to the latency-associated transcript of VZV can positively influence productive VZV infection. The ability of multiple exogenous small oligonucleotides targeting VZVsncRNA to inhibit VZV replication strengthens the possibility that they may inform development of novel treatments for painful herpes zoster.
Collapse
|
12
|
Identification of Reference Genes in Chicken Intraepithelial Lymphocyte Natural Killer Cells Infected with Very-virulent Infectious Bursal Disease Virus. Sci Rep 2020; 10:8561. [PMID: 32444639 PMCID: PMC7244580 DOI: 10.1038/s41598-020-65474-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Due to the limitations in the range of antibodies recognising avian viruses, quantitative real-time PCR (RT-qPCR) is still the most widely used method to evaluate the expression of immunologically related genes in avian viruses. The objective of this study was to identify suitable reference genes for mRNA expression analysis in chicken intraepithelial lymphocyte natural killer (IEL-NK) cells after infection with very-virulent infectious bursal disease virus (vvIBDV). Fifteen potential reference genes were selected based on the references available. The coefficient of variation percentage (CV%) and average count of these 15 genes were determined by NanoString technology for control and infected samples. The M and V values for shortlisted reference genes (ACTB, GAPDH, HMBS, HPRT1, SDHA, TUBB1 and YWHAZ) were calculated using geNorm and NormFinder. GAPDH, YWHAZ and HMBS were the most stably expressed genes. The expression levels of three innate immune response related target genes, CASP8, IL22 and TLR3, agreed in the NanoString and RNA sequencing (RNA-Seq) results using one or two reference genes for normalisation (not HMBS). In conclusion, GAPDH and YWHAZ could be used as reference genes for the normalisation of chicken IEL-NK cell gene responses to infection with vvIBDV.
Collapse
|
13
|
Adriaensen W, Cuypers B, Cordero CF, Mengasha B, Blesson S, Cnops L, Kaye PM, Alves F, Diro E, van Griensven J. Host transcriptomic signature as alternative test-of-cure in visceral leishmaniasis patients co-infected with HIV. EBioMedicine 2020; 55:102748. [PMID: 32361248 PMCID: PMC7195535 DOI: 10.1016/j.ebiom.2020.102748] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/03/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background Visceral leishmaniasis (VL) treatment in HIV patients very often fails and is followed by high relapse and case-fatality rates. Hence, treatment efficacy assessment is imperative but based on invasive organ aspiration for parasite detection. In the search of a less-invasive alternative and because the host immune response is pivotal for treatment outcome in immunocompromised VL patients, we studied changes in the whole blood transcriptional profile of VL-HIV patients during treatment. Methods Embedded in a clinical trial in Northwest Ethiopia, RNA-Seq was performed on whole blood samples of 28 VL-HIV patients before and after completion of a 29-day treatment regimen of AmBisome or AmBisome/miltefosine. Pathway analyses were combined with a machine learning approach to establish a clinically-useful 4-gene set. Findings Distinct signatures of differentially expressed genes between D0 and D29 were identified for patients who failed treatment and were successfully treated. Pathway analyses in the latter highlighted a downregulation of genes associated with host cellular activity and immunity, and upregulation of antimicrobial peptide activity in phagolysosomes. No signs of disease remission nor pathway enrichment were observed in treatment failure patients. Next, we identified a 4-gene pre-post signature (PRSS33, IL10, SLFN14, HRH4) that could accurately discriminate treatment outcome at end of treatment (D29), displaying an average area-under-the-ROC-curve of 0.95 (CI: 0.75–1.00). Interpretation A simple blood-based signature thus holds significant promise to facilitate treatment efficacy monitoring and provide an alternative test-of-cure to guide patient management in VL-HIV patients. Funding Project funding was provided by the AfricoLeish project, supported by the European Union Seventh Framework Programme (EU FP7).
Collapse
Affiliation(s)
- Wim Adriaensen
- Unit of Neglected Tropical Diseases, Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 122, 2000 Antwerp, Belgium.
| | - Bart Cuypers
- Unit of Molecular Parasitology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 122, 2000 Antwerp, Belgium; Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Middelheim 1, 2020 Antwerp, Belgium
| | - Carlota F Cordero
- Unit of Neglected Tropical Diseases, Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 122, 2000 Antwerp, Belgium
| | - Bewketu Mengasha
- Leishmaniasis Research and Treatment Centre, University of Gondar, Gondar, Ethiopia
| | - Séverine Blesson
- Drugs for Neglected Diseases initiative, 15 Chemin Louis-Dunant, 1202 Geneva, Switzerland
| | - Lieselotte Cnops
- Unit of Neglected Tropical Diseases, Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 122, 2000 Antwerp, Belgium
| | - Paul M Kaye
- York Biomedical Research Institute, University of York, United Kingdom
| | - Fabiana Alves
- Drugs for Neglected Diseases initiative, 15 Chemin Louis-Dunant, 1202 Geneva, Switzerland
| | - Ermias Diro
- Leishmaniasis Research and Treatment Centre, University of Gondar, Gondar, Ethiopia
| | - Johan van Griensven
- Unit of Neglected Tropical Diseases, Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 122, 2000 Antwerp, Belgium
| |
Collapse
|
14
|
Gruevska A, Moragrega AB, Galindo MJ, Esplugues JV, Blas-Garcia A, Apostolova N. p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. Antiviral Res 2020; 178:104784. [PMID: 32272174 DOI: 10.1016/j.antiviral.2020.104784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 01/11/2023]
Abstract
The improved effectiveness and safety of the combined antiretroviral therapy (cART) has largely diminished mortality and AIDS-defining morbidity of HIV-patients. Nevertheless, chronic age-related diseases in these individuals are more common and their underlying pathogenic mechanisms of these actions seem to involve accelerated aging and enhanced inflammation. The present study explores markers of these processes in a heterogenous Spanish HIV cohort using peripheral blood samples of HIV-patients and matched uninfected controls. We isolated periheral blood mononuclear cells (PBMCs) and i) compared the expression of a panel of 14 genes related to inflammation and senescence in PBMCs of HIV-patients vs matched uninfected controls, ii) analyzed the expression in HIV-patients in association with a number of demographic, biochemical and immunological parameters and iii) in relation with the current cART they received. PBMCs of HIV-patients displayed significantly increased expression of general inflammatory genes (IL6, IL18 and CXCL10) and this occurs irrespectively of the antiviral therapy they have been receiving. Conversely, levels of senescence-associated genes TP53, SERPINE1andIGFBP3 were slightly but significantly reduced in patients compared to uninfected matched individuals and this effect is related to NNRTI-containing treatments. The expression of the inflammatory markers IL6, IL18, IL1B, TNFA, RELA, CCL2, CCL20 and CXCL10 displayed correlation with certain demographic, morbidity- and HIV infection-related parameters. The levels of TP53 mRNA were positively associated only with plasma LDL. Correlation analysis between the expressions of pairs of genes revealed a different pattern between HIV-patients and controls. The diminished expression of TP53 and SERPINE1 in HIV-patients was also observed at a protein level, and the correlation between the two proteins (p53 and PAI1) in patients and controls showed the opposite trend. In conclusion, HIV-patients show dysregulation of p53 and p53-related mediators, a phenomenon which may be of pathophysiological relevance and could be related to the shorter health- and/or life-span observed in these individuals.
Collapse
Affiliation(s)
- Aleksandra Gruevska
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Valencia, Spain
| | - Angela B Moragrega
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Valencia, Spain
| | - Maria J Galindo
- Unidad de Enfermedades Infecciosas - Medicina Interna, Hospital Clínico Universitario de Valencia, Spain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Valencia, Spain; CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Spain
| | - Ana Blas-Garcia
- FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Valencia, Spain; CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Nadezda Apostolova
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Valencia, Spain; CIBERehd (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), Spain.
| |
Collapse
|
15
|
Halouani A, Jmii H, Michaux H, Renard C, Martens H, Pirottin D, Mastouri M, Aouni M, Geenen V, Jaïdane H. Housekeeping Gene Expression in the Fetal and Neonatal Murine Thymus Following Coxsackievirus B4 Infection. Genes (Basel) 2020; 11:genes11030279. [PMID: 32150956 PMCID: PMC7140870 DOI: 10.3390/genes11030279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
The thymus fulfills the role of T-cell production and differentiation. Studying transcription factors and genes involved in T-cell differentiation and maturation during the fetal and neonatal periods is very important. Nevertheless, no studies to date have been interested in evaluating the expressions of housekeeping genes as internal controls to assess the varying expressions of different genes inside this tissue during that period or in the context of viral infection. Thus, we evaluated by real-time quantitative polymerase chain reaction (qPCR) the expression of the most common internal control genes in the thymus of Swiss albino mice during the fetal and neonatal period, and following in utero infection with Coxsackievirus B4. The stability of expression of these reference genes in different samples was investigated using the geNorm application. Results demonstrated that the expression stability varied greatly between genes. Oaz1 was found to have the highest stability in different stages of development, as well as following Coxsackievirus B4 infection. The current study clearly demonstrated that Oaz1, with very stable expression levels that outperformed other tested housekeeping genes, could be used as a reference gene in the thymus and thymic epithelial cells during development and following Coxsackievirus B4 infection.
Collapse
Affiliation(s)
- Aymen Halouani
- Faculté de Pharmacie de Monastir, Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.M.); (M.A.)
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
- Faculté de Médicine, Université de Liège, GIGA-I3 Immunoendocrinologie, CHU-B34, B-4000 Liege, Sart Tilman, Belgium; (H.M.); (C.R.); (H.M.); (V.G.)
| | - Habib Jmii
- Faculté de Pharmacie de Monastir, Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.M.); (M.A.)
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
| | - Hélène Michaux
- Faculté de Médicine, Université de Liège, GIGA-I3 Immunoendocrinologie, CHU-B34, B-4000 Liege, Sart Tilman, Belgium; (H.M.); (C.R.); (H.M.); (V.G.)
| | - Chantal Renard
- Faculté de Médicine, Université de Liège, GIGA-I3 Immunoendocrinologie, CHU-B34, B-4000 Liege, Sart Tilman, Belgium; (H.M.); (C.R.); (H.M.); (V.G.)
| | - Henri Martens
- Faculté de Médicine, Université de Liège, GIGA-I3 Immunoendocrinologie, CHU-B34, B-4000 Liege, Sart Tilman, Belgium; (H.M.); (C.R.); (H.M.); (V.G.)
| | - Dimitri Pirottin
- University of Liège, GIGA-I3 and Department of Functional Sciences, Laboratory of Cellular and Molecular Immunology, CHU-B34, B-4000 Liège, Sart Tilman, Belgium;
| | - Maha Mastouri
- Faculté de Pharmacie de Monastir, Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.M.); (M.A.)
| | - Mahjoub Aouni
- Faculté de Pharmacie de Monastir, Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.M.); (M.A.)
| | - Vincent Geenen
- Faculté de Médicine, Université de Liège, GIGA-I3 Immunoendocrinologie, CHU-B34, B-4000 Liege, Sart Tilman, Belgium; (H.M.); (C.R.); (H.M.); (V.G.)
| | - Hela Jaïdane
- Faculté de Pharmacie de Monastir, Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Monastir 5000, Tunisia; (A.H.); (H.J.); (M.M.); (M.A.)
- Correspondence:
| |
Collapse
|
16
|
Modulation of Voltage-Gated Sodium Channel Activity in Human Dorsal Root Ganglion Neurons by Herpesvirus Quiescent Infection. J Virol 2020; 94:JVI.01823-19. [PMID: 31694955 DOI: 10.1128/jvi.01823-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
The molecular mechanisms of pain associated with alphaherpesvirus latency are not clear. We hypothesize that the voltage-gated sodium channels (VGSC) on the dorsal root ganglion (DRG) neurons controlling electrical impulses may have abnormal activity during latent viral infection and reactivation. We used herpes simplex virus 1 (HSV-1) to infect the human DRG-derived neuronal cell line HD10.6 in order to study the establishment and maintenance of viral latency, viral reactivation, and changes in the functional expression of VGSCs. Differentiated cells exhibited robust tetrodotoxin (TTX)-sensitive sodium currents, and acute infection significantly reduced the functional expression of VGSCs within 24 h and completely abolished VGSC activity within 3 days. A quiescent state of infection mimicking latency can be achieved in the presence of acyclovir (ACV) for 7 days followed by 5 days of ACV washout, and then the viruses can remain dormant for another 3 weeks. It was noted that during the establishment of HSV-1 latency, the loss of VGSC activity caused by HSV-1 infection could not be blocked by ACV treatment. However, neurons with continued ACV treatment for another 4 days showed a gradual recovery of VGSC functional expression. Furthermore, the latently infected neurons exhibited higher VGSC activity than controls. The overall regulation of VGSCs by HSV-1 during quiescent infection was proved by increased transcription and possible translation of Nav1.7. Together, these observations demonstrated a very complex pattern of electrophysiological changes during HSV infection of DRG neurons, which may have implications for understanding of the mechanisms of virus-mediated pain linked to latency and reactivation.IMPORTANCE The reactivation of herpesviruses, most commonly varicella-zoster virus (VZV) and pseudorabies virus (PRV), may cause cranial nerve disorder and unbearable pain. Clinical studies have also reported that HSV-1 causes postherpetic neuralgia and chronic occipital neuralgia in humans. The current work meticulously studies the functional expression profile changes of VGSCs during the processes of HSV-1 latency establishment and reactivation using human dorsal root ganglion-derived neuronal HD10.6 cells as an in vitro model. Our results indicated that VGSC activity was eliminated upon infection but steadily recovered during latency establishment and that latent neurons exhibited even higher VGSC activity. This finding advances our knowledge of how ganglion neurons generate uncharacteristic electrical impulses due to abnormal VGSC functional expression influenced by the latent virus.
Collapse
|
17
|
Golani-Zaidie L, Borodianskiy-Shteinberg T, Bisht P, Das B, Kinchington PR, Goldstein RS. Bioinformatically-predicted varicella zoster virus small non-coding RNAs are expressed in lytically-infected epithelial cells and neurons. Virus Res 2019; 274:197773. [PMID: 31614167 DOI: 10.1016/j.virusres.2019.197773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/10/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022]
Abstract
Most herpesviruses use both host and viral small non-coding RNAs (sncRNA), especially microRNA, to modulate infection. Bioinformatic analyses of NGS data obtained from Varicella Zoster virus (VZV)-infected cells predicted 24 VZVsncRNA, seven of which were confirmed to be expressed in infected fibroblasts and neurons using stem-loop quantitative reverse transcription PCR (SL-PCR). We here assayed for the expression of all 24 of the bioinformatically predicted VZVsncRNA in cells productively infected by VZV using SL-PCR. 23 of the 24 predicted sequences were detected in VZV-infected ARPE19 cells and 19 of the 24 sequences in infected human neurons generated by two methods from embryonic stem cells. We also show that blocking one of two newly-tested VZV-encoded sncRNA using locked nucleotide antagonists significantly increased viral replication. These findings suggest that further study of VZV encoded sncRNA could elucidate an additional level of regulation of the life cycle of this pathogenic human herpesvirus.
Collapse
Affiliation(s)
- Linoy Golani-Zaidie
- Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 5900002, Israel
| | | | - Punam Bisht
- Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 5900002, Israel
| | - Biswajit Das
- Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 5900002, Israel
| | - Paul R Kinchington
- Departments of Ophthalmology and of Microbiology and Molecular Genetics, University of Pittsburgh, 1020 EEI 203 Lothrop Street, Pittsburgh PA 15213-2588, United States
| | - Ronald S Goldstein
- Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 5900002, Israel.
| |
Collapse
|
18
|
Sonzogni O, Millard AL, Taveira A, Schneider MKJ, Duo L, Speck RF, Wulf GM, Mueller NJ. Efficient Human Cytomegalovirus Replication in Primary Endothelial Cells Is SOCS3 Dependent. Intervirology 2019; 62:80-89. [PMID: 31315128 DOI: 10.1159/000501383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 06/06/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In immunocompromised patients, human cytomegalovirus (HCMV) infection is a major cause of morbidity and mortality. Suppressor of cytokine signaling (SOCS) proteins are very potent negative regulators of the janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways. We hypothesized that HCMV exploits SOCS1 and/or SOCS3 to its advantage. METHODS All experiments were carried out with primary human lung-derived microvascular endothelial cells (HMVEC). SOCS1 and SOCS3 were silenced by transfecting the cells with siRNA. HCMV was propagated and titered on human lung-derived fibroblasts MRC5. Real-time PCR and Western blot were used to detect mRNA and protein levels, respectively. RESULTS The data presented show that an efficient replication of HCMV in HMVEC is dependent on SOCS3 protein. Time course analysis revealed an increase in SOCS3 protein levels in infected cells. Silencing of SOCS3 (siSOCS3) resulted in inhibition of viral immediate early, early, and late antigen production. Consistently, HCMV titers produced by siSOCS3 cultures were significantly decreased when compared to control transfected cultures (siCNTRs). STAT1 and STAT2 phosphorylation was increased in siSOCS3-infected cells when compared to siCNTR-treated cells. CONCLUSION These findings indicate the implication of SOCS3 in the mechanism of HCMV-mediated control of cellular immune responses.
Collapse
Affiliation(s)
- Olmo Sonzogni
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA,
| | - Anne-Laure Millard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aline Taveira
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Li Duo
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roberto F Speck
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerburg M Wulf
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Tumor Necrosis Factor Alpha Induces Reactivation of Human Cytomegalovirus Independently of Myeloid Cell Differentiation following Posttranscriptional Establishment of Latency. mBio 2018; 9:mBio.01560-18. [PMID: 30206173 PMCID: PMC6134100 DOI: 10.1128/mbio.01560-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HCMV is an important human pathogen that establishes lifelong latent infection in myeloid progenitor cells and reactivates frequently to cause significant disease in immunocompromised people. Our observation that viral gene expression is first turned on and then turned off to establish latency suggests that there is a host defense, which may be myeloid cell specific, responsible for transcriptional silencing of viral gene expression. Our observation that TNF-α induces reactivation independently of differentiation provides insight into molecular mechanisms that control reactivation. We used the Kasumi-3 model to study human cytomegalovirus (HCMV) latency and reactivation in myeloid progenitor cells. Kasumi-3 cells were infected with HCMV strain TB40/Ewt-GFP, flow sorted for green fluorescent protein-positive (GFP+) cells, and cultured for various times to monitor establishment of latency, as judged by repression of viral gene expression (RNA/DNA ratio) and loss of virus production. We found that, in the vast majority of cells, latency was established posttranscriptionally in the GFP+ infected cells: transcription was initially turned on and then turned off. We also found that some of the GFP− cells were infected, suggesting that latency might be established in these cells at the outset of infection. We were not able to test this hypothesis because some GFP− cells expressed lytic genes and thus it was not possible to separate them from GFP− quiescent cells. In addition, we found that the pattern of expression of lytic genes that have been associated with latency, including UL138, US28, and RNA2.7, was the same as that of other lytic genes, indicating that there was no preferential expression of these genes once latency was established. We confirmed previous studies showing that tumor necrosis factor alpha (TNF-α) induced reactivation of infectious virus, and by analyzing expression of the progenitor cell marker CD34 as well as myeloid cell differentiation markers in IE+ cells after treatment with TNF-α, we showed that TNF-α induced transcriptional reactivation of IE gene expression independently of differentiation. TNF-α-mediated reactivation in Kasumi-3 cells was correlated with activation of NF-κB, KAP-1, and ATM.
Collapse
|
20
|
Yang L, Wang L, Ketkar H, Ma J, Yang G, Cui S, Geng T, Mordue DG, Fujimoto T, Cheng G, You F, Lin R, Fikrig E, Wang P. UBXN3B positively regulates STING-mediated antiviral immune responses. Nat Commun 2018; 9:2329. [PMID: 29899553 PMCID: PMC5998066 DOI: 10.1038/s41467-018-04759-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
The ubiquitin regulatory X domain-containing proteins (UBXNs) are likely involved in diverse biological processes. Their physiological functions, however, remain largely unknown. Here we present physiological evidence that UBXN3B positively regulates stimulator-of-interferon genes (STING) signaling. We employ a tamoxifen-inducible Cre-LoxP approach to generate systemic Ubxn3b knockout in adult mice as the Ubxn3b-null mutation is embryonically lethal. Ubxn3b-/-, like Sting-/- mice, are highly susceptible to lethal herpes simplex virus 1 (HSV-1) and vesicular stomatitis virus (VSV) infection, which is correlated with deficient immune responses when compared to Ubxn3b+/+ littermates. HSV-1 and STING agonist-induced immune responses are also reduced in several mouse and human Ubxn3b-/- primary cells. Mechanistic studies demonstrate that UBXN3B interacts with both STING and its E3 ligase TRIM56, and facilitates STING ubiquitination, dimerization, trafficking, and consequent recruitment and phosphorylation of TBK1. These results provide physiological evidence that links the UBXN family with antiviral immune responses.
Collapse
Affiliation(s)
- Long Yang
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA ,0000 0004 1936 8649grid.14709.3bLady Davis Institute-Jewish General Hospital, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1E2 Canada
| | - Leilei Wang
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA ,0000 0000 9678 1884grid.412449.eDepartment of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, 110004 Shenyang City, Liaoning Province China
| | - Harshada Ketkar
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| | - Jinzhu Ma
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA ,0000 0004 1808 3449grid.412064.5College of Life Science and Technology, Heilongjiang Bayi Agricultural University, 163319 Daqing City, Heilongjiang Province China
| | - Guang Yang
- 0000 0004 1790 3548grid.258164.cDepartment of Parasitology, School of Medicine, Jinan University, 510610 Guangzhou City, Guangdong Province China
| | - Shuang Cui
- 0000 0001 2256 9319grid.11135.37Beijing Key Laboratory of Tumor Systems Biology, Department of Immunology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 100083 Beijing, China
| | - Tingting Geng
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| | - Dana G. Mordue
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| | - Toyoshi Fujimoto
- 0000 0001 0943 978Xgrid.27476.30Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550 Japan
| | - Gong Cheng
- 0000 0001 0662 3178grid.12527.33Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, 100084 Beijing, China
| | - Fuping You
- 0000 0001 2256 9319grid.11135.37Beijing Key Laboratory of Tumor Systems Biology, Department of Immunology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, 100083 Beijing, China
| | - Rongtuan Lin
- 0000 0004 1936 8649grid.14709.3bLady Davis Institute-Jewish General Hospital, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1E2 Canada
| | - Erol Fikrig
- 0000000419368710grid.47100.32Section of Infectious Diseases, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510 USA ,0000 0001 2167 1581grid.413575.1Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815 USA
| | - Penghua Wang
- 0000 0001 0728 151Xgrid.260917.bDepartment of Microbiology and Immunology, New York Medical College, 15 Dana Road, Valhalla, NY 10595 USA
| |
Collapse
|
21
|
Herpes Simplex Virus 1 Dramatically Alters Loading and Positioning of RNA Polymerase II on Host Genes Early in Infection. J Virol 2018; 92:JVI.02184-17. [PMID: 29437966 DOI: 10.1128/jvi.02184-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) transcription is mediated by cellular RNA polymerase II (Pol II). Recent studies investigating how Pol II transcription of host genes is altered after HSV-1 are conflicting. Chromatin immunoprecipitation sequencing (ChIP-seq) studies suggest that Pol II is almost completely removed from host genes at 4 h postinfection (hpi), while 4-thiouridine (4SU) labeling experiments show that host transcription termination is extended at 7 hpi, implying that a significant amount of Pol II remains associated with host genes in infected cells. To address this discrepancy, we used precision nuclear run-on analysis (PRO-seq) to determine the location of Pol II to single-base-pair resolution in combination with quantitative reverse transcription-PCR (qRT-PCR) analysis at 3 hpi. HSV-1 decreased Pol II on approximately two-thirds of cellular genes but increased Pol II on others. For more than 85% of genes for which transcriptional termination could be statistically assessed, Pol II was displaced to positions downstream of the normal termination zone, suggesting extensive termination defects. Pol II amounts at the promoter, promoter-proximal pause site, and gene body were also modulated in a gene-specific manner. qRT-PCR of selected RNAs showed that HSV-1-induced extension of the termination zone strongly correlated with decreased RNA and mRNA accumulation. However, HSV-1-induced increases of Pol II occupancy on genes without termination zone extension correlated with increased cytoplasmic mRNA. Functional grouping of genes with increased Pol II occupancy suggested an upregulation of exosome secretion and downregulation of apoptosis, both of which are potentially beneficial to virus production.IMPORTANCE This study provides a map of RNA polymerase II location on host genes after infection with HSV-1 with greater detail than previous ChIP-seq studies and rectifies discrepancies between ChIP-seq data and 4SU labeling experiments with HSV-1. The data show the effects that a given change in RNA Pol II location on host genes has on the abundance of different RNA types, including nuclear, polyadenylated mRNA and cytoplasmic, polyadenylated mRNA. It gives a clearer understanding of how HSV-1 augments host transcription of some genes to provide an environment favorable to HSV-1 replication.
Collapse
|
22
|
Brizić I, Šušak B, Arapović M, Huszthy PC, Hiršl L, Kveštak D, Juranić Lisnić V, Golemac M, Pernjak Pugel E, Tomac J, Oxenius A, Britt WJ, Arapović J, Krmpotić A, Jonjić S. Brain-resident memory CD8 + T cells induced by congenital CMV infection prevent brain pathology and virus reactivation. Eur J Immunol 2018; 48:950-964. [PMID: 29500823 DOI: 10.1002/eji.201847526] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 01/29/2018] [Accepted: 02/24/2018] [Indexed: 01/03/2023]
Abstract
Congenital HCMV infection is a leading infectious cause of long-term neurodevelopmental sequelae. Infection of newborn mice with mouse cytomegalovirus (MCMV) intraperitoneally is a well-established model of congenital human cytomegalovirus infection, which best recapitulates the hematogenous route of virus spread to brain and subsequent pathology. Here, we used this model to investigate the role, dynamics, and phenotype of CD8+ T cells in the brain following infection of newborn mice. We show that CD8+ T cells infiltrate the brain and form a pool of tissue-resident memory T cells (TRM cells) that persist for lifetime. Adoptively transferred virus-specific CD8+ T cells provide protection against primary MCMV infection in newborn mice, reduce brain pathology, and remain in the brain as TRM cells. Brain CD8+ TRM cells were long-lived, slowly proliferating cells able to respond to local challenge infection. Importantly, brain CD8+ TRM cells controlled latent MCMV and their depletion resulted in virus reactivation and enhanced inflammation in brain.
Collapse
Affiliation(s)
- Ilija Brizić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Božo Šušak
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Faculty of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Maja Arapović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Faculty of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Peter C Huszthy
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Centre for Immune Regulation, Department of Immunology, University of Oslo, Norway
| | - Lea Hiršl
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Daria Kveštak
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Mijo Golemac
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ester Pernjak Pugel
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Tomac
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - William J Britt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jurica Arapović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Faculty of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
23
|
Characterization of signaling pathways regulating the expression of pro-inflammatory long form thymic stromal lymphopoietin upon human metapneumovirus infection. Sci Rep 2018; 8:883. [PMID: 29343779 PMCID: PMC5772477 DOI: 10.1038/s41598-018-19225-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/27/2017] [Indexed: 11/08/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is associated with several allergic diseases including asthma. Two isoforms of TSLP exist in humans, a long form (lfTSLP) and a short form (sfTSLP), displaying distinct immunological functions. Recently, TSLP was found to be upregulated in human airway cells upon human metapneumovirus (hMPV) infection, yet it remains unclear if the two isoforms are regulated differently during hMPV infection. Importantly, the molecular mechanisms underlying hMPV-mediated TSLP induction remain undescribed. In this study, we characterized the expression and regulation of TSLP in hMPV-infected human airway cells. We demonstrated that hMPV strongly induced the expression of pro-inflammatory lfTSLP in human airway epithelial cells and lung fibroblasts. Further, knockdown of pattern recognition receptors retinoic acid-inducible gene I (RIG-I) or Toll-like receptor 3 (TLR3), as well as downstream signal transducers, abrogated hMPV-mediated lfTSLP induction. Importantly, silencing of TANK-binding kinase 1 (TBK1) also impaired hMPV-mediated lfTSLP induction, which could be attributed to compromised NF-κB activation. Overall, these results suggest that TBK1 may be instrumental for hMPV-mediated activation of NF-κB downstream RIG-I and TLR3, leading to a specific induction of lfTSLP in hMPV-infected human airway cells.
Collapse
|
24
|
Varicella-Zoster Virus Expresses Multiple Small Noncoding RNAs. J Virol 2017; 91:JVI.01710-17. [PMID: 29021397 DOI: 10.1128/jvi.01710-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Many herpesviruses express small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), that may play roles in regulating lytic and latent infections. None have yet been reported in varicella-zoster virus (VZV; also known as human herpesvirus 3 [HHV-3]). Here we analyzed next-generation sequencing (NGS) data for small RNAs in VZV-infected fibroblasts and human embryonic stem cell-derived (hESC) neurons. Two independent bioinformatics analyses identified more than 20 VZV-encoded 20- to 24-nucleotide RNAs, some of which are predicted to have stem-loop precursors potentially representing miRNAs. These sequences are perfectly conserved between viruses from three clades of VZV. One NGS-identified sequence common to both bioinformatics analyses mapped to the repeat regions of the VZV genome, upstream of the predicted promoter of the immediate early gene open reading frame 63 (ORF63). This miRNA candidate was detected in each of 3 independent biological repetitions of NGS of RNA from fibroblasts and neurons productively infected with VZV using TaqMan quantitative PCR (qPCR). Importantly, transfected synthetic RNA oligonucleotides antagonistic to the miRNA candidate significantly enhanced VZV plaque growth rates. The presence of 6 additional small noncoding RNAs was also verified by TaqMan qPCR in productively infected fibroblasts and ARPE19 cells. Our results show VZV, like other human herpesviruses, encodes several sncRNAs and miRNAs, and some may regulate infection of host cells.IMPORTANCE Varicella-zoster virus is an important human pathogen, with herpes zoster being a major health issue in the aging and immunocompromised populations. Small noncoding RNAs (sncRNAs) are recognized as important actors in modulating gene expression, and this study demonstrates the first reported VZV-encoded sncRNAs. Many are clustered to a small genomic region, as seen in other human herpesviruses. At least one VZV sncRNA was expressed in productive infection of neurons and fibroblasts that is likely to reduce viral replication. Since sncRNAs have been suggested to be potential targets for antiviral therapies, identification of these molecules in VZV may provide a new direction for development of treatments for painful herpes zoster.
Collapse
|
25
|
Zhang J, Gao YY, Huang YQ, Fan Q, Lu XT, Wang CK. Selection of housekeeping genes for quantitative gene expression analysis in yellow-feathered broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1365633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jie Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yu-Yun Gao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yi-Qiang Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Fan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xin-Tao Lu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chang-Kang Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
26
|
Griessl M, Gutknecht M, Cook CH. Determination of suitable reference genes for RT-qPCR analysis of murine Cytomegalovirus in vivo and in vitro. J Virol Methods 2017; 248:100-106. [PMID: 28655566 DOI: 10.1016/j.jviromet.2017.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 11/29/2022]
Abstract
Reverse transcription quantitative PCR (RT-qPCR) is the most commonly used method to evaluate gene expression. Reliable qPCR results are highly dependent on accurate normalization using suitable reference genes. We investigated expression of commonly used reference genes during murine Cytomegalovirus (mCMV) infection and latency to determine those genes least perturbed by infection. Following mCMV infection in BALB/c mice, lung, salivary gland, liver, spleen and kidney were evaluated. Liver sinusoidal endothelial cells and NIH-3T3 cells were also evaluated. RT-qPCR was performed during acute and latent mCMV infection for 11 commonly used reference genes with comparisons made to uninfected samples. Normfinder, BestKeeper, GeNorm and the comparative delta CT method produced comparable analyses that were combined in RefFinder to generate an overall ranking. Ppia, B2m and Gapdh are the most stable reference genes for in vitro infection studies. For in vivo studies the most suitable reference genes were highly tissue and cell type dependent. Comparing infected and uninfected groups revealed viral influence on transcription of some genes. We provide reference gene guidelines for investigations of gene expression for mCMV Smith strain infection of Balb/cJ mice or NIH-3T3 cells. These results also suggest careful consideration of reference genes for different host tissues evaluated.
Collapse
Affiliation(s)
- Marion Griessl
- Department of Surgery, Division of Acute Care Surgery, Trauma and Surgical Critical Care, Beth Israel Deaconess Medical Center - Harvard Medical School, Boston, MA, United States
| | - Michael Gutknecht
- Department of Surgery, Division of Acute Care Surgery, Trauma and Surgical Critical Care, Beth Israel Deaconess Medical Center - Harvard Medical School, Boston, MA, United States
| | - Charles H Cook
- Department of Surgery, Division of Acute Care Surgery, Trauma and Surgical Critical Care, Beth Israel Deaconess Medical Center - Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
27
|
Neerukonda SN, Katneni UK, Golovan S, Parcells MS. Evaluation and validation of reference gene stability during Marek’s disease virus (MDV) infection. J Virol Methods 2016; 236:111-116. [DOI: 10.1016/j.jviromet.2016.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
|
28
|
Volatile Organic Compound Gamma-Butyrolactone Released upon Herpes Simplex Virus Type -1 Acute Infection Modulated Membrane Potential and Repressed Viral Infection in Human Neuron-Like Cells. PLoS One 2016; 11:e0161119. [PMID: 27537375 PMCID: PMC4990300 DOI: 10.1371/journal.pone.0161119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/29/2016] [Indexed: 12/14/2022] Open
Abstract
Herpes Simplex Virus Type -1 (HSV-1) infections can cause serious complications such as keratitis and encephalitis. The goal of this study was to identify any changes in the concentrations of volatile organic compounds (VOCs) produced during HSV-1 infection of epithelial cells that could potentially be used as an indicator of a response to stress. An additional objective was to study if any VOCs released from acute epithelial infection may influence subsequent neuronal infection to facilitate latency. To investigate these hypotheses, Vero cells were infected with HSV-1 and the emission of VOCs was analyzed using two-dimensional gas chromatograph/mass spectrometry (2D GC/MS). It was observed that the concentrations of gamma-butyrolactone (GBL) in particular changed significantly after a 24-hour infection. Since HSV-1 may establish latency in neurons after the acute infection, GBL was tested to determine if it exerts neuronal regulation of infection. The results indicated that GBL altered the resting membrane potential of differentiated LNCaP cells and promoted a non-permissive state of HSV-1 infection by repressing viral replication. These observations may provide useful clues towards understanding the complex signaling pathways that occur during the HSV-1 primary infection and establishment of viral latency.
Collapse
|
29
|
Hwang SM, Uhm TG, Lee SK, Kong SK, Jung KH, Binas B, Chai YG, Park SW, Chung IY. Olig2 is expressed late in human eosinophil development and controls Siglec-8 expression. J Leukoc Biol 2016; 100:711-723. [DOI: 10.1189/jlb.1a0715-314rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 03/12/2016] [Indexed: 01/01/2023] Open
|
30
|
Chen F, Figliozzi RW, Bedadala G, Palem J, Hsia SV. Overexpression of thyroid hormone receptor β1 altered thyroid hormone-mediated regulation of herpes simplex virus-1 replication in differentiated cells. J Neurovirol 2016; 22:555-563. [PMID: 26843385 DOI: 10.1007/s13365-016-0423-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/22/2015] [Accepted: 01/12/2016] [Indexed: 01/18/2023]
Abstract
Thyroid hormone (T3) has been suggested to play a role in herpes simplex virus 1 (HSV-1) replication. It was previously reported that HSV-1 replication was suppressed by T3 in mouse neuroblastoma cells overexpressing thyroid hormone receptor β1 (TRβ1). Using a human neuro-endocrine cells LNCaP differentiated by androgen deprivation, HSV-1 replication was active but decreased by T3 at very low moi, probably due to low copy of TRβ1. In this study, a recombinant HSV-1 was constructed expressing TRβ1 (HSV-1/TRβ1). Infection of Vero cells (very little TRβ1 expression) with HSV-1/TRβ1 exhibited increased replication in the presence of T3 compared to the counterpart without TRβ1 overexpression. Interestingly, HSV-1/TRβ1 infection of differentiated LNCaP cells showed strong suppression of viral replication by T3 and the removal of hormone did not fully reversed the suppression as was observed in parent virus. Quantitative analyses indicated that ICP0 expression was blocked using HSV-1/TRβ1 for infection during T3 washout, suggesting that overexpression of TRβ1 is likely to delay its inhibitory effect on viral gene expression. Together these results emphasized the importance of TRβ1 in the regulation of HSV-1 replication in differentiated environment with neuronal phenotype.
Collapse
Affiliation(s)
- Feng Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Robert W Figliozzi
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, USA.,Department of Natural Sciences, School of Agriculture and Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Gautam Bedadala
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, USA.,Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Jayavardhana Palem
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - S Victor Hsia
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, USA. .,Department of Natural Sciences, School of Agriculture and Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA.
| |
Collapse
|
31
|
Investigation of reference gene expression during human herpesvirus 6B infection indicates peptidylprolyl isomerase A as a stable reference gene and TATA box binding protein as a gene up-regulated by this virus. J Virol Methods 2016; 227:47-9. [DOI: 10.1016/j.jviromet.2015.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 11/17/2022]
|
32
|
Identification of suitable reference gene in goat peripheral blood mononuclear cells (PBMCs) infected with peste des petits ruminants virus (PPRV). Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
An in vitro model of latency and reactivation of varicella zoster virus in human stem cell-derived neurons. PLoS Pathog 2015; 11:e1004885. [PMID: 26042814 PMCID: PMC4456082 DOI: 10.1371/journal.ppat.1004885] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Varicella zoster virus (VZV) latency in sensory and autonomic neurons has remained enigmatic and difficult to study, and experimental reactivation has not yet been achieved. We have previously shown that human embryonic stem cell (hESC)-derived neurons are permissive to a productive and spreading VZV infection. We now demonstrate that hESC-derived neurons can also host a persistent non-productive infection lasting for weeks which can subsequently be reactivated by multiple experimental stimuli. Quiescent infections were established by exposing neurons to low titer cell-free VZV either by using acyclovir or by infection of axons in compartmented microfluidic chambers without acyclovir. VZV DNA and low levels of viral transcription were detectable by qPCR for up to seven weeks. Quiescently-infected human neuronal cultures were induced to undergo renewed viral gene and protein expression by growth factor removal or by inhibition of PI3-Kinase activity. Strikingly, incubation of cultures induced to reactivate at a lower temperature (34°C) resulted in enhanced VZV reactivation, resulting in spreading, productive infections. Comparison of VZV genome transcription in quiescently-infected to productively-infected neurons using RNASeq revealed preferential transcription from specific genome regions, especially the duplicated regions. These experiments establish a powerful new system for modeling the VZV latent state, and reveal a potential role for temperature in VZV reactivation and disease. Most adults worldwide harbor latent VZV in their ganglia, and reactivation from it causes herpes zoster. This painful disease is frequently complicated by long-term pain, neurological sequelae, or vision loss that require improved prevention and treatment strategies. Study of VZV latency and reactivation has been severely hampered by the inability to reproduce a persistent state in vitro or in vivo that can be experimentally reactivated. Our study establishes a system using human neurons derived from embryonic stem cells where multiple stimuli can induce reactivation from long term experimental latency. A potential role for temperature in VZV reactivation has been revealed with this system, which can now be used to study the latent/lytic switch of VZV for the first time.
Collapse
|
34
|
Blackwell J, Harries LW, Pilling LC, Ferrucci L, Jones A, Melzer D. Changes in CEBPB expression in circulating leukocytes following eccentric elbow-flexion exercise. J Physiol Sci 2014; 65:145-50. [PMID: 25391587 PMCID: PMC4276809 DOI: 10.1007/s12576-014-0350-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/31/2014] [Indexed: 01/03/2023]
Abstract
In mouse models, CCAAT enhancer-binding protein beta (CEBPB) is necessary for M2 macrophage-mediated regeneration after muscle injury. In humans, CEBPB expression in blood was strongly associated with muscle strength. In this study we aimed to test whether CEBPB expression in blood in people is increased 2 days after exercise designed to induce muscle damage and subsequent repair. Sixteen healthy male volunteers undertook elbow flexor exercises designed to induce acute muscle micro-damage. Peripheral blood samples were collected at baseline and days 1, 2, 4 and 7 following exercise. Expression of CEBPB and related genes were analysed by qRT-PCR. Extent of muscle damage was determined by decline in maximal voluntary isometric torque and by plasma creatine kinase activity. Nine subjects had peak (day 4) creatine kinase activity exceeding 10,000 U/l. In this subgroup, CEBPB expression was elevated from baseline to 2 days post exercise (paired-samples t(1,8) = 3.72, p = 0.006). Related expression and selected cytokine changes after exercise did not reach significance. Muscle-damaging exercise in humans can be followed by induction of CEBPB transcript expression in peripheral blood. Associations between CEBPB expression in blood and muscle strength may be consistent with the CEBPB-dependent muscle repair process.
Collapse
Affiliation(s)
- Jamie Blackwell
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, UK
| | | | | | | | | | | |
Collapse
|
35
|
Figliozzi RW, Chen F, Balish M, Ajavon A, Hsia SV. Thyroid hormone-dependent epigenetic suppression of herpes simplex virus-1 gene expression and viral replication in differentiated neuroendocrine cells. J Neurol Sci 2014; 346:164-73. [PMID: 25175854 DOI: 10.1016/j.jns.2014.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022]
Abstract
A global HSV-1 gene repression occurs during latency in sensory neurons where most viral gene transcriptions are suppressed. The molecular mechanisms of gene silencing and how stress factors trigger the reactivation are not well understood. Thyroid hormones are known to be altered due to stress, and with its nuclear receptor impart transcriptional repression or activation depending upon the hormone level. Therefore we hypothesized that triiodothyronine (T3) treatment of infected differentiated neuron like cells would reduce the ability of HSV-1 to produce viral progeny compared to untreated infected cells. Previously we identified putative thyroid hormone receptor elements (TREs) within the promoter regions of HSV-1 thymidine kinase (TK) and other key genes. Searching for a human cell line that can model neuronal HSV-1 infection, we performed HSV-1 infection experiments on differentiated human neuroendocrine cells, LNCaP. Upon androgen deprivation these cells undergo complete differentiation and exhibit neuronal-like morphology and physiology. These cells were readily infected by our HSV-1 recombinant virus, expressing GFP and maintaining many processes iconic of dendritic morphology. Our results demonstrated that differentiated LNCaP cells produced suppressive effects on HSV-1 gene expression and replication compared to its undifferentiated counterpart and T3 treatment has further decreased the viral plaque counts compared to untreated cells. Upon washout of the T3 viral plaque counts were restored, indicating an increase of viral replication. The qRT-PCR experiments using primers for TK showed reduced expression under T3 treatment. ChIP assays using a panel of antibodies for H3 lysine 9 epigenetic marks showed increased repressive marks on the promoter regions of TK. In conclusion we have demonstrated a T3 mediated quiescent infection in differentiated LNCaP cells that has potential to mimic latent infection. In this HSV-1 infection model thyroid hormone treatment caused decreased viral replication, repressed TK expression and increased repressive histone tail marks on the TK promoter.
Collapse
Affiliation(s)
- Robert W Figliozzi
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA
| | - Feng Chen
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA
| | - Matthew Balish
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA
| | - Amakoe Ajavon
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA
| | - S Victor Hsia
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, College of Pharmacy, Princess Anne, MD 21853, USA.
| |
Collapse
|
36
|
Yang Q, Li Z, Cao J, Zhang S, Zhang H, Wu X, Zhang Q, Liu X. Selection and assessment of reference genes for quantitative PCR normalization in migratory locust Locusta migratoria (Orthoptera: Acrididae). PLoS One 2014; 9:e98164. [PMID: 24887329 PMCID: PMC4041718 DOI: 10.1371/journal.pone.0098164] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/29/2014] [Indexed: 11/18/2022] Open
Abstract
Locusta migratoria is a classic hemimetamorphosis insect and has caused widespread economic damage to crops as a migratory pest. Researches on the expression pattern of functional genes in L. migratoria have drawn focus in recent years, especially with the release of genome information. Real-time quantitative PCR is the most reproducible and sensitive approach for detecting transcript expression levels of target genes, but optimal internal standards are key factors for its accuracy and reliability. Therefore, it's necessary to provide a systematic stability assessment of internal control for well-performed tests of target gene expression profile. In this study, twelve candidate genes (Ach, Act, Cht2, EF1α, RPL32, Hsp70, Tub, RP49, SDH, GAPDH, 18S, and His) were analyzed with four statistical methods: the delta Ct approach, geNorm, Bestkeeper and NormFinder. The results from these analyses aimed to choose the best suitable reference gene across different experimental situations for gene profile study in L. migratoria. The result demonstrated that for different developmental stages, EF1α, Hsp70 and RPL32 exhibited the most stable expression status for all samples; EF1α and RPL32 were selected as the best reference genes for studies involving embryo and larvae stages, while SDH and RP49 were identified for adult stage. The best-ranked reference genes across different tissues are RPL32, Hsp70 and RP49. For abiotic treatments, the most appropriate genes we identified were as follows: Act and SDH for larvae subjected to different insecticides; RPL32 and Ach for larvae exposed to different temperature treatments; and Act and Ach for larvae suffering from starvation. The present report should facilitate future researches on gene expression in L. migratoria with accessibly optimal reference genes under different experimental contexts.
Collapse
Affiliation(s)
- Qingpo Yang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jinjun Cao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Songdou Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Huaijiang Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiaoyun Wu
- Department of Entomology, China Agricultural University, Beijing, China; Department of Horticulture, Beijing Vocational College of Agriculture, Beijing, China
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Development of an efficient qRT-PCR assay for quality control and cellular quantification of respiratory samples. J Clin Virol 2014; 60:270-5. [PMID: 24809729 DOI: 10.1016/j.jcv.2014.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Sample quality is a fundamental parameter for the successful diagnosis of respiratory viruses. This parameter depends upon the concentration of epithelial cells. Respiratory samples are usually heterogeneous, which makes relative quantification of the viral load, against the quantity of cells, the most suitable measurement. The quantification of viral load in the field of respiratory viruses is a vital piece of information. Quantification is required from RNA or DNA viral genomes extracted. OBJECTIVES To design (RT-)PCR assays for reference genes, which show stable expression during viral infection, to be used as cellular controls and cellular quantification tools. STUDY DESIGN Assays were designed for two reference genes: hypoxanthine phosphoribosyltransferase 1 (HPRT1) and ubiquitin C (UBC). The glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) was used as a reference for this study. The transcriptional activity of the three genes was studied during infection with respiratory syncytial virus and adenovirus. The HPRT1 q(RT-)PCR assay was used on clinical samples. RESULTS All the analysis methods concluded that the three reference genes were stably expressed during viral infection. The HPRT1 q(RT-)PCR assay indicated that the majority of clinical samples (n=301, 69%) had a cellular load of between 100 and 10,000 cells/PCR. The data showed that the concentration decreased as the age of patient increased. CONCLUSIONS A new tool has been developed and commercialized for quality control and evaluation of cellular concentration in respiratory samples.
Collapse
|
38
|
Abstract
Early Growth response-1 (Egr-1) is a transcription factor that possesses a variety of biological functions. It has been shown to regulate HSV-1 gene expression and replication in different cellular environments through the recruitment of distinct cofactor complexes. Previous studies demonstrated that Egr-1 can be induced by HSV-1 infection in corneal cells but the level was lower compared to other cell types. The primary goal of this report is to generate a recombinant HSV-1 constitutively expressing Egr-1 and to investigate the regulation of viral replication in different cell types or in animals with Egr-1 overexpression. The approach utilized was to introduce Egr-1 into the BAC system containing complete HSV-1 (F) genome. To assist in the insertion of Egr-1, a gene cassette was constructed that contains the Egr-1 gene flanked byloxP sites. In this clone Egr-1 is expressed under control of CMV immediate-early promoter followed by another gene cassette expressing the enhanced green fluorescent protein (EGFP) under the control of the elongation factor 1α (EF-1 α) promoter. The constructed recombinant viruses were completed containing the Egr-1 gene within the viral genome and the expression was characterized by qRT-PCR and Western blot analyses. Our results showed that Egr-1 transcript and protein can be generated and accumulated upon infection of recombinant virus in Vero and rabbit corneal cells SIRC. This unique virus therefore is useful for studying the effects of Egr-1 during HSV-1 replication and gene regulation in epithelial cells and neurons.
Collapse
|
39
|
Yang F, Lei X, Rodriguez-Palacios A, Tang C, Yue H. Selection of reference genes for quantitative real-time PCR analysis in chicken embryo fibroblasts infected with avian leukosis virus subgroup J. BMC Res Notes 2013; 6:402. [PMID: 24099561 PMCID: PMC3851545 DOI: 10.1186/1756-0500-6-402] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 10/02/2013] [Indexed: 01/12/2023] Open
Abstract
Background The selection of stably expressed reference genes is a prerequisite when evaluating gene expression, via real-time PCR, in cells in response to viral infections. The objective of our study was to identify suitable reference genes for mRNA expression analysis in chicken embryonic fibroblasts (CEF) after infection with avian leukosis virus subgroup J (ALV-J). Findings The expression levels of 11 potential reference genes in CEF infected with ALV-J were determined by real-time PCR. The expression stability of these genes were analyzed and ranked using the geNorm tool. Analysis indicated that the genes RPL30 (ribosomal protein L30) and SDHA (succinate dehydrogenase complex, subunit A) were the most stably expressed genes in the ALV-J infected CEF. Conclusions The RPL30 and SDHA were deemed suitable for use as reference genes for real-time PCR analysis of mRNA gene expression during ALV-J infection, whereas commonly used ACTB and GAPDH are unsuitable to be reference genes.
Collapse
Affiliation(s)
- Falong Yang
- Department of Veterinary Medicine, College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China.
| | | | | | | | | |
Collapse
|
40
|
Hsia SC, Graham LP, Bedadala GR, Balish MB, Chen F, Figliozzi RW. Induction of Transcription Factor Early Growth Response Protein 1 during HSV-1 Infection Promotes Viral Replication in Corneal Cells. ACTA ACUST UNITED AC 2013. [PMID: 25264522 PMCID: PMC4175986 DOI: 10.9734/bmrj/2013/4817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aims To understand the mechanisms of Early Growth Response Protein 1 (Egr-1) induction upon HSV-1 lytic infection and its roles in regulating viral gene expression and replication. Study Design Rabbit corneal cell line SIRC and other cell lines were infected by HSV-1 to investigate the Egr-1 induction and its occupancy on the viral genome in different conditions. UV-inactivated HSV-1 and a recombinant virus over-expressing Egr-1 were generated to evaluate the regulatory effects on viral gene expression and replication during the infection. Methodology Egr-1 induction triggered by viral infection was determined by Western Blot analyses and immune-fluorescent microscopy. Real-time RT-PCR and a novel Cignal™ Reporter Assay were used for quantitative measurement of Egr-1 expression. Chromatin Immuno-precipitation (ChIP) was performed to address the Egr-1 occupancy to the viral regulatory sequences and the influence on viral replication was assessed by plaque assays. Results Our results indicated that Egr-1 expression requires viral gene expression since the UV-inactivated HSV-1 failed to produce Egr-1 protein. Blockade of viral replication did not block the Egr-1 protein synthesis, supporting the hypothesis that HSV-1 replication was not essential for Egr-1 production. Chromatin immune-precipitation (ChIP) and RT-PCR assays demonstrated that induced Egr-1 was able to interact with key regulatory elements near HSV-1 immediate-early (IE) genes and promote viral gene expression. Recombinant virus overexpressing Egr-1 revealed that Egr-1 enhanced the viral replication and the release of infectious virus. Conclusion Together these results concluded that HSV-1 triggers the expression of an important host transcription factor Egr-1 via a unique mechanism and benefit the viral gene expression and replication.
Collapse
Affiliation(s)
- S C Hsia
- Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, 1 College Backbone Road, Princess Anne, MD 21853, USA
| | - L P Graham
- Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, 1 College Backbone Road, Princess Anne, MD 21853, USA
| | - G R Bedadala
- Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, 1 College Backbone Road, Princess Anne, MD 21853, USA
| | - M B Balish
- Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, 1 College Backbone Road, Princess Anne, MD 21853, USA
| | - F Chen
- Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, 1 College Backbone Road, Princess Anne, MD 21853, USA
| | - R W Figliozzi
- Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, 1 College Backbone Road, Princess Anne, MD 21853, USA
| |
Collapse
|
41
|
Abstract
AIM Identify sex- and hormone-independent housekeeping genes in rat liver by using a commercially available quantitative reverse transcription-polymerase chain reaction array designed to measure the expression of 32 rat housekeeping genes. RESULTS We found that the levels of five of the genes were sexually dimorphic, 22 genes were overexpressed, and one was underexpressed in multi-hormone-deficient hypophysectomized rats of both sexes. Only three genes fulfilled the stability criteria determined by geNorm and NormFinder as suitable housekeeping genes. Normalizing quantitative reverse transcription-polymerase chain reaction data with either of these three genes alone, the geometric means of any two of the genes, or even the geometric mean of all the three genes, produced similar results. In contrast, application of unproven housekeeping genes could lead to erroneous conclusions, having found that insulin-like growth factor 1 messenger RNA levels could be calculated dramatically either as male or as female predominant depending on the choice of housekeeping gene. CONCLUSION It is essential to validate the constancy of housekeeping genes under every experimental condition. (This research protocol was approved by the university's Institutional Animal Care and Use Committee.).
Collapse
Affiliation(s)
| | | | - Bernard H. Shapiro
- Corresponding author to whom proofs should be sent at the above address 215-898-1772 [telephone],
| |
Collapse
|
42
|
McCulloch RS, Ashwell MS, O'Nan AT, Mente PL. Identification of stable normalization genes for quantitative real-time PCR in porcine articular cartilage. J Anim Sci Biotechnol 2012; 3:36. [PMID: 23146128 PMCID: PMC3503854 DOI: 10.1186/2049-1891-3-36] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/10/2012] [Indexed: 11/10/2022] Open
Abstract
Background Expression levels for genes of interest must be normalized with an appropriate reference, or housekeeping gene, to make accurate comparisons of quantitative real-time PCR results. The purpose of this study was to identify the most stable housekeeping genes in porcine articular cartilage subjected to a mechanical injury from a panel of 10 candidate genes. Results Ten candidate housekeeping genes were evaluated in three different treatment groups of mechanically impacted porcine articular cartilage. The genes evaluated were: beta actin, beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, hydroxymethylbilane synthase, hypoxanthine phosphoribosyl transferase, peptidylprolyl isomerase A (cyclophilin A), ribosomal protein L4, succinate dehydrogenase flavoprotein subunit A, TATA box binding protein, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein—zeta polypeptide. The stability of the genes was measured using geNorm, BestKeeper, and NormFinder software. The four most stable genes measured via geNorm were (most to least stable) succinate dehydrogenase flavoprotein, subunit A, peptidylprolyl isomerase A, glyceraldehyde-3-phosphate dehydrogenase, beta actin; the four most stable genes measured via BestKeeper were glyceraldehyde-3-phosphate dehydrogenase, peptidylprolyl isomerase A, beta actin, succinate dehydrogenase flavoprotein, subunit A; and the four most stable genes measured via NormFinder were peptidylprolyl isomerase A, succinate dehydrogenase flavoprotein, subunit A, glyceraldehyde-3-phosphate dehydrogenase, beta actin. Conclusions BestKeeper, geNorm, and NormFinder all generated similar results for the most stable genes in porcine articular cartilage. The use of these appropriate reference genes will facilitate accurate gene expression studies of porcine articular cartilage and suggest appropriate housekeeping genes for articular cartilage studies in other species.
Collapse
Affiliation(s)
- Ryan S McCulloch
- Animal Science Department, North Carolina State University, Raleigh, NC, USA.
| | | | | | | |
Collapse
|
43
|
Kuchipudi SV, Tellabati M, Nelli RK, White GA, Perez BB, Sebastian S, Slomka MJ, Brookes SM, Brown IH, Dunham SP, Chang KC. 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells. Virol J 2012; 9:230. [PMID: 23043930 PMCID: PMC3499178 DOI: 10.1186/1743-422x-9-230] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/05/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. RESULTS The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. CONCLUSIONS Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation.
Collapse
Affiliation(s)
- Suresh V Kuchipudi
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire LE12 5RD, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu D, Shi L, Han C, Yu J, Li D, Zhang Y. Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS One 2012; 7:e46451. [PMID: 23029521 PMCID: PMC3460881 DOI: 10.1371/journal.pone.0046451] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/30/2012] [Indexed: 02/04/2023] Open
Abstract
Nicotiana benthamiana is the most widely-used experimental host in plant virology. The recent release of the draft genome sequence for N. benthamiana consolidates its role as a model for plant-pathogen interactions. Quantitative real-time PCR (qPCR) is commonly employed for quantitative gene expression analysis. For valid qPCR analysis, accurate normalisation of gene expression against an appropriate internal control is required. Yet there has been little systematic investigation of reference gene stability in N. benthamiana under conditions of viral infections. In this study, the expression profiles of 16 commonly used housekeeping genes (GAPDH, 18S, EF1α, SAMD, L23, UK, PP2A, APR, UBI3, SAND, ACT, TUB, GBP, F-BOX, PPR and TIP41) were determined in N. benthamiana and those with acceptable expression levels were further selected for transcript stability analysis by qPCR of complementary DNA prepared from N. benthamiana leaf tissue infected with one of five RNA plant viruses (Tobacco necrosis virus A, Beet black scorch virus, Beet necrotic yellow vein virus, Barley stripe mosaic virus and Potato virus X). Gene stability was analysed in parallel by three commonly-used dedicated algorithms: geNorm, NormFinder and BestKeeper. Statistical analysis revealed that the PP2A, F-BOX and L23 genes were the most stable overall, and that the combination of these three genes was sufficient for accurate normalisation. In addition, the suitability of PP2A, F-BOX and L23 as reference genes was illustrated by expression-level analysis of AGO2 and RdR6 in virus-infected N. benthamiana leaves. This is the first study to systematically examine and evaluate the stability of different reference genes in N. benthamiana. Our results not only provide researchers studying these viruses a shortlist of potential housekeeping genes to use as normalisers for qPCR experiments, but should also guide the selection of appropriate reference genes for gene expression studies of N. benthamiana under other biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Deshui Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lindan Shi
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Zhao DJ, Guo K, Kang L. Identification of condition-specific reference genes from microarray data for locusts exposed to hypobaric hypoxia. FEBS Open Bio 2012; 2:235-40. [PMID: 23650605 PMCID: PMC3642161 DOI: 10.1016/j.fob.2012.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 12/11/2022] Open
Abstract
Real-time quantitative polymerase chain reaction (qPCR) is a routine and robust approach for measuring gene expression. The stability of reference genes in qPCR is crucial for the accurate quantification of gene expression. To provide reliable reference genes for studying the transcriptional responses of locust muscles to hypobaric hypoxia, we first examined the gene expression stability of the frequently used housekeeping genes 18S, GAPDH, and β-actin. However, the expression of these three housekeeping genes was influenced by hypobaric hypoxia. Consequently, we identified five novel candidate reference genes from the locust microarray data. The gene expression stability of the five candidates, together with the three classical housekeeping genes, were evaluated using two distinct algorithms implemented in geNorm and NormFinder. GeNorm identified Ach (acetyl-CoA hydrolase) and Pgp (phosphoglycolate phosphatase-like) as the most stable genes and NormFinder further distinguished Ach as the most stable one. The validity of Ach as a reference gene was confirmed through comparison with 18S. This study exemplifies the necessity of validating reference genes before their application and the feasibility of identifying condition-specific reference genes from large-scale gene expression data.
Collapse
Affiliation(s)
- De-Jian Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
46
|
Selection of reliable reference genes for quantitative real-time PCR in human T cells and neutrophils. BMC Res Notes 2011; 4:427. [PMID: 22011438 PMCID: PMC3229292 DOI: 10.1186/1756-0500-4-427] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The choice of reliable reference genes is a prerequisite for valid results when analyzing gene expression with real-time quantitative PCR (qPCR). This method is frequently applied to study gene expression patterns in immune cells, yet a thorough validation of potential reference genes is still lacking for most leukocyte subtypes and most models of their in vitro stimulation. In the current study, we evaluated the expression stability of common reference genes in two widely used cell culture models-anti-CD3/CD28 activated T cells and lipopolysaccharide stimulated neutrophils-as well as in unselected untreated leukocytes. RESULTS The mRNA expression of 17 (T cells), 7 (neutrophils) or 8 (unselected leukocytes) potential reference genes was quantified by reverse transcription qPCR, and a ranking of the preselected candidate genes according to their expression stability was calculated using the programs NormFinder, geNorm and BestKeeper. IPO8, RPL13A, TBP and SDHA were identified as suitable reference genes in T cells. TBP, ACTB and SDHA were stably expressed in neutrophils. TBP and SDHA were also the most stable genes in untreated total blood leukocytes. The critical impact of reference gene selection on the estimated target gene expression is demonstrated for IL-2 and FIH expression in T cells. CONCLUSIONS The study provides a shortlist of suitable reference genes for normalization of gene expression data in unstimulated and stimulated T cells, unstimulated and stimulated neutrophils and in unselected leukocytes.
Collapse
|
47
|
HIV infection of dendritic cells subverts the IFN induction pathway via IRF-1 and inhibits type 1 IFN production. Blood 2011; 118:298-308. [PMID: 21411754 DOI: 10.1182/blood-2010-07-297721] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many viruses have developed mechanisms to evade the IFN response. Here, HIV-1 was shown to induce a distinct subset of IFN-stimulated genes (ISGs) in monocyte-derived dendritic cells (DCs), without detectable type I or II IFN. These ISGs all contained an IFN regulatory factor 1 (IRF-1) binding site in their promoters, and their expression was shown to be driven by IRF-1, indicating this subset was induced directly by viral infection by IRF-1. IRF-1 and -7 protein expression was enriched in HIV p24 antigen-positive DCs. A HIV deletion mutant with the IRF-1 binding site deleted from the long terminal repeat showed reduced growth kinetics. Early and persistent induction of IRF-1 was coupled with sequential transient up-regulation of its 2 inhibitors, IRF-8, followed by IRF-2, suggesting a mechanism for IFN inhibition. HIV-1 mutants with Vpr deleted induced IFN, showing that Vpr is inhibitory. However, HIV IFN inhibition was mediated by failure of IRF-3 activation rather than by its degradation, as in T cells. In contrast, herpes simplex virus type 2 markedly induced IFNβ and a broader range of ISGs to higher levels, supporting the hypothesis that HIV-1 specifically manipulates the induction of IFN and ISGs to enhance its noncytopathic replication in DCs.
Collapse
|
48
|
Lilly ST, Drummond RSM, Pearson MN, MacDiarmid RM. Identification and validation of reference genes for normalization of transcripts from virus-infected Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:294-304. [PMID: 21091160 DOI: 10.1094/mpmi-10-10-0236] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Real-time quantitative polymerase chain reaction (qPCR) of complementary DNA is now a standard method for studies of gene expression. However, qPCR can identify genuine variation only when transcript quantities are accurately normalized to an appropriate reference. To identify the most reliable reference genes for transcript quantification by qPCR, we describe a systematic evaluation of candidate reference genes of Arabidopsis thaliana ecotype Columbia-0 (Col-0). Twelve genes were selected for transcript stability studies by qPCR of complementary DNA prepared from Arabidopsis leaf tissue infected with one of five plant viruses (Cauliflower mosaic virus, Tobacco mosaic virus, Tomato spotted wilt virus, Turnip mosaic virus, and Turnip yellow mosaic virus). The F-box family protein, elongation factor 1-α, sand family protein, and protodermal factor 2 gene transcripts showed the most stable accumulation, whereas a traditionally used reference gene, Actin8, showed the least stable accumulation as measured by the geNorm algorithm. The data furnish plant virologists with reference genes for normalization of qPCR-derived gene expression in virus-infected Arabidopsis and will be beneficial to the selection and design of primers targeting orthologous genes in other plant species.
Collapse
Affiliation(s)
- S T Lilly
- The New Zealand Institute for Plant and Food Research, Limited
| | | | | | | |
Collapse
|
49
|
Yue H, Lei XW, Yang FL, Li MY, Tang C. Reference gene selection for normalization of PCR analysis in chicken embryo fibroblast infected with H5N1 AIV. Virol Sin 2010; 25:425-31. [PMID: 21221921 PMCID: PMC7090763 DOI: 10.1007/s12250-010-3114-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 07/28/2010] [Indexed: 12/01/2022] Open
Abstract
Chicken embryo fibroblasts (CEFs) are among the most commonly used cells for the study of interactions between chicken hosts and H5N1 avian influenza virus (AIV). In this study, the expression of eleven housekeeping genes typically used for the normalization of quantitative real-time PCR (QPCR) analysis in mammals were compared in CEFs infected with H5N1 AIV to determine the most reliable reference genes in this system. CEFs cultured from 10-day-old SPF chicken embryos were infected with 100 TCID(50) of H5N1 AIV and harvested at 3, 12, 24 and 30 hours post-infection. The expression levels of the eleven reference genes in infected and uninfected CEFs were determined by real-time PCR. Based on expression stability and expression levels, our data suggest that the ribosomal protein L4 (RPL4) and tyrosine 3-monooxygenase tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ) are the best reference genes to use in the study of host cell response to H5N1 AIV infection. However, for the study of replication levels of H5N1 AIV in CEFs, the β-actin gene (ACTB) and the ribosomal protein L4 (RPL4) gene are the best references.
Collapse
Affiliation(s)
- Hua Yue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
50
|
Mascia T, Santovito E, Gallitelli D, Cillo F. Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants. MOLECULAR PLANT PATHOLOGY 2010. [PMID: 21029324 DOI: 10.1111/j.1365-3059.2009.02239.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The quantification of messenger RNA expression levels by real-time reverse-transcription polymerase chain reaction requires the availability of reference genes that are stably expressed regardless of the experimental conditions under study. We examined the expression variations of a set of eight candidate reference genes in tomato leaf and root tissues subjected to the infection of five taxonomically and molecularly different plant viruses and a viroid, inducing diverse pathogenic effects on inoculated plants. Parallel analyses by three commonly used dedicated algorithms, geNorm, NormFinder and BestKeeper, showed that different viral infections and tissues of origin influenced, to some extent, the expression levels of these genes. However, all algorithms showed high levels of stability for glyceraldehyde 3-phosphate dehydrogenase and ubiquitin, indicated as the most suitable endogenous transcripts for normalization in both tissue types. Actin and uridylate kinase were also stably expressed throughout the infected tissues, whereas cyclophilin showed tissue-specific expression stability only in root samples. By contrast, two widely employed reference genes, 18S ribosomal RNA and elongation factor 1α, demonstrated highly variable expression levels that should discourage their use for normalization. In addition, expression level analysis of ascorbate peroxidase and superoxide dismutase showed the modulation of the two genes in virus-infected tomato leaves and roots. The relative quantification of the two genes varied according to the reference genes selected, thus highlighting the importance of the choice of the correct normalization method in such experiments.
Collapse
Affiliation(s)
- Tiziana Mascia
- Istituto di Virologia Vegetale, CNR, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | |
Collapse
|