1
|
Hausman-Kedem M, Herring R, Torres MD, Santoro JD, Kaseka ML, Vargas C, Amico G, Bertamino M, Nagesh D, Tilley J, Schenk A, Ben-Shachar S, Musolino PL. The Genetic Landscape of Ischemic Stroke in Children - Current Knowledge and Future Perspectives. Semin Pediatr Neurol 2022; 44:100999. [PMID: 36456039 DOI: 10.1016/j.spen.2022.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Stroke in childhood has multiple etiologies, which are mostly distinct from those in adults. Genetic discoveries over the last decade pointed to monogenic disorders as a rare but significant cause of ischemic stroke in children and young adults, including small vessel and arterial ischemic stroke. These discoveries contributed to the understanding that stroke in children may be a sign of an underlying genetic disease. The identification of these diseases requires a detailed medical and family history collection, a careful clinical evaluation for the detection of systemic symptoms and signs, and neuroimaging assessment. Establishing an accurate etiological diagnosis and understanding the genetic risk factors for stroke are essential steps to decipher the underlying mechanisms, optimize the design of tailored prevention strategies, and facilitate the identification of novel therapeutic targets in some cases. Despite the increasing recognition of monogenic causes of stroke, genetic disorders remain understudied and therefore under-recognized in children with stroke. Increased awareness among healthcare providers is essential to facilitate accurate diagnosis in a timely manner. In this review, we provide a summary of the main single-gene disorders which may present as ischemic stroke in childhood and describe their clinical manifestations. We provide a set of practical suggestions for the diagnostic work up of these uncommon causes of stroke, based upon the stroke subtype and imaging characteristics that may suggest a monogenic diagnosis of ischemic stroke in children. Current hurdles in the genetic analyses of children with ischemic stroke as well as future prospectives are discussed.
Collapse
Affiliation(s)
- Moran Hausman-Kedem
- Pediatric Neurology Institute, Dana Children's Hospital, Tel Aviv Sourasky Medical Center, Israel; The Sacker Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Rachelle Herring
- Neurology Department, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Marcela D Torres
- Hematology Department, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Jonathan D Santoro
- Division of Neurology, Children's Hospital Los Angeles, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA USA
| | | | - Carolina Vargas
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Giulia Amico
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Bertamino
- Physical Medicine and Rehabilitation Unit, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Deepti Nagesh
- Division of Neurology, Children's Hospital Los Angeles, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA USA
| | - Jo Tilley
- Departments of Hematology and Neurology, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Allyson Schenk
- Research Data Science and Analytics Department-Stroke and Thrombosis Program, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Shay Ben-Shachar
- Research Data Science and Analytics Department-Stroke and Thrombosis Program, Cook Children's Medical Center, Fort Worth, TX, USA; Clalit Research Institute, Innovation Division, Clalit Health Services, Ramat Gan, Israel
| | - Patricia L Musolino
- Center for Genomic Medicine, Center for Rare Neurological Disorders, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Divarathne MVM, Ahamed RR, Noordeen F. The Impact of RSV-Associated Respiratory Disease on Children in Asia. J PEDIAT INF DIS-GER 2019; 14:79-88. [PMID: 32300274 PMCID: PMC7117084 DOI: 10.1055/s-0038-1637752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
Acute respiratory tract infections (ARTIs) are leading contributors to the global infectious disease burden, which is estimated to be 112,900,000 disability adjusted life years. Viruses contribute to the etiology of ARTIs in a big way compared with other microorganisms. Since the discovery of respiratory syncytial virus (RSV) 61 years ago, the virus has been recognized as a major cause of ARTI and hospitalization in children. The morbidity and mortality attributable to RSV infection appear to be higher in infants < 3 months and in those with known risk factors such as prematurity, chronic lung, and congenital heart diseases. Crowded living conditions, exposure to tobacco smoke, and industrial or other types of air pollution also increase the risk of RSV-associated ARTI. Many epidemiological studies have been conducted in developed countries to understand the seasonal patterns and risk factors associated with RSV infections. Dearth of information on RSV-associated morbidity and mortality in Asian and developing countries indicates the need for regional reviews to evaluate RSV-associated disease burden in these countries. Epidemiological studies including surveillance is the key to track the disease burden including risk factors, seasonality, morbidity, and mortality associated with RSV infection in these countries. These data will contribute to improve the clinical diagnosis and plan preventive strategies in resource-limited developing countries.
Collapse
Affiliation(s)
| | - Rukshan Rafeek Ahamed
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Faseeha Noordeen
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
3
|
Systematic identification of anti-interferon function on hepatitis C virus genome reveals p7 as an immune evasion protein. Proc Natl Acad Sci U S A 2017; 114:2018-2023. [PMID: 28159892 DOI: 10.1073/pnas.1614623114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hepatitis C virus (HCV) encodes mechanisms to evade the multilayered antiviral actions of the host immune system. Great progress has been made in elucidating the strategies HCV employs to down-regulate interferon (IFN) production, impede IFN signaling transduction, and impair IFN-stimulated gene (ISG) expression. However, there is a limited understanding of the mechanisms governing how viral proteins counteract the antiviral functions of downstream IFN effectors due to the lack of an efficient approach to identify such interactions systematically. To study the mechanisms by which HCV antagonizes the IFN responses, we have developed a high-throughput profiling platform that enables mapping of HCV sequences critical for anti-IFN function at high resolution. Genome-wide profiling performed with a 15-nt insertion mutant library of HCV showed that mutations in the p7 region conferred high levels of IFN sensitivity, which could be alleviated by the expression of WT p7 protein. This finding suggests that p7 protein of HCV has an immune evasion function. By screening a liver-specific ISG library, we identified that IFI6-16 significantly inhibits the replication of p7 mutant viruses without affecting WT virus replication. In contrast, knockout of IFI6-16 reversed the IFN hypersensitivity of p7 mutant virus. In addition, p7 was found to be coimmunoprecipitated with IFI6-16 and to counteract the function of IFI6-16 by depolarizing the mitochondria potential. Our data suggest that p7 is a critical immune evasion protein that suppresses the antiviral IFN function by counteracting the function of IFI6-16.
Collapse
|
4
|
Riess M, Fuchs NV, Idica A, Hamdorf M, Flory E, Pedersen IM, König R. Interferons Induce Expression of SAMHD1 in Monocytes through Down-regulation of miR-181a and miR-30a. J Biol Chem 2016; 292:264-277. [PMID: 27909056 DOI: 10.1074/jbc.m116.752584] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/29/2016] [Indexed: 01/01/2023] Open
Abstract
SAMHD1 is a phosphohydrolase maintaining cellular dNTP homeostasis but also acts as a critical regulator in innate immune responses due to its antiviral activity and association with autoimmune disease, leading to aberrant activation of interferon. SAMHD1 expression is differentially regulated by interferon in certain primary cells, but the underlying mechanism is not understood. Here, we report a detailed characterization of the promotor region, the 5'- and 3'-untranslated region (UTR) of SAMHD1, and the mechanism responsible for the cell type-dependent up-regulation of SAMHD1 protein by interferon. We demonstrate that induction of SAMHD1 by type I and II interferons depends on 3'-UTR post-transcriptional regulation, whereas the promoter drives basal expression levels. We reveal novel functional target sites for the microRNAs miR-181a, miR-30a, and miR-155 in the SAMHD1 3'-UTR. Furthermore, we demonstrate that down-regulation of endogenous miR-181a and miR-30a levels inversely correlates with SAMHD1 protein up-regulation upon type I and II interferon stimulation in primary human monocytes. These miRNAs are not modulated by interferon in macrophages or dendritic cells, and consequently protein levels of SAMHD1 remain unchanged. These results suggest that SAMHD1 is a non-classical interferon-stimulated gene regulated through cell type-dependent down-regulation of miR-181a and miR-30a in innate sentinel cells.
Collapse
Affiliation(s)
| | | | - Adam Idica
- the Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Matthias Hamdorf
- the Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Egbert Flory
- the Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Irene Munk Pedersen
- the Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Renate König
- From the Host-Pathogen Interactions Group and .,the Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, and.,the German Center for Infection Research (DZIF), 63225 Langen, Germany
| |
Collapse
|
5
|
Garcia M, Spatz SJ, Cheng Y, Riblet SM, Volkening JD, Schneiders GH. Attenuation and protection efficacy of ORF C gene-deleted recombinant of infectious laryngotracheitis virus. J Gen Virol 2016; 97:2352-2362. [PMID: 27283114 DOI: 10.1099/jgv.0.000521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infectious laryngotracheitis (ILT) is a highly contagious respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is controlled by the use of live-attenuated vaccines. Previously we reported the complete nucleotide sequence of the ILTV vaccine strain (TCO) and identified a nonsense mutation in the gene encoding the ORF C protein. This suggested that the ORF C protein might be associated with viral virulence. To investigate this, an ILTV recombinant with a deletion in the gene encoding ORF C was constructed using the genome of the virulent United States Department of Agriculture (USDA) challenge strain (USDAch). Compared to the parental virus, the ΔORF C recombinant replicated in chicken kidney (CK) cells with similar kinetics and generated similar titres. This demonstrated that the ORF C deletion had no deleterious effects on replication efficacy in vitro. In chickens, the recombinant induced only minor microscopic tracheal lesions when inoculated via the intra-tracheal/ocular route, while the parental strain induced moderate to severe microscopic tracheal lesions, even though virus load in the tracheas were comparable. Groups of chickens vaccinated via eye-drop with the ∆ORFC-ILTV were protected to levels comparable to those elicited by TCO vaccination. To our knowledge, this is the first report that demonstrates the suitability of ∆ORFC as a live-attenuated vaccine to prevent the losses caused by ILTV.
Collapse
Affiliation(s)
- Maricarmen Garcia
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | - S J Spatz
- US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Rd, Athens, GA 30602, USA
| | - Y Cheng
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA.,US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Rd, Athens, GA 30602, USA
| | - S M Riblet
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| | | | - G H Schneiders
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA 30602, USA
| |
Collapse
|
6
|
Li W, Xin B, Yan J, Wu Y, Hu B, Liu L, Wang Y, Ahn J, Skowronski J, Zhang Z, Wang Y, Wang H. SAMHD1 Gene Mutations Are Associated with Cerebral Large-Artery Atherosclerosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:739586. [PMID: 26504826 PMCID: PMC4609382 DOI: 10.1155/2015/739586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND To investigate whether one or more SAMHD1 gene mutations are associated with cerebrovascular disease in the general population using a Chinese stroke cohort. METHODS Patients with a Chinese Han background (N = 300) diagnosed with either cerebral large-artery atherosclerosis (LAA, n = 100), cerebral small vessel disease (SVD, n = 100), or other stroke-free neurological disorders (control, n = 100) were recruited. Genomic DNA from the whole blood of each patient was isolated, and direct sequencing of the SAMHD1 gene was performed. Both wild type and mutant SAMHD1 proteins identified from the patients were expressed in E. coli and purified; then their dNTPase activities and ability to form stable tetramers were analysed in vitro. RESULTS Three heterozygous mutations, including two missense mutations c.64C>T (P22S) and c.841G>A (p.E281K) and one splice site mutation c.696+2T>A, were identified in the LAA group with a prevalence of 3%. No mutations were found in the patients with SVD or the controls (p = 0.05). The mutant SAMHD1 proteins were functionally impaired in terms of their catalytic activity as a dNTPase and ability to assemble stable tetramers. CONCLUSIONS Heterozygous SAMHD1 gene mutations might cause genetic predispositions that interact with other risk factors, resulting in increased vulnerability to stroke.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Baozhong Xin
- DDC Clinic-Center for Special Needs Children, Middlefield, OH 44062, USA
| | - Junpeng Yan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44193, USA
| | - Ying Wu
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 45358, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44193, USA
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 45358, USA
| | - Jacek Skowronski
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44193, USA
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Heng Wang
- DDC Clinic-Center for Special Needs Children, Middlefield, OH 44062, USA
- Department of Pediatrics, Case Western Reserve University Medical School, Cleveland, OH 44193, USA
- Rainbow Babies & Children's Hospital, Cleveland, OH 44193, USA
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
7
|
Schmidt S, Schenkova K, Adam T, Erikson E, Lehmann-Koch J, Sertel S, Verhasselt B, Fackler OT, Lasitschka F, Keppler OT. SAMHD1's protein expression profile in humans. J Leukoc Biol 2015; 98:5-14. [PMID: 25646359 PMCID: PMC7166976 DOI: 10.1189/jlb.4hi0714-338rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/22/2014] [Indexed: 11/24/2022] Open
Abstract
First cross‐sectional expression profile of SAMHD1 in human tissue provides insight into its regulation on HIV target cells and effects its expression or phosphorylation state by proinflammatory cytokines. The deoxynucleoside triphosphate triphosphohydrolase and 3′ → 5′ exonuclease SAMHD1 restricts HIV‐1 infection in noncycling hematopoietic cells in vitro, and SAMHD1 mutations are associated with AGS. Little is known about the in vivo expression and functional regulation of this cellular factor. Here, we first assessed the SAMHD1 protein expression profile on a microarray of 25 human tissues from >210 donors and in purified primary cell populations. In vivo, SAMHD1 was expressed in the majority of nucleated cells of hematopoietic origin, including tissue‐resident macrophages, DCs, pDCs, all developmental stages of thymic T cells, monocytes, NK cells, as well as at lower levels in B cells. Of note, SAMHD1 was abundantly expressed in HIV target cells residing in the anogenital mucosa, providing a basis for its evaluation as a cellular factor that may impact the efficiency of HIV transmission. Next, we examined the effect of the activation status and proinflammatory cytokine treatment of cells on expression and phosphorylation of SAMHD1. Activated, HIV‐susceptible CD4+ T cells carried pSAMHD1(T592), whereas resting CD4+ T cells and macrophages expressed the unphosphorylated protein with HIV‐restrictive activity. Surprisingly, stimulation of these primary cells with IFN‐α, IFN‐γ, IL‐4, IL‐6, IL‐12, IL‐18, IL‐27, or TNF‐α affected neither SAMHD1 expression levels nor threonine 592 phosphorylation. Only IL‐1β moderately down‐regulated SAMHD1 in activated CD4+ T cells. Taken together, this study establishes the first cross‐sectional protein expression profile of SAMHD1 in human tissues and provides insight into its cell cycle‐dependent phosphorylation and unresponsiveness to multiple proinflammatory cytokines.
Collapse
Affiliation(s)
- Sarah Schmidt
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Kristina Schenkova
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Tarek Adam
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Elina Erikson
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Judith Lehmann-Koch
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Serkan Sertel
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Oliver T Fackler
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Felix Lasitschka
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Oliver T Keppler
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Nishida Y, Aida K, Kihara M, Kobayashi T. Antibody-validated proteins in inflamed islets of fulminant type 1 diabetes profiled by laser-capture microdissection followed by mass spectrometry. PLoS One 2014; 9:e107664. [PMID: 25329145 PMCID: PMC4199548 DOI: 10.1371/journal.pone.0107664] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/13/2014] [Indexed: 01/05/2023] Open
Abstract
Background There are no reports of proteomic analyses of inflamed islets in type 1 diabetes. Procedures Proteins expressed in the islets of enterovirus-associated fulminant type 1 diabetes (FT1DM) with extensive insulitis were identified by laser-capture microdissection mass spectrometry using formalin-fixed paraffin-embedded pancreatic tissues. Results Thirty-eight proteins were identified solely in FT1DM islets, most of which have not been previously linked to type 1 diabetes. Five protein-protein interacting clusters were identified, and the cellular localization of selected proteins was validated immunohistochemically. Migratory activity-related proteins, including plastin-2 (LCP1), moesin (MSN), lamin-B1 (LMNB1), Ras GTPase-activating-like protein (IQGAP1) and others, were identified in CD8+ T cells and CD68+ macrophages infiltrated to inflamed FT1DM islets. Proteins involved in successive signaling in innate/adaptive immunity were identified, including SAM domain and HD domain-containing protein 1 (SAMHD1), Ras GTPase-activating-like protein (IQGAP1), proteasome activator complex subunit 1 (PSME1), HLA class I histocompatibility antigen (HLA-C), and signal transducer and activator of transcription 1-alpha/beta (STAT1). Angiogenic (thymidine phosphorylase (TYMP)) and anti-angiogenic (tryptophan-tRNA ligase (WARS)) factors were identified in migrating CD8+ T cells and CD68+ macrophages. Proteins related to virus replication and cell proliferation, including probable ATP-dependent RNA helicase DEAD box helicase 5 (DDX5) and heterogeneous nuclear ribonucleoprotein H (HNRNPH1), were identified. The anti-apoptotic protein T-complex protein 1 subunit epsilon (CCT5), the anti-oxidative enzyme 6-phosphogluconate dehydrogenase (PDG), and the anti-viral and anti-apoptotic proteins serpin B6 (SERPINB6) and heat shock 70 kDa protein1-like (HSPA1L), were identified in FT1DM-affected islet cells. Conclusion The identified FT1DM-characterizing proteins include those involved in aggressive beta cell destruction through massive immune cell migration and proteins involved in angiogenesis and islet vasculature bleeding, cell repair, and anti-inflammatory processes. Several target proteins for future type 1 diabetes interventions were identified.
Collapse
Affiliation(s)
- Yoriko Nishida
- Department of Nursing, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kaoru Aida
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Makoto Kihara
- Medical ProteoScope Co., Ltd., Yokohama, Kanagawa, Japan
| | - Tetsuro Kobayashi
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
- * E-mail:
| |
Collapse
|
9
|
Coon S, Wang D, Wu L. Polymorphisms of the SAMHD1 gene are not associated with the infection and natural control of HIV type 1 in Europeans and African-Americans. AIDS Res Hum Retroviruses 2012; 28:1565-73. [PMID: 22530776 DOI: 10.1089/aid.2012.0039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The HIV-1 restriction factor SAM domain and HD domain-containing protein 1 (SAMHD1) blocks HIV-1 infection in human myeloid cells. Mutations in the SAMHD1 gene are associated with rare genetic diseases including Aicardi-Goutieres syndrome. However, it is unknown whether polymorphisms of SAMHD1 are associated with infection and natural control of HIV-1 in humans. Our objective was to determine whether the expression of SAMHD1 mRNA is affected by common single nucleotide polymorphisms (SNPs) in SAMHD1 and whether the SNPs are associated with HIV-1 infection status. Using a tagging SNP approach, we determined the association between eight tagging SNPs in SAMHD1 and the mRNA expression in B-lymphocyte cell lines from 70 healthy white donors. We identified one SNP (rs1291142) that was significantly associated with SAMHD1 mRNA expression, with minor allele carriers having 30% less mRNA levels (p=0.015). However, after analyzing the published genome-wide association study data of 857 HIV-1 controllers and 2088 HIV-1 progressors from the European and African-American cohorts, we did not find a significant association between SNPs in SAMHD1 and HIV-1 infection status, including SNP rs1291142 (p>0.05). We also observed 2- to 6-fold variations of SAMHD1 mRNA levels in primary B-lymphocytes, CD4(+) T-lymphocytes, and CD14(+) monocytes from five healthy donors. Our results suggest that common regulatory polymorphism(s) exist in the SAMHD1 gene that affects its mRNA expression in B-lymphocyte cell lines from healthy whites. However, polymorphisms of SAMHD1 are unlikely to contribute to the infection and natural control of HIV-1 in European and African-American individuals.
Collapse
Affiliation(s)
- Sirena Coon
- Center for Retrovirus Research, Department of Veterinary Bioscience, The Ohio State University, Columbus, Ohio
| | - Danxin Wang
- Department of Pharmacology, Program in Pharmacogenomics, School of Biomedical Science, The Ohio State University, Columbus, Ohio
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Bioscience, The Ohio State University, Columbus, Ohio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio
| |
Collapse
|
10
|
Vaillancourt VT, Bordeleau M, Laviolette M, Laprise C. From expression pattern to genetic association in asthma and asthma-related phenotypes. BMC Res Notes 2012; 5:630. [PMID: 23148572 PMCID: PMC3532380 DOI: 10.1186/1756-0500-5-630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/06/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Asthma is a complex disease characterized by hyperresponsiveness, obstruction and inflammation of the airways. To date, several studies using different approaches as candidate genes approach, genome wide association studies, linkage analysis and genomic expression leaded to the identification of over 300 genes involved in asthma pathophysiology. Combining results from two studies of genomic expression, this study aims to perform an association analysis between genes differently expressed in bronchial biopsies of asthmatics compared to controls and asthma-related phenotypes using the same French-Canadian Caucasian population. RESULTS Before correction, 31 of the 85 genes selected were associated with at least one asthma-related phenotype. We found four genes that survived the correction for multiple testing. The rs11630178 in aggrecan gene (AGC1) is associated with atopy (p=0.0003) and atopic asthma (p=0.0001), the rs1247653 in the interferon alpha-inducible protein 6 (IFI6), the rs1119529 in adrenergic, alpha-2A-, receptor (ADRA2A) and the rs13103321 in the alcohol dehydrogenase 1B (class I), beta polypeptide (ADH1B), are associated with asthma (p=0.019; 0.01 and 0.002 respectively). CONCLUSION To our knowledge, this is the first time those genes are associated with asthma and related traits. Consequently, our study confirms that genetic and expression studies are complementary to identify new candidate genes and to investigate their role to improve the comprehension of the complexity of asthma pathophysiology.
Collapse
Affiliation(s)
- Vanessa T Vaillancourt
- Département des sciences fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, Saguenay, Québec, G7H 2B1, Canada
| | | | | | | |
Collapse
|
11
|
Chen Z, Zhang L, Ying S. SAMHD1: a novel antiviral factor in intrinsic immunity. Future Microbiol 2012; 7:1117-26. [DOI: 10.2217/fmb.12.81] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Some intracellular/membranous factors exert intrinsic immunity against viral pathogens. Most recently, SAMHD1 has been shown to be one of these factors. SAMHD1 is a nucleus-localized protein, and mutations in the gene are associated with Aicardi–Goutières syndrome. As a triphosphohydrolase, it depletes the intracellular pool of dNTPs in myeloid cells, such as macrophages and dendritic cells, to a low level that establishes a precursor-deficient environment for the synthesis of lentiviral cDNA, thereby restricting viral replication in these host cells. However, some viruses evolve Vpx to recruit SAMHD1 onto the CRL4DCAF1 E3 ubiquitin ligase in the cytoplasm for proteasome-dependent degradation, by which these viruses relieve SAMHD1-mediated restriction of primate lentivirus infection. In this review, we describe the latest knowledge of SAMHD1 biology.
Collapse
Affiliation(s)
- Zhangming Chen
- Department of Immunology, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Linjie Zhang
- Department of Immunology, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Songcheng Ying
- Department of Immunology, Anhui Medical University, Hefei, Anhui Province 230032, China
| |
Collapse
|
12
|
Belot A, Cimaz R. Monogenic forms of systemic lupus erythematosus: new insights into SLE pathogenesis. Pediatr Rheumatol Online J 2012; 10:21. [PMID: 22883345 PMCID: PMC3489560 DOI: 10.1186/1546-0096-10-21] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/29/2012] [Indexed: 01/23/2023] Open
Abstract
The pathogenesis of Systemic Lupus Erythematosus (SLE) is complex and remains poorly understood. Infectious triggers, genetic background, immunological abnormalities and environmental factors are all supposed to interact for the disease development. Familial SLE as well as early-onset juvenile SLE studies make it possible to identify monogenic causes of SLE. Identification of these rare inherited conditions is of great interest to understand both SLE pathogenesis and molecular human tolerance mechanisms. Complement deficiencies, genetic overproduction of interferon-α and apoptosis defects are the main situations that can lead to monogenic SLE.Here, we review the different genes involved in monogenic SLE and highlight their importance in SLE pathogenesis.
Collapse
Affiliation(s)
- Alexandre Belot
- Pediatric nephrology and rheumatology Unit, Hôpital Femme Mère Enfant, Lyon, Bron, Université de Lyon, Lyon, CNRS UMR5239, France.
| | - Rolando Cimaz
- Rheumatology Unit, Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Fujita M, Nomaguchi M, Adachi A, Otsuka M. SAMHD1-Dependent and -Independent Functions of HIV-2/SIV Vpx Protein. Front Microbiol 2012; 3:297. [PMID: 22908011 PMCID: PMC3415948 DOI: 10.3389/fmicb.2012.00297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022] Open
Abstract
Both human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) encode a unique set of accessory proteins that enhance viral replication in the host. Two similar accessory proteins, Vpx and Vpr, are encoded by HIV-2. In contrast, HIV-1 encodes Vpr but not Vpx. Recent studies have indicated that Vpx counteracts a particular host restriction factor, thereby facilitating reverse transcription in myeloid cells such as monocyte-derived macrophages and monocyte-derived dendritic cells. This mechanism of counteraction is similar to that of the accessory proteins Vif and Vpu which antagonize other host factors. In 2011, the protein SAMHD1 was identified as the restriction factor counteracted by Vpx. Studies have since revealed that SAMHD1 degrades deoxynucleoside triphosphates (dNTPs), which are components of viral genomic cDNA, in order to deprive viruses of dNTPs. Although interactions between SAMHD1 and Vpx continue to be a major research focus, Vpx has also been shown to have an apparent ability to enhance nuclear import of the viral genome in T lymphocytes. This review summarizes the current knowledge regarding SAMHD1-dependent and -independent functions of Vpx, and discusses possible reasons why HIV-2 encodes both Vpx and Vpr, unlike HIV-1.
Collapse
Affiliation(s)
- Mikako Fujita
- Research Institute for Drug Discovery, School of Pharmacy, Kumamoto University Kumamoto, Japan
| | | | | | | |
Collapse
|
14
|
Powell RD, Holland PJ, Hollis T, Perrino FW. Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J Biol Chem 2011; 286:43596-43600. [PMID: 22069334 DOI: 10.1074/jbc.c111.317628] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SAMHD1 protein is an HIV-1 restriction factor that is targeted by the HIV-2 accessory protein Vpx in myeloid lineage cells. Mutations in the SAMHD1 gene cause Aicardi-Goutières syndrome, a genetic disease that mimics congenital viral infection. To determine the physiological function of the SAMHD1 protein, the SAMHD1 gene was cloned, recombinant protein was produced, and the catalytic activity of the purified enzyme was identified. We show that SAMHD1 contains a dGTP-regulated deoxynucleotide triphosphohydrolase. We propose that Vpx targets SAMHD1 for degradation in a viral strategy to control cellular deoxynucleotide levels for efficient replication.
Collapse
Affiliation(s)
- Rebecca D Powell
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Paul J Holland
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Thomas Hollis
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Fred W Perrino
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157.
| |
Collapse
|
15
|
Nomaguchi M, Fujita M, Adachi A. The Fourth Major Restriction Factor Against HIV/SIV. Front Microbiol 2011; 2:132. [PMID: 21713064 PMCID: PMC3114160 DOI: 10.3389/fmicb.2011.00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 11/13/2022] Open
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School Tokushima, Japan
| | | | | |
Collapse
|
16
|
Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Ségéral E, Yatim A, Emiliani S, Schwartz O, Benkirane M. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011; 474:654-7. [PMID: 21613998 DOI: 10.1038/nature10117] [Citation(s) in RCA: 1193] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 04/18/2011] [Indexed: 12/12/2022]
Abstract
The primate lentivirus auxiliary protein Vpx counteracts an unknown restriction factor that renders human dendritic and myeloid cells largely refractory to HIV-1 infection. Here we identify SAMHD1 as this restriction factor. SAMHD1 is a protein involved in Aicardi-Goutières syndrome, a genetic encephalopathy with symptoms mimicking congenital viral infection, that has been proposed to act as a negative regulator of the interferon response. We show that Vpx induces proteasomal degradation of SAMHD1. Silencing of SAMHD1 in non-permissive cell lines alleviates HIV-1 restriction and is associated with a significant accumulation of viral DNA in infected cells. Concurrently, overexpression of SAMHD1 in sensitive cells inhibits HIV-1 infection. The putative phosphohydrolase activity of SAMHD1 is probably required for HIV-1 restriction. Vpx-mediated relief of restriction is abolished in SAMHD1-negative cells. Finally, silencing of SAMHD1 markedly increases the susceptibility of monocytic-derived dendritic cells to infection. Our results demonstrate that SAMHD1 is an antiretroviral protein expressed in cells of the myeloid lineage that inhibits an early step of the viral life cycle.
Collapse
Affiliation(s)
- Nadine Laguette
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Homozygous mutation in SAMHD1 gene causes cerebral vasculopathy and early onset stroke. Proc Natl Acad Sci U S A 2011; 108:5372-7. [PMID: 21402907 DOI: 10.1073/pnas.1014265108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe an autosomal recessive condition characterized with cerebral vasculopathy and early onset of stroke in 14 individuals in Old Order Amish. The phenotype of the condition was highly heterogeneous, ranging from severe developmental disability to normal schooling. Cerebral vasculopathy was a major hallmark of the condition with a common theme of multifocal stenoses and aneurysms in large arteries, accompanied by chronic ischemic changes, moyamoya morphology, and evidence of prior acute infarction and hemorrhage. Early signs of the disease included mild intrauterine growth restriction, infantile hypotonia, and irritability, followed by failure to thrive and short stature. Acrocyanosis, Raynaud's phenomenon, chilblain lesions, low-pitch hoarse voice, glaucoma, migraine headache, and arthritis were frequently observed. The early onset or recurrence of strokes secondary to cerebral vasculopathy seems to always be associated with poor outcomes. The elevated erythrocyte sedimentation rate (ESR), IgG, neopterin, and TNF-α found in these patients suggested an immune disorder. Through genomewide homozygosity mapping, we localized the disease gene to chromosome (Chr) 20q11.22-q12. Candidate gene sequencing identified a homozygous mutation, c.1411-2A > G, in the SAMHD1 gene, being associated with this condition. The mutation appeared at the splice-acceptor site of intron 12, resulted in the skipping of exon 13, and gave rise to an aberrant protein with in-frame deletion of 31 amino acids. Immunoblotting analysis showed lack of mutant SAMHD1 protein expression in affected cell lines. The function of SAMHD1 remains unclear, but the inflammatory vasculopathies of the brain found in the patients with SAMHD1 mutation indicate its important roles in immunoregulation and cerebral vascular hemeostasis.
Collapse
|
18
|
Thiele H, du Moulin M, Barczyk K, George C, Schwindt W, Nürnberg G, Frosch M, Kurlemann G, Roth J, Nürnberg P, Rutsch F. Cerebral arterial stenoses and stroke: novel features of Aicardi-Goutières syndrome caused by the Arg164X mutation in SAMHD1 are associated with altered cytokine expression. Hum Mutat 2010; 31:E1836-50. [PMID: 20842748 PMCID: PMC3049152 DOI: 10.1002/humu.21357] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Aicardi-Goutières syndrome (AGS) is a rare inborn multisystemic disease, resembling intrauterine viral infection and resulting in psychomotor retardation, spasticity and chilblain-like skin lesions. Diagnostic criteria include intracerebral calcifications and elevated interferon-alpha and pterin levels in cerebrospinal fluid (CSF). We report on four adult siblings with unknown neurodegenerative disease presenting with cerebrovascular stenoses, stroke and glaucoma in childhood, two of whom died at the age of 40 and 29 years. Genome-wide homozygosity mapping identified 170 candidate genes embedded in a common haplotype of 8Mb on chromosome 20q11-13. Next generation sequencing of the entire region identified the c.490C>T (p.Arg164X) mutation in SAMHD1, a gene most recently described in AGS, on both alleles in all affected siblings. Clinical diagnosis of AGS was then confirmed by demonstrating intracerebral calcifications on cranial computed tomography in all siblings and elevated pterin levels in CSF in three of them. In patient fibroblasts, lack of SAMHD1 protein expression was associated with increased basal expression of IL8, while stimulated expression of IFNB1 was reduced. We conclude that cerebrovascular stenoses and stroke associated with the Arg164X mutation in SAMHD1 extend the phenotypic spectrum of AGS. The observed vascular changes most likely reflect a vasculitis caused by dysregulated inflammatory stress response. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Holger Thiele
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cheriyath V, Leaman DW, Borden EC. Emerging roles of FAM14 family members (G1P3/ISG 6-16 and ISG12/IFI27) in innate immunity and cancer. J Interferon Cytokine Res 2010; 31:173-81. [PMID: 20939681 DOI: 10.1089/jir.2010.0105] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Interferons (IFNs) manifest their cellular functions by regulating expression of target genes known collectively as IFN-stimulated genes (ISGs). The repertoires of ISGs vary slightly between cell types, but routinely include a core of common ISGs robustly upregulated in most IFN-treated cells. Here, we review the regulation and cellular functions of 2 related ISGs, ISG12 (IFI27) and G1P3 (ISG 6-16), that are commonly induced by IFNs in most, if not all, IFN-responsive cells. On the basis of sequence similarity, they are grouped together within the newly defined FAM14 family. Emerging data on ISG12 and G1P3 suggest that both are mitochondrial proteins with opposing activities on apoptosis that may influence the innate immune responses of IFNs. The G1P3 gene encodes a low molecular weight mitochondrial protein that may stabilize mitochondrial function and oppose apoptosis. In contrast, ISG12 expression may sensitize cells to apoptotic stimuli via mitochondrial membrane destabilization. On the basis of these results and differences in induction kinetics between ISG12 and G1P3, we have proposed a model for the role of these genes in mediating cellular activity of IFNs.
Collapse
Affiliation(s)
- Venugopalan Cheriyath
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|
20
|
Schmeisser H, Mejido J, Balinsky CA, Morrow AN, Clark CR, Zhao T, Zoon KC. Identification of alpha interferon-induced genes associated with antiviral activity in Daudi cells and characterization of IFIT3 as a novel antiviral gene. J Virol 2010; 84:10671-80. [PMID: 20686046 PMCID: PMC2950578 DOI: 10.1128/jvi.00818-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/22/2010] [Indexed: 01/01/2023] Open
Abstract
A novel assay was developed for Daudi cells in which the antiviral (AV) and antiproliferative (AP) activities of interferon (IFN) can be measured simultaneously. Using this novel assay, conditions allowing IFN AV protection but no growth inhibition were identified and selected. Daudi cells were treated under these conditions, and gene expression microarray analyses were performed. The results of the analysis identified 25 genes associated with IFN-α AV activity. Upregulation of 23 IFN-induced genes was confirmed by using reverse transcription-PCR. Of 25 gene products, 17 were detected by Western blotting at 24 h. Of the 25 genes, 10 have not been previously linked to AV activity of IFN-α. The most upregulated gene was IFIT3 (for IFN-induced protein with tetratricopeptide repeats 3). The results from antibody neutralizing experiments suggested an association of the identified genes with IFN-α AV activity. This association was strengthened by results from IFIT3-small interfering RNA transfection experiments showing decreased expression of IFIT3 and a reduction in the AV activity induced by IFN-α. Overexpression of IFIT3 resulted in a decrease of virus titer. Transcription of AV genes after the treatment of cells with higher concentrations of IFN having an AP effect on Daudi cells suggested pleiotropic functions of identified gene products.
Collapse
Affiliation(s)
- H. Schmeisser
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - J. Mejido
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - C. A. Balinsky
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - A. N. Morrow
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - C. R. Clark
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - T. Zhao
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| | - K. C. Zoon
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
21
|
Crow YJ, Rehwinkel J. Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum Mol Genet 2009; 18:R130-6. [PMID: 19808788 DOI: 10.1093/hmg/ddp293] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a genetically determined encephalopathy demonstrating phenotypic overlap both with the sequelae of congenital infection and with systemic lupus erythematosus (SLE). Recent molecular advances have revealed that AGS can be caused by mutations in any one of five genes, most commonly on a recessive basis but occasionally as a dominant trait. Like AGS, SLE is associated with a perturbation of type I interferon metabolism. Interestingly then, heterozygous mutations in the AGS1 gene TREX1 underlie a cutaneous subtype of SLE-called familial chilblain lupus, and mutations in TREX1 represent the single most common cause of monogenic SLE identified to date. Evidence is emerging to show that the nucleases defective in AGS are involved in removing endogenously produced nucleic acid (NA) species, and that a failure of this removal results in activation of the immune system. This hypothesis explains the phenotypic overlap of AGS with congenital infection and some aspects of SLE, where an equivalent type I interferon-mediated innate immune response is triggered by viral and self NAs, respectively. The combined efforts of clinicians, geneticists, immunologists and cell biologists are producing rapid progress in the understanding of AGS and overlapping autoimmune disorders. These studies provide important insights into the pathogenesis of SLE and beg urgent questions about the development and use of immunosuppressive therapies in AGS and related phenotypes.
Collapse
Affiliation(s)
- Yanick J Crow
- Academic Unit of Medical Genetics, Manchester Academic Health Science Centre, Central Manchester Foundation Trust, St Mary's Hospital, University of Manchester, Oxford Road, Manchester M13 9WL, UK.
| | | |
Collapse
|
22
|
Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, Ali M, Gornall H, Couthard LR, Aeby A, Attard-Montalto SP, Bertini E, Bodemer C, Brockmann K, Brueton LA, Corry PC, Desguerre I, Fazzi E, Cazorla AG, Gener B, Hamel BCJ, Heiberg A, Hunter M, van der Knaap MS, Kumar R, Lagae L, Landrieu PG, Lourenco CM, Marom D, McDermott MF, van der Merwe W, Orcesi S, Prendiville JS, Rasmussen M, Shalev SA, Soler DM, Shinawi M, Spiegel R, Tan TY, Vanderver A, Wakeling EL, Wassmer E, Whittaker E, Lebon P, Stetson DB, Bonthron DT, Crow YJ. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 2009; 41:829-32. [PMID: 19525956 DOI: 10.1038/ng.373] [Citation(s) in RCA: 568] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 03/03/2009] [Indexed: 11/09/2022]
Abstract
Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.
Collapse
Affiliation(s)
- Gillian I Rice
- Academic Unit of Medical Genetics, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Oshansky CM, Zhang W, Moore E, Tripp RA. The host response and molecular pathogenesis associated with respiratory syncytial virus infection. Future Microbiol 2009; 4:279-97. [PMID: 19327115 DOI: 10.2217/fmb.09.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since the isolation of respiratory syncytial virus (RSV) in 1956, its significance as an important human pathogen in infants, the elderly and the immunocompromised has been established. Many important mechanisms contributing to RSV infection, replication and disease pathogenesis have been uncovered; however, there is still insufficient knowledge in these and related areas, which must be addressed to facilitate the development of safe and effective vaccines and therapeutic treatments. A better understanding of the molecular pathogenesis of RSV infection, particularly the host-cell response and transcription profiles to RSV infection, is required to advance disease intervention strategies. Substantial information is accumulating regarding how RSV proteins modulate molecular signaling and regulation of cytokine and chemokine responses to infection, molecular signals regulating programmed cell death, and innate and adaptive immune responses to infection. This review discusses RSV manipulation of the host response to infection and related disease pathogenesis.
Collapse
Affiliation(s)
- Christine M Oshansky
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | | | | | | |
Collapse
|