1
|
Bamogo P, Tiendrébéogo F, Brugidou C, Sérémé D, Djigma FW, Simporé J, Lacombe S. Rice yellow mottle virus is a suitable amplicon vector for an efficient production of an anti-leishmianiasis vaccine in Nicotiana benthamiana leaves. BMC Biotechnol 2024; 24:21. [PMID: 38658899 PMCID: PMC11044499 DOI: 10.1186/s12896-024-00851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Since the 2000's, plants have been used as bioreactors for the transient production of molecules of interest such as vaccines. To improve protein yield, "amplicon" vectors based on plant viruses are used. These viral constructs, engineered to carry the gene of interest replicate strongly once introduced into the plant cell, allowing significant accumulation of the protein. Here, we evaluated the suitability of the monocot-infecting RNA virus Rice yellow mottle virus (RYMV) as an amplicon vector. The promastigote surface antigen (PSA) of the protozoan Leishmania was considered as a protein of interest due to its vaccine properties against canine leishmaniasis. RESULTS Since P1 (ORF1) and CP (ORF3) proteins are not strictly necessary for viral replication, ORF1 was deleted and the PSA gene was substituted to ORF3 in the RYMV-based vector. We evaluated its expression in the best described plant bioreactor system, Nicotiana benthamiana which, unlike rice, allows transient transformation by Agrobacterium. Despite not being its natural host, we demonstrated a low level of RYMV-based vector replication in N. benthamiana leaves. Under optimized ratio, we showed that the P19 silencing suppressor in combination with the missing viral CP ORF significantly enhanced RYMV amplicon replication in N. benthamiana. Under these optimized CP/P19 conditions, we showed that the RYMV amplicon replicated autonomously in the infiltrated N. benthamiana cells, but was unable to move out of the infiltrated zones. Finally, we showed that when the RYMV amplicon was expressed under the optimized conditions we set up, it allowed enhanced PSA protein accumulation in N. benthamiana compared to the PSA coding sequence driven by the 35S promoter without amplicon background. CONCLUSION This work demonstrates that a non-dicot-infecting virus can be used as an amplicon vector for the efficient production of proteins of interest such as PSA in N. benthamiana leaves.
Collapse
Affiliation(s)
- Pka Bamogo
- Institut de L'Environnement et de Recherches Agricoles (INERA), LMI Patho-Bios Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso.
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso.
- PHIM Plant Health Institute Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| | - F Tiendrébéogo
- Institut de L'Environnement et de Recherches Agricoles (INERA), LMI Patho-Bios Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - C Brugidou
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
- PHIM Plant Health Institute Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - D Sérémé
- Institut de L'Environnement et de Recherches Agricoles (INERA), LMI Patho-Bios Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - F W Djigma
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
| | - J Simporé
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
| | - S Lacombe
- Université Joseph Ki-Zerbo, Laboratoire de biologie moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Centre de recherche biomoléculaire Piétro Annigoni (CERBA), Ouagadougou, Burkina Faso
- PHIM Plant Health Institute Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
2
|
Ramathani I, Sserumaga JP, Nanyiti S, Mukasa SB, Alicai T. Molecular Diversity of Rice Yellow Mottle Virus in Uganda and Relationships with Other Strains from Africa. PLANT DISEASE 2023; 107:3475-3486. [PMID: 37133339 DOI: 10.1094/pdis-08-22-1989-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Rice yellow mottle virus disease, caused by Rice yellow mottle virus (RYMV), is the most important disease of lowland rice in Uganda. However, little is known about its genetic diversity in Uganda and relationships with other strains elsewhere across Africa. A new degenerate primer pair that targets amplification of the entire RYMV coat protein gene (circa 738 bp) was designed to aid virus variability analysis using RT-PCR and Sanger sequencing. A total of 112 rice leaf samples from plants with RYMV mottling symptoms were collected during the year 2022 in 35 lowland rice fields within Uganda. The RYMV RT-PCR results were 100% positive, and all 112 PCR products were sequenced. BLASTn analysis revealed that all isolates were closely related (93 to 98%) to those previously studied originating from Kenya, Tanzania, and Madagascar. Despite high purifying selection pressure, diversity analysis on 81 out of 112 RYMV CP sequences revealed a very low diversity index of 3 and 1.0% at the nucleotide and amino acid levels, respectively. Except for glutamine, amino acid profile analysis revealed that all 81 Ugandan isolates shared the primary 19 amino acids based on the RYMV coat protein region examined. Except for one isolate (UG68) from eastern Uganda that clustered alone, phylogeny analysis revealed two major clades. The Ugandan RYMV isolates were phylogenetically related to those from the Democratic Republic of Congo, Madagascar, and Malawi but not to RYMV isolates in West Africa. Thus, the RYMV isolates in this study are related to serotype 4, a strain common in eastern and southern Africa. RYMV serotype 4 originated in Tanzania, where evolutionary forces of mutation have resulted in the emergence and spread of new variants. Furthermore, mutations are evident within the coat protein gene of the Ugandan isolates, which may be attributed to changing RYMV pathosystems as a result of rice production intensification in Uganda. Overall, the diversity of RYMV was limited and most noticeably in eastern Uganda.
Collapse
Affiliation(s)
- Idd Ramathani
- National Crops Resources Research Institute (NaCRRI), National Agricultural Research Organisation, Kampala, Uganda
| | - Julius P Sserumaga
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organisation, Kampala, Uganda
| | - Sarah Nanyiti
- National Crops Resources Research Institute (NaCRRI), National Agricultural Research Organisation, Kampala, Uganda
| | - Settumba B Mukasa
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Titus Alicai
- National Crops Resources Research Institute (NaCRRI), National Agricultural Research Organisation, Kampala, Uganda
| |
Collapse
|
3
|
Morozov SY, Lezzhov AA, Solovyev AG. Predicted Membrane-Associated Domains in Proteins Encoded by Novel Monopartite Plant RNA Viruses Related to Members of the Family Benyviridae. Int J Mol Sci 2023; 24:12161. [PMID: 37569537 PMCID: PMC10418960 DOI: 10.3390/ijms241512161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
As a continuation of our previous work, in this paper, we examine in greater detail the genome organization and some protein properties of the members of a potential group named Reclovirids and belonging to Benyviridae-related viruses. It can be proposed that the single-component Reclovirid genomes encode previously undiscovered transport genes. Indeed, analysis of the coding potential of these novel viral genomes reveals one or more cistrons ranging in size from 40 to 80 to about 600 codons, located in the 3'-terminal region of the genomic RNA, encoding proteins with predicted hydrophobic segments that are structurally diverse among Reclovirids and have no analogues in other plant RNA viruses. Additionally, in many cases, the possible methyltransferase domain of Reclovirid replicases is preceded by membrane-embedded protein segments that are not present in annotated members of the Benyviridae family. These observations suggest a general association of most Reclovirid proteins with cell membranes.
Collapse
Affiliation(s)
- Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.A.L.); (A.G.S.)
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.A.L.); (A.G.S.)
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.A.L.); (A.G.S.)
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
4
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
5
|
Complete genome sequence of mimosa mosaic virus, a new sobemovirus infecting Mimosa sensitiva L. Arch Virol 2023; 168:28. [PMID: 36598574 DOI: 10.1007/s00705-022-05683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023]
Abstract
A new sobemovirus, which we have named "mimosa mosaic virus" (MimMV), was found by high-throughput sequencing and isolated from a mimosa (Mimosa sensitiva L.) plant. The genome sequence was confirmed by Sanger sequencing and comprises 4595 nucleotides. Phylogenetic analysis based on the predicted amino acid (aa) sequences of the P2b protein (encoded by ORF2b) and the coat protein showed 52.7% and 31.8% aa sequence identity, respectively, to those of blueberry shoestring virus. The complete genome sequence of MimMV was less than 47% identical to those of other sobemoviruses. These data suggest that MimMV is a member of a new species in the genus Sobemovirus, for which the binomial name "Sobemovirus mimosae" is proposed.
Collapse
|
6
|
Poignavent V, Hoh F, Terral G, Yang Y, Gillet FX, Kim JH, Allemand F, Lacombe E, Brugidou C, Cianferani S, Déméné H, Vignols F. A flexible and original architecture of two unrelated zinc fingers underlies the role of the multitask P1 in RYMV spread. J Mol Biol 2022; 434:167715. [DOI: 10.1016/j.jmb.2022.167715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
7
|
Niu E, Liu H, Zhou H, Luo L, Wu Y, Andika IB, Sun L. Autophagy Inhibits Intercellular Transport of Citrus Leaf Blotch Virus by Targeting Viral Movement Protein. Viruses 2021; 13:2189. [PMID: 34834995 PMCID: PMC8619118 DOI: 10.3390/v13112189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved cellular-degradation mechanism implicated in antiviral defense in plants. Studies have shown that autophagy suppresses virus accumulation in cells; however, it has not been reported to specifically inhibit viral spread in plants. This study demonstrated that infection with citrus leaf blotch virus (CLBV; genus Citrivirus, family Betaflexiviridae) activated autophagy in Nicotiana benthamiana plants as indicated by the increase of autophagosome formation. Impairment of autophagy through silencing of N. benthamiana autophagy-related gene 5 (NbATG5) and NbATG7 enhanced cell-to-cell and systemic movement of CLBV; however, it did not affect CLBV accumulation when the systemic infection had been fully established. Treatment using an autophagy inhibitor or silencing of NbATG5 and NbATG7 revealed that transiently expressed movement protein (MP), but not coat protein, of CLBV was targeted by selective autophagy for degradation. Moreover, we identified that CLBV MP directly interacted with NbATG8C1 and NbATG8i, the isoforms of autophagy-related protein 8 (ATG8), which are key factors that usually bind cargo receptors for selective autophagy. Our results present a novel example in which autophagy specifically targets a viral MP to limit the intercellular spread of the virus in plants.
Collapse
Affiliation(s)
- Erbo Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| | - Huan Liu
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang 725000, China;
| | - Hongsheng Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| | - Lian Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| |
Collapse
|
8
|
Odongo PJ, Onaga G, Ricardo O, Natsuaki KT, Alicai T, Geuten K. Insights Into Natural Genetic Resistance to Rice Yellow Mottle Virus and Implications on Breeding for Durable Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:671355. [PMID: 34267770 PMCID: PMC8276079 DOI: 10.3389/fpls.2021.671355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Rice is the main food crop for people in low- and lower-middle-income countries in Asia and sub-Saharan Africa (SSA). Since 1982, there has been a significant increase in the demand for rice in SSA, and its growing importance is reflected in the national strategic food security plans of several countries in the region. However, several abiotic and biotic factors undermine efforts to meet this demand. Rice yellow mottle virus (RYMV) caused by Solemoviridae is a major biotic factor affecting rice production and continues to be an important pathogen in SSA. To date, six pathogenic strains have been reported. RYMV infects rice plants through wounds and rice feeding vectors. Once inside the plant cells, viral genome-linked protein is required to bind to the rice translation initiation factor [eIF(iso)4G1] for a compatible interaction. The development of resistant cultivars that can interrupt this interaction is the most effective method to manage this disease. Three resistance genes are recognized to limit RYMV virulence in rice, some of which have nonsynonymous single mutations or short deletions in the core domain of eIF(iso)4G1 that impair viral host interaction. However, deployment of these resistance genes using conventional methods has proved slow and tedious. Molecular approaches are expected to be an alternative to facilitate gene introgression and/or pyramiding and rapid deployment of these resistance genes into elite cultivars. In this review, we summarize the knowledge on molecular genetics of RYMV-rice interaction, with emphasis on host plant resistance. In addition, we provide strategies for sustainable utilization of the novel resistant sources. This knowledge is expected to guide breeding programs in the development and deployment of RYMV resistant rice varieties.
Collapse
Affiliation(s)
- Patrick J. Odongo
- Molecular Biotechnology of Plants and Micro-Organisms, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
| | - Geoffrey Onaga
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
- M’bé Research Station, Africa Rice Center (AfricaRice), Bouaké, Côte d’Ivoire
| | - Oliver Ricardo
- Breeding Innovations Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Keiko T. Natsuaki
- Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Titus Alicai
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
| | - Koen Geuten
- Molecular Biotechnology of Plants and Micro-Organisms, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Yang Y, Poignavent V, Gillet FX, Vignols F, Déméné H. NMR chemical shift backbone assignment of the viral protein P1 encoded by the African Rice Yellow Mottle Virus. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:345-348. [PMID: 31346897 DOI: 10.1007/s12104-019-09903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
RNA silencing describes a pan-eukaryotic pathway of gene regulation where doubled stranded RNA are processed by the RNAse III enzyme Dicer or homologs. In particular, plants use it as a way to defend themselves against pathogen invasions. In turn, to evade the plant immune response, viruses have developed anti-RNA silencing mechanisms. They may indeed code for proteins called "viral suppressor of RNA silencing" which block the degrading of viral genomic or messenger RNA by the plant. The Rice Mottle Virus is an African virus of the sobemovirus family, which attacks the most productive rice varieties cultivated on this continent. It encodes P1, a cysteine-rich protein described as a potential RNA silencing suppressor. P1 is a 157 amino-acid long protein, characterized by a high propensity to aggregate concomitant with a limited stability with time in the conditions used in structural studies. To overcome this problem, shorter fragments were also studied. This strategy enabled the assignment of more than 90% backbone resonances of P1. This assignment should set the base of future NMR investigation of the protein structure and of its interactions with rice cellular partners.
Collapse
Affiliation(s)
- Yinshan Yang
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Univ Montpellier, Montpellier, France
| | - Vianney Poignavent
- IRD, CIRAD, Univ Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - François-Xavier Gillet
- IRD, CIRAD, Univ Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Biosciences et Biotechnologies de Grenoble, CNRS, CEA, INRA, Université Grenoble Alpes, Grenoble, France
| | - Florence Vignols
- IRD, CIRAD, Univ Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France.
- Laboratoire BPMP, CNRS, INRA, SupAGRO, Univ de Montpellier, Montpellier, France.
| | - Hélène Déméné
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Univ Montpellier, Montpellier, France.
| |
Collapse
|
10
|
Kalyandurg PB, Tahmasebi A, Vetukuri RR, Kushwaha SK, Lezzhov AA, Solovyev AG, Grenville-Briggs LJ, Savenkov EI. Efficient RNA silencing suppression activity of Potato Mop-Top Virus 8K protein is driven by variability and positive selection. Virology 2019; 535:111-121. [PMID: 31299487 DOI: 10.1016/j.virol.2019.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/31/2022]
Abstract
Previously, we investigated the evolution of Potato mop-top virus (PMTV) ORFs. Results indicate that positive selection acts exclusively on an ORF encoding the 8K protein, a weak viral suppressor of RNA silencing (VSR). However, how the extraordinary variability contributes to 8K-mediated RNA silencing suppression remains unknown. Here, we characterized the RNA silencing suppression activity of the 8K protein from seven diverse isolates. We show that 8K encoded by isolate P1 exhibits stronger RNA silencing suppression activity than the 8K protein from six other isolates. Mutational analyses revealed that Ser-50 is critical for these differences. By comparing small RNA profiles we found a lower abundance of siRNAs with U residue at the 5'-terminus after expression of the P1 8K compared to expression of 8K from isolate P125, an isolate with weak VSR activity. These results provide new clues as to the role of positive selection in shaping activities of VSRs.
Collapse
Affiliation(s)
- Pruthvi B Kalyandurg
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala, Sweden
| | - Aminallah Tahmasebi
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala, Sweden; Plant Virology Research Centre, College of Agriculture, Shiraz University, Iran
| | - Ramesh R Vetukuri
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sandeep K Kushwaha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; Department of Virology Biological Faculty, Moscow State University, Moscow, Russia
| | - Laura J Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eugene I Savenkov
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
11
|
Prado GS, Bamogo PKA, de Abreu JAC, Gillet FX, dos Santos VO, Silva MCM, Brizard JP, Bemquerer MP, Bangratz M, Brugidou C, Sérémé D, Grossi-de-Sa MF, Lacombe S. Nicotiana benthamiana is a suitable transient system for high-level expression of an active inhibitor of cotton boll weevil α-amylase. BMC Biotechnol 2019; 19:15. [PMID: 30849970 PMCID: PMC6408794 DOI: 10.1186/s12896-019-0507-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Insect resistance in crops represents a main challenge for agriculture. Transgenic approaches based on proteins displaying insect resistance properties are widely used as efficient breeding strategies. To extend the spectrum of targeted pathogens and overtake the development of resistance, molecular evolution strategies have been used on genes encoding these proteins to generate thousands of variants with new or improved functions. The cotton boll weevil (Anthonomus grandis) is one of the major pests of cotton in the Americas. An α-amylase inhibitor (α-AIC3) variant previously developed via molecular evolution strategy showed inhibitory activity against A. grandis α-amylase (AGA). RESULTS We produced in a few days considerable amounts of α-AIC3 using an optimised transient heterologous expression system in Nicotiana benthamiana. This high α-AIC3 accumulation allowed its structural and functional characterizations. We demonstrated via MALDI-TOF MS/MS technique that the protein was processed as expected. It could inhibit up to 100% of AGA biological activity whereas it did not act on α-amylase of two non-pathogenic insects. These data confirmed that N. benthamiana is a suitable and simple system for high-level production of biologically active α-AIC3. Based on other benefits such as economic, health and environmental that need to be considerate, our data suggested that α-AIC3 could be a very promising candidate for the production of transgenic crops resistant to cotton boll weevil without lethal effect on at least two non-pathogenic insects. CONCLUSIONS We propose this expression system can be complementary to molecular evolution strategies to identify the most promising variants before starting long-lasting stable transgenic programs.
Collapse
Affiliation(s)
- Guilherme Souza Prado
- Embrapa Genetic Resources and Biotechnology, Brasília, DF Brazil
- Catholic University of Brasília, Brasília, DF Brazil
| | - Pingdwende Kader Aziz Bamogo
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | | | | | | | | | - Jean-Paul Brizard
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
| | | | - Martine Bangratz
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - Christophe Brugidou
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - Drissa Sérémé
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF Brazil
- Catholic University of Brasília, Brasília, DF Brazil
| | - Séverine Lacombe
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| |
Collapse
|
12
|
Habibi P, Soccol CR, O’Keefe BR, Krumpe LR, Wilson J, de Macedo LLP, Faheem M, Dos Santos VO, Prado GS, Botelho MA, Lacombe S, Grossi-de-Sa MF. Gene-silencing suppressors for high-level production of the HIV-1 entry inhibitor griffithsin in Nicotiana benthamiana. Process Biochem 2018; 70:45-54. [PMID: 32288594 PMCID: PMC7108441 DOI: 10.1016/j.procbio.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 11/26/2022]
Abstract
The exploration of emerging host organisms for the economic and efficient production of protein microbicides against HIV is urgently needed in resource-poor areas worldwide. In this study, the production of the novel HIV entry inhibitor candidate, griffithsin (GRFT), was investigated using Nicotiana benthamiana as the expression platform based on a non-viral vector. To increase the yield of recombinant GRFT, the RNA silencing defense mechanism of N. benthamiana was abolished by using three gene silencing suppressors. A transient expression system was used by transferring the GRFT gene, which encodes 122 amino acids, under the control of the enhanced CaMV 35S promoter. The presence of correctly assembled GRFT in transgenic leaves was confirmed using immunoglobulin-specific sandwich ELISA. The data demonstrated that the use of three gene silencing suppressors allowed the highest accumulation of GRFT, with a yield of 400 μg g-1 fresh weight, and this amount was reduced to 287 μg g-1 after purification, representing a recovery of 71.75%. The analysis also showed that the ability of GRFT expressed in N. benthamiana to bind to glycoprotein 120 is close to that of the GRFT protein purified from E. coli. Whole-cell assays using purified GRFT showed that our purified GRFT was potently active against HIV. This study provides the first high-level production of the HIV-1 entry inhibitor griffithsin with a non-viral expression system and illustrates the robustness of the co-agroinfiltration expression system improved through the use of three gene silencing suppressors.
Collapse
Affiliation(s)
- Peyman Habibi
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Barry R. O’Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD, USA
| | - Lauren R.H. Krumpe
- Basic Science Program, Leidos Biomedical Research, Inc., Molecular Targets Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jennifer Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | | | - Muhammad Faheem
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
| | | | - Guilherme Souza Prado
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
| | | | - Severine Lacombe
- IRD, CIRAD, Universite Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
- Catholic University of Brasília, Brasília-DF, Brazil
- Post Graduation Program in Biotechnology, University Potiguar, Natal, RN, Brazil
| |
Collapse
|
13
|
Wu G, Zheng G, Hu Q, Ma M, Li M, Sun X, Yan F, Qing L. NS3 Protein from Rice stripe virus affects the expression of endogenous genes in Nicotiana benthamiana. Virol J 2018; 15:105. [PMID: 29940994 PMCID: PMC6019303 DOI: 10.1186/s12985-018-1014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/07/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Rice stripe virus (RSV) belongs to the genus Tenuivirus. It is transmitted by small brown planthoppers in a persistent and circulative-propagative manner and causes rice stripe disease (RSD). The NS3 protein of RSV, encoded by the viral strand of RNA3, is a viral suppressor of RNA silencing (VSR). NS3 plays a significant role in viral infection, and NS3-transgenic plants manifest resistance to the virus. METHODS The stability and availability of NS3 produced by transgenic Nicotiana benthamiana was investigated by northern blot analysis. The accumulation of virus was detected by western blot analysis. Transcriptome sequencing was used to identify differentially expressed genes (DEGs) in NS3-transgenic N. benthamiana. RESULTS When the host plants were inoculated with RSV, symptoms and viral accumulation in NS3-transgenic N. benthamiana were reduced compared with the wild type. Transcriptome analysis identified 2533 differentially expressed genes (DEGs) in the NS3-transgenic N. benthamiana, including 597 upregulated genes and 1936 downregulated genes. These DEGs were classified into three Gene Ontology (GO) categories and were associated with 43 GO terms. KEGG pathway analysis revealed that these DEGs were involved in pathways associated with ribosomes (ko03010), photosynthesis (ko00195), photosynthesis-antenna proteins (ko00196), and carbon metabolism (ko01200). More than 70 DEGs were in these four pathways. Twelve DEGs were selected for RT-qPCR verification and subsequent analysis. The results showed that NS3 induced host resistance by affecting host gene expression. CONCLUSION NS3, which plays dual roles in the process of infection, may act as a VSR during RSV infection, and enable viral resistance in transgenic host plants. NS3 from RSV affects the expression of genes associated with ribosomes, photosynthesis, and carbon metabolism in N. benthamiana. This study enhances our understanding of the interactions between VSRs and host plants.
Collapse
Affiliation(s)
- Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716 China
| | - Guixian Zheng
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716 China
| | - Qiao Hu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716 China
| | - Mingge Ma
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716 China
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716 China
| | - Xianchao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716 China
| | - Fei Yan
- The State Key Laboratory Breading Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716 China
| |
Collapse
|
14
|
Lacombe S, Bangratz M, Brizard JP, Petitdidier E, Pagniez J, Sérémé D, Lemesre JL, Brugidou C. Optimized transitory ectopic expression of promastigote surface antigen protein in Nicotiana benthamiana, a potential anti-leishmaniasis vaccine candidate. J Biosci Bioeng 2018; 125:116-123. [PMID: 28803053 DOI: 10.1016/j.jbiosc.2017.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/06/2023]
Abstract
In recent years, plants have been shown to be an efficient alternative expression system for high-value pharmaceuticals such as vaccines. However, constitutive expression of recombinant protein remains uncertain on their level of production and biological activity. To overcome these problems, transitory expression systems have been developed. Here, a series of experiments were performed to determine the most effective conditions to enhance vaccine antigen transient accumulation in Nicotiana benthamiana leaves using the promastigote surface antigen (PSA) from the parasitic protozoan Leishmania infantum. This protein has been previously identified as the major antigen of a licensed canine anti-leishmaniasis vaccine. The classical prokaryote Escherichia coli biosystem failed in accumulating PSA. Consequently, the standard plant system based on N. benthamiana has been optimized for the production of putatively active PSA. First, the RNA silencing defense mechanism set up by the plant against PSA ectopic expression was abolished by using three viral suppressors acting at different steps of the RNA silencing pathway. Then, we demonstrated that the signal peptide at the N-terminal side of the PSA is required for its accumulation. The PSA ER signaling and retention with the PSA signal peptide and the KDEL motif, respectively were optimized to significantly increase its accumulation. Finally, we demonstrate that the production of recombinant PSA in N. benthamiana leaves allows the conservation of its immunogenic property. These approaches demonstrate that based on these optimizations, plant based systems can be used to effectively produce the biological active PSA protein.
Collapse
Affiliation(s)
- Séverine Lacombe
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), 911 Avenue Agropolis BP64501, 34394 Montpellier Cedex 5, France; INERA/LMI Patho-Bios, Institut de L'Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, 01 BP 476, Ouagadougou 01, Burkina Faso.
| | - Martine Bangratz
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), 911 Avenue Agropolis BP64501, 34394 Montpellier Cedex 5, France; INERA/LMI Patho-Bios, Institut de L'Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, 01 BP 476, Ouagadougou 01, Burkina Faso.
| | - Jean-Paul Brizard
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), 911 Avenue Agropolis BP64501, 34394 Montpellier Cedex 5, France.
| | - Elodie Petitdidier
- IRD, CIRAD, Interaction Hôtes-Vecteurs-Parasites-Environnement Dans Les Maladies Tropicales Négligées Dues Aux Trypanosomatidés (INTERTRYP), 911 Avenue Agropolis BP64501, 34394 Montpellier Cedex 5, France.
| | - Julie Pagniez
- IRD, CIRAD, Interaction Hôtes-Vecteurs-Parasites-Environnement Dans Les Maladies Tropicales Négligées Dues Aux Trypanosomatidés (INTERTRYP), 911 Avenue Agropolis BP64501, 34394 Montpellier Cedex 5, France.
| | - Drissa Sérémé
- INERA/LMI Patho-Bios, Institut de L'Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, 01 BP 476, Ouagadougou 01, Burkina Faso.
| | - Jean-Loup Lemesre
- IRD, CIRAD, Interaction Hôtes-Vecteurs-Parasites-Environnement Dans Les Maladies Tropicales Négligées Dues Aux Trypanosomatidés (INTERTRYP), 911 Avenue Agropolis BP64501, 34394 Montpellier Cedex 5, France.
| | - Christophe Brugidou
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), 911 Avenue Agropolis BP64501, 34394 Montpellier Cedex 5, France; INERA/LMI Patho-Bios, Institut de L'Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, 01 BP 476, Ouagadougou 01, Burkina Faso.
| |
Collapse
|
15
|
Fusaro AF, Barton DA, Nakasugi K, Jackson C, Kalischuk ML, Kawchuk LM, Vaslin MFS, Correa RL, Waterhouse PM. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing. Viruses 2017; 9:v9100294. [PMID: 28994713 PMCID: PMC5691645 DOI: 10.3390/v9100294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/16/2022] Open
Abstract
The plant viral family Luteoviridae is divided into three genera: Luteovirus, Polerovirus and Enamovirus. Without assistance from another virus, members of the family are confined to the cells of the host plant's vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant's viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant's silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant's anti-viral defense.
Collapse
Affiliation(s)
- Adriana F Fusaro
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Deborah A Barton
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Kenlee Nakasugi
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Craig Jackson
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Melanie L Kalischuk
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA.
| | - Lawrence M Kawchuk
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Department of Agriculture and Agri-Food Canada, Lethbridge, AB T1J4B1, Canada.
| | - Maite F S Vaslin
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Regis L Correa
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Peter M Waterhouse
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- School of Earth, Environmental and Biological sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
16
|
Tollenaere C, Lacombe S, Wonni I, Barro M, Ndougonna C, Gnacko F, Sérémé D, Jacobs JM, Hebrard E, Cunnac S, Brugidou C. Virus-Bacteria Rice Co-Infection in Africa: Field Estimation, Reciprocal Effects, Molecular Mechanisms, and Evolutionary Implications. FRONTIERS IN PLANT SCIENCE 2017; 8:645. [PMID: 28507553 PMCID: PMC5410622 DOI: 10.3389/fpls.2017.00645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/10/2017] [Indexed: 05/04/2023]
Abstract
Simultaneous infection of a single plant by various pathogen species is increasingly recognized as an important modulator of host resistance and a driver of pathogen evolution. Because plants in agro-ecosystems are the target of a multitude of pathogenic microbes, co-infection could be frequent, and consequently important to consider. This is particularly true for rapidly intensifying crops, such as rice in Africa. This study investigated potential interactions between pathogens causing two of the major rice diseases in Africa: the Rice yellow mottle virus (RYMV) and the bacterium Xanthomonas oryzae pathovar oryzicola (Xoc) in order to: 1/ document virus-bacteria co-infection in rice in the field, 2/ explore experimentally their consequences in terms of symptom development and pathogen multiplication, 3/ test the hypothesis of underlying molecular mechanisms of interactions and 4/ explore potential evolutionary consequences. Field surveys in Burkina Faso revealed that a significant proportion of rice fields were simultaneously affected by the two diseases. Co-infection leads to an increase in bacterial specific symptoms, while a decrease in viral load is observed compared to the mono-infected mock. The lack of effect found when using a bacterial mutant for an effector specifically inducing expression of a small RNA regulatory protein, HEN1, as well as a viral genotype-specific effect, both suggest a role for gene silencing mechanisms mediating the within-plant interaction between RYMV and Xoc. Potential implications for pathogen evolution could not be inferred because genotype-specific effects were found only for pathogens originating from different countries, and consequently not meeting in the agrosystem. We argue that pathogen-pathogen-host interactions certainly deserve more attention, both from a theoretical and applied point of view.
Collapse
Affiliation(s)
- Charlotte Tollenaere
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
- Laboratoire Mixte International Patho-Bios, Laboratoire de Bactériologie, Institut de l'Environnement et de Recherches Agricoles (INERA)Bobo-Dioulasso, Burkina Faso
| | - Severine Lacombe
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
- Laboratoire Mixte International Patho-Bios, Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA)Kamboinsé, Burkina Faso
| | - Issa Wonni
- Laboratoire Mixte International Patho-Bios, Laboratoire de Bactériologie, Institut de l'Environnement et de Recherches Agricoles (INERA)Bobo-Dioulasso, Burkina Faso
| | - Mariam Barro
- Laboratoire Mixte International Patho-Bios, Laboratoire de Bactériologie, Institut de l'Environnement et de Recherches Agricoles (INERA)Bobo-Dioulasso, Burkina Faso
| | - Cyrielle Ndougonna
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
| | - Fatoumata Gnacko
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
- Laboratoire Mixte International Patho-Bios, Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA)Kamboinsé, Burkina Faso
| | - Drissa Sérémé
- Laboratoire Mixte International Patho-Bios, Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA)Kamboinsé, Burkina Faso
| | - Jonathan M. Jacobs
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
| | - Eugénie Hebrard
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
| | - Sebastien Cunnac
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
| | - Christophe Brugidou
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
- Laboratoire Mixte International Patho-Bios, Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA)Kamboinsé, Burkina Faso
| |
Collapse
|
17
|
Complete nucleotide sequence of Solanum nodiflorum mottle virus. Arch Virol 2017; 162:1731-1736. [DOI: 10.1007/s00705-017-3273-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
|
18
|
Nummert G, Sõmera M, Uffert G, Abner E, Truve E. P1-independent replication and local movement of Rice yellow mottle virus in host and non-host plant species. Virology 2017; 502:28-32. [PMID: 27960111 DOI: 10.1016/j.virol.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022]
Abstract
Sobemovirus P1 protein, characterized previously as a suppressor of posttranscriptional gene silencing, is required for systemic virus spread and infection in plants. Mutations in the ORF1 initiation codon do not affect viral replication indicating P1 is not necessary for this process. Wild type, recombinant and P1 deletion mutants of Cocksfoot mottle virus and Rice yellow mottle virus were used to infect oat, rice, wheat, barley, Arabidopsis thaliana and Nicotiana benthamiana plants. Wild type RYMV, RYMV without P1 and RYMV with CfMV P1 were detected in inoculated leaves of all tested plant species. We found that RYMV does not need P1 for replication and for local movement neither in host nor non-host species tested in this study. However, it is crucial for successful systemic spread of the virus in its host plant rice. Moreover, adding CfMV P1 into RYMV genome did not help it to overcome restriction to the inoculated leaf.
Collapse
Affiliation(s)
- Grete Nummert
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Merike Sõmera
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Gabriela Uffert
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Erik Abner
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Erkki Truve
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
19
|
Nguyen TD, Lacombe S, Bangratz M, Ta HA, Vinh DN, Gantet P, Brugidou C. P2 of Rice grassy stunt virus (RGSV) and p6 and p9 of Rice ragged stunt virus (RRSV) isolates from Vietnam exert suppressor activity on the RNA silencing pathway. Virus Genes 2015; 51:267-75. [PMID: 26215087 DOI: 10.1007/s11262-015-1229-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/18/2015] [Indexed: 11/28/2022]
Abstract
In Vietnam, the two main viruses that cause disease in rice are the Rice grassy stunt virus (RGSV) and the Rice ragged stunt virus (RRSV). Outbreaks of these two viruses have dramatically decreased rice production in Vietnam. Because natural resistance genes are unknown, an RNAi strategy may be an alternative method to develop resistance to RGSV and RRSV. However, this strategy will be efficient only if putative silencing suppressors encoded by the two viruses are neutralized. To identify these suppressors, we used the classical green fluorescent protein (GFP) agroinfiltration method in Nicotiana benthamiana. Then, we investigated the effects of viral candidate proteins on GFP expression and GFP siRNA accumulation and their interference with the short- or long-range signal of silencing. RGSV genes s2gp1, s5gp2, and s6gp1 and RRSV genes s5gp1, s6gp1, s9gp1, and s10gp1 were selected for viral silencing suppressor investigation according to their small molecular weight, the presence of cysteines, or the presence of a GW motif in related protein products. We confirmed that protein p6 of RRSV displays mild silencing suppressor activity and affects long-range silencing by delaying the systemic silencing signal. In addition, we identified two new silencing suppressors that displayed mild activity: p2 of RGSV and p9 of RRSV.
Collapse
Affiliation(s)
- Thanh Duc Nguyen
- IRD, UMR IPME, Avenue Agropolis, 34398, Montpellier Cedex, France
- IRD, LMI RICE, Agricultural Genetics Institute, Université des Sciences et Techniques d'Hanoi, Hanoi, Vietnam
| | - Séverine Lacombe
- IRD, UMR IPME, Avenue Agropolis, 34398, Montpellier Cedex, France
| | - Martine Bangratz
- IRD, UMR IPME, Avenue Agropolis, 34398, Montpellier Cedex, France
| | - Hoang Anh Ta
- Plant Protection Research Institute (PPRI), Hanoi, Vietnam
| | - Do Nang Vinh
- IRD, LMI RICE, Agricultural Genetics Institute, Université des Sciences et Techniques d'Hanoi, Hanoi, Vietnam
| | - Pascal Gantet
- IRD, LMI RICE, Agricultural Genetics Institute, Université des Sciences et Techniques d'Hanoi, Hanoi, Vietnam
- Université de Montpellier, UMR DIADE, Bat 15, CC 002, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | | |
Collapse
|
20
|
Sõmera M, Sarmiento C, Truve E. Overview on Sobemoviruses and a Proposal for the Creation of the Family Sobemoviridae. Viruses 2015; 7:3076-115. [PMID: 26083319 PMCID: PMC4488728 DOI: 10.3390/v7062761] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 12/26/2022] Open
Abstract
The genus Sobemovirus, unassigned to any family, consists of viruses with single-stranded plus-oriented single-component RNA genomes and small icosahedral particles. Currently, 14 species within the genus have been recognized by the International Committee on Taxonomy of Viruses (ICTV) but several new species are to be recognized in the near future. Sobemovirus genomes are compact with a conserved structure of open reading frames and with short untranslated regions. Several sobemoviruses are important pathogens. Moreover, over the last decade sobemoviruses have become important model systems to study plant virus evolution. In the current review we give an overview of the structure and expression of sobemovirus genomes, processing and functions of individual proteins, particle structure, pathology and phylogenesis of sobemoviruses as well as of satellite RNAs present together with these viruses. Based on a phylogenetic analysis we propose that a new family Sobemoviridae should be recognized including the genera Sobemovirus and Polemovirus. Finally, we outline the future perspectives and needs for the research focusing on sobemoviruses.
Collapse
Affiliation(s)
- Merike Sõmera
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Cecilia Sarmiento
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Erkki Truve
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
21
|
Sõmera M, Truve E. Rottboellia yellow mottle virus is a distinct species within the genus Sobemovirus. Arch Virol 2015; 160:857-63. [PMID: 25613163 DOI: 10.1007/s00705-015-2336-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/08/2015] [Indexed: 11/28/2022]
Abstract
Once considered a tentative member of the genus Sobemovirus, rottboellia yellow mottle virus (RoMoV) was excluded from the latest species list of the ICTV after the discovery of imperata yellow mottle virus (IYMV), which resembles RoMoV in host range and geographic origin. Here, sequence analysis of the complete genome of RoMoV suggested that it should be considered a distinct species within the genus Sobemovirus. It has the highest sequence identity (55 %) to ryegrass mottle virus (RGMoV), whereas its sequence identity to IYMV is lower (44 %). In a phylogenetic tree, RoMoV clusters together with RGMoV and artemisia virus A (ArtVA), a dicot-infecting sobemovirus.
Collapse
Affiliation(s)
- Merike Sõmera
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia,
| | | |
Collapse
|
22
|
Emergence of rice yellow mottle virus in eastern Uganda: Recent and singular interplay between strains in East Africa and in Madagascar. Virus Res 2014; 195:64-72. [PMID: 25245592 DOI: 10.1016/j.virusres.2014.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 11/22/2022]
Abstract
Epidemics of rice yellow mottle virus (RYMV) have developed recently in eastern Uganda, close to Lake Victoria in East Africa. Unexpectedly, all isolates from the affected area belonged to a single strain (named S4ug), a strain that is different from the S4lv strain that has been prevalent in the Lake Victoria basin for the past five decades. Interestingly, the S4ug strain is most closely related at the genomic level (except ORF1) to the strain present in Madagascar (S4mg), 2000km away. The minor parent of the S4mg recombinant strain could not be detected. Molecular clock dating analysis indicated that the singular sequence of events - that associated the emergence of a new strain (S4ug), a modular recombination between closely related strains (S4mg and S4ug) and a long distance transmission (S4mg) - occurred recently, within the past few decades. This finding is at variance with the process of gradual strain dispersal and diversification over two centuries throughout Africa that was previously established.
Collapse
|
23
|
Hiraguri A, Netsu O, Sasaki N, Nyunoya H, Sasaya T. Recent progress in research on cell-to-cell movement of rice viruses. Front Microbiol 2014; 5:210. [PMID: 24904532 PMCID: PMC4033013 DOI: 10.3389/fmicb.2014.00210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/20/2014] [Indexed: 11/25/2022] Open
Abstract
To adapt to plants as hosts, plant viruses have evolutionally needed the capacity to modify the host plasmodesmata (PD) that connect adjacent cells. Plant viruses have acquired one or more genes that encode movement proteins (MPs), which facilitate the cell-to-cell movement of infectious virus entities through PD to adjacent cells. Because of the diversity in their genome organization and in their coding sequences, rice viruses may each have a distinct cell-to-cell movement strategy. The complexity of their unusual genome organizations and replication strategies has so far hampered reverse genetic research on their genome in efforts to investigate virally encoded proteins that are involved in viral movement. However, the MP of a particular virus can complement defects in cell-to-cell movement of other distantly related or even unrelated viruses. Trans-complementation experiments using a combination of a movement-defective virus and viral proteins of interest to identify MPs of several rice viruses have recently been successful. In this article, we reviewed recent research that has advanced our understanding of cell-to-cell movement of rice viruses.
Collapse
Affiliation(s)
- Akihiro Hiraguri
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Osamu Netsu
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Nobumitsu Sasaki
- Gene Research Center, Tokyo University of Agriculture and TechnologyFuchu, Tokyo, Japan
| | - Hiroshi Nyunoya
- Gene Research Center, Tokyo University of Agriculture and TechnologyFuchu, Tokyo, Japan
| | - Takahide Sasaya
- Plant Disease Group, Agro-Environment Research Division, Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research OrganizationKoshi, Kumamoto, Japan
| |
Collapse
|
24
|
Wu G, Wang J, Yang Y, Dong B, Wang Y, Sun G, Yan C, Yan F, Chen J. Transgenic rice expressing rice stripe virus NS3 protein, a suppressor of RNA silencing, shows resistance to rice blast disease. Virus Genes 2014; 48:566-9. [PMID: 24557730 DOI: 10.1007/s11262-014-1051-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/10/2014] [Indexed: 12/24/2022]
Abstract
The NS3 protein of rice stripe virus (RSV), encoded by the virion strand of RNA3, is a viral suppressor of RNA silencing (VSR). Rice expressing NS3 had a normal phenotype, was initially sensitive to RSV but recovered at the later stages of infection. RSV accumulated slightly more in transgenic than in wild-type plants at the early stage of infection, but accumulation was similar later. Transgenic rice expressing NS3 also showed enhanced resistance to the fungus Magnaporthe oryzae. Meanwhile, expressional levels of genes related to the salicylic acid (SA) and jasmonic acid (JA) pathways were not significantly altered, indicating that the defense to M. oryzae was independent of the SA and JA pathways. We propose that NS3 may have dual functions, facilitating viral infection as a VSR and inhibiting pathogenic development as an inducer of host defense.
Collapse
Affiliation(s)
- Gentu Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sérémé D, Lacombe S, Konaté M, Bangratz M, Pinel-Galzi A, Fargette D, Traoré AS, Konaté G, Brugidou C. Sites under positive selection modulate the RNA silencing suppressor activity of rice yellow mottle virus movement protein P1. J Gen Virol 2013; 95:213-218. [PMID: 24092757 DOI: 10.1099/vir.0.057026-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RNA silencing is a eukaryotic mechanism for RNA-based gene regulation that plays an essential role in diverse biological processes, such as defence against viral infections. The P1 of rice yellow mottle virus (RYMV) is a movement protein and displays RNA silencing suppression activity with variable efficiency, depending on the origin of the isolates. In this study, the positive selection pressure acting on the P1 protein gene was assessed. A site-by-site analysis of the dN/dS ratio was performed and 18 positively selected sites were identified. Four of these were mutated, and the ability to suppress RNA silencing was evaluated for the resulting mutants in a transient expression assay. All mutations affected quantitatively RNA silencing suppression, one caused a significant decrease in the activity and three significantly increased it. This work demonstrates, for what is to the best of our knowledge the first time, that the RYMV gene encoding the P1 RNA silencing suppressor is under adaptive evolution.
Collapse
Affiliation(s)
- Drissa Sérémé
- Institut de l'Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, 01 BP 476 Ouagadougou 01, Burkina Faso
| | - Séverine Lacombe
- Institut de Recherche pour le Développement (IRD), UMR 186/RPB, 911 Av. Agropolis BP 64501 F-34394 Montpellier Cedex 5, France
| | - Moumouni Konaté
- Institut de l'Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, 01 BP 476 Ouagadougou 01, Burkina Faso
| | - Martine Bangratz
- Institut de Recherche pour le Développement (IRD), UMR 186/RPB, 911 Av. Agropolis BP 64501 F-34394 Montpellier Cedex 5, France
| | - Agnès Pinel-Galzi
- Institut de Recherche pour le Développement (IRD), UMR 186/RPB, 911 Av. Agropolis BP 64501 F-34394 Montpellier Cedex 5, France
| | - Denis Fargette
- Institut de Recherche pour le Développement (IRD), UMR 186/RPB, 911 Av. Agropolis BP 64501 F-34394 Montpellier Cedex 5, France
| | - Alfred S Traoré
- Université de Ouagadougou, UFR SVT, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Gnissa Konaté
- Institut de l'Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, 01 BP 476 Ouagadougou 01, Burkina Faso
| | - Christophe Brugidou
- Institut de Recherche pour le Développement (IRD), UMR 186/RPB, 911 Av. Agropolis BP 64501 F-34394 Montpellier Cedex 5, France
| |
Collapse
|
26
|
Ling R, Pate AE, Carr JP, Firth AE. An essential fifth coding ORF in the sobemoviruses. Virology 2013; 446:397-408. [PMID: 23830075 PMCID: PMC3791421 DOI: 10.1016/j.virol.2013.05.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/17/2013] [Accepted: 05/22/2013] [Indexed: 12/18/2022]
Abstract
The sobemoviruses have one of the smallest of all known RNA virus genomes. ORF1 encodes P1 which plays a role in suppression of silencing and virus movement, ORFs 2a and 2b encode the replicational polyproteins P2a and P2ab, and ORF3 encodes the coat protein. Translation of ORF2a from the genomic RNA is dependent on a leaky scanning mechanism. We report the presence of an additional ORF (ORFx), conserved in all sobemoviruses. ORFx overlaps the 5′ end of ORF2a in the +2 reading frame and also extends some distance upstream of ORF2a. ORFx lacks an AUG initiation codon and its expression is predicted to depend on low level initiation at near-cognate non-AUG codons, such as CUG, by a proportion of the ribosomes that are scanning the region between the ORF1 and ORF2a initiation codons. Mutations that disrupt translation of ORFx in turnip rosette virus prevent the establishment of infection. The plant-infecting sobemoviruses have a 4–4.5 kb genome with four know coding ORFs. We report an additional ORF (ORFx) that is conserved in all sobemoviruses. Translation of ORFx is predicted to depend on leaky scanning and non-AUG initiation. Mutations that disrupt translation of ORFx prevent the establishment of infection.
Collapse
Affiliation(s)
- Roger Ling
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | |
Collapse
|
27
|
Gillet FX, Cattoni DI, Petiot-Bécard S, Delalande F, Poignavent V, Brizard JP, Bessin Y, Dorsselaer AV, Declerck N, Sanglier-Cianférani S, Brugidou C, Vignols F. The RYMV-Encoded Viral Suppressor of RNA Silencing P1 Is a Zinc-Binding Protein with Redox-Dependent Flexibility. J Mol Biol 2013; 425:2423-35. [DOI: 10.1016/j.jmb.2013.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/14/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
|
28
|
Gouveia P, Nolasco G. The p19.7 RNA silencing suppressor from Grapevine leafroll-associated virus 3 shows different levels of activity across phylogenetic groups. Virus Genes 2012; 45:333-9. [PMID: 22714284 DOI: 10.1007/s11262-012-0772-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
At least five phylogenetic groups have been reported for Grapevine leafroll-associated virus 3 (GLRaV-3). The p19.7 protein encoded by the GLRaV-3 was previously identified as an RNA silencing suppressor. In this study, five constructs of p19.7 belonging to different groups were compared for their suppressing activity. For each p19.7 variant, the accumulation level of green fluorescent protein mRNA and specific siRNAs were determined using co-infiltration assays in transgenic 16C Nicotiana benthamiana. Differences in the suppressing activity were found among the variants assayed. Some constructs originated viral-like mosaic symptoms that evolved to necrosis. The intensity of these symptoms appeared to be related to the strength of the suppressor activity. A comparison of the protein sequences revealed a few amino acid substitutions that may be associated with the observed differences in the suppressing activity.
Collapse
MESH Headings
- Closteroviridae/genetics
- Closteroviridae/pathogenicity
- Gene Expression Regulation, Viral
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Molecular Sequence Data
- Mutation, Missense
- Plant Diseases/virology
- Plants, Genetically Modified/genetics
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Nicotiana/genetics
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virulence
- Virulence Factors/genetics
- Virulence Factors/metabolism
Collapse
Affiliation(s)
- Paulo Gouveia
- Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | |
Collapse
|
29
|
Fusaro AF, Correa RL, Nakasugi K, Jackson C, Kawchuk L, Vaslin MFS, Waterhouse PM. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation. Virology 2012; 426:178-87. [PMID: 22361475 DOI: 10.1016/j.virol.2012.01.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/03/2012] [Accepted: 01/20/2012] [Indexed: 10/28/2022]
Abstract
The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0(PE), in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0(PE) has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0(PE) destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.
Collapse
|
30
|
Lacombe S, Bangratz M, Vignols F, Brugidou C. The rice yellow mottle virus P1 protein exhibits dual functions to suppress and activate gene silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:371-82. [PMID: 19891703 DOI: 10.1111/j.1365-313x.2009.04062.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In plants RNA silencing is a host defense mechanism against viral infection, in which double-strand RNA is processed into 21-24-nt short interfering RNA (siRNA). Silencing spreads from cell to cell and systemically through a sequence-specific signal to limit the propagation of the virus. To counteract this defense mechanism, viruses encode suppressors of silencing. The P1 protein encoded by the rice yellow mottle virus (RYMV) displays suppression activity with variable efficiency, according to the isolates that they originated from. Here, we show that P1 proteins from two RYMV isolates displaying contrasting suppression strength reduced local silencing induced by single-strand and double-strand RNA in Nicotiana benthamiana leaves. This suppression was associated with a slight and a severe reduction in 21- and 24-nt siRNA accumulation, respectively. Unexpectedly, cell-to-cell movement and systemic propagation of silencing were enhanced in P1-expressing Nicotiana plants. When transgenically expressed in rice, P1 proteins induced specific deregulation of DCL4-dependent endogenous siRNA pathways, whereas the other endogenous pathways were not affected. As DCL4-dependent pathways play a key role in rice development, the expression of P1 viral proteins was associated with the same severe developmental defects in spikelets as in dcl4 mutants. Overall, our results demonstrate that a single viral protein displays multiple effects on both endogenous and exogenous silencing, not only in a suppressive but also in an enhancive manner. This suggests that P1 proteins play a key role in maintaining a subtle equilibrium between defense and counter-defense mechanisms, to insure efficient virus multiplication and the preservation of host integrity.
Collapse
Affiliation(s)
- Séverine Lacombe
- Centre IRD, UMR UP-IRD-CNRS 5096, 911 Av Agropolis BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
31
|
Weinheimer I, Boonrod K, Moser M, Zwiebel M, Füllgrabe M, Krczal G, Wassenegger M. Analysis of an autoproteolytic activity of rice yellow mottle virus silencing suppressor P1. Biol Chem 2010; 391:271-281. [PMID: 20030588 DOI: 10.1515/bc.2010.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ectopically expressed rice yellow mottle virus P1 fusion proteins were found to be cleaved in planta and in Escherichia coli. Cleavage takes place in the absence of bacterial protease activity, indicating that the P1 fusion is autocatalytically processed independently of host factors. N-terminal sequencing of the C-terminal cleavage product of transiently expressed P1/GFP (green fluorescence protein) in Nicotiana benthamiana showed that the cleavage site is located between the first two amino acids (aa) downstream of the P1 sequence. Mutagenesis experiments revealed that a phenylalanine to valine substitution at position 157 of the P1 aa sequence impairs proper cleavage, which is nearly unaffected by replacement of phenylalanine with tyrosine. Deletion of methionine(159) (first GFP aa residue) appeared to not affect P1/GFP cleavage. N-terminal P1-tagging with GFP turned out to impair autocleavage, whereas a small His-tag could not fully prevent cleavage. Additionally, a modified P1/GFP carrying an N-terminal deletion of 81 aa was not cleaved. These findings indicate that this region is involved in the proteolysis mechanism and that large N-terminal fusion partners might affect correct folding of the P1 necessary for self-catalysis.
Collapse
Affiliation(s)
- Isabel Weinheimer
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, D-67435 Neustadt, Germany
| | - Kajohn Boonrod
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, D-67435 Neustadt, Germany
| | - Mirko Moser
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, D-67435 Neustadt, Germany
| | - Michèle Zwiebel
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, D-67435 Neustadt, Germany
| | - Marc Füllgrabe
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, D-67435 Neustadt, Germany
| | - Gabi Krczal
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, D-67435 Neustadt, Germany
| | - Michael Wassenegger
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, D-67435 Neustadt, Germany
| |
Collapse
|
32
|
|