1
|
Ning N, Nan Y, Chen G, Huang S, Lu D, Yang Y, Meng F, Yuan L. Anti-Tumor Effects and Toxicity Reduction Mechanisms of Prunella vulgaris: A Comprehensive Review. Molecules 2024; 29:1843. [PMID: 38675663 PMCID: PMC11052495 DOI: 10.3390/molecules29081843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
PURPOSE To investigate and systematically describe the mechanism of action of Prunella vulgaris (P. vulgaris) against digestive system tumors and related toxicity reduction. METHODS This study briefly describes the history of medicinal food and the pharmacological effects of P. vulgaris, focusing on the review of the anti-digestive tumor effects of the active ingredients of P. vulgaris and the mechanism of its toxicity reduction. RESULTS The active ingredients of P. vulgaris may exert anti-tumor effects by inducing the apoptosis of cancer cells, inhibiting angiogenesis, inhibiting the migration and invasion of tumor cells, and inhibiting autophagy. In addition, P. vulgaris active ingredients inhibit the release of inflammatory factors and macrophages and increase the level of indicators of oxidative stress through the modulation of target genes in the pathway to achieve the effect of toxicity reduction. CONCLUSION The active ingredients in the medicine food homology plant P. vulgaris not only treat digestive system tumors through different mechanisms but also reduce the toxic effects. P. vulgaris is worthy of being explored more deeply.
Collapse
Affiliation(s)
- Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| | - Yi Nan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China;
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| | - Doudou Lu
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Yating Yang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Fandi Meng
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (D.L.); (Y.Y.); (F.M.)
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (N.N.); (G.C.); (S.H.)
| |
Collapse
|
2
|
Zheng H, Zhao H, Zhang X, Liang Z, He Q. Systematic Identification and Validation of Suitable Reference Genes for the Normalization of Gene Expression in Prunella vulgaris under Different Organs and Spike Development Stages. Genes (Basel) 2022; 13:1947. [PMID: 36360184 PMCID: PMC9689956 DOI: 10.3390/genes13111947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 08/01/2023] Open
Abstract
The quantitative real-time PCR (qRT-PCR) is an efficient and sensitive method for determining gene expression levels, but the accuracy of the results substantially depends on the stability of the reference gene (RG). Therefore, choosing an appropriate reference gene is a critical step in normalizing qRT-PCR data. Prunella vulgaris L. is a traditional Chinese medicine herb widely used in China. Its main medicinal part is the fruiting spike which is termed Spica Prunellae. However, thus far, few studies have been conducted on the mechanism of Spica Prunellae development. Meanwhile, no reliable RGs have been reported in P. vulgaris. The expression levels of 14 candidate RGs were analyzed in this study in various organs and at different stages of Spica Prunellae development. Four statistical algorithms (Delta Ct, BestKeeper, NormFinder, and geNorm) were utilized to identify the RGs' stability, and an integrated stability rating was generated via the RefFinder website online. The final ranking results revealed that eIF-2 was the most stable RG, whereas VAB2 was the least suitable as an RG. Furthermore, eIF-2 + Histon3.3 was identified as the best RG combination in different periods and the total samples. Finally, the expressions of the PvTAT and Pv4CL2 genes related to the regulation of rosmarinic acid synthesis in different organs were used to verify the stable and unstable RGs. The stable RGs in P. vulgaris were originally identified and verified in this work. This achievement provides strong support for obtaining a reliable qPCR analysis and lays the foundation for in-depth research on the developmental mechanism of Spica Prunellae.
Collapse
Affiliation(s)
- Hui Zheng
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongguang Zhao
- Tasly Botanical Pharmaceutical Co., Ltd., Shangluo 726000, China
| | - Xuemin Zhang
- Tasly R&D Institute, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Zongsuo Liang
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312000, China
| | - Qiuling He
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
Bagde H, Dhopte A. Effects of Plant Metabolites on the Growth of COVID-19 (Coronavirus Disease-19) Including Omicron Strain. Cureus 2022; 14:e26549. [PMID: 35936126 PMCID: PMC9348519 DOI: 10.7759/cureus.26549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
According to recent reports out of India, a new strain of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) B1.1.529 Omicron virus has emerged. In comparison to the Wuhan (WHU) strain and the delta variant, this variant showed a far stronger effect on the angiotensin converting enzyme2 (ACE2) receptor. There are several medicinal compounds in plant metabolites, and their diverse chemical structures make them ideal for the treatment of serious illnesses. It's possible that some of these could be useful alternative pharmaceuticals, as well as a starting point for the repurposing of existing medications and new chemical discoveries. SARS-CoV-2 infection triggered a worldwide epidemic of the severe acute respiratory syndrome (SARS). There have been trials for different therapies for SARS-CoV-2 and so also there are recent announcements of extensive research into the development of viable medicines for this global health calamity. After a thorough examination of plant-derived treatments for COVID-19, investigators in the current study decided to focus on plant-derived secondary metabolites (PSMs). According to some researchers, new MDR (Multi-Drug Resistant) antibiotics may one day be developed due to the adaptability of secondary metabolites. Identifying plant metabolites that can treat a wide range of viral infections was one of the study's aims. Many natural medications that could be recommended for the treatment of COVID-19 were discovered as a result of this research, including remedies from plant families, viral candidates that are susceptible, antiviral assays, and mechanisms of therapeutic action. The findings of this study will inspire further research and speed up the development of new antiviral plant-based medications.
Collapse
|
4
|
Pan J, Wang H, Chen Y. Prunella vulgaris L. - A Review of its Ethnopharmacology, Phytochemistry, Quality Control and Pharmacological Effects. Front Pharmacol 2022; 13:903171. [PMID: 35814234 PMCID: PMC9261270 DOI: 10.3389/fphar.2022.903171] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Prunella vulgaris L. (PVL) is dried fruit spike of Lamiacea plant Prunella vulgaris L., which is a perennial herb with medicinal and edible homology used for thousands of years. PVL is bitter, acrid, cold, and belongs to the liver and gallbladder meridians. It clears the liver and dissipate fire, improve vision, disperse swelling, and has satisfactory clinical therapeutic effects on many diseases such as photophobia, dizziness, scrofula, goiter, breast cancer. The collection of information and data related to PVL comes from literatures retrieved and collated from various online scientific databases (such as CNKI, VIP, PubMed, Web of Science, Research Gate, Science Database), ancient books of traditional chinese medicine (Encyclopedia of Traditional Chinese Medicine, Classics of Traditional Chinese Medicine, Dictionary of Traditional Chinese Medicine), and Doctoral and Master's Dissertations. Currently, the major chemical constituents isolated and identified from PVL are triterpenoids, steroids, flavonoids, phenylpropanoids, organic acids, volatile oils and polysaccharides. Modern pharmacological studies have shown that PVL has a wide range of pharmacological activities, including anti-inflammatory, anti-tumor, antibacterial and antiviral effects, as well as immune regulation, antihypertensive, hypoglycemic, lipid-lowering, antioxidant, free radical scavenging, liver protection, sedative and hypnotic effects. This paper reviewes the botany, ethnopharmacology, traditional application, phytochemistry, analytical methods, quality control, pharmacological effects of PVL. It can be used not only as medicine, but also gradually integrated into the "medicine and food homology" and "Chinese medicine health" boom. More importantly, it has great potential for drug resources development. This paper deeply discusses the shortcomings of current PVL research, and proposes corresponding solutions, in order to find a breakthrough point for PVL research in the future. At the same time, it is necessary to further strengthen the research on its medicinal chemistry, mechanism of action and clinical application efficacy in the future, and strive to extract, purify and synthesize effective components with high efficiency and low toxicity, so as to improve the safety and rationality of clinical medication.
Collapse
Affiliation(s)
| | | | - Yinghua Chen
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Ahmad G, Masoodi MH, Tabassum N, Mir SA, Iqbal MJ. Invivo hepatoprotective potential of extracts obtained from floral spikes of Prunella vulgaris L. J Ayurveda Integr Med 2020; 11:502-507. [PMID: 32241633 PMCID: PMC7772513 DOI: 10.1016/j.jaim.2019.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Prunella vulgaris, commonly known as self-heal, has been extensively used in the traditional system of medicines. The plant has been found to contain a number of bioactive molecules including those having radical scavenging property which indicates its potential for the treatment of those diseases which are induced by free radical damage like drug-induced hepatotoxicity. OBJECTIVE The current study was undertaken to investigate the flavonoid and total phenolic content and evaluate the hepatoprotective potential of various extracts obtained from floral spikes of P. vulgaris. MATERIAL AND METHODS Flavonoid and otal phenolic contents were obtained from the standard curves of Gallic acid as per the reported methods. The extent of hepatotoxicity induced by paracetamol (500 mg/kg b.w, p.o daily for 14 days), hepatoprotective potential of extracts (200 mg/kg b.w/day, orally) and standard drug silymarin (50 mg/kg b.w/day, orally) were evaluated by analyzing various biochemical parameters like Serum Glutamic Oxaloacetic Transaminase, Serum Glutamic Pyruvic Transaminase, Alkaline Phosphatase, Total Proteins, Total and Direct Bilirubin and detailed histopathology of rat livers. RESULTS Methanolic extract showed higher quantity of flavonoids and total phenolic content followed by ethanolic, hydroalcoholic and aqueous extracts. Treatment of rats with extracts showed a highly significant reduction in the enzyme activities of Serum Glutamic Oxaloacetic Transaminase, Serum Glutamic Pyruvic Transaminase, Alkaline Phosphatase, and serum levels of Total, Direct Bilirubin (P < 0.01) and highly significant elevation in Total Proteins (P < 0.01) when compared with the toxic control group. This was further confirmed by histopathological evaluation, where almost normal hepatic architecture or very less hepatic damage was observed in groups treated with extracts and silymarin compared to paracetamol treated group. Results from biochemical and histopathological evaluation indicated that among the extracts methanolic extract was most effective. CONCLUSION From the results, it can be concluded that the extracts obtained from floral spikes of P. vulgaris possess highly significant hepatoprotective activity which could be attributed to its radical scavenging potential and hepatic regeneration. This is further authenticated by the presence of phenolic and flavonoids which are known to possess radical scavenging properties.
Collapse
Affiliation(s)
- Gazanfar Ahmad
- Department of Pharmaceutical Sciences, University of Kashmir-Hazratbal Srinagar J&K, India.
| | - Mubashir H Masoodi
- Department of Pharmaceutical Sciences, University of Kashmir-Hazratbal Srinagar J&K, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir-Hazratbal Srinagar J&K, India
| | | | - Mir Javaid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
6
|
Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants Metabolites: Possibility of Natural Therapeutics Against the COVID-19 Pandemic. Front Med (Lausanne) 2020; 7:444. [PMID: 32850918 PMCID: PMC7427128 DOI: 10.3389/fmed.2020.00444] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
COVID-19, a disease induced by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2), has been the cause of a worldwide pandemic. Though extensive research works have been reported in recent days on the development of effective therapeutics against this global health crisis, there is still no approved therapy against SARS-CoV-2. In the present study, plant-synthesized secondary metabolites (PSMs) have been prioritized to make a review focusing on the efficacy of plant-originated therapeutics for the treatment of COVID-19. Plant metabolites are a source of countless medicinal compounds, while the diversity of multidimensional chemical structures has made them superior to treat serious diseases. Some have already been reported as promising alternative medicines and lead compounds for drug repurposing and discovery. The versatility of secondary metabolites may provide novel antibiotics to tackle MDR (Multi-Drug Resistant) microbes too. This review attempted to find out plant metabolites that have the therapeutic potential to treat a wide range of viral pathogens. The study includes the search of remedies belonging to plant families, susceptible viral candidates, antiviral assays, and the mode of therapeutic action; this attempt resulted in the collection of an enormous number of natural therapeutics that might be suggested for the treatment of COVID-19. About 219 plants from 83 families were found to have antiviral activity. Among them, 149 plants from 71 families were screened for the identification of the major plant secondary metabolites (PSMs) that might be effective for this pandemic. Our investigation revealed that the proposed plant metabolites can serve as potential anti- SARS-CoV-2 lead molecules for further optimization and drug development processes to combat COVID-19 and future pandemics caused by viruses. This review will stimulate further analysis by the scientific community and boost antiviral plant-based research followed by novel drug designing.
Collapse
Affiliation(s)
- Farhana Rumzum Bhuiyan
- Department of Botany, University of Chittagong, Chittagong, Bangladesh
- Laboratory of Biotechnology and Molecular Biology, Department of Botany, University of Chittagong, Chittagong, Bangladesh
| | - Sabbir Howlader
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chittagong, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
7
|
Wang SJ, Wang XH, Dai YY, Ma MH, Rahman K, Nian H, Zhang H. Prunella vulgaris: A Comprehensive Review of Chemical Constituents, Pharmacological Effects and Clinical Applications. Curr Pharm Des 2020; 25:359-369. [PMID: 30864498 DOI: 10.2174/1381612825666190313121608] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
Prunella vulgaris (PV) is a perennial herb belonging to the Labiate family and is widely distributed in the northeastern Asian countries such as Korea, Japan, and China. It is reported to display diverse biological activities including anti-microbial, anti-cancer, and anti-inflammation as determined by in vitro or in vivo studies. So far, about 200 compounds have been isolated from PV plant and a majority of these have been characterized mainly as triterpenoids, sterols and flavonoids, followed by coumarins, phenylpropanoids, polysaccharides and volatile oils. This review summarizes and analyzes the current knowledge on the chemical constituents, pharmacological activities, mechanisms of action and clinical applications of the PV plant including its potential as a future medicinal plant. Although some of the chemical constituents of the PV plant and their mechanisms of action have been investigated, the biological activities of many of these remain unknown and further clinical trials are required to further enhance its reputation as a medicinal plant.
Collapse
Affiliation(s)
- Su-Juan Wang
- Pharmaceutical Center of Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.,Department of Drug Preparation, Hospital of TCM and Hui Nationality Medicine, Ningxia Medical University, Ningxia 751100, China
| | - Xiao-He Wang
- Pharmaceutical Center of Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yuan-Yuan Dai
- Pharmaceutical Center of Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ming-Hua Ma
- Department of Pharmacy, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, England, United Kingdom
| | - Hua Nian
- Pharmaceutical Center of Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
8
|
Bekut M, Brkić S, Kladar N, Dragović G, Gavarić N, Božin B. Potential of selected Lamiaceae plants in anti(retro)viral therapy. Pharmacol Res 2017; 133:301-314. [PMID: 29258916 PMCID: PMC7129285 DOI: 10.1016/j.phrs.2017.12.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/17/2017] [Accepted: 12/15/2017] [Indexed: 01/14/2023]
Abstract
Constant search for new drugs with antiviral properties often extends to products of natural origin. Lamiaceae is one of the most important herbal families, well known for various biological and medicinal effects of a variety of aromatic spices, including thyme, mint, oregano, basil, sage, savory, rosemary, self-heal, hyssop, lemon balm and many others. The paper provides a review of antiviral potential of previously mentioned plants which has been demonstrated so far, with special emphasis on anti-HIV properties. Relevant articles were compiled by searching plant names combined with keywords describing antiviral activity. The antiviral effect is direct, with prominent activity against enveloped viral species. Initial stages of the viral life cycle are the most affected, as these plants appear to be targeting mainly viral structures responsible for attachment to target cells. In case of HIV, there is some activity against key enzymes in the viral life cycle. Even in the case of drug resistance, there is an equal susceptibility to applied herbal preparations. Some in vivo experiments suggest that use of Lamiaceae representatives could help in prevention and treatment of some viral diseases. A possible reduction of side effects of diseases and conventional drug therapy are also some aspects worth further investigations.
Collapse
Affiliation(s)
- Maja Bekut
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Serbia.
| | - Snežana Brkić
- University of Novi Sad, Faculty of Medicine, Department of Infectious Diseases, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; Clinical Centre of Vojvodina, Clinic for Infectious Diseases, Hajduk Veljkova 1, 21000 Novi Sad, Serbia
| | - Nebojša Kladar
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Gordana Dragović
- University of Belgrade, School of Medicine, Department of Pharmacology, Clinical Pharmacology and Toxicology, Dr Subotica 1/III, 11000 Belgrade, Serbia
| | - Neda Gavarić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Biljana Božin
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
9
|
Bai Y, Xia B, Xie W, Zhou Y, Xie J, Li H, Liao D, Lin L, Li C. Phytochemistry and pharmacological activities of the genus Prunella. Food Chem 2016; 204:483-496. [PMID: 26988527 DOI: 10.1016/j.foodchem.2016.02.047] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/01/2016] [Accepted: 02/08/2016] [Indexed: 12/20/2022]
Abstract
Prunella is a genus of perennial herbaceous plants in the Labiatae family. There are approximately 15 species worldwide, distributed widely in the temperate regions and tropical mountains of Europe and Asia. In the genus Prunella, P. vulgaris is the most studied, following a several thousand-year history as a traditional antipyretic and antidotal Chinese herb. Furthermore, since ancient times, P. vulgaris has been widely used as a cool tea ingredient and consumed as a vegetable. The genus Prunella contains triterpenoids and their saponins, phenolic acids, sterols and associated glycosides, flavonoids, organic acids, volatile oil and saccharides. Modern pharmacological studies have revealed that Prunella possess antiviral, antibacterial, anti-inflammatory, immunoregulatory, anti-oxidative, anti-tumor, antihypertensive and hypoglycemic functions. The active components related to these functions are mainly triterpenoids, phenolic acids, flavonoids and polysaccharides. This review mainly summarizes recent advances in traditional usage, chemical components and pharmacological functions.
Collapse
Affiliation(s)
- Yubing Bai
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenjian Xie
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yamin Zhou
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiachi Xie
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongquan Li
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Duanfang Liao
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
10
|
Haarberg KMK, Wymore Brand MJ, Overstreet AMC, Hauck CC, Murphy PA, Hostetter JM, Ramer-Tait AE, Wannemuehler MJ. Orally administered extract from Prunella vulgaris attenuates spontaneous colitis in mdr1a -/- mice. World J Gastrointest Pharmacol Ther 2015; 6:223-237. [PMID: 26558156 PMCID: PMC4635162 DOI: 10.4292/wjgpt.v6.i4.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/17/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the ability of a Prunella vulgaris (P. vulgaris) ethanolic extract to attenuate spontaneous typhlocolitis in mdr1a-/- mice.
METHODS: Vehicle (5% ethanol) or P. vulgaris ethanolic extract (2.4 mg/d) were administered daily by oral gavage to mdr1a-/- or wild type FVBWT mice from 6 wk of age up to 20 wk of age. Clinical signs of disease were noted by monitoring weight loss. Mice experiencing weight loss in excess of 15% were removed from the study. At the time mice were removed from the study, blood and colon tissue were collected for analyses that included histological evaluation of lesions, inflammatory cytokine levels, and myeloperoxidase activity.
RESULTS: Administration of P. vulgaris extracts to mdr1a-/- mice delayed onset of colitis and reduced severity of mucosal inflammation when compared to vehicle-treated mdr1a-/- mice. Oral administration of the P. vulgaris extract resulted in reduced (P < 0.05) serum levels of IL-10 (4.6 ± 2 vs 19.4 ± 4), CXCL9 (1319.0 ± 277 vs 3901.0 ± 858), and TNFα (9.9 ± 3 vs 14.8 ± 1) as well as reduced gene expression by more than two-fold for Ccl2, Ccl20, Cxcl1, Cxcl9, IL-1α, Mmp10, VCAM-1, ICAM, IL-2, and TNFα in the colonic mucosa of mdr1a-/- mice compared to vehicle-treated mdr1a-/- mice. Histologically, several microscopic parameters were reduced (P < 0.05) in P. vulgaris-treated mdr1a-/- mice, as was myeloperoxidase activity in the colon (2.49 ± 0.16 vs 3.36 ± 0.06, P < 0.05). The numbers of CD4+ T cells (2031.9 ± 412.1 vs 5054.5 ± 809.5) and germinal center B cells (2749.6 ± 473.7 vs 4934.0 ± 645.9) observed in the cecal tonsils of P. vulgaris-treated mdr1a-/- were significantly reduced (P < 0.05) from vehicle-treated mdr1a-/- mice. Vehicle-treated mdr1a-/- mice were found to produce serum antibodies to antigens derived from members of the intestinal microbiota, indicative of severe colitis and a loss of adaptive tolerance to the members of the microbiota. These serum antibodies were greatly reduced or absent in P. vulgaris-treated mdr1a-/- mice.
CONCLUSION: The anti-inflammatory activity of P. vulgaris ethanolic extract effectively attenuated the severity of intestinal inflammation in mdr1a-/- mice.
Collapse
|
11
|
|
12
|
|
13
|
Wurtele ES, Chappell J, Jones AD, Celiz MD, Ransom N, Hur M, Rizshsky L, Crispin M, Dixon P, Liu J, P Widrlechner M, Nikolau BJ. Medicinal plants: a public resource for metabolomics and hypothesis development. Metabolites 2012; 2:1031-59. [PMID: 24957774 PMCID: PMC3901233 DOI: 10.3390/metabo2041031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 11/16/2022] Open
Abstract
Specialized compounds from photosynthetic organisms serve as rich resources for drug development. From aspirin to atropine, plant-derived natural products have had a profound impact on human health. Technological advances provide new opportunities to access these natural products in a metabolic context. Here, we describe a database and platform for storing, visualizing and statistically analyzing metabolomics data from fourteen medicinal plant species. The metabolomes and associated transcriptomes (RNAseq) for each plant species, gathered from up to twenty tissue/organ samples that have experienced varied growth conditions and developmental histories, were analyzed in parallel. Three case studies illustrate different ways that the data can be integrally used to generate testable hypotheses concerning the biochemistry, phylogeny and natural product diversity of medicinal plants. Deep metabolomics analysis of Camptotheca acuminata exemplifies how such data can be used to inform metabolic understanding of natural product chemical diversity and begin to formulate hypotheses about their biogenesis. Metabolomics data from Prunella vulgaris, a species that contains a wide range ofantioxidant, antiviral, tumoricidal and anti-inflammatory constituents, provide a case study of obtaining biosystematic and developmental fingerprint information from metabolite accumulation data in a little studied species. Digitalis purpurea, well known as a source of cardiac glycosides, is used to illustrate how integrating metabolomics and transcriptomics data can lead to identification of candidate genes encoding biosynthetic enzymes in the cardiac glycoside pathway. Medicinal Plant Metabolomics Resource (MPM) [1] provides a framework for generating experimentally testable hypotheses about the metabolic networks that lead to the generation of specialized compounds, identifying genes that control their biosynthesis and establishing a basis for modeling metabolism in less studied species. The database is publicly available and can be used by researchers in medicine and plant biology.
Collapse
Affiliation(s)
- Eve Syrkin Wurtele
- Department of Genetics, Cell and Developmental Biology, Iowa State University, Ames, IA 50011, USA.
| | - Joe Chappell
- Department of Cellular and Molecular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - A Daniel Jones
- Department of Biochemistry & Molecular Biology and Deptment of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Mary Dawn Celiz
- Department of Biochemistry & Molecular Biology and Deptment of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Nick Ransom
- Department of Genetics, Cell and Developmental Biology, Iowa State University, Ames, IA 50011, USA
| | - Manhoi Hur
- Department of Genetics, Cell and Developmental Biology, Iowa State University, Ames, IA 50011, USA
| | - Ludmila Rizshsky
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011, USA
| | - Matthew Crispin
- Department of Genetics, Cell and Developmental Biology, Iowa State University, Ames, IA 50011, USA
| | - Philip Dixon
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Jia Liu
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Mark P Widrlechner
- Department of Ecology, Evolution, and Organismal Biology and Department of Horticulture, Iowa State University, Ames, IA 50011, USA
| | - Basil J Nikolau
- Center for Metabolic Biology, The Plant Science Institute, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
14
|
Kim SH, Huang CY, Tsai CY, Lu SY, Chiu CC, Fang K. The aqueous extract of Prunella vulgaris suppresses cell invasion and migration in human liver cancer cells by attenuating matrix metalloproteinases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:643-56. [PMID: 22745076 DOI: 10.1142/s0192415x12500486] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanism of action of Prunella vulgaris L. (PV) affecting cell migration and invasion of human liver cancer cells remains unknown. In this work we showed that the aqueous extract of PV affected migration and invasion of human liver carcinoma cells by inhibiting activities of metalloproteases, MMP-2 and MMP-9, without affecting cell viabilities. We further showed that PV suppressed migration through attenuation of enzymatic activities of MMP-9 and MMP-2 at transcriptional levels and the effects can be correlated with the status of p53 in hepatocarcinoma cells. This work provides a new dimension of understanding on Prunella vulgaris in restraining migration and invasion in human liver cancer cells.
Collapse
Affiliation(s)
- Seung-Hum Kim
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
15
|
Qu L, Widrlechner MP. Variation in the Breeding System of Prunella vulgaris L. HORTSCIENCE : A PUBLICATION OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE 2011; 46:688-692. [PMID: 21776085 PMCID: PMC3138140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Prunella vulgaris (Lamiaceae), commonly known as selfheal, is a perennial herb with a long history of use in traditional medicine. Recent studies have found that P. vulgaris possesses anti-inflammatory, antiviral, and antibacterial properties, and it is likely that this will lead to increased commercial demand for this species. To date, research publications on P. vulgaris cultivation and genetics are scarce. Using accessions originally collected from different geographical regions, we investigated the breeding system of this species by observing variation in floral morphology, time of pollen release, and selfed-seed set in bagged flowers and isolated plants. Two types of floral morphology, one with exerted styles, extending past open corollas when viewed from above, and the other with shorter, inserted styles, were found among 30 accessions. Two accessions originally collected from Asia uniformly displayed exerted styles, and 27 accessions had inserted styles. One accession from Oregon displayed variation in this trait among individual plants. Microscopic observation of seven accessions, including ones with both exerted and inserted styles, revealed that they all release pollen to some degree before the flowers open. Using bagged flowers, we found that selfed-seed set varied widely among eight accessions, ranging from 6% to 94%. However, bagging may underestimate seed set for some accessions. The two accessions with the lowest rates when using bagged flowers increased in seed set by 350% and 158%, respectively, when we evaluated single, unbagged plants in isolation cages. The accession with 6% selfed-seed set when bagged also had exerted styles. These findings suggest that mating systems in P. vulgaris may be in the process of evolutionary change and that understanding breeding-system variation should be useful in developing efficient seed-regeneration protocols and breeding and selection strategies for this species.
Collapse
|
16
|
Oh C, Price J, Brindley MA, Widrlechner MP, Qu L, McCoy JA, Murphy P, Hauck C, Maury W. Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L. Virol J 2011; 8:188. [PMID: 21513560 PMCID: PMC3096947 DOI: 10.1186/1743-422x-8-188] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 04/23/2011] [Indexed: 12/20/2022] Open
Abstract
Background The mint family (Lamiaceae) produces a wide variety of constituents with medicinal properties. Several family members have been reported to have antiviral activity, including lemon balm (Melissa officinalis L.), sage (Salvia spp.), peppermint (Mentha × piperita L.), hyssop (Hyssopus officinalis L.), basil (Ocimum spp.) and self-heal (Prunella vulgaris L.). To further characterize the anti-lentiviral activities of Prunella vulgaris, water and ethanol extracts were tested for their ability to inhibit HIV-1 infection. Results Aqueous extracts contained more anti-viral activity than did ethanol extracts, displaying potent antiviral activity against HIV-1 at sub μg/mL concentrations with little to no cellular cytotoxicity at concentrations more than 100-fold higher. Time-of-addition studies demonstrated that aqueous extracts were effective when added during the first five hours following initiation of infection, suggesting that the botanical constituents were targeting entry events. Further analysis revealed that extracts inhibited both virus/cell interactions and post-binding events. While only 40% inhibition was maximally achieved in our virus/cell interaction studies, extract effectively blocked post-binding events at concentrations similar to those that blocked infection, suggesting that it was targeting of these latter steps that was most important for mediating inhibition of virus infectivity. Conclusions We demonstrate that aqueous P. vulgaris extracts inhibited HIV-1 infectivity. Our studies suggest that inhibition occurs primarily by interference of early, post-virion binding events. The ability of aqueous extracts to inhibit early events within the HIV life cycle suggests that these extracts, or purified constituents responsible for the antiviral activity, are promising microbicides and/or antivirals against HIV-1.
Collapse
Affiliation(s)
- ChoonSeok Oh
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tylosema esculentum (Marama) Tuber and Bean Extracts Are Strong Antiviral Agents against Rotavirus Infection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:284795. [PMID: 21423688 PMCID: PMC3057194 DOI: 10.1155/2011/284795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 12/01/2010] [Accepted: 01/09/2011] [Indexed: 12/24/2022]
Abstract
Tylosema esculentum (marama) beans and tubers are used as food, and traditional medicine against diarrhoea in Southern Africa. Rotaviruses (RVs) are a major cause of diarrhoea among infants, young children, immunocompromised people, and domesticated animals. Our work is first to determine anti-RV activity of marama bean and tuber ethanol and water extracts; in this case on intestinal enterocyte cells of human infant (H4), adult pig (CLAB) and adult bovine (CIEB) origin. Marama cotyledon ethanolic extract (MCE) and cotyledon water extract (MCW) without RV were not cytotoxic to all cells tested, while seed coat and tuber extracts showed variable levels of cytotoxicity. Marama cotyledon ethanolic and water extracts (MCE and MCW, resp.) (≥0.1 mg/mL), seed coat extract (MSCE) and seed coat water extract (MSCW) (0.01 to 0.001 mg/mL), especially ethanolic, significantly increased cell survival and enhanced survival to cytopathic effects of RV by at least 100% after in vitro co- and pre-incubation treatments. All marama extracts used significantly enhanced nitric oxide release from H4 cells and enhanced TER (Ω/cm2) of enterocyte barriers after coincubation with RV. Marama cotyledon and seed coat extracts inhibited virion infectivity possibly through interference with replication due to accumulation of nitric oxide. Marama extracts are therefore promising microbicides against RV.
Collapse
|
18
|
Huang N, Hauck C, Yum MY, Rizshsky L, Widrlechner MP, McCoy JA, Murphy PA, Dixon PM, Nikolau BJ, Birt DF. Rosmarinic acid in Prunella vulgaris ethanol extract inhibits lipopolysaccharide-induced prostaglandin E2 and nitric oxide in RAW 264.7 mouse macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:10579-89. [PMID: 19919113 PMCID: PMC2795400 DOI: 10.1021/jf9023728] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Prunella vulgaris has been used therapeutically for inflammation-related conditions for centuries, but systematic studies of its anti-inflammatory activity are lacking and no specific active components have been identified. In this study, water and ethanol extracts of four P. vulgaris accessions were applied to RAW 264.7 mouse macrophages, and the ethanol extracts significantly inhibited lipopolysaccharide (LPS)-stimulated prostaglandin E2 (PGE2) and nitric oxide (NO) production at 30 microg/mL without affecting cell viability. Extracts from different accessions of P. vulgaris were screened for anti-inflammatory activity to identify accessions with the greatest activity. The inhibition of PGE2 and NO production by selected extracts was dose-dependent, with significant effects seen at concentrations as low as 10 microg/mL. Fractionation of ethanol extracts from the active accession, Ames 27664, suggested fractions 3 and 5 as possible major contributors to the overall activity. Rosmarinic acid (RA) content in P. vulgaris was found to independently inhibit inflammatory response, but it only partially explained the extracts' activity. LPS-induced cyclooxygenase-2 (COX-2) and nitric oxide synthase (iNOS) protein expression were both attenuated by P. vulgaris ethanol extracts, whereas RA inhibited only COX-2 expression.
Collapse
Affiliation(s)
- Nan Huang
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, Iowa, 50011
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, 50011
| | - Cathy Hauck
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, 50011
| | - Man-Yu Yum
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Department of Statistics, Iowa State University, Ames, Iowa, 50011
| | - Ludmila Rizshsky
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Mark P. Widrlechner
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011
- Department of Horticulture, Iowa State University, Ames, Iowa, 50011
- U.S. Department of Agriculture-Agricultural Research Service (USDA/ARS), North Central Regional Plant Introduction Station, Ames, Iowa, 50011
| | - Joe-Ann McCoy
- U.S. Department of Agriculture-Agricultural Research Service (USDA/ARS), North Central Regional Plant Introduction Station, Ames, Iowa, 50011
- Bent Creek Institute/NCSU, the North Carolina Arboretum, Asheville, North Carolina, 28806
| | - Patricia A. Murphy
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, 50011
| | - Philip M. Dixon
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Department of Statistics, Iowa State University, Ames, Iowa, 50011
| | - Basil J. Nikolau
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Diane F. Birt
- The Center for Research on Botanical Dietary Supplements, Iowa State University, Ames, Iowa, 50011
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, Iowa, 50011
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|