1
|
Liu J, Liang Z, Sun W, Hua W, Huang S, Wen F. The H4 subtype of avian influenza virus: a review of its historical evolution, global distribution, adaptive mutations and receptor binding properties. Poult Sci 2024; 103:103913. [PMID: 38914042 PMCID: PMC11254717 DOI: 10.1016/j.psj.2024.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
The H4 subtype of avian influenza virus (AIV) exhibits a wide host range and is commonly found in migratory waterfowl. Recent studies have revealed that the H4N6 AIV can infect guinea pigs via aerosol transmission without prior adaptation. Additionally, the Q226L/G228S substitutions in the receptor-binding site have led to structural changes in globular head of H4 AIV, resulting in a configuration similar to that of pandemic H2N2 and H3N2 human influenza viruses. This article provides an updated review of the historical evolution, global distribution, adaptive mutations, receptor-binding preferences, and host range of H4 AIV. The insights presented herein will help in assessing the potential risk of future H4 AIV epidemics.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Weiping Hua
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| |
Collapse
|
2
|
Bonilla-Aldana DK, Calle-Hernández DM, Ulloque-Badaracco JR, Alarcón-Braga EA, Hernández-Bustamante EA, Cabrera-Guzmán JC, Quispe-Vasquez SM, Huayta-Cortez MA, Benites-Zapata VA, Rodriguez-Morales AJ. Highly pathogenic avian influenza A(H5N1) in animals: A systematic review and meta-analysis. New Microbes New Infect 2024; 60-61:101439. [PMID: 38911488 PMCID: PMC11192795 DOI: 10.1016/j.nmni.2024.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Avian influenza A H5N1 is a significant global public health threat. Although relevant, systematic reviews about its prevalence in animals are lacking. Methods We performed a systematic literature review in bibliographic databases to assess the prevalence of H5N1 in animals. A meta-analysis with a random-effects model was performed to calculate the pooled prevalence and 95 % confidence intervals (95%CI). In addition, measures of heterogeneity (Cochran's Q statistic and I2 test) were reported. Results The literature search yielded 1359 articles, of which 33 studies were fully valid for analysis, including 96,909 animals. The pooled prevalence for H5N1 in birds (n = 90,045, 24 studies) was 5.0 % (95%CI: 4.0-6.0 %; I2 = 99.21); in pigs (n = 3,178, 4 studies) was 1.0 % (95%CI: 0.0-1.0 %); in cats (n = 2,911, 4 studies) was 0.0 % (95%CI: 0.0-1.0 %); and in dogs (n = 479, 3 studies) was 0.0 % (95%CI: 0.0-2.0 %). Conclusions While the occurrence of H5N1 in animals might be comparatively limited compared to other influenza viruses, its impact on public health can be substantial when it transmits to humans. This virus can potentially induce severe illness and has been linked to previous outbreaks. Therefore, it is essential to closely monitor and comprehend the factors influencing the prevalence of H5N1 in both avian and human populations to develop effective disease control and prevention strategies.
Collapse
Affiliation(s)
| | | | | | | | - Enrique A. Hernández-Bustamante
- Grupo Peruano de Investigación Epidemiológica, Unidad para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional de Trujillo, Trujillo, Peru
| | | | | | | | | | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
3
|
Pawar SD, Kode SS, Keng SS, Tare DS, Pande SA. Spatio-temporal distribution & seasonality of highly pathogenic avian influenza H5N1 & H5N8 outbreaks in India, 2006-2021. Indian J Med Res 2023; 158:113-118. [PMID: 37675691 PMCID: PMC10645038 DOI: 10.4103/ijmr.ijmr_2002_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 09/08/2023] Open
Abstract
Background & objectives The highly pathogenic avian influenza (HPAI) H5N1 and H5N8 viruses have been one of the leading causes of avian diseases worldwide, resulting in severe economic losses and posing potential zoonotic risk. There are no reports on the correlation of the seasonality of H5N1 and H5N8 viruses with the migratory bird season in India, along with the species affected. The present report describes the distribution and seasonality of HPAI outbreaks in India from 2006 to 2021. Methods The data on the occurrence and locations of outbreaks in India and affected bird species were collated from the Food and Agriculture Organization of the United Nations database and grouped by month and year. The distribution and seasonality of HPAI H5N1 and H5N8 viruses were analyzed. Results A total of 284 H5N1 outbreaks were reported since 2006, with a surge in 2021. The initial outbreaks of H5N1 were predominantly in poultry. Since 2016, 57 outbreaks of H5N8 were also reported, predominantly in wild birds. Most of the outbreaks of HPAI were reported from post monsoon onwards till pre-summer season (i.e. between October and March) with their peak in winter, in January. Apart from poultry, the bird species such as owl, Indian peafowl, lesser adjutant, crows and wild migratory birds such as demoiselle crane, northern pintail and bar-headed goose were positive for HPAI. Interpretation & conclusions Such studies on the seasonality of HPAI outbreaks would help in the development of prevention and control strategies. The recent human infections of H5N1 and H9N2 viruses highlight the need to strengthen surveillance in wild, resident, migratory birds and in poultry along with One Health studies in India.
Collapse
Affiliation(s)
- Shailesh D. Pawar
- National Institute of Virology, Indian Council of Medical Research, Pune, Maharashtra, India
| | - Sadhana S. Kode
- National Institute of Virology, Indian Council of Medical Research, Pune, Maharashtra, India
| | - Sachin S. Keng
- National Institute of Virology, Indian Council of Medical Research, Pune, Maharashtra, India
| | - Deeksha S. Tare
- National Institute of Virology, Indian Council of Medical Research, Pune, Maharashtra, India
| | | |
Collapse
|
4
|
Tare DS, Pawar SD, Keng SS, Kode SS, Walimbe AM, Limaye VV, Mullick J. The evolution, characterization and phylogeography of avian influenza H9N2 viruses from India. Virology 2023; 579:9-28. [PMID: 36587605 DOI: 10.1016/j.virol.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The low pathogenic avian influenza H9N2 virus is a significant zoonotic agent and contributes genes to highly pathogenic avian influenza (HPAI) viruses. H9N2 viruses are prevalent in India with a reported human case. We elucidate the spatio-temporal origins of the H9N2 viruses from India. A total of 30H9N2 viruses were isolated from poultry and environmental specimens (years 2015-2020). Genome sequences of H9N2 viruses (2003-2020) from India were analyzed, revealing several substitutions. We found five reassortant genotypes. The HA, NA and PB2 genes belonged to the Middle-Eastern B sublineage; NP and M to the classical G1 lineage; PB1, PA and NS showed resemblance to genes from either HPAI-H7N3/H5N1 viruses. Molecular clock and phylogeography revealed that the introduction of all the genes to India took place around the year 2000. This is the first report of the genesis and evolution of the H9N2 viruses from India, and highlights the need for surveillance.
Collapse
Affiliation(s)
- Deeksha S Tare
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Shailesh D Pawar
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021, India.
| | - Sachin S Keng
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Sadhana S Kode
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Atul M Walimbe
- ICMR-National Institute of Virology, 20-A, Dr. Babasaheb Ambedkar Road, Pune, 411001, India
| | - Vinayak V Limaye
- Disease Investigation Section, Western Regional Disease Diagnostic Laboratory, Aundh, Pune, 411007, India
| | - Jayati Mullick
- ICMR-National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021, India
| |
Collapse
|
5
|
Panickan S, Bhatia S, Bhat S, Bhandari N, Pateriya AK, Kalaiyarasu S, Sood R, Tripathi M. Reverse genetics based H5N2 vaccine provides clinical protection against H5N1, H5N8 and H9N2 avian influenza infection in chickens. Vaccine 2022; 40:6998-7008. [PMID: 36374710 DOI: 10.1016/j.vaccine.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
The current study aimed to develop broadly protective vaccines for avian influenza. In an earlier study, HA stalk (universal flu vaccine) was found to be broadly protective against different subtypes of influenza virus in mice. Hence, we were interested to know its breadth of protective efficacy either alone or combined with inactivated rgH5N2 (clade 2.3.2.1a) vaccine against challenge viruses of homologous H5N1, heterologous H5N8 (clade 2.3.4.4) and heterosubtypic H9N2 virus in specific pathogen-free chickens. The rgH5N2 vaccine alone or in combination with HA stalk elicited sufficient pre-challenge immunity in the form of haemagglutination inhibiting (HI) antibodies and neutralizing antibodies (MNT) against H5N1, H5N8, and H9N2 in chickens. The rgH5N2 vaccine alone or in combination with HA stalk also attenuated the shedding of H5N1, H5N8 and H9N2 in chickens and protected against the lethal challenge of H5N1 or H5N8. In contrast, all HA stalk immunised chickens died upon H5N1 or H5N8 challenge and H9N2 challenged chickens survived. Our study suggests that the rgH5N2 vaccine can provide clinical protection against H5N1, H5N8 and can attenuate the viral shedding of H9N2 in chickens.
Collapse
Affiliation(s)
- Sivasankar Panickan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India; ICAR- National Institute of High Security Animal Diseases, Bhopal 462022, India.
| | - Sandeep Bhatia
- ICAR- National Institute of High Security Animal Diseases, Bhopal 462022, India.
| | - Sushant Bhat
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 ONF, United Kingdom
| | - Nisha Bhandari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Atul Kumar Pateriya
- ICAR- National Institute of High Security Animal Diseases, Bhopal 462022, India
| | | | - Richa Sood
- ICAR- National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Meghna Tripathi
- ICAR- National Institute of High Security Animal Diseases, Bhopal 462022, India
| |
Collapse
|
6
|
Potdar V, Brijwal M, Lodha R, Yadav P, Jadhav S, Choudhary ML, Choudhary A, Vipat V, Gupta N, Deorari AK, Dar L, Abraham P. Identification of Human Case of Avian Influenza A(H5N1) Infection, India. Emerg Infect Dis 2022; 28:1269-1273. [PMID: 35608874 PMCID: PMC9155886 DOI: 10.3201/eid2806.212246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A 11-year-old boy with acute myeloid leukemia was brought for treatment of severe acute respiratory infection in the National Capital Region, New Delhi, India. Avian influenza A(H5N1) infection was laboratory confirmed. Complete genome analysis indicated hemagglutinin gene clade 2.3.2.1a. We found the strain to be susceptible to amantadine and neuraminidase inhibitors.
Collapse
|
7
|
Rehman S, Rantam FA, Batool K, Shehzad A, Effendi MH, Witaningrum AM, Bilal M, Elziyad Purnama MT. Emerging threat and vaccination strategies of H9N2 viruses in poultry in Indonesia: A review. F1000Res 2022; 11:548. [PMID: 35844820 PMCID: PMC9253659 DOI: 10.12688/f1000research.118669.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 09/05/2024] Open
Abstract
Avian influenza virus subtype H9N2 was first documented in Indonesia in 2017. It has become prevalent in chickens in many provinces of Indonesia as a result of reassortment in live bird markets. Low pathogenic avian influenza subtype H9N2 virus-infected poultry provides a new direction for influenza virus. According to the latest research, the Indonesian H9N2 viruses may have developed through antigenic drift into new genotype, posing a significant hazard to poultry and public health. The latest proof of interspecies transmission proposes that, the next human pandemic variant will be avian influenza virus subtype H9N2. Manipulation and elimination of H9N2 viruses in Indonesia, constant surveillance of viral mutation, and vaccines updates are required to achieve effectiveness. The current review examines should be investigates/assesses/report on the development and evolution of newly identified H9N2 viruses in Indonesia and their vaccination strategy.
Collapse
Affiliation(s)
- Saifur Rehman
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
| | - Fedik Abdul Rantam
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Khadija Batool
- Medicine, Service Institute of Medical Sciences, Lahore,, Punjab, 40050, Pakistan
| | - Aamir Shehzad
- Laboratory of Virology and Immunology Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Adiana Mutamsari Witaningrum
- Division of Veterinary Public Health Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Bilal
- Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Islamic, 40050, Pakistan
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| |
Collapse
|
8
|
Abtin A, Shoushtari A, Pourbakhsh SA, Fallah Mehrabadi MH, Pourtaghi H. Two Novel Avian Influenza Virus Subtypes Isolated from Domestic Ducks in North of Iran. ARCHIVES OF RAZI INSTITUTE 2022; 77:861-867. [PMID: 36284964 PMCID: PMC9548268 DOI: 10.22092/ari.2021.353411.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/15/2021] [Indexed: 06/16/2023]
Abstract
Avian Influenza Viruses (AIV) are the causative agents of Avian Influenza (AI), which is a contagious and zoonotic disease in birds. Among birds, wild waterfowls and ducks are the primary and natural reservoirs of low pathogenic avian influenza viruses (LPAI). This study aimed to identify and differentiate between two AIV subtypes (i.e., hemagglutinin and neuraminidase from domestic ducks by hemagglutinin inhibition (HI) and neuraminidase inhibition (NI) assays. To this end, 962 cloacal swabs were collected from domestic ducks being sold at different Iranian Live Bird Markets in Gilan, Mazandaran, and Golestan provinces, located at the southern coast of the Caspian Sea. The samples were inoculated in 10-day-old embryonated specific pathogen-free chicken eggs, and subsequently, harvested allantoic fluids were subjected to agar gel immunodiffusion, HI, and NI assays. In total, five positive samples, including two H4N2 and three H3N2 AIV subtypes were identified. Isolation of H4N2 and H3N2 viruses has never been reported from Iranian domestic ducks previously. This finding further suggests the diversity of LPAI viruses in Iranian ducks and also shows that the HI and NI assays are highly efficient in determining AIV subtypes.
Collapse
Affiliation(s)
- A Abtin
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - A Shoushtari
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - S A Pourbakhsh
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - M H Fallah Mehrabadi
- Department of Avian Diseases Research and Diagnostics, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - H Pourtaghi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
9
|
Albery GF, Becker DJ, Brierley L, Brook CE, Christofferson RC, Cohen LE, Dallas TA, Eskew EA, Fagre A, Farrell MJ, Glennon E, Guth S, Joseph MB, Mollentze N, Neely BA, Poisot T, Rasmussen AL, Ryan SJ, Seifert S, Sjodin AR, Sorrell EM, Carlson CJ. The science of the host-virus network. Nat Microbiol 2021; 6:1483-1492. [PMID: 34819645 DOI: 10.1038/s41564-021-00999-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Better methods to predict and prevent the emergence of zoonotic viruses could support future efforts to reduce the risk of epidemics. We propose a network science framework for understanding and predicting human and animal susceptibility to viral infections. Related approaches have so far helped to identify basic biological rules that govern cross-species transmission and structure the global virome. We highlight ways to make modelling both accurate and actionable, and discuss the barriers that prevent researchers from translating viral ecology into public health policies that could prevent future pandemics.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington DC, USA.
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Liam Brierley
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Cara E Brook
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Lily E Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tad A Dallas
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Evan A Eskew
- Department of Biology, Pacific Lutheran University, Tacoma, WA, USA
| | - Anna Fagre
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maxwell J Farrell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Emma Glennon
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Maxwell B Joseph
- Earth Lab, Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, CO, USA
| | - Nardus Mollentze
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC - University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Benjamin A Neely
- National Institute of Standards and Technology, Charleston, SC, USA
| | - Timothée Poisot
- Québec Centre for Biodiversity Sciences, Montréal, Québec, Canada.,Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sadie J Ryan
- Department of Geography, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Stephanie Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Anna R Sjodin
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Erin M Sorrell
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA.,Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA. .,Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
10
|
Hood G, Roche X, Brioudes A, von Dobschuetz S, Fasina FO, Kalpravidh W, Makonnen Y, Lubroth J, Sims L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transbound Emerg Dis 2021; 68:110-126. [PMID: 32652790 PMCID: PMC8048529 DOI: 10.1111/tbed.13633] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
This literature review provides an overview of use of environmental samples (ES) such as faeces, water, air, mud and swabs of surfaces in avian influenza (AI) surveillance programs, focussing on effectiveness, advantages and gaps in knowledge. ES have been used effectively for AI surveillance since the 1970s. Results from ES have enhanced understanding of the biology of AI viruses in wild birds and in markets, of links between human and avian influenza, provided early warning of viral incursions, allowed assessment of effectiveness of control and preventive measures, and assisted epidemiological studies in outbreaks, both avian and human. Variation exists in the methods and protocols used, and no internationally recognized guidelines exist on the use of ES and data management. Few studies have performed direct comparisons of ES versus live bird samples (LBS). Results reported so far demonstrate reliance on ES will not be sufficient to detect virus in all cases when it is present, especially when the prevalence of infection/contamination is low. Multiple sample types should be collected. In live bird markets, ES from processing/selling areas are more likely to test positive than samples from bird holding areas. When compared to LBS, ES is considered a cost-effective, simple, rapid, flexible, convenient and acceptable way of achieving surveillance objectives. As a non-invasive technique, it can minimize effects on animal welfare and trade in markets and reduce impacts on wild bird communities. Some limitations of environmental sampling methods have been identified, such as the loss of species-specific or information on the source of virus, and taxonomic-level analyses, unless additional methods are applied. Some studies employing ES have not provided detailed methods. In others, where ES and LBS are collected from the same site, positive results have not been assigned to specific sample types. These gaps should be remedied in future studies.
Collapse
Affiliation(s)
- Grace Hood
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Xavier Roche
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Aurélie Brioudes
- Food and Agriculture Organization of the United NationsRegional Office for Asia and the PacificBangkokThailand
| | | | | | | | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations, Sub-Regional Office for Eastern AfricaAddis AbabaEthiopia
| | - Juan Lubroth
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Leslie Sims
- Asia Pacific Veterinary Information ServicesMelbourneAustralia
| |
Collapse
|
11
|
Pawar SD, Keng SS, Tare DS, Thormothe AL, Sapkal GN, Anukumar B, Lole KS, Mullick J, Mourya DT. A virus precipitation method for concentration & detection of avian influenza viruses from environmental water resources & its possible application in outbreak investigations. Indian J Med Res 2020; 150:612-619. [PMID: 32048625 PMCID: PMC7038801 DOI: 10.4103/ijmr.ijmr_1697_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background & objectives Avian influenza (AI) viruses have been a major cause of public health concern. Wild migratory birds and contaminated environmental sources such as waterbodies soiled with bird droppings play a significant role in the transmission of AI viruses. The objective of the present study was to develop a sensitive and user-friendly method for the concentration and detection of AI viruses from environmental water sources. Methods Municipal potable water, surface water from reservoirs and sea were spiked with low pathogenic AI viruses. To concentrate the viruses by precipitation, a combination of potassium aluminium sulphate with milk powder was used. Real-time reverse transcription-polymerase chain reaction was performed for virus detection, and the results were compared with a virus concentration method using erythrocytes. Drinking water specimens from poultry markets were also tested for the presence of AI viruses. Results A minimum of 101.0 EID50(50% egg infectious dose)/ml spiked H5N1 and 101.7 EID50/ml spiked H9N2 viruses were detected from spiked potable water; 101.0 and 102.0 EID50/ml spiked H5N1 virus was detected from surface water and seawater samples, respectively. The present method was more sensitive than the erythrocyte-binding method as approximately 10-fold higher infectious virus titres were obtained. AI H9N2 viruses were detected and isolated from water from local poultry markets, using this method. Interpretation & conclusions Viability and recovery of the spiked viruses were not affected by precipitation. The present method may be suitable for the detection of AI viruses from different environmental water sources and can also be applied during outbreak investigations.
Collapse
Affiliation(s)
- Shailesh D Pawar
- ICMR-National Institute of Virology-Mumbai Unit (Formerly Enterovirus Research Center), Mumbai, Maharashtra, India
| | - Sachin S Keng
- Avian Influenza Group, ICMR-National Institute of Virology-Microbial Containment Complex, Pune, Maharashtra, India
| | - Deeksha S Tare
- Avian Influenza Group, ICMR-National Institute of Virology-Microbial Containment Complex, Pune, Maharashtra, India
| | - Anil L Thormothe
- Avian Influenza Group, ICMR-National Institute of Virology-Microbial Containment Complex, Pune, Maharashtra, India
| | - Gajanan N Sapkal
- Diagnostic Virology Group, ICMR-National Institute of Virology-Microbial Containment Complex, Pune, Maharashtra, India
| | - B Anukumar
- ICMR-National Institute of Virology-Kerala Unit, Government TD Medical College Hospital, Alappuzha, Kerala, India
| | - Kavita S Lole
- Hepatitis Group, ICMR-National Institute of Virology-Microbial Containment Complex, Pune, Maharashtra, India
| | - Jayati Mullick
- Avian Influenza Group, ICMR-National Institute of Virology-Microbial Containment Complex, Pune, Maharashtra, India
| | - Devendra T Mourya
- ICMR-National Institute of Virology-Microbial Containment Complex, Pune, Maharashtra, India
| |
Collapse
|
12
|
The Pattern of Highly Pathogenic Avian Influenza H5N1 Outbreaks in South Asia. Trop Med Infect Dis 2019; 4:tropicalmed4040138. [PMID: 31783701 PMCID: PMC6958390 DOI: 10.3390/tropicalmed4040138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 has caused severe illnesses in poultry and in humans. More than 15,000 outbreaks in domestic birds from 2005 to 2018 and 861 human cases from 2003 to 2019 were reported across the world to OIE (Office International des Epizooties) and WHO (World Health Organization), respectively. We reviewed and summarized the spatial and temporal distribution of HPAI outbreaks in South Asia. During January 2006 to June 2019, a total of 1063 H5N1 outbreaks in birds and 12 human cases for H5N1 infection were reported to OIE and WHO, respectively. H5N1 outbreaks were detected more in the winter season than the summer season (RR 5.11, 95% CI: 4.28-6.1). Commercial poultry were three times more likely to be infected with H5N1 than backyard poultry (RR 3.47, 95% CI: 2.99-4.01). The highest number of H5N1 outbreaks was reported in 2008, and the smallest numbers were reported in 2014 and 2015. Multiple subtypes of avian influenza viruses and multiple clades of H5N1 virus were detected. Early detection and reporting of HPAI viruses are needed to control and eliminate HPAI in South Asia.
Collapse
|
13
|
Fazel P, Mehrabanpour MJ. Evaluation of the Viral Interference between Lentogenic Newcastle Disease Virus (Lasota) and Avian Influenza Virus (H9N2) using Real-Time Reverse Transcription Polymerase Chain Reaction in SPF Chicken. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- P Fazel
- Islamic Azad University, Iran; Islamic Azad University, Iran
| | | |
Collapse
|
14
|
Ghoke SS, Sood R, Kumar N, Pateriya AK, Bhatia S, Mishra A, Dixit R, Singh VK, Desai DN, Kulkarni DD, Dimri U, Singh VP. Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. Altern Ther Health Med 2018; 18:174. [PMID: 29866088 PMCID: PMC5987647 DOI: 10.1186/s12906-018-2238-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/23/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND In the view of endemic avian influenza H9N2 infection in poultry, its zoonotic potential and emergence of antiviral resistance, two herbal plants, Ocimum sanctum and Acacia arabica, which are easily available throughout various geographical locations in India were taken up to study their antiviral activity against H9N2 virus. We evaluated antiviral efficacy of three different extracts each from leaves of O. sanctum (crude extract, terpenoid and polyphenol) and A. arabica (crude extract, flavonoid and polyphenol) against H9N2 virus using in ovo model. METHODS The antiviral efficacy of different leaves extracts was systematically studied in three experimental protocols viz. virucidal (dose-dependent), therapeutic (time-dependent) and prophylactic (dose-dependent) activity employing in ovo model. The maximum non-toxic concentration of each herbal extracts of O. sanctum and A. arabica in the specific pathogen free embryonated chicken eggs was estimated and their antiviral efficacy was determined in terms of reduction in viral titres, measured by Haemagglutination (HA) and real time quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays. RESULTS All the extracts of O. sanctum (crude extract, terpenoid and polyphenol) and A. arabica (crude extract, flavonoid and polyphenol) showed significant virucidal activity, however, crude extract ocimum and terpenoid ocimum showed highly significant to significant (p < 0.001-0.01) decrease in virus genome copy numbers with lowest dose tested. Similarly, therapeutic effect was observed in all three extracts of O. sanctum in comparison to the virus control, nevertheless, crude extract ocimum and terpenoid ocimum maintained this effect for longer period of time (up to 72 h post-incubation). None of the leaves extracts of A. arabica had therapeutic effect at 24 and 48 h post-incubation, however, only the crude extract acacia and polyphenol acacia showed delayed therapeutic effect (72 h post-inoculation). Prophylactic potential was observed in polyphenol acacia with highly significant antiviral activity compared to virus control (p < 0.001). CONCLUSIONS The crude extract and terpenoid isolated from the leaves of O. sanctum and polyphenol from A. arabica has shown promising antiviral properties against H9N2 virus. Future investigations are necessary to formulate combinations of these compounds for the broader antiviral activity against H9N2 viruses and evaluate them in chickens.
Collapse
|
15
|
Sarker RD, Giasuddin M, Chowdhury EH, Islam MR. Serological and virological surveillance of avian influenza virus in domestic ducks of the north-east region of Bangladesh. BMC Vet Res 2017. [PMID: 28623934 PMCID: PMC5474003 DOI: 10.1186/s12917-017-1104-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Wild waterfowl are considered as the natural reservoir for avian influenza (AI) viruses. Bangladesh has been experiencing highly pathogenic avian influenza (HPAI) outbreaks since 2007, mostly in chickens and occasionally in ducks. Ducks play an important role in the persistence and genetic recombination of AI viruses. This paper presents the results of serological and virological monitoring of AI in domestic ducks in 2013 in the north-east region of Bangladesh. Results A total of 871 and 662 serum samples and 909 and 302 pairs of cloacal and oropharyngeal swabs from domestic ducks of Mymensingh and Sylhet division, respectively, were analysed. Antibodies to type A influenza virus were detected by blocking ELISA in 60.73 and 47.73% serum samples of Mymensingh and Sylhet division, respectively. On haemagglutination-inhibition (HI) test 17.5% of ELISA positive serum samples were found to be seropositive to H5 avian influenza virus. Five cloacal swabs and one oropharyngeal swab were positive for M gene of type A influenza virus by real time RT-PCR (rRT-PCR), but all of them were negative for H5 influenza virus. Three of the six viruses were successfully characterized as H1N5, H2N5 and H7N5 subtype of AI virus, the other three remained uncharacterized. On sequencing and phylogenetic analysis the HA and NA genes were found to be of Eurasian avian lineage. The H7 virus had cleavage site motif of low pathogenic virus. Conclusions Low pathogenic avian influenza viruses were detected from apparently healthy domestic ducks. A small proportion of domestic ducks were found seropositive to H5 AI virus.
Collapse
Affiliation(s)
- Rahul Deb Sarker
- Department of Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Giasuddin
- National Reference Laboratory for Avian Influenza, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | | | | |
Collapse
|
16
|
Pawar SD, Jamgaonkar AV, Umarani UB, Kode SS. Seroepidemiology of avian influenza H5N1, H9N2 & Newcastle disease viruses during 1954 to 1981 in India. Indian J Med Res 2017; 144:472-476. [PMID: 28139546 PMCID: PMC5320853 DOI: 10.4103/0971-5916.198666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Shailesh D Pawar
- National Institute of Virology-Microbial Containment Complex Campus, Sus Road, Pashan, Pune 411 021, Maharashtra, India
| | - Aniruddha V Jamgaonkar
- National Institute of Virology-Microbial Containment Complex Campus, Sus Road, Pashan, Pune 411 021, Maharashtra, India
| | - Umesh B Umarani
- National Institute of Virology-Microbial Containment Complex Campus, Sus Road, Pashan, Pune 411 021, Maharashtra, India
| | - Sadhana S Kode
- National Institute of Virology-Microbial Containment Complex Campus, Sus Road, Pashan, Pune 411 021, Maharashtra, India
| |
Collapse
|
17
|
Molecular Survey of Respiratory and Immunosuppressive Pathogens Associated with Low Pathogenic Avian Influenza H9N2 Subtype and Virulent Newcastle Disease Viruses in Commercial Chicken Flocks. J Poult Sci 2017; 54:179-184. [PMID: 32908424 PMCID: PMC7477123 DOI: 10.2141/jpsa.0160032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The study was carried out in 48 poultry flocks to elucidate the roles of various complicating pathogens involved along with Newcastle disease (ND)/ low pathogenic avian influenza (LPAI) outbreaks. Necropsy was conducted and samples were collected for the isolation of Newcastle disease virus (NDV), Influenza A virus, infectious bronchitis virus (IBV), pathogenic bacteria; molecular detection of infectious laryngotracheitis virus (ILTV), fowl adeno virus (FAV), chicken anaemia virus (CAV), Mycoplasma synoviae (MS) and Mycoplasma gallisepticum (MG). The isolation results confirmed that 18/48 flocks (37%) were positive for the presence of hemagglutinating agents. Out of 18 hemagglutination (HA) positive flocks, 11 flocks (61%) were positive for both avian influenza virus (AIV) and NDV; 4 flocks (22%) were positive for NDV; and 3 flocks (17%) were positive for AIV. Sequence analysis of hemagglutinin and neuraminidase genes of AIV revealed that all were belonging to LPAI-H9N2 subtype. Sequence analysis of F gene of NDV revealed that they belong to virulent type. The PCR results confirmed the presence of three to seven etiological agents (CAV, FAV, ILTV, MG, MS and avian pathogenic E. coli along with LPAI/NDV from all the 18 HA-positive flocks. The detection rate of triple, quadruple, quintuple, sextuple and sevenfold infections was 17% (3 flocks), 28% (5 flocks), 11%, (2 flocks) 28% (5 flocks) and 17% (3 flocks), respectively. In conclusion, the disease complex involved more than one pathogen, primarily resulting from the interplay between LPAI-H9N2 and NDV; subsequently this could be exacerbated by co-infection with other agents which may cause exacerbated outbreaks that may otherwise go undetected in field.
Collapse
|
18
|
Jiménez-Bluhm P, Karlsson EA, Ciuoderis KA, Cortez V, Marvin SA, Hamilton-West C, Schultz-Cherry S, Osorio JE. Avian H11 influenza virus isolated from domestic poultry in a Colombian live animal market. Emerg Microbes Infect 2016; 5:e121. [PMID: 27924808 PMCID: PMC5180366 DOI: 10.1038/emi.2016.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 01/29/2023]
Abstract
Live animal markets (LAMs) are an essential source of food and trade in Latin American countries; however, they can also serve as ‘hotbeds' for the emergence and potential spillover of avian influenza viruses (AIV). Despite extensive knowledge of AIV in Asian LAMs, little is known about the prevalence South American LAMs. To fill this gap in knowledge, active surveillance was carried out at the major LAM in Medellin, Colombia between February and September 2015. During this period, overall prevalence in the market was 2.67% and a North American origin H11N2 AIV most similar to a virus isolated from Chilean shorebirds asymptomatically spread through multiple bird species in the market resulting in 17.0% positivity at peak of infection. Phenotypically, the H11 viruses displayed no known molecular markers associated with increased virulence in birds or mammals, had α2,3-sialic acid binding preference, and caused minimal replication in vitro and little morbidity in vivo. However, the Colombian H11N2 virus replicated and transmitted effectively in chickens explaining the spread throughout the market. Genetic similarity to H11 viruses isolated from North and South American shorebirds suggest that the LAM occurrence may have resulted from a wild bird to domestic poultry spillover event. The ability to spread in domestic poultry as well as potential for human infection by H11 viruses highlight the need for enhanced AIV surveillance in South America in both avian species and humans.
Collapse
Affiliation(s)
- Pedro Jiménez-Bluhm
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erik A Karlsson
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karl A Ciuoderis
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Valerie Cortez
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shauna A Marvin
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christopher Hamilton-West
- Faculty of Veterinary Science, Department of Preventive Medicine, University of Chile, Santiago 8820808, Chile
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
19
|
Gowthaman V, Singh SD, Dhama K, Srinivasan P, Saravanan S, Murthy TRGK, Sukumar K, Mathapati B, Lebarbenchon C, Malik YS, Ramakrishnan MA. Isolation and phylogenetic characterization of haemagglutinin and neuraminidase genes of H9N2 low pathogenicity avian influenza virus isolated from commercial layers in India. Virusdisease 2016; 27:382-386. [PMID: 28004018 DOI: 10.1007/s13337-016-0350-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022] Open
Abstract
Avian influenza is a highly infectious and dynamically evolving disease of birds causing high morbidity and mortality. It is caused by avian influenza virus (AIV) that belongs to the family Orthomyxoviridae. Two types of AIV have been described based on their pathogenicity viz. highly pathogenic avian influenza virus that causes severe disease with high mortality and low pathogenic avian influenza virus (LPAI) that generally causes asymptomatic infection or a mild disease. The H9N2 subtype is the widely circulated LPAI type in the world. The H9N2 subtype of was first reported from northern India in March 2003. However, systematical surveillance information for the evolution of H9N2 viruses in poultry flocks of Southern India is lacking. The present study reports the isolation and characterization of H9N2 isolates from the southern parts of the country during the period between May 2010 and September 2011. Out of the 30 poultry flocks investigated, six were found to be positive for HA activity. Further, all the six samples conformed as AIV. Partial nucleotide sequencing of the HA and NA genes revealed that all were belonging to the H9N2 subtype. Phylogenetically, the HA and NA genes of the H9N2 viruses from India clustered with those isolated from Bangladesh, Pakistan and the Middle East, although we were not able to conclude on their exact geographic origin.
Collapse
Affiliation(s)
- Vasudevan Gowthaman
- Avian Diseases Section, Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India ; Poultry Disease Diagnosis and Surveillance Laboratory, Veterinary College and Research Institute Campus, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, Tamil Nadu 637 002 India
| | - Shambu Dayal Singh
- Avian Diseases Section, Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India
| | - Kuldeep Dhama
- Avian Diseases Section, Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India
| | - Palani Srinivasan
- Poultry Disease Diagnosis and Surveillance Laboratory, Veterinary College and Research Institute Campus, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, Tamil Nadu 637 002 India
| | - Sellappan Saravanan
- Poultry Disease Diagnosis and Surveillance Laboratory, Veterinary College and Research Institute Campus, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, Tamil Nadu 637 002 India
| | | | - Kuppanan Sukumar
- Department of Veterinary Microbiology, Veterinary College and Research Institute, Namakkal, Tamil Nadu 637002 India
| | - Basavaraj Mathapati
- Division of Virology, Indian Veterinary Research Institute, Mukteswar, Uttarakhand 263 138 India
| | - Camille Lebarbenchon
- UMR Processus Infectieux en Milieu Insulaire Tropical, INSERM U1187, CNRS 9192, Université de La Réunion, IRD 249 Saint Denis, Reunion Island, France
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India
| | | |
Collapse
|
20
|
RahimiRad S, Alizadeh A, Alizadeh E, Hosseini SM. The avian influenza H9N2 at avian-human interface: A possible risk for the future pandemics. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2016; 21:51. [PMID: 28083072 PMCID: PMC5216463 DOI: 10.4103/1735-1995.187253] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/24/2016] [Accepted: 04/25/2016] [Indexed: 12/27/2022]
Abstract
The avian influenza subtype H9N2 is considered a low pathogenic virus which is endemic in domestic poultry of a majority of Asian countries. Many reports of seropositivity in occupationally poultry-exposed workers and a number of confirmed human infections with an H9N2 subtype of avian influenza have been documented up to now. Recently, the human infections with both H7N9 and H10N8 viruses highlighted that H9N2 has a great potential for taking a part in the emergence of new human-infecting viruses. This review aimed at discussing the great potential of H9N2 virus which is circulating at avian-human interface, for cross-species transmission, contribution in the production of new reassortants and emergence of new pandemic subtypes. An intensified surveillance is needed for controlling the future risks which would be created by H9N2 circulation at avian-human interfaces.
Collapse
Affiliation(s)
- Shaghayegh RahimiRad
- Student of Medicine, Tuberclosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Urmia, Iran
| | - Ali Alizadeh
- Department of English, Urmia University, Urmia, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Masoud Hosseini
- Department of Microbiology, Faculty of Biological Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Dash SK, Kumar M, Kataria JM, Nagarajan S, Tosh C, Murugkar HV, Kulkarni DD. Partial heterologous protection by low pathogenic H9N2 virus against natural H9N2-PB1 gene reassortant highly pathogenic H5N1 virus in chickens. Microb Pathog 2016; 95:157-165. [DOI: 10.1016/j.micpath.2016.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/30/2022]
|
22
|
Gerloff NA, Khan SU, Zanders N, Balish A, Haider N, Islam A, Chowdhury S, Rahman MZ, Haque A, Hosseini P, Gurley ES, Luby SP, Wentworth DE, Donis RO, Sturm-Ramirez K, Davis CT. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh. PLoS One 2016; 11:e0152131. [PMID: 27010791 PMCID: PMC4806916 DOI: 10.1371/journal.pone.0152131] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/09/2016] [Indexed: 12/01/2022] Open
Abstract
Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year timeframe of sampling, indicate a continuous circulation of these viruses in the country.
Collapse
Affiliation(s)
- Nancy A. Gerloff
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States of America
| | - Salah Uddin Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Natosha Zanders
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States of America
| | - Amanda Balish
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States of America
| | - Najmul Haider
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ausraful Islam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sukanta Chowdhury
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mahmudur Ziaur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ainul Haque
- Department of Livestock Services, Ministry of Fisheries and Livestock, Dhaka, Bangladesh
| | | | - Emily S. Gurley
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Stephen P. Luby
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - David E. Wentworth
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States of America
| | - Ruben O. Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States of America
| | - Katharine Sturm-Ramirez
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States of America
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - C. Todd Davis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States of America
| |
Collapse
|
23
|
Use of embryonated chicken egg as a model to study the susceptibility of avian influenza H9N2 viruses to oseltamivir carboxylate. J Virol Methods 2015; 224:67-72. [PMID: 26297959 DOI: 10.1016/j.jviromet.2015.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 11/23/2022]
Abstract
Avian influenza (AI) H9N2 viruses are endemic in many bird species, and human infections of H9N2 viruses have been reported. Oseltamivir phosphate (Tamiflu(®)) is the available antiviral drug for the treatment and prophylaxis of influenza. There are no reports of use of embryonated chicken egg as a model to study susceptibility of AI viruses to oseltamivir carboxylate (OC), the active metabolite. The present study was undertaken to explore the use of embryonated chicken eggs as a model for testing OC against the AI H9N2 viruses. A total of three AI H9N2 viruses, isolated in poultry in India, were used. Various virus dilutions were tested against 14μg/ml of OC. Three methods, namely (1) the in vitro virus-drug treatment, (2) drug delivery and virus challenge by allantoic route, and (3) drug delivery by albumen route and virus challenge by allantoic route were explored. The viruses were also tested using the fluorescence-based neuraminidase inhibitor (NAI) assay. There was significant inhibition (p<0.05) of the H9N2 viruses in presence of OC. The infectious virus titers as well as hemagglutination titers were significantly lower in presence of OC as compared to controls. The in vitro treatment of virus and drug; and drug and virus delivery at the same time by allantoic route showed significantly higher inhibition (p<0.05) of virus growth than that by the albumen route. In the NAI assay, the half maximal inhibitory concentration (IC50) values of the H9N2 viruses were within the standard range for known susceptible reference virus. In conclusion, the H9N2 viruses used in the study were susceptible to OC. Embryonated chicken egg could be used as a model to study susceptibility of AI viruses to antiviral drugs.
Collapse
|
24
|
Pawar SD, Murtadak VB, Kale SD, Shinde PV, Parkhi SS. Evaluation of different inactivation methods for high and low pathogenic avian influenza viruses in egg-fluids for antigen preparation. J Virol Methods 2015; 222:28-33. [PMID: 25997377 DOI: 10.1016/j.jviromet.2015.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 04/30/2015] [Accepted: 05/08/2015] [Indexed: 11/24/2022]
Abstract
In view of the emerging avian influenza (AI) viruses, it is important to study the susceptibility of AI viruses to inactivating agents for preparation of antigens and inactivated vaccines. The available information on susceptibility of both the high and low pathogenic AI viruses to different inactivating agents is inadequate and ambiguous. It has been shown that different subtypes of influenza viruses require different physical and chemical conditions for inactivation of infectivity. The present study was undertaken to evaluate the use of beta-propiolactone (BPL), formalin and ether for inactivation and its impact on antigenicity of AI viruses. A total of nine high and low pathogenic AI viruses belonging to four influenza A subtypes were included in the study. The H5N1 viruses were from the clades 2.2, 2.3.2.1 and 2.3.4. The H9N2 virus included in the study was of the G1 genotype, while the H11N1 and H4N6 viruses were from the Eurasian lineage. The viruses were treated with BPL, formalin and with ether. The confirmation of virus inactivation was performed by two serial passages of inactivated viruses in embryonated chicken eggs. The infectivity of all tested AI viruses was eliminated using 0.1% BPL and 0.1% formalin. Ether eliminated infectivity of all tested low pathogenic AI viruses; however, ether with 0.2% or 0.5% Tween-20 was required for inactivation of the highly pathogenic AI H5N1 viruses. Treatment with BPL, ether and formalin retained virus hemagglutination (HA) titers. Interestingly ether treatment resulted in significant rise in HA titers (P<0.05) of all tested AI viruses. This data demonstrated the utility of BPL, formalin and ether for the inactivation of infectivity of AI viruses used in the study for the preparation of inactivated virus antigens for research and diagnosis of AI.
Collapse
Affiliation(s)
- Shailesh D Pawar
- National Institute of Virology-Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India.
| | - Vinay B Murtadak
- National Institute of Virology-Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India
| | - Sandeep D Kale
- National Institute of Virology-Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India
| | - Prashant V Shinde
- National Institute of Virology-Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India
| | - Saurabh S Parkhi
- National Institute of Virology-Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune 411021, India
| |
Collapse
|
25
|
Verhagen JH, van der Jeugd HP, Nolet BA, Slaterus R, Kharitonov SP, de Vries PP, Vuong O, Majoor F, Kuiken T, Fouchier RA. Wild bird surveillance around outbreaks of highly pathogenic avian influenza A(H5N8) virus in the Netherlands, 2014, within the context of global flyways. ACTA ACUST UNITED AC 2015; 20. [PMID: 25846491 DOI: 10.2807/1560-7917.es2015.20.12.21069] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Highly pathogenic avian influenza (HPAI) A(H5N8) viruses that emerged in poultry in east Asia since 2010 spread to Europe and North America by late 2014. Despite detections in migrating birds, the role of free-living wild birds in the global dispersal of H5N8 virus is unclear. Here, wild bird sampling activities in response to the H5N8 virus outbreaks in poultry in the Netherlands are summarised along with a review on ring recoveries. HPAI H5N8 virus was detected exclusively in two samples from ducks of the Eurasian wigeon species, among 4,018 birds sampled within a three months period from mid-November 2014. The H5N8 viruses isolated from wild birds in the Netherlands were genetically closely related to and had the same gene constellation as H5N8 viruses detected elsewhere in Europe, in Asia and in North America, suggesting a common origin. Ring recoveries of migratory duck species from which H5N8 viruses have been isolated overall provide evidence for indirect migratory connections between East Asia and Western Europe and between East Asia and North America. This study is useful for better understanding the role of wild birds in the global epidemiology of H5N8 viruses. The need for sampling large numbers of wild birds for the detection of H5N8 virus and H5N8-virus-specific antibodies in a variety of species globally is highlighted, with specific emphasis in north-eastern Europe, Russia and northern China.
Collapse
Affiliation(s)
- J H Verhagen
- Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sengupta D, Shaikh A, Bhatia S, Pateriya A, Khandia R, Sood R, Prakash A, Pattnaik B, Pradhan H. Development of single-chain Fv against the nucleoprotein of type A influenza virus and its use in ELISA. J Virol Methods 2014; 208:129-37. [DOI: 10.1016/j.jviromet.2014.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/31/2014] [Accepted: 08/12/2014] [Indexed: 10/24/2022]
|
27
|
Pandit PS, Bunn DA, Pande SA, Aly SS. Modeling highly pathogenic avian influenza transmission in wild birds and poultry in West Bengal, India. Sci Rep 2014; 3:2175. [PMID: 23846233 PMCID: PMC3807259 DOI: 10.1038/srep02175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/24/2013] [Indexed: 11/10/2022] Open
Abstract
Wild birds are suspected to have played a role in highly pathogenic avian influenza (HPAI) H5N1 outbreaks in West Bengal. Cluster analysis showed that H5N1 was introduced in West Bengal at least 3 times between 2008 and 2010. We simulated the introduction of H5N1 by wild birds and their contact with poultry through a stochastic continuous-time mathematical model. Results showed that reducing contact between wild birds and domestic poultry, and increasing the culling rate of infected domestic poultry communities will reduce the probability of outbreaks. Poultry communities that shared habitat with wild birds or those indistricts with previous outbreaks were more likely to suffer an outbreak. These results indicate that wild birds can introduce HPAI to domestic poultry and that limiting their contact at shared habitats together with swift culling of infected domestic poultry can greatly reduce the likelihood of HPAI outbreaks.
Collapse
Affiliation(s)
- Pranav S Pandit
- School of Veterinary Medicine, University of California, Davis, California, USA
| | | | | | | |
Collapse
|
28
|
Abdelwhab EM, Veits J, Mettenleiter TC. Prevalence and control of H7 avian influenza viruses in birds and humans. Epidemiol Infect 2014; 142:896-920. [PMID: 24423384 PMCID: PMC9151109 DOI: 10.1017/s0950268813003324] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/21/2013] [Accepted: 12/04/2013] [Indexed: 01/20/2023] Open
Abstract
The H7 subtype HA gene has been found in combination with all nine NA subtype genes. Most exhibit low pathogenicity and only rarely high pathogenicity in poultry (and humans). During the past few years infections of poultry and humans with H7 subtypes have increased markedly. This review summarizes the emergence of avian influenza virus H7 subtypes in birds and humans, and the possibilities of its control in poultry. All H7Nx combinations were reported from wild birds, the natural reservoir of the virus. Geographically, the most prevalent subtype is H7N7, which is endemic in wild birds in Europe and was frequently reported in domestic poultry, whereas subtype H7N3 is mostly isolated from the Americas. In humans, mild to fatal infections were caused by subtypes H7N2, H7N3, H7N7 and H7N9. While infections of humans have been associated mostly with exposure to domestic poultry, infections of poultry have been linked to wild birds or live-bird markets. Generally, depopulation of infected poultry was the main control tool; however, inactivated vaccines were also used. In contrast to recent cases caused by subtype H7N9, human infections were usually self-limiting and rarely required antiviral medication. Close genetic and antigenic relatedness of H7 viruses of different origins may be helpful in development of universal vaccines and diagnostics for both animals and humans. Due to the wide spread of H7 viruses and their zoonotic importance more research is required to better understand the epidemiology, pathobiology and virulence determinants of these viruses and to develop improved control tools.
Collapse
Affiliation(s)
- E M Abdelwhab
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| | - J Veits
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| | - T C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald - Insel Riems, Germany
| |
Collapse
|
29
|
Jakhesara SJ, Bhatt VD, Patel NV, Prajapati KS, Joshi CG. Isolation and characterization of H9N2 influenza virus isolates from poultry respiratory disease outbreak. SPRINGERPLUS 2014; 3:196. [PMID: 24790833 PMCID: PMC4004788 DOI: 10.1186/2193-1801-3-196] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/10/2014] [Indexed: 11/21/2022]
Abstract
The present study reports isolation and characterization of H9N2 virus responsible for disease characterized by symptoms including difficulty in respiration, head swelling, nasal discharge, reduced feed intake, cyanotic comb, reduced egg production and mortality. Virus isolation from allantoic fluid inoculated with tracheal aspirates and whole genome sequencing of two isolates were performed on an Ion-Torrent sequencer. Phylogenetic analysis revealed that the two H9N2 isolates are reassortant viruses showing a G1-like lineage for HA, NA and NP, a Hok/49/98-like lineage for PB1 and PA, PK/UDL-01/05-like lineage for PB2, IL/90658/00-like lineage for NS and an unknown lineage for M gene. Analyses of the HA cleavage site showed a sequence of (333PARSSR↓GL340) indicating that these isolates are of low pathogenicity. Isolate 2 has leucine at amino acid position 226, a substitution which is associated with mammalian adaptation of avian influenza virus. Isolate 1 has the S31N substitution in the M2 gene that has been associated with drug resistance as well as R57Q and C241Y mutations in the NP gene which are associated with human adaptation. The result reported here gives deep insight in to H9N2 viruses circulating in domestic poultry of India and supports the policy of active efforts to control and manage H9N2 infections in Indian poultry.
Collapse
Affiliation(s)
- Subhash J Jakhesara
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat 388001 India
| | - Vaibhav D Bhatt
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat 388001 India
| | - Namrata V Patel
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat 388001 India
| | - Kantilal S Prajapati
- Department of Veterinary Pathology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat 388001 India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat 388001 India
| |
Collapse
|
30
|
Pinette MM, Rodriguez-Lecompte JC, Pasick J, Ojkic D, Leith M, Suderman M, Berhane Y. Development of a duplex Fluorescent Microsphere Immunoassay (FMIA) for the detection of antibody responses to influenza A and newcastle disease viruses. J Immunol Methods 2014; 405:167-77. [DOI: 10.1016/j.jim.2014.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 11/26/2022]
|
31
|
Pawar SD, Tandale BV, Gurav YK, Parkhi YK, Kode SS. Immunity status against influenza A subtype H7N9 and other avian influenza viruses in a high-risk group and the general population in India. J Infect Dis 2014; 210:160-1. [PMID: 24453261 DOI: 10.1093/infdis/jiu033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys. Vet Res 2014; 45:1. [PMID: 24393488 PMCID: PMC3890543 DOI: 10.1186/1297-9716-45-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/05/2013] [Indexed: 02/04/2023] Open
Abstract
Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (lNDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a lNDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultaneously or sequentially three days apart. No clinical signs were observed in chickens co-infected with the lNDV and LPAIV or in chickens infected with the viruses individually. However, the pattern of virus shed was different with co-infected chickens, which excreted lower titers of lNDV and LPAIV at 2 and 3 days post inoculation (dpi) and higher titers at subsequent time points. All turkeys inoculated with the LPAIV, whether or not they were exposed to lNDV, presented mild clinical signs. Co-infection effects were more pronounced in turkeys than in chickens with reduction in the number of birds shedding virus and in virus titers, especially when LPAIV was followed by lNDV. In conclusion, co-infection of chickens or turkeys with lNDV and LPAIV affected the replication dynamics of these viruses but did not affect clinical signs. The effect on virus replication was different depending on the species and on the time of infection. These results suggest that infection with a heterologous virus may result in temporary competition for cell receptors or competent cells for replication, most likely interferon-mediated, which decreases with time.
Collapse
|
33
|
Karki S, Lupiani B, Budke CM, Manandhar S, Ivanek R. Cross-Sectional Serosurvey of Avian Influenza Antibodies Presence in Domestic Ducks of Kathmandu, Nepal. Zoonoses Public Health 2013; 61:442-8. [DOI: 10.1111/zph.12097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Indexed: 11/29/2022]
Affiliation(s)
- S. Karki
- Department of Veterinary Integrative Biosciences; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
- Department of Livestock Services; Kathmandu Nepal
| | - B. Lupiani
- Department of Veterinary Pathobiology; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
| | - C. M. Budke
- Department of Veterinary Integrative Biosciences; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
| | - S. Manandhar
- Central Veterinary Laboratory; Department of Livestock Services; Kathmandu Nepal
| | - R. Ivanek
- Department of Veterinary Integrative Biosciences; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
| |
Collapse
|
34
|
Bhat S, Bhatia S, Sood R, Bhatnagar H, Pateriya A, Venkatesh G. Production and Characterization of Monoclonal Antibodies Against Nucleoprotein of Avian Influenza Virus. Monoclon Antib Immunodiagn Immunother 2013; 32:413-8. [DOI: 10.1089/mab.2013.0053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sushant Bhat
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Sandeep Bhatia
- High Security Animal Disease Laboratory, Indian Veterinary Research Institute, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Richa Sood
- High Security Animal Disease Laboratory, Indian Veterinary Research Institute, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Himanshu Bhatnagar
- High Security Animal Disease Laboratory, Indian Veterinary Research Institute, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Atul Pateriya
- High Security Animal Disease Laboratory, Indian Veterinary Research Institute, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - G. Venkatesh
- High Security Animal Disease Laboratory, Indian Veterinary Research Institute, Anand Nagar, Bhopal, Madhya Pradesh, India
| |
Collapse
|
35
|
Khatun A, Giasuddin M, Islam KM, Khanom S, Samad MA, Islam MR, Noor M, Bhuiyan JU, Kim WI, Eo SK, Rahman MM. Surveillance of avian influenza virus type A in semi-scavenging ducks in Bangladesh. BMC Vet Res 2013; 9:196. [PMID: 24099526 PMCID: PMC3851913 DOI: 10.1186/1746-6148-9-196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 10/04/2013] [Indexed: 11/25/2022] Open
Abstract
Background Ducks are the natural reservoir of influenza A virus and the central host for highly pathogenic avian influenza (H5N1), while domestic ducks rearing in semi-scavenging system could serve as re-assortment vessels for re-emerging new subtypes of influenza viruses between birds to human. Avian influenza virus (AIV) surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the semi-scavenging ducks are presented. Result A total of 2100 cloacal swabs and 2100 sera were collected from semi-scavenging ducks from three wintering-sites of Bangladesh during three successive winter seasons, December through February in the years between 2009 and 2012. Virus isolation and identification were carried out from the cloacal swabs by virus propagation in embryonated hen eggs followed by amplification of viral RNA using Avian influenza virus (AIV) specific RT-PCR. The overall prevalence of avian influenza type A was 22.05% for swab samples and 39.76% ducks were sero-positive for avian influenza type A antibody. Extremely low sero-prevalence (0.09%) of AIV H5N1 was detected. Conclusions Based on our surveillance results, we conclude that semi-scavenging ducks in Bangladesh might play important role in transmitting Avian Influenza virus (AIV) type A. However, the current risk of infection for humans from domestic ducks in Bangladesh is negligible. We believe that this relatively large dataset over three winters in Bangladesh might create a strong foundation for future studies of AIV prevalence, evolution, and ecology in wintering sites around the globe.
Collapse
Affiliation(s)
- Amina Khatun
- Faculty of Veterinary and Animal Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Suitability of specimen types for isolation of avian influenza viruses from poultry. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:391-3. [PMID: 24426303 DOI: 10.1007/s13337-013-0146-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
In view of the outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 virus in poultry in India, its impact on global public health and growing concerns of avian influenza (AI) viruses, surveys in wet poultry markets were conducted in the states of Maharashtra, West Bengal and Jharkhand in India during the period 2009-2012. During these surveys various types of samples from poultry were collected. During outbreaks and surveys in poultry, tracheal swabs (TS), cloacal swabs (CS), poultry drinking water (PDW) samples and fecal samples (FS) are preferred samples for AI diagnosis. The suitability of various types of poultry samples for AI virus isolation was analyzed. The parameters such as availability of specimen, ease of collection, quality of the specimen for the presence of contaminants such as organic debris or solid matter were considered for the analysis. A total of 2,405 samples were collected, which included 1,297 TS, 1,012 CS, 79 PDW, and 17 FS. Out of 2,309 TS and CS samples 1,752 samples were paired samples, collected from 876 birds. All samples were processed for virus isolation and identification. Of the 2,405 samples AI H9N2 was isolated from 199 samples (8.27 %). The virus isolation rate was significantly higher in PDW samples (21.5 %) (P < 0.05) and TS samples (12.1 %), in comparison with CS (2.3 %) (P < 0.001). Other viruses isolated were AI H4N6 and HPAI H5N1viruses; however the number of isolates of AI H4N6 and H5N1 were not sufficient for comparison. In conclusion, the PDW and TS samples were suitable for AI H9N2 virus isolation from poultry.
Collapse
|
37
|
Sabale SS, Pawar SD, More BK, Mishra AC. Seroprevalence of pandemic influenza H1N1 (2009) & seasonal influenza viruses in pigs in Maharashtra & Gujarat States, India, 2011. Indian J Med Res 2013; 138:267-9. [PMID: 24056606 PMCID: PMC3788215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Siddharth S. Sabale
- National Institute of Virology-Microbial Containment Complex, 131/1, Sus Road, Pashan, Pune 411 021, India,Bombay Veterinary College, Parel, Mumbai 400 012, India
| | - Shailesh D. Pawar
- National Institute of Virology-Microbial Containment Complex, 131/1, Sus Road, Pashan, Pune 411 021, India,For correspondence:
| | | | - Akhilesh C. Mishra
- National Institute of Virology-Microbial Containment Complex, 131/1, Sus Road, Pashan, Pune 411 021, India
| |
Collapse
|