1
|
Liang Y, Zhao Q, Neubert JK, Ding M. Causal interactions in brain networks predict pain levels in trigeminal neuralgia. Brain Res Bull 2024; 211:110947. [PMID: 38614409 DOI: 10.1016/j.brainresbull.2024.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Trigeminal neuralgia (TN) is a highly debilitating facial pain condition. Magnetic resonance imaging (MRI) is the main method for generating insights into the central mechanisms of TN pain in humans. Studies have found both structural and functional abnormalities in various brain structures in TN patients as compared with healthy controls. Whereas studies have also examined aberrations in brain networks in TN, no studies have to date investigated causal interactions in these brain networks and related these causal interactions to the levels of TN pain. We recorded fMRI data from 39 TN patients who either rested comfortably in the scanner during the resting state session or tracked their pain levels during the pain tracking session. Applying Granger causality to analyze the data and requiring consistent findings across the two scanning sessions, we found 5 causal interactions, including: (1) Thalamus → dACC, (2) Caudate → Inferior temporal gyrus, (3) Precentral gyrus → Inferior temporal gyrus, (4) Supramarginal gyrus → Inferior temporal gyrus, and (5) Bankssts → Inferior temporal gyrus, that were consistently associated with the levels of pain experienced by the patients. Utilizing these 5 causal interactions as predictor variables and the pain score as the predicted variable in a linear multiple regression model, we found that in both pain tracking and resting state sessions, the model was able to explain ∼36 % of the variance in pain levels, and importantly, the model trained on the 5 causal interaction values from one session was able to predict pain levels using the 5 causal interaction values from the other session, thereby cross-validating the models. These results, obtained by applying novel analytical methods to neuroimaging data, provide important insights into the pathophysiology of TN and could inform future studies aimed at developing innovative therapies for treating TN.
Collapse
Affiliation(s)
- Yun Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Qing Zhao
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - John K Neubert
- Department of Orthodontics, University of Florida, Gainesville, FL, United States
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
2
|
Yan J, Wang L, Pan L, Ye H, Zhu X, Feng Q, Wang H, Ding Z, Ge X. Altered trends of local brain function in classical trigeminal neuralgia patients after a single trigger pain. BMC Med Imaging 2024; 24:66. [PMID: 38500069 PMCID: PMC10949736 DOI: 10.1186/s12880-024-01239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE To investigate the altered trends of regional homogeneity (ReHo) based on time and frequency, and clarify the time-frequency characteristics of ReHo in 48 classical trigeminal neuralgia (CTN) patients after a single pain stimulate. METHODS All patients underwent three times resting-state functional MRI (before stimulation (baseline), after stimulation within 5 s (triggering-5 s), and in the 30th min of stimulation (triggering-30 min)). The spontaneous brain activity was investigated by static ReHo (sReHo) in five different frequency bands and dynamic ReHo (dReHo) methods. RESULTS In the five frequency bands, the number of brain regions which the sReHo value changed in classical frequency band were most, followed by slow 4 frequency band. The left superior occipital gyrus was only found in slow 2 frequency band and the left superior parietal gyrus was only found in slow 3 frequency band. The dReHo values were changed in midbrain, left thalamus, right putamen, and anterior cingulate cortex, which were all different from the brain regions that the sReHo value altered. There were four altered trends of the sReHo and dReHo, which dominated by decreased at triggering-5 s and increased at triggering-30 min. CONCLUSIONS The duration of brain function changed was more than 30 min after a single pain stimulate, although the pain of CTN was transient. The localized functional homogeneity has time-frequency characteristic in CTN patients after a single pain stimulate, and the changed brain regions of the sReHo in five frequency bands and dReHo complemented to each other. Which provided a certain theoretical basis for exploring the pathophysiology of CTN.
Collapse
Affiliation(s)
- Juncheng Yan
- Department of Rehabilitation, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China
| | - Lei Pan
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Haiqi Ye
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Xiaofen Zhu
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Qi Feng
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Haibin Wang
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China
| | - Xiuhong Ge
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China.
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China.
| |
Collapse
|
3
|
Ge X, Wang L, Wang M, Pan L, Ye H, Zhu X, Fan S, Feng Q, Du Q, Wenhua Y, Ding Z. Alteration of brain network centrality in CTN patients after a single triggering pain. Front Neurosci 2023; 17:1109684. [PMID: 36875648 PMCID: PMC9978223 DOI: 10.3389/fnins.2023.1109684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Objective The central nervous system may also be involved in the pathogenesis of classical trigeminal neuralgia (CTN). The present study aimed to explore the characteristics of static degree centrality (sDC) and dynamic degree centrality (dDC) at multiple time points after a single triggering pain in CTN patients. Materials and methods A total of 43 CTN patients underwent resting-state function magnetic resonance imaging (rs-fMRI) before triggering pain (baseline), within 5 s after triggering pain (triggering-5 s), and 30 min after triggering pain (triggering-30 min). Voxel-based degree centrality (DC) was used to assess the alteration of functional connection at different time points. Results The sDC values of the right caudate nucleus, fusiform gyrus, middle temporal gyrus, middle frontal gyrus, and orbital part were decreased in triggering-5 s and increased in triggering-30 min. The sDC value of the bilateral superior frontal gyrus were increased in triggering-5 s and decreased in triggering-30 min. The dDC value of the right lingual gyrus was gradually increased in triggering-5 s and triggering-30 min. Conclusion Both the sDC and dDC values were changed after triggering pain, and the brain regions were different between the two parameters, which supplemented each other. The brain regions which the sDC and dDC values were changing reflect the global brain function of CTN patients, and provides a basis for further exploration of the central mechanism of CTN.
Collapse
Affiliation(s)
- Xiuhong Ge
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengze Wang
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Pan
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China
| | - Haiqi Ye
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China
| | - Xiaofen Zhu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sandra Fan
- Department of Radiology, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Feng
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan Du
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Wenhua
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Ge X, Wang L, Pan L, Ye H, Zhu X, Fan S, Feng Q, Yu W, Ding Z. Amplitude of low-frequency fluctuation after a single-trigger pain in patients with classical trigeminal neuralgia. J Headache Pain 2022; 23:117. [PMID: 36076162 PMCID: PMC9461270 DOI: 10.1186/s10194-022-01488-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Objective This study aimed to explore the central mechanism of classical trigeminal neuralgia (CTN) by analyzing the static amplitude of low-frequency fluctuation (sALFF) and dynamic amplitude of low-frequency fluctuation (dALFF) in patients with CTN before and after a single-trigger pain. Methods This study included 48 patients (37 women and 11 men, age 55.65 ± 11.41 years) with CTN. All participants underwent 3D-T1WI and three times resting-state functional magnetic resonance imaging. The images were taken before stimulating the trigger zone (baseline), within 5 s after stimulating the trigger zone (triggering-5 s), and in the 30th minute after stimulating the trigger zone (triggering-30 min). The differences between the three measurements were analyzed using a repeated-measures analysis of variance. Results The sALFF values of the bilateral middle occipital gyrus and right cuneus gradually increased, and the values of the left posterior cingulum gyrus and bilateral superior frontal gyrus gradually decreased in triggering-5 s and triggering-30 min. The values of the right middle temporal gyrus and right thalamus decreased in triggering-5 s and subsequently increased in triggering-30 min. The sALFF values of the left superior temporal gyrus increased in triggering-5 s and then decreased in triggering-30 min. The dALFF values of the right fusiform gyrus, bilateral lingual gyrus, left middle temporal gyrus, and right cuneus gyrus gradually increased in both triggering-5 s and triggering-30 min. Conclusions The sALFF and dALFF values changed differently in multiple brain regions in triggering-5 s and triggering-30 min of CTN patients after a single trigger of pain, and dALFF is complementary to sALFF. The results might help explore the therapeutic targets for relieving pain and improving the quality of life of patients with CTN. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01488-8.
Collapse
Affiliation(s)
- Xiuhong Ge
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou City, 310006, China
| | - Luoyu Wang
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou City, 310006, China
| | - Lei Pan
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
| | - Haiqi Ye
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
| | - Xiaofen Zhu
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
| | - Sandra Fan
- Zhejiang Chinese Medical University, Hangzhou, 310000, P.R. China
| | - Qi Feng
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Shangcheng Distric, Hangzhou, 310000, P.R. China.
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China. .,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou City, 310006, China.
| |
Collapse
|
5
|
Albano L, Agosta F, Basaia S, Castellano A, Messina R, Parisi V, Barzaghi LR, Falini A, Mortini P, Filippi M. Alterations of brain structural MRI are associated with outcome of surgical treatment in trigeminal neuralgia. Eur J Neurol 2021; 29:305-317. [PMID: 34519132 DOI: 10.1111/ene.15105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE To assess magnetic resonance imaging (MRI) alterations occurring in patients with trigeminal neuralgia (TN) and to explore the predictive ability of MRI for initial surgical outcome and long-term pain relief/recurrence after Gamma Knife radiosurgery (GKS). METHODS Thirty patients with idiopathic or classic TN, who underwent GKS and were followed for at least 24 months, were retrospectively included. Pre-treatment structural MRI and pre- and serial, postoperative clinical features were investigated. Fifteen age- and sex-matched healthy controls were also enrolled. Cortical thickness and gray matter (GM) volumes were assessed in TN patients relative to controls, as well as between patient subgroups according to treatment outcomes (initial responders/non-responders, patients with pain recurrence/long-lasting pain relief at the last follow-up). Clinical and MRI predictors of treatment outcomes were explored. RESULTS Cortical thinning of temporal, prefrontal, cingulate, somatosensory and occipital areas bilaterally was found in TN patients relative to controls. No cortical thickness and GM volume differences were observed when TN initial responders and non-responders were compared. Patients who experienced TN recurrence after initial pain relief were characterized by thicker parahippocampal and temporal cortices bilaterally and greater volume of right amygdala and hippocampus compared to patients with long-lasting pain relief. In TN patients, disease duration and baseline cortical thinning of right parahippocampal, left fusiform and middle temporal cortices were associated with poor outcome after GKS at the last follow-up (R2 =0.57, p<0.001). CONCLUSION The study provides novel insights into structural brain alterations of TN patients, which might contribute to disease development and pain maintenance.
Collapse
Affiliation(s)
- Luigi Albano
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.,Unit of Neurosurgery and Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonella Castellano
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberta Messina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Veronica Parisi
- Unit of Neurosurgery and Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy.,Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Pietro Mortini
- Unit of Neurosurgery and Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy.,Neurorehabilitation Unit and Neurophysiology Service, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Fuentes Anabalón E, Gomez Maldonado R, Melián Rivas A, de La Sotta Fernandez R, Cortés Sylvester MF, Zamorano Herrera E, Santos Lopez M, Schrader Melillán I. Trigeminal neuralgia treated by Botox® onabotulinum toxin A on the temporal muscle. Chirurgia (Bucur) 2019. [DOI: 10.23736/s0394-9508.18.04871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Yuan J, Cao S, Huang Y, Zhang Y, Xie P, Zhang Y, Fu B, Zhang T, Song G, Yu T, Zhang M. Altered Spontaneous Brain Activity in Patients With Idiopathic Trigeminal Neuralgia: A Resting-state Functional MRI Study. Clin J Pain 2018; 34:600-609. [PMID: 29252869 PMCID: PMC5999362 DOI: 10.1097/ajp.0000000000000578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/09/2017] [Accepted: 12/02/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To identify the changes of local coherence and intrinsic brain activity in resting-state idiopathic trigeminal neuralgia (ITN) patients by using regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) analysis. METHODS ReHo and fALFF were analyzed in 23 ITN patients and 23 age-matched and sex-matched pain-free controls to detect the functional abnormality in the brains of ITN patients. Correlations between ReHo and fALFF were analyses. ITN pain intensity were also assessed in the ITN group. RESULTS Compared with pain-free controls, ITN patients exhibited significantly abnormal ReHo and fALFF in several brain regions, including the cerebellum, cingulate cortex, temporal lobe, putamen, occipital lobe, limbic lobe, precuneus, insula, medial, and superior frontal gyrus compared with healthy controls. Correlation analysis showed that ReHo values of several altered brain areas positively correlated with visual analog scale values. But no correlation was found between fALFF and visual analog scale. DISCUSSION Our results showed that ITN patients exhibited significantly abnormal spontaneous brain activity in several brain regions that are involved in pain modulation and perception. The present study reflects the maladaptive process of daily pain attacks and may enhance the understanding of how chronic pain affects local intrinsic brain activity.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai
- Departments of Anesthesiology
| | | | - Yue Huang
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai
| | | | - Peng Xie
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Bao Fu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Tijiang Zhang
- Radiology, Affiliated Hospital of Zunyi Medical College
| | - Ganjun Song
- Radiology, Affiliated Hospital of Zunyi Medical College
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Mazhong Zhang
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai
| |
Collapse
|
8
|
Upadhyay J, Geber C, Hargreaves R, Birklein F, Borsook D. A critical evaluation of validity and utility of translational imaging in pain and analgesia: Utilizing functional imaging to enhance the process. Neurosci Biobehav Rev 2018; 84:407-423. [PMID: 28807753 PMCID: PMC5729102 DOI: 10.1016/j.neubiorev.2017.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Assessing clinical pain and metrics related to function or quality of life predominantly relies on patient reported subjective measures. These outcome measures are generally not applicable to the preclinical setting where early signs pointing to analgesic value of a therapy are sought, thus introducing difficulties in animal to human translation in pain research. Evaluating brain function in patients and respective animal model(s) has the potential to characterize mechanisms associated with pain or pain-related phenotypes and thereby provide a means of laboratory to clinic translation. This review summarizes the progress made towards understanding of brain function in clinical and preclinical pain states elucidated using an imaging approach as well as the current level of validity of translational pain imaging. We hypothesize that neuroimaging can describe the central representation of pain or pain phenotypes and yields a basis for the development and selection of clinically relevant animal assays. This approach may increase the probability of finding meaningful new analgesics that can help satisfy the significant unmet medical needs of patients.
Collapse
Affiliation(s)
| | - Christian Geber
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany; DRK Schmerz-Zentrum Mainz, Mainz, Germany
| | - Richard Hargreaves
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States
| | - Frank Birklein
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany
| | - David Borsook
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
9
|
Dou Z, Zhang X, Yang L, Wang W, Li N, Liu Z, Ni J. Alternation of regional homogeneity in trigeminal neuralgia after percutaneous radiofrequency thermocoagulation: A resting state fMRI study. Medicine (Baltimore) 2016; 95:e5193. [PMID: 27759655 PMCID: PMC5079339 DOI: 10.1097/md.0000000000005193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We used resting-state fMRI to investigate regional homogeneity (ReHo) changes in patients with TN before and after PRT procedure, and to speculate about its possible mechanisms.Thirty-one TN patients underwent the PRT procedure had MRI scans just before and 6 months after surgery. The anatomical and resting-state functional images were all acquired. Patients' visual analog scales (VAS) scores, facial numbness, and disease duration were also recorded. Voxel-wise ReHo analysis was performed to detect the altered regional clusters after surgery. The correlations between the mean ReHo values of each significant cluster and clinical variables were examined.Compared with presurgical condition, patients after the PRT procedure showed a significant ReHo value increases in the right fusiform gyrus (FG) and bilateral anterior cingulate cortex (ACC), but decreases in the left inferior parietal lobule (IPL), right calcarine, right middle temporal gyrus (MTG), left postcentral gyrus (PoCG), and left insula. We demonstrated a positive correlation between ReHo in the left PoCG and VAS scores, a negative correlation between pre-surgical ReHo in the right MTG and VAS changes (ΔVAS).Alterations of ReHo post-surgical were found in several regions, which are related to sensory, affective, and emotional processes. The MTG may be a specific area that is associated with analgesic efficiency of PRT procedure.
Collapse
Affiliation(s)
- Zhi Dou
- Department of Pain Management, Xuanwu Hospital Capital Medical University
| | - Xueyi Zhang
- School of Biomedical Engineering, Capital Medical University
| | - Liqiang Yang
- Department of Pain Management, Xuanwu Hospital Capital Medical University
| | - Wanqian Wang
- Department of Radiology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Na Li
- Department of Pain Management, Xuanwu Hospital Capital Medical University
| | - Zhicheng Liu
- School of Biomedical Engineering, Capital Medical University
| | - Jiaxiang Ni
- Department of Pain Management, Xuanwu Hospital Capital Medical University
- Correspondence: Jiaxiang Ni, Xicheng District, Beijing, China (e-mail: )
| |
Collapse
|
10
|
Abstract
The subjective experience of pain is influenced by interactions between experiences, future predictions, and incoming afferent information. Expectations of high pain can exacerbate pain, whereas expectations of low pain during a consistently noxious stimulus can produce significant reductions in pain. However, the brain mechanisms associated with processing mismatches between expected and experienced pain are poorly understood, but are important for imparting salience to a sensory event to override erroneous top-down expectancy-mediated information. This investigation examined pain-related brain activation when expectations of pain were abruptly violated. After conditioning participants to cues predicting low or high pain, 10 incorrectly cued stimuli were administered across 56 stimulus trials to determine whether expectations would be less influential on pain when there is a high discordance between prestimulus cues and corresponding thermal stimulation. Incorrectly cued stimuli produced pain ratings and pain-related brain activation consistent with placebo analgesia, nocebo hyperalgesia, and violated expectations. Violated expectations of pain were associated with activation in distinct regions of the inferior parietal lobe, including the supramarginal and angular gyrus, and intraparietal sulcus, the superior parietal lobe, cerebellum, and occipital lobe. Thus, violated expectations of pain engage mechanisms supporting salience-driven sensory discrimination, working memory, and associative learning processes. By overriding the influence of expectations on pain, these brain mechanisms are likely engaged in clinical situations in which patients' unrealistic expectations of pain relief diminish the efficacy of pain treatments. Accordingly, these findings underscore the importance of maintaining realistic expectations to augment the effectiveness of pain management.
Collapse
|
11
|
Rosen A, Chen DQ, Hayes DJ, Davis KD, Hodaie M. A Neuroimaging Strategy for the Three-Dimensional in vivo Anatomical Visualization and Characterization of Insular Gyri. Stereotact Funct Neurosurg 2015; 93:255-64. [PMID: 26066396 DOI: 10.1159/000380826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/10/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Interest in the anatomy of the insula is driven by its multifunctionality and the need for accurate visualization for surgical purposes. Few in vivo studies of human insular anatomy have been conducted due to methodological and anatomical challenges. OBJECTIVE We used brain cortical morphometry tools to accurately reconstruct insular topology and permit a detailed visualization of its gyri in 3 dimensions. METHODS Sixty healthy subjects (33 females; 37.8 ± 12.8 years) underwent 3-tesla MRI scans. The strategy for characterizing the insula was: (1) create 3-dimensional (3-D) insula representations for visual analysis; (2) rate topological features using a gyral conspicuity index; (3) identify individual variations across subjects/between groups; (4) compare to prior findings. RESULTS Insular reconstruction was achieved in 113/120 cases. The anterior short, posterior short, anterior long gyri and central sulcus were easily identified. In contrast, middle short (MSG), posterior long (PLG) and accessory gyri (AG) were highly variable. The MSG, but not the PLG or AG, was clearer in males and in the left hemisphere, suggesting sex- and laterality-related differences. CONCLUSIONS A noninvasive in vivo 3-D visualization strategy revealed anatomical variations of the insula in a healthy cohort. This methodological approach can be adopted for broad clinical and/or research purposes.
Collapse
Affiliation(s)
- Allison Rosen
- Institute of Medical Science and Department of Surgery, University of Toronto, Toronto, Ont., Canada
| | | | | | | | | |
Collapse
|
12
|
Wang Y, Zhang X, Guan Q, Wan L, Yi Y, Liu CF. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia. Neuropsychiatr Dis Treat 2015; 11:2659-66. [PMID: 26508861 PMCID: PMC4610767 DOI: 10.2147/ndt.s94877] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China ; Department of Neurology, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang Province, People's Republic of China
| | - Xiaoling Zhang
- Department of Neurology, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang Province, People's Republic of China
| | - Qiaobing Guan
- Department of Neurology, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang Province, People's Republic of China
| | - Lihong Wan
- Department of Neurology, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang Province, People's Republic of China
| | - Yahui Yi
- Department of Neurology, The Second Hospital of Jiaxing City, Jiaxing, Zhejiang Province, People's Republic of China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
13
|
Patient-conducted anodal transcranial direct current stimulation of the motor cortex alleviates pain in trigeminal neuralgia. J Headache Pain 2014; 15:78. [PMID: 25424567 PMCID: PMC4256974 DOI: 10.1186/1129-2377-15-78] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/04/2014] [Indexed: 11/15/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) of the primary motor cortex has been shown to modulate pain and trigeminal nociceptive processing. Methods Ten patients with classical trigeminal neuralgia (TN) were stimulated daily for 20 minutes over two weeks using anodal (1 mA) or sham tDCS over the primary motor cortex (M1) in a randomized double-blind cross-over design. Primary outcome variable was pain intensity on a verbal rating scale (VRS 0–10). VRS and attack frequency were assessed for one month before, during and after tDCS. The impact on trigeminal pain processing was assessed with pain-related evoked potentials (PREP) and the nociceptive blink reflex (nBR) following electrical stimulation on both sides of the forehead before and after tDCS. Results Anodal tDCS reduced pain intensity significantly after two weeks of treatment. The attack frequency reduction was not significant. PREP showed an increased N2 latency and decreased peak-to-peak amplitude after anodal tDCS. No severe adverse events were reported. Conclusion Anodal tDCS over two weeks ameliorates intensity of pain in TN. It may become a valuable treatment option for patients unresponsive to conventional treatment.
Collapse
|
14
|
Papalexopoulou N, Hasegawa H, Selway R, Chong S, Ashkan K. The treatment of combined trigeminal and glossopharyngeal neuralgia by glycerol rhizolysis of the trigeminal ganglion. Br J Neurosurg 2014; 29:92-93. [DOI: 10.3109/02688697.2014.957155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Wu Q, Inman RD, Davis KD. Neuropathic pain in ankylosing spondylitis: a psychophysics and brain imaging study. ACTA ACUST UNITED AC 2013; 65:1494-503. [PMID: 23460087 DOI: 10.1002/art.37920] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 02/26/2013] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To determine whether there is a neuropathic component in ankylosing spondylitis (AS) back pain and to delineate gray matter brain abnormalities associated with AS. METHODS Seventeen patients with back pain secondary to AS who were not receiving biologic agents and 17 age- and sex-matched healthy controls consented to participate in the study and were assessed using the painDETECT instrument (scores of ≤12 indicating low probability of neuropathic pain) and the McGill Pain Questionnaire. Mechanical and thermal thresholds were determined in all subjects, and brain gray matter was assessed by 3T magnetic resonance imaging. RESULTS Eleven of the 17 AS patients had painDETECT scores of >12. The patients had decreased mechanical and cold sensitivity on the dorsum of their feet but did not have altered pain thresholds. Compared to controls, the AS patients exhibited cortical thinning in the primary somatosensory, insular, anterior cingulate, and anterior mid-cingulate cortices and the supplemental motor area, and increased gray matter volume in the thalamus and putamen. Scores on the painDETECT in AS patients were correlated with decreased gray matter in the primary somatosensory cortex and with increased gray matter in the motor cortex, anterior cingulate cortex, prefrontal cortex, thalamus, and striatum. CONCLUSION The present findings indicate that neuropathic pain occurs in AS. Furthermore, abnormal brain gray matter and neural correlates of neuropathic pain are concordant with the clinical picture of AS, which includes sensorimotor and mood deficits as well as neuropathic pain symptoms. These results suggest that back pain in AS is a mixed pain condition that includes a neuropathic pain component.
Collapse
Affiliation(s)
- Qi Wu
- Toronto Western Research Institute at Toronto Western Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
16
|
Hooker B, Tobon G, Baker S, Zhu C, Hesterman J, Schmidt K, Rajagovindan R, Chandran P, Joshi S, Bannon A, Hoppin J, Beaver J, Fox G, Day M, Upadhyay J. Gabapentin-induced pharmacodynamic effects in the spinal nerve ligation model of neuropathic pain. Eur J Pain 2013; 18:223-37. [DOI: 10.1002/j.1532-2149.2013.00364.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2013] [Indexed: 12/15/2022]
Affiliation(s)
- B.A. Hooker
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | | | - S.J. Baker
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - C. Zhu
- Neuroscience Discovery; Abbvie Inc.; North Chicago USA
| | | | | | - R. Rajagovindan
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - P. Chandran
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - S.K. Joshi
- Neuroscience Discovery; Abbvie Inc.; North Chicago USA
| | - A.W. Bannon
- Neuroscience Discovery; Abbvie Inc.; North Chicago USA
| | | | - J. Beaver
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - G.B. Fox
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - M. Day
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| | - J. Upadhyay
- Integrated Science and Technology; Abbvie Inc.; North Chicago USA
| |
Collapse
|
17
|
Desouza DD, Moayedi M, Chen DQ, Davis KD, Hodaie M. Sensorimotor and Pain Modulation Brain Abnormalities in Trigeminal Neuralgia: A Paroxysmal, Sensory-Triggered Neuropathic Pain. PLoS One 2013; 8:e66340. [PMID: 23823184 PMCID: PMC3688879 DOI: 10.1371/journal.pone.0066340] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Idiopathic trigeminal neuralgia (TN) is characterized by paroxysms of severe facial pain but without the major sensory loss that commonly accompanies neuropathic pain. Since neurovascular compression of the trigeminal nerve root entry zone does not fully explain the pathogenesis of TN, we determined whether there were brain gray matter abnormalities in a cohort of idiopathic TN patients. We used structural MRI to test the hypothesis that TN is associated with altered gray matter (GM) in brain areas involved in the sensory and affective aspects of pain, pain modulation, and motor function. We further determined the contribution of long-term TN on GM plasticity. METHODS Cortical thickness and subcortical GM volume were measured from high-resolution 3T T1-weighted MRI scans in 24 patients with right-sided TN and 24 healthy control participants. RESULTS TN patients had increased GM volume in the sensory thalamus, amygdala, periaqueductal gray, and basal ganglia (putamen, caudate, nucleus accumbens) compared to healthy controls. The patients also had greater cortical thickness in the contralateral primary somatosensory cortex and frontal pole compared to controls. In contrast, patients had thinner cortex in the pregenual anterior cingulate cortex, the insula and the orbitofrontal cortex. No relationship was observed between GM abnormalities and TN pain duration. CONCLUSIONS TN is associated with GM abnormalities in areas involved in pain perception, pain modulation and motor function. These findings may reflect increased nociceptive input to the brain, an impaired descending modulation system that does not adequately inhibit pain, and increased motor output to control facial movements to limit pain attacks.
Collapse
Affiliation(s)
- Danielle D Desouza
- Division of Brain, Imaging and Behaviour- Systems Neuroscience, Toronto Western Research Institute, University Health Network, Toronto, Canada ; Institute of Medical Science, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
18
|
Obermann M, Rodriguez-Raecke R, Naegel S, Holle D, Mueller D, Yoon MS, Theysohn N, Blex S, Diener HC, Katsarava Z. Gray matter volume reduction reflects chronic pain in trigeminal neuralgia. Neuroimage 2013; 74:352-8. [PMID: 23485849 DOI: 10.1016/j.neuroimage.2013.02.029] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/23/2013] [Accepted: 02/14/2013] [Indexed: 01/30/2023] Open
Abstract
Trigeminal neuralgia (TN) is supposedly caused by an ectatic blood vessel affecting the trigeminal nerve at the root entry zone of the brain stem. Recent evidence suggests an additional central component within trigeminal pain-processing in the pathophysiology of TN. Therefore, we aimed to identify specific brain regions possibly associated with the development or maintenance of TN using magnetic resonance imaging (MRI) voxel-based morphometry (VBM). Sixty patients with classical TN were compared to 49 healthy controls. Eighteen patients had TN with concomitant constant facial pain, a condition previously described as a predictor of worse treatment outcome. We found gray matter (GM) volume reduction in TN patients compared to healthy controls in the primary somatosensory and orbitofrontal cortices, as well as the in the secondary somatosensory cortex, thalamus, insula, anterior cingulate cortex (ACC), cerebellum, and dorsolateral prefrontal cortex. GM volume decrease within the ACC, parahippocampus, and temporal lobe correlated with increasing disease duration in TN. There were no differences comparing patients with and without concomitant constant facial pain. No GM increase was found comparing patient subgroups with each other and with healthy controls. The observed changes probably reflect the impact of multiple, daily attacks of trigeminal pain in these patients similar to what was previously described in other chronic pain conditions and may be interpreted as adaptation mechanism to chronic pain in regard to neuronal plasticity. The ACC, parahippocampus and temporal lobe volume reduction in parallel with disease duration may point to a pivotal role of these structures in chronic pain.
Collapse
Affiliation(s)
- Mark Obermann
- Department of Neurology, University of Duisburg-Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Obermann M, Holle D, Katsarava Z. Trigeminal neuralgia and persistent idiopathic facial pain. Expert Rev Neurother 2012; 11:1619-29. [PMID: 22014140 DOI: 10.1586/ern.11.156] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Trigeminal neuralgia (TN) and persistent idiopathic facial pain (PIFP) are two of the most puzzling orofacial pain conditions and affected patients are often very difficult to treat. TN is characterized by paroxysms of brief but severe pain followed by asymptomatic periods without pain. In some patients a constant dull background pain may persist. This constant dull pain sometimes makes the distinction from PIFP difficult. PIFP is defined as continuous facial pain, typically localized in a circumscribed area of the face, which is not accompanied by any neurological or other lesion identified by clinical examination or clinical investigations. The pain usually does not stay within the usual anatomic boundaries of the trigeminal nerve distribution and is a diagnosis of exclusion. Epidemiologic evidence on TN, and even more so on PIFP, is quite scarce, but generally both conditions are considered to be rare diseases. The etiology and underlying pathophysiology of TN, and more so PIFP, remain unknown. Treatment is based on only few randomized controlled clinical trials and insufficiently evaluated surgical procedures.
Collapse
Affiliation(s)
- Mark Obermann
- Department of Neurology, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | |
Collapse
|
20
|
Borsook D, Becerra L. How close are we in utilizing functional neuroimaging in routine clinical diagnosis of neuropathic pain? Curr Pain Headache Rep 2012; 15:223-9. [PMID: 21369853 DOI: 10.1007/s11916-011-0187-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
As with many disorders affecting the central nervous system, treatment of chronic pain is fraught with difficulties related to specific diagnosis and measures of treatment efficacy. Given the recent advances that brain-imaging techniques have contributed to our understanding of how chronic pain affects multiple aspects of brain function (including sensory, emotional, cognitive, and modulatory), opportunities to use these approaches in the clinic are clearly a focus of research laboratories around the world. The routine application of brain imaging as a clinical marker of disease state or therapeutic (drug) efficacy would significantly enhance the clinical process by providing objective measures for clinicians and patients.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain, c/o Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | | |
Collapse
|
21
|
Moulton EA, Schmahmann JD, Becerra L, Borsook D. The cerebellum and pain: passive integrator or active participator? BRAIN RESEARCH REVIEWS 2010; 65:14-27. [PMID: 20553761 PMCID: PMC2943015 DOI: 10.1016/j.brainresrev.2010.05.005] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 01/21/2023]
Abstract
The cerebellum is classically considered to be a brain region involved in motor processing, but it has also been implicated in non-motor, and even cognitive, functions. Though previous research suggests that the cerebellum responds to noxious stimuli, its specific role during pain is unclear. Pain is a multidimensional experience that encompasses sensory discriminative, affective motivational, and cognitive evaluative components. Cerebellar involvement during the processing of pain could thus potentially reflect a number of different functional processes. This review will summarize the animal and human research to date that indicates that (1) primary afferents conduct nociceptive (noxious) input to the cerebellum, (2) electrical and pharmacological stimulation of the cerebellum can modulate nociceptive processing, and (3) cerebellar activity occurs during the presence of acute and chronic pain. Possible functional roles for the cerebellum relating to pain will be considered, including perspectives relating to emotion, cognition, and motor control in response to pain.
Collapse
Affiliation(s)
- Eric A Moulton
- P.A.I.N. Group, Brain Imaging Center, Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA 02478, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
Trigeminal neuralgia leads to paroxysms of short-lasting but very severe pain. Between attacks, patients are usually asymptomatic, but a constant dull background pain may persist in some cases. The incidence of trigeminal neuralgia is 4.3 per 100,000 persons per year, with a slightly higher incidence for women (5.9 per 100,000) compared with men (3.4 per 100,000). There is a lack of certainty regarding the etiology and pathophysiology of trigeminal neuralgia. There are a wide range of medical and surgical treatments available. The preferred medical treatment for trigeminal neuralgia consists of anticonvulsant drugs, muscle relaxants and neuroleptic agents. Large-scaled placebo-controlled clinical trials are scarce. For patients refractory to medical therapy, Gasserian ganglion percutaneous techniques, gamma-knife surgery and microvascular decompression are the most promising invasive treatment options. Continuous scientific research works towards a better understanding of trigeminal neuralgia and has accomplished a greater insight into the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Mark Obermann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany.
| | | |
Collapse
|