1
|
Song Q, Li XH, Lu JS, Chen QY, Liu RH, Zhou SB, Zhuo M. Enhanced long-term potentiation in the anterior cingulate cortex of tree shrew. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230240. [PMID: 38853555 PMCID: PMC11343311 DOI: 10.1098/rstb.2023.0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 06/11/2024] Open
Abstract
Synaptic plasticity is a key cellular model for learning, memory and chronic pain. Most previous studies were carried out in rats and mice, and less is known about synaptic plasticity in non-human primates. In the present study, we used integrative experimental approaches to study long-term potentiation (LTP) in the anterior cingulate cortex (ACC) of adult tree shrews. We found that glutamate is the major excitatory transmitter and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid (AMPA) receptors mediate postsynaptic responses. LTP in tree shrews was greater than that in adult mice and lasted for at least 5 h. N-methyl-d-aspartic acid (NMDA) receptors, Ca2+ influx and adenylyl cyclase 1 (AC1) contributed to tree shrew LTP. Our results suggest that LTP is a major form of synaptic plasticity in the ACC of primate-like animals. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Qian Song
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an710049, People's Republic of China
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi’an Jiaotong University, Xi’an710049, People's Republic of China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an710049, People's Republic of China
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an710049, People's Republic of China
| | - Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an710049, People's Republic of China
| | - Ren-Hao Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an710049, People's Republic of China
| | - Si-Bo Zhou
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an710049, People's Republic of China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an710049, People's Republic of China
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, OntarioM5S 1A8, Canada
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou325000, People's Republic of China
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou510030, People's Republic of China
| |
Collapse
|
2
|
Neugebauer V, Presto P, Yakhnitsa V, Antenucci N, Mendoza B, Ji G. Pain-related cortico-limbic plasticity and opioid signaling. Neuropharmacology 2023; 231:109510. [PMID: 36944393 PMCID: PMC10585936 DOI: 10.1016/j.neuropharm.2023.109510] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Neuroplasticity in cortico-limbic circuits has been implicated in pain persistence and pain modulation in clinical and preclinical studies. The amygdala has emerged as a key player in the emotional-affective dimension of pain and pain modulation. Reciprocal interactions with medial prefrontal cortical regions undergo changes in pain conditions. Other limbic and paralimbic regions have been implicated in pain modulation as well. The cortico-limbic system is rich in opioids and opioid receptors. Preclinical evidence for their pain modulatory effects in different regions of this highly interactive system, potentially opposing functions of different opioid receptors, and knowledge gaps will be described here. There is little information about cell type- and circuit-specific functions of opioid receptor subtypes related to pain processing and pain-related plasticity in the cortico-limbic system. The important role of anterior cingulate cortex (ACC) and amygdala in MOR-dependent analgesia is most well-established, and MOR actions in the mesolimbic system appear to be similar but remain to be determined in mPFC regions other than ACC. Evidence also suggests that KOR signaling generally serves opposing functions whereas DOR signaling in the ACC has similar, if not synergistic effects, to MOR. A unifying picture of pain-related neuronal mechanisms of opioid signaling in different elements of the cortico-limbic circuitry has yet to emerge. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brianna Mendoza
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
3
|
Singh SP, Guindon J, Mody PH, Ashworth G, Kopel J, Chilakapati S, Adogwa O, Neugebauer V, Burton MD. Pain and aging: A unique challenge in neuroinflammation and behavior. Mol Pain 2023; 19:17448069231203090. [PMID: 37684099 PMCID: PMC10552461 DOI: 10.1177/17448069231203090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic pain is one of the most common, costly, and potentially debilitating health issues facing older adults, with attributable costs exceeding $600 billion annually. The prevalence of pain in humans increases with advancing age. Yet, the contributions of sex differences, age-related chronic inflammation, and changes in neuroplasticity to the overall experience of pain are less clear, given that opposing processes in aging interact. This review article examines and summarizes pre-clinical research and clinical data on chronic pain among older adults to identify knowledge gaps and provide the base for future research and clinical practice. We provide evidence to suggest that neurodegenerative conditions engender a loss of neural plasticity involved in pain response, whereas low-grade inflammation in aging increases CNS sensitization but decreases PNS sensitivity. Insights from preclinical studies are needed to answer mechanistic questions. However, the selection of appropriate aging models presents a challenge that has resulted in conflicting data regarding pain processing and behavioral outcomes that are difficult to translate to humans.
Collapse
Affiliation(s)
- Shishu Pal Singh
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Josee Guindon
- Garrison Institute on Aging and Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Prapti H Mody
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Gabriela Ashworth
- Garrison Institute on Aging and Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jonathan Kopel
- Garrison Institute on Aging and Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sai Chilakapati
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Owoicho Adogwa
- Department of Neurosurgery, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Volker Neugebauer
- Garrison Institute on Aging and Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
4
|
Tu Y, Wang J, Xiong F, Gao F. Cortical abnormalities in patients with fibromyalgia: a pilot study of surface-based morphometry analysis. PAIN MEDICINE 2022; 23:1939-1946. [PMID: 35881694 DOI: 10.1093/pm/pnac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Although neuroanatomical studies correlated to fibromyalgia (FM) are gaining increasing interest, the cortical morphology of patients are largely unknown, and data on cortical gyrification are scarce. The objective of the present study is to assess the cortical morphology in female patients with FM compared with healthy controls (HC) using surface-based morphometry (SBM) analysis of magnetic resonance imaging (MRI). METHODS T1-MRIs and clinical data of 20 FM patients and 20 HC subjects were obtained from a public databset via OpenNeuro. For each subject, surface parameters including cortical thickness, local gyrification index (LGI), sulcal depth, and fractal dimensionality were estimated using SBM analysis. These data were compared between two groups controlled by age. The correlations between regional SBM parameters showing group differences and clinical profiles were analyzed. RESULTS Compared with HC subjects, FM patients showed reduced cortical thickness in right primary motor cortex, lower LGI in right rostral anterior cingulate and higher sulcal depth in right precuneus (p < 0.05 cluster level family- wise error corrected). In FM patients, correlation analysis showed that the cortical thickness in right primary motor cortex were inversely correlated with scores of pain catastrophizing scale (r = -0.498, p = 0.030) and pain self-perception scale (r = -0.527, p = 0.020), and disease duration (r = -0.488, p = 0.034), respectively. CONCLUSIONS Our findings provide evidence of neuroanatomical aberrations in FM patients, which may provide insight into the neuropathology of FM.
Collapse
Affiliation(s)
- Ye Tu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Department of Radiology, PLA Central Theater General Hospital, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Lukas A, Theunissen M, Boer DDKD, van Kuijk S, Van Noyen L, Magerl W, Mess W, Buhre W, Peters M. AMAZONE: prevention of persistent pain after breast cancer treatment by online cognitive behavioral therapy-study protocol of a randomized controlled multicenter trial. Trials 2022; 23:595. [PMID: 35879728 PMCID: PMC9310687 DOI: 10.1186/s13063-022-06549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Surviving breast cancer does not necessarily mean complete recovery to a premorbid state of health. Among the multiple psychological and somatic symptoms that reduce the quality of life of breast cancer survivors, persistent pain after breast cancer treatment (PPBCT) with a prevalence of 15–65% is probably the most invalidating. Once chronic, PPBCT is difficult to treat and requires an individualized multidisciplinary approach. In the past decades, several somatic and psychological risk factors for PPBCT have been identified. Studies aiming to prevent PPBCT by reducing perioperative pain intensity have not yet shown a significant reduction of PPBCT prevalence. Only few studies have been performed to modify psychological distress around breast cancer surgery. The AMAZONE study aims to investigate the effect of online cognitive behavioral therapy (e-CBT) on the prevalence of PPBCT. Methods The AMAZONE study is a multicenter randomized controlled trial, with an additional control arm. Patients (n=138) scheduled for unilateral breast cancer surgery scoring high for surgical or cancer-related fears, general anxiety or pain catastrophizing are randomized to receive either five sessions of e-CBT or online education consisting of information about surgery and a healthy lifestyle (EDU). The first session is scheduled before surgery. In addition to the online sessions, patients have three online appointments with a psychotherapist. Patients with low anxiety or catastrophizing scores (n=322) receive treatment as usual (TAU, additional control arm). Primary endpoint is PPBCT prevalence 6 months after surgery. Secondary endpoints are PPBCT intensity, the intensity of acute postoperative pain during the first week after surgery, cessation of postoperative opioid use, PPBCT prevalence at 12 months, pain interference, the sensitivity of the nociceptive and non-nociceptive somatosensory system as measured by quantitative sensory testing (QST), the efficiency of endogenous pain modulation assessed by conditioned pain modulation (CPM) and quality of life, anxiety, depression, catastrophizing, and fear of recurrence until 12 months post-surgery. Discussion With perioperative e-CBT targeting preoperative anxiety and pain catastrophizing, we expect to reduce the prevalence and intensity of PPBCT. By means of QST and CPM, we aim to unravel underlying pathophysiological mechanisms. The online application facilitates accessibility and feasibility in a for breast cancer patients emotionally and physically burdened time period. Trial registration NTR NL9132, registered December 16 2020.
Collapse
Affiliation(s)
- Anne Lukas
- Department of Anesthesiology & Pain Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - Maurice Theunissen
- Department of Anesthesiology & Pain Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Clinical Psychological Science, Maastricht University, Maastricht, The Netherlands
| | - Dianne de Korte-de Boer
- Department of Anesthesiology & Pain Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sander van Kuijk
- Department of Clinical Epidemiology and Medical Technology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lotte Van Noyen
- Department of Clinical Psychological Science, Maastricht University, Maastricht, The Netherlands
| | - Walter Magerl
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Ruprecht-Karls-University Heidelberg, Medical Faculty Mannheim, Heidelberg, Germany
| | - Werner Mess
- Department of Clinical Neurophysiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Wolfgang Buhre
- Department of Anesthesiology & Pain Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Madelon Peters
- Department of Clinical Psychological Science, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Janjua TAM, Nielsen TGNDS, Andreis FR, Meijs S, Jensen W. The effect of peripheral high-frequency electrical stimulation on the primary somatosensory cortex in pigs. IBRO Neurosci Rep 2021; 11:112-118. [PMID: 34541572 PMCID: PMC8436059 DOI: 10.1016/j.ibneur.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 10/26/2022] Open
Abstract
This study implements the use of Danish Landrace pigs as subjects for the long-term potentiation (LTP)-like pain model. This is accomplished by analyzing changes in the primary somatosensory cortex (S1) in response to electrical stimulation on the ulnar nerve after applying high-frequency electrical stimulation (HFS) on the ulnar nerve. In this study, eight Danish Landrace pigs were electrically stimulated, through the ulnar nerve, to record the cortically evoked response in S1 by a 16-channel microelectrode array (MEA). Six of these pigs were subjected to HFS (four consecutive, 15 mA, 100 Hz, 1000 µs pulse duration) 45 min after the start of the experiment. Two pigs were used as control subjects to compare the cortical response to peripheral electrical stimulation without applying HFS. Low-frequency components of the intracortical signals (0.3-300 Hz) were analyzed using event-related potential (ERP) analysis, where the minimum peak during the first 30-50 ms (N1 component) in each channel was detected. The change in N1 was compared over time across the intervention and control groups. Spectral analysis was used to demonstrate the effect of the intervention on the evoked cortical oscillations computed between 75 ms and 200 ms after stimulus. ERP analysis showed an immediate increase in N1 amplitude that became statistically significant 45 mins after HFS (p < 0.01) for the intervention group. The normalized change in power in frequency oscillations showed a similar trend. The results show that the LTP-like pain model can be effectively implemented in pigs using HFS since the cortical responses are comparable to those described in humans.
Collapse
Affiliation(s)
| | | | | | - Suzan Meijs
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Winnie Jensen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
7
|
Abstract
BACKGROUND Pain is a complex and highly subjective phenomenon that can be modulated by several factors. On the basis of results from experimental and clinical studies, the existence of endogenous pain modulatory mechanisms that can increase or diminish the experience of pain is now accepted. METHODS In this narrative review, the pain modulatory effects of exercise, stress, and cognitions in humans are assessed. RESULTS Experimental studies on the effect of exercise have revealed that pain-free participants show a hypoalgesic response after exercise. However, in some patients with chronic pain, this response is reduced or even hyperalgesic in nature. These findings will be discussed from a mechanistic point of view. Stress is another modulator of the pain experience. Although acute stress may induce hypoalgesia, ongoing clinical stress has detrimental effects on pain in many patients with chronic pain conditions, which have implications for the understanding, assessment, and treatment of stress in patients with pain. Finally, cognitive strategies play differing roles in pain inhibition. Two intuitive strategies, thought suppression and focused distraction, will be reviewed as regards experimental, acute, and chronic pain. CONCLUSION On the basis of current knowledge on the role of exercise, stress, and cognitive pain control strategies on the modulation of pain, implications for treatment will be discussed.
Collapse
|
8
|
Terrasa JL, Montoya P, Sitges C, van der Meulen M, Anton F, González-Roldán AM. Anterior Cingulate Cortex Activity During Rest Is Related to Alterations in Pain Perception in Aging. Front Aging Neurosci 2021; 13:695200. [PMID: 34295241 PMCID: PMC8291150 DOI: 10.3389/fnagi.2021.695200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Alterations in the affective component of pain perception are related to the development of chronic pain and may contribute to the increased vulnerability to pain observed in aging. The present study analyzed age-related changes in resting-state brain activity and their possible relation to an increased pain perception in older adults. For this purpose, we compared EEG current source density and fMRI functional-connectivity at rest in older (n = 20, 66.21 ± 3.08 years) and younger adults (n = 21, 20.71 ± 2.30 years) and correlated those brain activity parameters with pain intensity and unpleasantness ratings elicited by painful stimulation. We found an age-related increase in beta2 and beta3 activity in temporal, frontal, and limbic areas, and a decrease in alpha activity in frontal areas. Moreover, older participants displayed increased functional connectivity in the anterior cingulate cortex (ACC) and the insula with precentral and postcentral gyrus. Finally, ACC beta3 activity was positively correlated with pain intensity and unpleasantness ratings in older, and ACC-precentral/postcentral gyrus connectivity was positively correlated with unpleasantness ratings in older and younger participants. These results reveal that ACC resting-state hyperactivity is a stable trait of brain aging and may underlie their characteristic altered pain perception.
Collapse
Affiliation(s)
- Juan L Terrasa
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS) and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| | - Pedro Montoya
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS) and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| | - Carolina Sitges
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS) and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| | | | - Fernand Anton
- Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
| | - Ana M González-Roldán
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS) and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| |
Collapse
|
9
|
Neuropathic pain generates silent synapses in thalamic projection to anterior cingulate cortex. Pain 2021; 162:1322-1333. [PMID: 33230002 DOI: 10.1097/j.pain.0000000000002149] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
ABSTRACT Pain experience can change the central processing of nociceptive inputs, resulting in persistent allodynia and hyperalgesia. However, the underlying circuit mechanisms remain underexplored. Here, we focus on pain-induced remodeling of the projection from the mediodorsal thalamus (MD) to the anterior cingulate cortex (ACC), a projection that relays spinal nociceptive input for central processing. Using optogenetics combined with slice electrophysiology, we detected in male mice that 7 days of chronic constriction injury (CCI; achieved by loose ligation of the sciatic nerve) generated AMPA receptor (AMPAR)-silent glutamatergic synapses within the contralateral MD-to-ACC projection. AMPAR-silent synapses are typically GluN2B-enriched nascent glutamatergic synapses that mediate the initial formation of neural circuits during early development. During development, some silent synapses mature and become "unsilenced" by recruiting and stabilizing AMPARs, consolidating and strengthening the newly formed circuits. Consistent with these synaptogenic features, pain-induced generation of silent synapses was accompanied by increased densities of immature dendritic spines in ACC neurons and increased synaptic weight of GluN2B-containing NMDA receptors (NMDARs) in the MD-to-ACC projection. After prolonged (∼30 days) CCI, injury-generated silent synapses declined to low levels, which likely resulted from a synaptic maturation process that strengthens AMPAR-mediated MD-to-ACC transmission. Consistent with this hypothesis, viral-mediated knockdown of GluN2B in ACC neurons, which prevented pain-induced generation of silent synapses and silent synapse-mediated strengthening of MD-to-ACC projection after prolonged CCI, prevented the development of allodynia. Taken together, our results depict a silent synapse-mediated mechanism through which key supraspinal neural circuits that regulate pain sensitivity are remodeled to induce allodynia and hyperalgesia.
Collapse
|
10
|
Tøttrup L, Diaz-Valencia G, Kamavuako EN, Jensen W. Modulation of SI and ACC response to noxious and non-noxious electrical stimuli after the spared nerve injury model of neuropathic pain. Eur J Pain 2020; 25:612-623. [PMID: 33166003 DOI: 10.1002/ejp.1697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/14/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND The current knowledge on the role of SI and ACC in acute pain processing and how these contribute to the development of chronic pain is limited. Our objective was to investigate differences in and modulation of intracortical responses from SI and ACC in response to different intensities of peripheral presumed noxious and non-noxious stimuli in the acute time frame of a peripheral nerve injury in rats. METHODS We applied non-noxious and noxious electrical stimulation pulses through a cuff electrode placed around the sciatic nerve and measured the cortical responses (six electrodes in each cortical area) before and after the spared nerve injury model. RESULTS We found that the peak response correlated with the stimulation intensity and that SI and ACC differed in both amplitude and latency of cortical response. The cortical response to both noxious and non-noxious stimulation showed a trend towards faster processing of non-noxious stimuli in ACC and increased cortical processing of non-noxious stimuli in SI after SNI. CONCLUSIONS We found different responses in SI and ACC to different intensity electrical stimulations based on two features and changes in these features following peripheral nerve injury. We believe that these features may be able to assist to track cortical changes during the chronification of pain in future animal studies. SIGNIFICANCE This study showed distinct cortical processing of noxious and non-noxious peripheral stimuli in SI and ACC. The processing latency in ACC and accumulated spiking activity in SI appeared to be modulated by peripheral nerve injury, which elaborated on the function of these two areas in the processing of nociception.
Collapse
Affiliation(s)
- Lea Tøttrup
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Gabriela Diaz-Valencia
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ernest N Kamavuako
- Department of Engineering, King's College London, London, UK.,Faculté de Médecine, Université de Kindu, Maniema, D.R Congo
| | - Winnie Jensen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
11
|
Regional Hyperexcitability and Chronic Neuropathic Pain Following Spinal Cord Injury. Cell Mol Neurobiol 2020; 40:861-878. [PMID: 31955281 DOI: 10.1007/s10571-020-00785-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) causes maladaptive changes to nociceptive synaptic circuits within the injured spinal cord. Changes also occur at remote regions including the brain stem, limbic system, cortex, and dorsal root ganglia. These maladaptive nociceptive synaptic circuits frequently cause neuronal hyperexcitability in the entire nervous system and enhance nociceptive transmission, resulting in chronic central neuropathic pain following SCI. The underlying mechanism of chronic neuropathic pain depends on the neuroanatomical structures and electrochemical communication between pre- and postsynaptic neuronal membranes, and propagation of synaptic transmission in the ascending pain pathways. In the nervous system, neurons are the only cell type that transmits nociceptive signals from peripheral receptors to supraspinal systems due to their neuroanatomical and electrophysiological properties. However, the entire range of nociceptive signaling is not mediated by any single neuron. Current literature describes regional studies of electrophysiological or neurochemical mechanisms for enhanced nociceptive transmission post-SCI, but few studies report the electrophysiological, neurochemical, and neuroanatomical changes across the entire nervous system following a regional SCI. We, along with others, have continuously described the enhanced nociceptive transmission in the spinal dorsal horn, brain stem, thalamus, and cortex in SCI-induced chronic central neuropathic pain condition, respectively. Thus, this review summarizes the current understanding of SCI-induced neuronal hyperexcitability and maladaptive nociceptive transmission in the entire nervous system that contributes to chronic central neuropathic pain.
Collapse
|
12
|
Xiao X, Zhang YQ. A new perspective on the anterior cingulate cortex and affective pain. Neurosci Biobehav Rev 2018; 90:200-211. [DOI: 10.1016/j.neubiorev.2018.03.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022]
|
13
|
Zhuo M. Cortical LTP: A Synaptic Model for Chronic Pain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:147-155. [PMID: 30306522 DOI: 10.1007/978-981-13-1756-9_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cumulative evidence indicates that cortical synapses not only play important roles in pain perception and related emotional functions but also undergo long-term potentiation (LTP) and contribute to chronic pain. LTP is found at two key cortical regions such as the anterior cingulate cortex (ACC) and insular cortex (IC), and inhibition of cortical LTP produces analgesic effects as well as anxiolytic effects. In this chapter, I will summarize our work on ACC and IC and provide evidence for calcium-stimulated AC1 as a key molecule for cortical LTP and chronic pain.
Collapse
Affiliation(s)
- Min Zhuo
- Department of Physiology, Faculty of Medicine, Centre for the Study of Pain, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Affiliation(s)
- Yukinori Nagakura
- Faculty of Pharmaceutical Sciences, Aomori University, Aomori, Japan
| |
Collapse
|
15
|
Kang WB, Yang Q, Guo YY, Wang L, Wang DS, Cheng Q, Li XM, Tang J, Zhao JN, Liu G, Zhuo M, Zhao MG. Analgesic effects of adenylyl cyclase inhibitor NB001 on bone cancer pain in a mouse model. Mol Pain 2016; 12:12/0/1744806916652409. [PMID: 27612915 PMCID: PMC5019365 DOI: 10.1177/1744806916652409] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022] Open
Abstract
Background Cancer pain, especially the one caused by metastasis in bones, is a severe type of pain. Pain becomes chronic unless its causes and consequences are resolved. With improvements in cancer detection and survival among patients, pain has been considered as a great challenge because traditional therapies are partially effective in terms of providing relief. Cancer pain mechanisms are more poorly understood than neuropathic and inflammatory pain states. Chronic inflammatory pain and neuropathic pain are influenced by NB001, an adenylyl cyclase 1 (AC1)-specific inhibitor with analgesic effects. In this study, the analgesic effects of NB001 on cancer pain were evaluated. Results Pain was induced by injecting osteolytic murine sarcoma cell NCTC 2472 into the intramedullary cavity of the femur of mice. The mice injected with sarcoma cells for four weeks exhibited significant spontaneous pain behavior and mechanical allodynia. The continuous systemic application of NB001 (30 mg/kg, intraperitoneally, twice daily for three days) markedly decreased the number of spontaneous lifting but increased the mechanical paw withdrawal threshold. NB001 decreased the concentrations of cAMP and the levels of GluN2A, GluN2B, p-GluA1 (831), and p-GluA1 (845) in the anterior cingulate cortex, and inhibited the frequency of presynaptic neurotransmitter release in the anterior cingulate cortex of the mouse models. Conclusions NB001 may serve as a novel analgesic to treat bone cancer pain. Its analgesic effect is at least partially due to the inhibition of AC1 in anterior cingulate cortex.
Collapse
Affiliation(s)
- Wen-Bo Kang
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, Second Military Medical University, Nanjing, China
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yan-Yan Guo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Lu Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Dong-Sheng Wang
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, Second Military Medical University, Nanjing, China
| | - Qiang Cheng
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, Second Military Medical University, Nanjing, China
| | - Xiao-Ming Li
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, Second Military Medical University, Nanjing, China
| | - Jun Tang
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, Second Military Medical University, Nanjing, China
| | - Jian-Ning Zhao
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, Second Military Medical University, Nanjing, China
| | - Gang Liu
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, Second Military Medical University, Nanjing, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Kang SJ, Kwak C, Lee J, Sim SE, Shim J, Choi T, Collingridge GL, Zhuo M, Kaang BK. Bidirectional modulation of hyperalgesia via the specific control of excitatory and inhibitory neuronal activity in the ACC. Mol Brain 2015; 8:81. [PMID: 26631249 PMCID: PMC4668615 DOI: 10.1186/s13041-015-0170-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/25/2022] Open
Abstract
Neurons in the anterior cingulate cortex (ACC) are assumed to play important roles in the perception of nociceptive signals and the associated emotional responses. However, the neuronal types within the ACC that mediate these functions are poorly understood. In the present study, we used optogenetic techniques to selectively modulate excitatory pyramidal neurons and inhibitory interneurons in the ACC and to assess their ability to modulate peripheral mechanical hypersensitivity in freely moving mice. We found that selective activation of pyramidal neurons rapidly and acutely reduced nociceptive thresholds and that this effect was occluded in animals made hypersensitive using Freund's Complete Adjuvant (CFA). Conversely, inhibition of ACC pyramidal neurons rapidly and acutely reduced hypersensitivity induced by CFA treatment. A similar analgesic effect was induced by activation of parvalbumin (PV) expressing interneurons, whereas activation of somatostatin (SOM) expressing interneurons had no effect on pain thresholds. Our results provide direct evidence of the pivotal role of ACC excitatory neurons, and their regulation by PV expressing interneurons, in nociception.
Collapse
Affiliation(s)
- Sukjae Joshua Kang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, South Korea
| | - Chuljung Kwak
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Jaehyun Lee
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Su-Eon Sim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, South Korea
| | - Jaehoon Shim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, South Korea
| | - Taehyuk Choi
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Graham L Collingridge
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK. .,Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Ontario M5G 1X5, Toronto, ON, M5S 1A8, Canada.
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-747, South Korea. .,Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
17
|
Minocycline does not affect long-term potentiation in the anterior cingulate cortex of normal adult mice. Mol Pain 2015; 11:25. [PMID: 25933605 PMCID: PMC4464617 DOI: 10.1186/s12990-015-0025-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023] Open
Abstract
It has been reported that activated microglia plays important roles in chronic pain-related sensory signaling at the spinal cord dorsal horn. Less is known about the possible contribution of microglia to cortical plasticity that has been found to be important for chronic pain. In the present study, we used a 64-channel multi-electrode array recording system to investigate the role of microglia in cortical plasticity of the anterior cingulate cortex (ACC) in normal adult mice. We found that bath application of minocycline, an inhibitor of microglial activation, had no effect on postsynaptic LTP (post-LTP) induced by theta burst stimulation in the ACC. Furthermore, presynaptic LTP (pre-LTP) induced by the combination of low-frequency stimulation with a GluK1-containing kainate receptor agonist was also not affected. The spatial distribution of post-LTP or pre-LTP among the cingulate network is also unaltered by minocycline. Our results suggest that minocycline does not affect cingulate plasticity and neurons are the major player in pain-related cortical plasticity.
Collapse
|
18
|
GluA1 phosphorylation contributes to postsynaptic amplification of neuropathic pain in the insular cortex. J Neurosci 2015; 34:13505-15. [PMID: 25274827 DOI: 10.1523/jneurosci.1431-14.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Long-term potentiation of glutamatergic transmission has been observed after physiological learning or pathological injuries in different brain regions, including the spinal cord, hippocampus, amygdala, and cortices. The insular cortex is a key cortical region that plays important roles in aversive learning and neuropathic pain. However, little is known about whether excitatory transmission in the insular cortex undergoes plastic changes after peripheral nerve injury. Here, we found that peripheral nerve ligation triggered the enhancement of AMPA receptor (AMPAR)-mediated excitatory synaptic transmission in the insular cortex. The synaptic GluA1 subunit of AMPAR, but not the GluA2/3 subunit, was increased after nerve ligation. Genetic knock-in mice lacking phosphorylation of the Ser845 site, but not that of the Ser831 site, blocked the enhancement of the synaptic GluA1 subunit, indicating that GluA1 phosphorylation at the Ser845 site by protein kinase A (PKA) was critical for this upregulation after nerve injury. Furthermore, A-kinase anchoring protein 79/150 (AKAP79/150) and PKA were translocated to the synapses after nerve injury. Genetic deletion of adenylyl cyclase subtype 1 (AC1) prevented the translocation of AKAP79/150 and PKA, as well as the upregulation of synaptic GluA1-containing AMPARs. Pharmacological inhibition of calcium-permeable AMPAR function in the insular cortex reduced behavioral sensitization caused by nerve injury. Our results suggest that the expression of AMPARs is enhanced in the insular cortex after nerve injury by a pathway involving AC1, AKAP79/150, and PKA, and such enhancement may at least in part contribute to behavioral sensitization together with other cortical regions, such as the anterior cingulate and the prefrontal cortices.
Collapse
|
19
|
Postsynaptic insertion of AMPA receptor onto cortical pyramidal neurons in the anterior cingulate cortex after peripheral nerve injury. Mol Brain 2014; 7:76. [PMID: 25359681 PMCID: PMC4221704 DOI: 10.1186/s13041-014-0076-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/21/2014] [Indexed: 12/12/2022] Open
Abstract
Long-term potentiation (LTP) is the key cellular mechanism for physiological learning and pathological chronic pain. Postsynaptic accumulation of AMPA receptor (AMPAR) GluA1 plays an important role for injury-related cortical LTP. However, there is no direct evidence for postsynaptic GluA1 insertion or accumulation after peripheral injury. Here we report nerve injury increased the postsynaptic expression of AMPAR GluA1 in pyramidal neurons in the layer V of the anterior cingulate cortex (ACC), including the corticospinal projecting neurons. Electrophysiological recordings show that potentiation of postsynaptic responses was reversed by Ca2+ permeable AMPAR antagonist NASPM. Finally, behavioral studies show that microinjection of NASPM into the ACC inhibited behavioral sensitization caused by nerve injury. Our findings provide direct evidence that peripheral nerve injury induces postsynaptic GluA1 accumulation in cingulate cortical neurons, and inhibits postsynaptic GluA1 accumulation which may serve as a novel target for treating neuropathic pain.
Collapse
|
20
|
Chen T, O'Den G, Song Q, Koga K, Zhang MM, Zhuo M. Adenylyl cyclase subtype 1 is essential for late-phase long term potentiation and spatial propagation of synaptic responses in the anterior cingulate cortex of adult mice. Mol Pain 2014; 10:65. [PMID: 25304256 PMCID: PMC4198686 DOI: 10.1186/1744-8069-10-65] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/25/2014] [Indexed: 01/07/2023] Open
Abstract
Long-term potentiation (LTP) is a key cellular mechanism for pathological pain in the central nervous system. LTP contains at least two different phases: early-phase LTP (E-LTP) and late-phase LTP (L-LTP). Among several major cortical areas, the anterior cingulate cortex (ACC) is a critical brain region for pain perception and its related emotional changes. Periphery tissue or nerve injuries cause LTP of excitatory synaptic transmission in the ACC. Our previous studies have demonstrated that genetic deletion of calcium-stimulated adenylyl cyclase 1 (AC1) or pharmacological application of a selective AC1 inhibitor NB001 blocked E-LTP in the ACC. However, the effect of AC1 on L-LTP, which requires new protein synthesis and is important for the process of chronic pain, has not been investigated. Here we tested the effects of NB001 on the ACC L-LTP and found that bath application of NB001 (0.1 μM) totally blocked the induction of L-LTP and recruitment of cortical circuitry without affecting basal excitatory transmission. In contrast, gabapentin, a widely used analgesic drug for neuropathic pain, did not block the induction of L-LTP and circuitry recruitment even at a high concentration (100 μM). Gabapentin non-selectively decreased basal synaptic transmission. Our results provide strong evidence that the selective AC1 inhibitor NB001 can be used to inhibit pain-related cortical L-LTP without affecting basal synaptic transmission. It also provides basic mechanisms for possible side effects of gabapentin in the central nervous system and its ineffectiveness in some patients with neuropathic pain.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
21
|
Yi J, Zheng JY, Zhang W, Wang S, Yang ZF, Dou KF. Decreased pain threshold and enhanced synaptic transmission in the anterior cingulate cortex of experimental hypothyroidism mice. Mol Pain 2014; 10:38. [PMID: 24943008 PMCID: PMC4072477 DOI: 10.1186/1744-8069-10-38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/09/2014] [Indexed: 11/10/2022] Open
Abstract
Background Thyroid hormones are essential for the maturation and functions of the central nervous system. Pain sensitivity is related to the thyroid status. However, information on how thyroid hormones affect pain processing and synaptic transmission in the anterior cingulate cortex (ACC) is limited. Nociceptive threshold and synaptic transmission in the ACC were detected in the experimental hypothyroidism (HT) mice. Results HT was induced by methimazole and potassium perchlorate in distilled drinking water for 4 weeks. The threshold of pain perception to hot insults, but not mechanical ones, decreased in hypothyroid mice. After treatment with tri-iodothyronine (T3) or thyroxine (T4) for 2 weeks, thermal pain threshold recovered. Electrophysiological recordings revealed enhanced glutamatergic synaptic transmission and reduced GABAergic synaptic transmission in the ACC. Supplementation with T3 or T4 significantly rescued this synaptic transmission imbalance. In the same model, HT caused the up-regulation of the GluR1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and NR2B-containing N-methyl-D-aspartate receptors, but it down-regulated γ-aminobutyric acid A receptors in the ACC. Supplementation with T3 or T4 notably recovered the levels of above proteins. Conclusions These results suggest that HT promotes hypersensitivity to noxious thermal, and that supplementation with T3 or T4 rescues the imbalance between excitatory and inhibitory transmission in the ACC.
Collapse
Affiliation(s)
| | | | | | | | - Zhi-fu Yang
- Department of General Surgery, Xijing Hospital; The Fourth Military Medical University, Xi'an 710032, China.
| | | |
Collapse
|
22
|
Zhang MM, Liu SB, Chen T, Koga K, Zhang T, Li YQ, Zhuo M. Effects of NB001 and gabapentin on irritable bowel syndrome-induced behavioral anxiety and spontaneous pain. Mol Brain 2014; 7:47. [PMID: 24935250 PMCID: PMC4071154 DOI: 10.1186/1756-6606-7-47] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/10/2014] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) is characterized by recurrent abdominal discomfort, spontaneous pain, colorectal hypersensitivity and bowel dysfunction. Patients with IBS also suffer from emotional anxiety and depression. However, few animal studies have investigated IBS-induced spontaneous pain and behavioral anxiety. In this study, we assessed spontaneous pain and anxiety behaviors in an adult mouse model of IBS induced by zymosan administration. By using Fos protein as a marker, we found that sensory and emotion related brain regions were activated at day 7 after the treatment with zymosan; these regions include the prefrontal cortex, anterior cingulate cortex, insular cortex and amygdala. Behaviorally, zymosan administration triggered spontaneous pain (decreased spontaneous activities in the open field test) and increased anxiety-like behaviors in three different tests (the open field, elevated plus maze and light/dark box tests). Intraperitoneal injection of NB001, an adenylyl cyclase 1 (AC1) inhibitor, reduced spontaneous pain but had no significant effect on behavioral anxiety. In contrast, gabapentin reduced both spontaneous pain and behavioral anxiety. These results indicate that NB001 and gabapentin may inhibit spontaneous pain and anxiety-like behaviors through different mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun-Qing Li
- Department of Anatomy, Histology, Embryology & K, K, Leung Brain Research Centre, The Fourth Military Medical University, Xian, Shanxi 710032, China.
| | | |
Collapse
|
23
|
Liu MG, Chen J. Preclinical research on pain comorbidity with affective disorders and cognitive deficits: Challenges and perspectives. Prog Neurobiol 2014; 116:13-32. [DOI: 10.1016/j.pneurobio.2014.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 12/12/2022]
|
24
|
Liu MG, Zhuo M. No requirement of TRPV1 in long-term potentiation or long-term depression in the anterior cingulate cortex. Mol Brain 2014; 7:27. [PMID: 24708859 PMCID: PMC4234987 DOI: 10.1186/1756-6606-7-27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/28/2014] [Indexed: 02/07/2023] Open
Abstract
One major interest in the study of transient receptor potential vanilloid type 1 (TRPV1) in sensory system is that it may serve as a drug target for treating chronic pain. While the roles of TRPV1 in peripheral nociception and sensitization have been well documented, less is known about its contribution to pain-related cortical plasticity. Here, we used 64 multi-electrode array recording to examine the potential role of TRPV1 in two major forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD), in the anterior cingulate cortex (ACC). We found that pharmacological blockade of TRPV1 with either [(E)-3-(4-t-Butylphenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide] (AMG9810, 10 μM) or N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791, 20 μM) failed to affect LTP induced by strong theta burst stimulation in the ACC of adult mice. Similarly, neither AMG9810 nor SB366791 blocked the cingulate LTD induced by low-frequency stimulation. Analysis of the results from different layers of the ACC obtained the same conclusions. Spatial distribution of LTP or LTD-showing channels among the ACC network was also unaltered by the TRPV1 antagonists. Since cortical LTP and LTD in the ACC play critical roles in chronic pain triggered by inflammation or nerve injury, our findings suggest that TRPV1 may not be a viable target for treating chronic pain, especially at the cortical level.
Collapse
Affiliation(s)
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
25
|
Kim CE, Kim YK, Chung G, Im HJ, Lee DS, Kim J, Kim SJ. Identifying neuropathic pain using 18F-FDG micro-PET: A multivariate pattern analysis. Neuroimage 2014; 86:311-6. [DOI: 10.1016/j.neuroimage.2013.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/30/2013] [Accepted: 10/01/2013] [Indexed: 01/03/2023] Open
|
26
|
Liu MG, Zhuo M. Loss of long-term depression in the insular cortex after tail amputation in adult mice. Mol Pain 2014; 10:1. [PMID: 24398034 PMCID: PMC3912895 DOI: 10.1186/1744-8069-10-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/30/2013] [Indexed: 01/01/2023] Open
Abstract
The insular cortex (IC) is an important forebrain structure involved in pain perception and taste memory formation. Using a 64-channel multi-electrode array system, we recently identified and characterized two major forms of synaptic plasticity in the adult mouse IC: long-term potentiation (LTP) and long-term depression (LTD). In this study, we investigate injury-related metaplastic changes in insular synaptic plasticity after distal tail amputation. We found that tail amputation in adult mice produced a selective loss of low frequency stimulation-induced LTD in the IC, without affecting (RS)-3,5-dihydroxyphenylglycine (DHPG)-evoked LTD. The impaired insular LTD could be pharmacologically rescued by priming the IC slices with a lower dose of DHPG application, a form of metaplasticity which involves activation of protein kinase C but not protein kinase A or calcium/calmodulin-dependent protein kinase II. These findings provide important insights into the synaptic mechanisms of cortical changes after peripheral amputation and suggest that restoration of insular LTD may represent a novel therapeutic strategy against the synaptic dysfunctions underlying the pathophysiology of phantom pain.
Collapse
Affiliation(s)
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
27
|
Gherardini L, Bardi G, Gennaro M, Pizzorusso T. Novel siRNA delivery strategy: a new "strand" in CNS translational medicine? Cell Mol Life Sci 2014; 71:1-20. [PMID: 23508806 PMCID: PMC11113879 DOI: 10.1007/s00018-013-1310-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
Abstract
RNA interference has been envisaged as a powerful tool for molecular and clinical investigation with a great potential for clinical applications. In recent years, increased understanding of cancer biology and stem cell biology has dramatically accelerated the development of technology for cell and gene therapy in these areas. This paper is a review of the most recent report of innovative use of siRNA to benefit several central nervous system diseases. Furthermore, a description is made of innovative strategies of delivery into the brain by means of viral and non-viral vectors with high potential for translation into clinical use. Problems are also highlighted that might hamper the transition from bench to bed, analyzing the lack of reliable preclinical models with predictive validity and the lack of effective delivery systems, which are able to overcome biological barriers and specifically reach the brain site of action.
Collapse
Affiliation(s)
| | - Giuseppe Bardi
- Center for MicroBioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | | | - Tommaso Pizzorusso
- Institute of Neuroscience, CNR, Via Moruzzi, 1 56124 Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| |
Collapse
|
28
|
Sandkühler J, Lee J. How to erase memory traces of pain and fear. Trends Neurosci 2013; 36:343-52. [PMID: 23602194 PMCID: PMC3679540 DOI: 10.1016/j.tins.2013.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022]
Abstract
Currently emerging concepts of maladaptive pain and fear suggest that they share basic neuronal circuits and cellular mechanisms of memory formation. Recent studies have revealed processes of erasing memory traces of pain and fear that may be promising targets for future therapies.
Pain and fear are both aversive experiences that strongly impact on behaviour and well being. They are considered protective when they lead to meaningful, adaptive behaviour such as the avoidance of situations that are potentially dangerous to the integrity of tissue (pain) or the individual (fear). Pain and fear may, however, become maladaptive if expressed under inappropriate conditions or at excessive intensities for extended durations. Currently emerging concepts of maladaptive pain and fear suggest that basic neuronal mechanisms of memory formation are relevant for the development of pathological forms of pain and fear. Thus, the processes of erasing memory traces of pain and fear may constitute promising targets for future therapies.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Anxiety/etiology
- Anxiety/psychology
- Conditioning, Classical/physiology
- Cycloserine/pharmacology
- Cycloserine/therapeutic use
- Extinction, Psychological/physiology
- Fear/drug effects
- Fear/psychology
- Humans
- Hyperalgesia/etiology
- Hyperalgesia/prevention & control
- Hyperalgesia/psychology
- Hyperalgesia/therapy
- Isoenzymes/drug effects
- Isoenzymes/physiology
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/physiology
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Mental Recall/drug effects
- Mental Recall/physiology
- Models, Neurological
- Models, Psychological
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/physiology
- Neuroglia/physiology
- Nociception/physiology
- Pain/psychology
- Pain Management/methods
- Protein Kinase C/drug effects
- Protein Kinase C/physiology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinases/physiology
- Rats
- Receptors, Ionotropic Glutamate/drug effects
- Receptors, Ionotropic Glutamate/physiology
Collapse
Affiliation(s)
- Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Jonathan Lee
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
29
|
Zhuo M. Cortical depression and potentiation: basic mechanisms for phantom pain. Exp Neurobiol 2012; 21:129-35. [PMID: 23319872 PMCID: PMC3538176 DOI: 10.5607/en.2012.21.4.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/30/2012] [Indexed: 01/07/2023] Open
Abstract
People experience the feeling of the missing body part long after it has been removed after amputation are known as phantom limb sensations. These sensations can be painful, sometimes becoming chronic and lasting for several years (or called phantom pain). Medical treatment for these individuals is limited. Recent neurobiological investigations of brain plasticity after amputation have revealed new insights into the changes in the brain that may cause phantom limb sensations and phantom pain. In this article, I review recent progresses of the cortical plasticity in the anterior cingulate cortex (ACC), a critical cortical area for pain sensation, and explore how they are related to abnormal sensory sensations such as phantom pain. An understanding of these alterations may guide future research into medical treatment for these disorders.
Collapse
Affiliation(s)
- Min Zhuo
- Department of Physiology, Faculty of Medicine, Centre for the Study of Pain, University of Toronto, Medical Sciences Building, King's College Circle, Toronto, Ontario, Canada. ; Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
30
|
Plasticity of metabotropic glutamate receptor-dependent long-term depression in the anterior cingulate cortex after amputation. J Neurosci 2012; 32:11318-29. [PMID: 22895715 DOI: 10.1523/jneurosci.0146-12.2012] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term depression (LTD) is a key form of synaptic plasticity important in learning and information storage in the brain. It has been studied in various cortical regions, including the anterior cingulate cortex (ACC). ACC is a crucial cortical region involved in such emotion-related physiological and pathological conditions as fear memory and chronic pain. In the present study, we used a multielectrode array system to map cingulate LTD in a spatiotemporal manner within the ACC. We found that low-frequency stimulation (1 Hz, 15 min) applied onto deep layer V induced LTD in layers II/III and layers V/VI. Cingulate LTD requires activation of metabotropic glutamate receptors (mGluRs), while L-type voltage-gated calcium channels and NMDA receptors also contribute to its induction. Peripheral amputation of the distal tail impaired ACC LTD, an effect that persisted for at least 2 weeks. The loss of LTD was rescued by priming ACC slices with activation of mGluR1 receptors by coapplying (RS)-3,5-dihydroxyphenylglycine and MPEP, a form of metaplasticity that involved the activation of protein kinase C. Our results provide in vitro evidence of the spatiotemporal properties of ACC LTD in adult mice. We demonstrate that tail amputation causes LTD impairment within the ACC circuit and that this can be rescued by activation of mGluR1.
Collapse
|
31
|
Li XY, Chen T, Descalzi G, Koga K, Qiu S, Zhuo M. Characterization of neuronal intrinsic properties and synaptic transmission in layer I of anterior cingulate cortex from adult mice. Mol Pain 2012; 8:53. [PMID: 22818293 PMCID: PMC3495677 DOI: 10.1186/1744-8069-8-53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 06/26/2012] [Indexed: 01/29/2023] Open
Abstract
The neurons in neocortex layer I (LI) provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC), a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors), and inhibitory inputs (which were mediated by GABAA receptors). Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice.
Collapse
Affiliation(s)
- Xiang-Yao Li
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | | | | | | | | | | |
Collapse
|
32
|
Cui GB, An JZ, Zhang N, Zhao MG, Liu SB, Yi J. Elevated interleukin-8 enhances prefrontal synaptic transmission in mice with persistent inflammatory pain. Mol Pain 2012; 8:11. [PMID: 22325008 PMCID: PMC3307473 DOI: 10.1186/1744-8069-8-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interleukin-8 (IL-8) is known for its roles in inflammation and plays critical roles in the development of pain. Its expression increases in the brain after peripheral inflammation. Prefrontal cortex, including the anterior cingulate cortex (ACC), is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission, however, little is known about the expression of IL-8 and its role in the enhanced ACC synaptic transmission in animals with persistent inflammatory pain. FINDINGS In the present study, we examined IL-8 expression in the ACC, somatosensory cortex (SSC), and the dorsal horn of lumbar spinal cord following hind-paw administration of complete Freund's adjuvant (CFA) in mice and its effects on the ACC synaptic transmission. Quantification of IL-8 at protein level (by ELISA) revealed enhanced expression in the ACC and spinal cord during the chronic phases of CFA-induced peripheral inflammation. In vitro whole-cell patch-clamp recordings revealed that IL-8 significantly enhanced synaptic transmission through increased probability of neurotransmitter release in the ACC slice. ACC local infusion of repertaxin, a non-competitive allosteric blocker of IL-8 receptors, notably prolonged the paw withdrawal latency to thermal radian heat stimuli bilaterally in mice. CONCLUSIONS Our findings suggest that up-regulation of IL-8 in the ACC partly attributable to the enhanced prefrontal synaptic transmission in the mice with persistent inflammatory pain.
Collapse
Affiliation(s)
- Guang-bin Cui
- Department of Diagnostic Radiology, Tangdu Hospital, Xi’an 710032, China
| | | | | | | | | | | |
Collapse
|
33
|
Zhuo M. Targeting neuronal adenylyl cyclase for the treatment of chronic pain. Drug Discov Today 2012; 17:573-82. [PMID: 22405897 DOI: 10.1016/j.drudis.2012.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/13/2011] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
Pain research is currently undergoing dramatic changes. In the area of basic pain research, new discoveries have been made towards the understanding of pain transmission, modulation and plasticity. However, many of these basic discoveries have not yet led to the development of new drugs for the treatment of chronic pain. One major reason for this disconnection is the lack of translational research and drug discovery based directly on the novel pain mechanism. In this review, I focus on activity-dependent potentiation in pain-related cortical areas and recent translational research on adenylyl cyclase subtype 1 (AC1) as a novel target for treating chronic pain. In particular, I discuss the AC1 inhibitor, NB001, which produces powerful analgesic effects in animal models of chronic pain by inhibiting chronic pain-related cortical potentiation.
Collapse
Affiliation(s)
- Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Ont, Canada.
| |
Collapse
|
34
|
Sandkühler J, Gruber-Schoffnegger D. Hyperalgesia by synaptic long-term potentiation (LTP): an update. Curr Opin Pharmacol 2011; 12:18-27. [PMID: 22078436 PMCID: PMC3315008 DOI: 10.1016/j.coph.2011.10.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 10/17/2011] [Indexed: 11/17/2022]
Abstract
Long-term potentiation of synaptic strength (LTP) in nociceptive pathways shares principle features with hyperalgesia including induction protocols, pharmacological profile, neuronal and glial cell types involved and means for prevention. LTP at synapses of nociceptive nerve fibres constitutes a contemporary cellular model for pain amplification following trauma, inflammation, nerve injury or withdrawal from opioids. It provides a novel target for pain therapy. This review summarizes recent progress which has been made in unravelling the properties and functions of LTP in the nociceptive system and in identifying means for its prevention and reversal.
Collapse
Affiliation(s)
- Jürgen Sandkühler
- Medical University of Vienna, Center for Brain Research, Department of Neurophysiology, Spitalgasse 4, A-1090 Vienna, Austria.
| | | |
Collapse
|