1
|
Sahbaie P, Guo TZ, Shi XY, Kingery WS, Clark JD. Effects of immunosuppression after limb fracture in mice on nociceptive, cognitive, and anxiety-related outcomes. Pain Rep 2024; 9:e1179. [PMID: 39263006 PMCID: PMC11390048 DOI: 10.1097/pr9.0000000000001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction Chronic pain is a common and problematic consequence of injuries with few proven methods for prevention or treatment. In addition to pain, functional limitations and neuropsychiatric changes such as cognitive impairment and anxiety worsen outcomes. Objectives To determine whether inhibiting activation of the adaptive immune response after limb fracture would reduce pain, functional loss, memory changes, and anxiety. Methods These experiments used a murine tibial fracture/cast immobilization model that develops these adverse outcomes. Adaptive immunity was blocked using the immunosuppressant FK506 beginning at the time of fracture. Results The administration of FK506 reduced mechanical allodynia and hind limb unweighting for weeks after cast removal as well as nonevoked pain measures. Fracture was associated with working memory loss in the Y-maze assay in vehicle- but not FK506-treated mice. Object recognition memory was not improved with FK506 after fracture. Also, vehicle- but not FK506-treated mice developed an anxiety phenotype. Impaired running wheel performance after cast removal over the following 2 weeks was not improved with FK506 administration. In addition, FK506 treatment blocked Immunoglobulin M (IgM) accumulation in the skin of the fractured limbs, and hippocampal enhancement of matrix metalloproteinase-8 expression, a metalloproteinase associated with neuroplastic changes after injuries, was completely blocked. Conclusion Taken together, our results show that blocking the adaptive immune response after limb trauma reduces the severity of nociceptive and biological changes. The same treatment may reduce the adverse consequences of anxiety and memory deficits using some measures, but other measures of memory are not affected, and activity is not enhanced.
Collapse
Affiliation(s)
- Peyman Sahbaie
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tian-Zhi Guo
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Xiao-You Shi
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - J David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Anesthesia, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Varenna M, Orsini F, Di Taranto R, Zucchi F, Adami G, Gatti D, Crotti C. Bone Turnover Markers and Wnt Signaling Modulators in Early Complex Regional Pain Syndrome. A Pre-specified Observational Study. Calcif Tissue Int 2024; 115:251-259. [PMID: 38951180 DOI: 10.1007/s00223-024-01251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
To explore serum levels of some bone turnover markers and the involvement of the Wnt signaling in CRPS-1. Query ID="Q1" Text="Please check and confirm whether the edit made to the article title is in order." We conducted an observational study on patients with early CRPS-1 recruited before any treatment. Clinical measures were assessed together with biochemical evaluation. Values of sclerostin, DKK1, CTX-I, and P1NP were compared with sex-age-matched healthy controls (HCs). We enrolled 34 patients diagnosed with CRPS-1 (mean age 59.3 ± 10.6 years, Male/Female 10/24), median disease duration = 2 weeks (IQR 1-5); median VAS score = 76 (IQR 68-80). Foot localization was slightly more frequent than hand localization (18/16). No statistically significant difference was found between CRPS-1 patients and HCs for CTX-I (0.3 ± 0.1 ng/ml vs 0.3 ± 0.1, p = 0.140), while mean serum values of P1NP were significantly higher in CRPS-1 patients compared to HCs (70.0 ± 38.8 ng/ml vs 50.1 ± 13.6, p = 0.005). Mean levels of sclerostin and DKK1 were lower in CRPS-1 patients vs HCs (sclerostin 28.4 ± 10.8 pmol/l vs 34.1 ± 11.6, p = 0.004; DKK1 12.9 ± 10.8 pmol/l vs 24.1 ± 11.9, p = 0.001). No statistically significant difference was found for all biochemical assessments in a subgroup of fracture-induced CRPS-1. No statistically significant differences were observed according to disease localization, disease duration, presence of hyperalgesia, allodynia, sudomotor alterations, and mild or moderate/severe swelling. No significant correlation emerged between sclerostin, DKK1 levels, baseline VAS score, or McGill Pain Questionnaire score. Bone involvement in early CRPS-1 does not seem to rely on increased osteoclast activity. Conversely, a serum marker of bone formation resulted increased. Both Sclerostin and DKK1 showed decreased values, probably suggesting a widespread osteocyte loss of function.Trial registration number: Eudract Number: 2014-001156-28.
Collapse
Affiliation(s)
- Massimo Varenna
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G. Pini-CTO, Via Pini, 9, 20122, Milan, Italy.
| | - Francesco Orsini
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G. Pini-CTO, Via Pini, 9, 20122, Milan, Italy
| | - Raffaele Di Taranto
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G. Pini-CTO, Via Pini, 9, 20122, Milan, Italy
| | - Francesca Zucchi
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G. Pini-CTO, Via Pini, 9, 20122, Milan, Italy
| | - Giovanni Adami
- Rheumatology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, Verona, Italy
| | - Davide Gatti
- Rheumatology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, Verona, Italy
| | - Chiara Crotti
- Bone Diseases Unit, Department of Rheumatology and Medical Sciences, ASST G. Pini-CTO, Via Pini, 9, 20122, Milan, Italy
| |
Collapse
|
3
|
Kiyomoto K, Emori M, Hanaka M, Teramoto A, Hayakawa H, Takashima K, Yamashita T, Iba K. Remission of hypersensitivity by simple weight load stimuli in a complex regional pain syndrome mouse model. J Orthop Res 2024; 42:1020-1032. [PMID: 38044473 DOI: 10.1002/jor.25750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 06/26/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Painful sensitivity of the hand or foot are the most common and debilitating symptoms of complex regional pain syndrome (CRPS). Physical therapy is standard treatment for CRPS, but evidence supporting its efficacy is minimal and it can be essentially impossible for CRPS patients to actively exercise the painful limb. Using the well-characterized distal tibial fracture CRPS mouse model, we compared the therapeutic effects of several weeks of daily hindlimb loading versus rotarod walking exercise. The effects of loading and exercise were evaluated by weekly testing of hind-paw withdrawal thresholds to von Frey fibers and radiant heat, as well as measurements of paw and ankle edema. At 6 weeks after fracture, the mice were killed and the ipsilateral femur, spinal cord and L4/5 dorsal root ganglia, and hind-paw skin collected for PCR assays and paw skin Immunohistochemistry evaluation. Hindlimb loading reduced hind-paw von Frey allodynia and heat hyperalgesia and edema within a week and these effects persisted for at least a week after discontinuing treatment. These therapeutic effects of loading exceeded the beneficial effects observed with rotarod walking exercise in fracture mice. Levels of nerve growth factor and transient receptor potential vanilloid 1 (TRPV1) immunostaining in the hind-paw skin were increased at 6 weeks after fracture, and both loading and exercise treatment reduced increases. Collectively, these results suggest that loading may be an effective and possibly curative treatment in CRPS patients with sensitivity in the affected limb.
Collapse
Affiliation(s)
- Kenta Kiyomoto
- Department of Musculoskeletal Anti-aging Medicine, Sapporo Medical University, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Occupational Therapy, Department of Rehabilitation, Faculty of Health Science, Japan Healthcare University, Sapporo, Japan
| | - Makoto Emori
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Megumi Hanaka
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Teramoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hikaru Hayakawa
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenichi Takashima
- Department of Musculoskeletal Anti-aging Medicine, Sapporo Medical University, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kousuke Iba
- Department of Musculoskeletal Anti-aging Medicine, Sapporo Medical University, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
MacDonald DI, Jayabalan M, Seaman J, Nickolls A, Chesler A. Pain persists in mice lacking both Substance P and CGRPα signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567208. [PMID: 38076807 PMCID: PMC10705526 DOI: 10.1101/2023.11.15.567208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The neuropeptides Substance P and CGRPα have long been thought important for pain sensation. Both peptides and their receptors are expressed at high levels in pain-responsive neurons from the periphery to the brain making them attractive therapeutic targets. However, drugs targeting these pathways individually did not relieve pain in clinical trials. Since Substance P and CGRPα are extensively co-expressed we hypothesized that their simultaneous inhibition would be required for effective analgesia. We therefore generated Tac1 and Calca double knockout (DKO) mice and assessed their behavior using a wide range of pain-relevant assays. As expected, Substance P and CGRPα peptides were undetectable throughout the nervous system of DKO mice. To our surprise, these animals displayed largely intact responses to mechanical, thermal, chemical, and visceral pain stimuli, as well as itch. Moreover, chronic inflammatory pain and neurogenic inflammation were unaffected by loss of the two peptides. Finally, neuropathic pain evoked by nerve injury or chemotherapy treatment was also preserved in peptide-deficient mice. Thus, our results demonstrate that even in combination, Substance P and CGRPα are not required for the transmission of acute and chronic pain.
Collapse
Affiliation(s)
- Donald Iain MacDonald
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Monessha Jayabalan
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Jonathan Seaman
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Alec Nickolls
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
| | - Alexander Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, United States
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
5
|
Wen B, Pan Y, Cheng J, Xu L, Xu J. The Role of Neuroinflammation in Complex Regional Pain Syndrome: A Comprehensive Review. J Pain Res 2023; 16:3061-3073. [PMID: 37701560 PMCID: PMC10493102 DOI: 10.2147/jpr.s423733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
Complex Regional Pain Syndrome (CRPS) is an excess and/or prolonged pain and inflammation condition that follows an injury to a limb. The pathogenesis of CRPS is multifaceted that remains incompletely understood. Neuroinflammation is an inflammatory response in the peripheral and central nervous systems. Dysregulated neuroinflammation plays a crucial role in the initiation and maintenance of pain and nociceptive neuronal sensitization, which may contribute to the transition from acute to chronic pain and the perpetuation of chronic pain in CRPS. The key features of neuroinflammation encompass infiltration and activation of inflammatory cells and the production of inflammatory mediators in both the central and peripheral nervous systems. This article reviews the role of neuroinflammation in the onset and progression of CRPS from six perspectives: neurogenic inflammation, neuropeptides, glial cells, immune cells, cytokines, and keratinocytes. The objective is to provide insights that can inform future research and development of therapeutic targets for CRPS.
Collapse
Affiliation(s)
- Bei Wen
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Yinbing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jianguo Cheng
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Neuroscience, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Jijun Xu
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Inflammation and Immunity; Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
6
|
Shibata S, Tagashira H, Nemoto T, Kita S, Kita T, Shinoda Y, Akiyoshi K, Yamaura K, Iwamoto T. Perineural treatment with anti-TNF-α antibody ameliorates persistent allodynia and edema in novel mouse models with complex regional pain syndrome. J Pharmacol Sci 2023; 153:1-11. [PMID: 37524448 DOI: 10.1016/j.jphs.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 08/02/2023] Open
Abstract
Complex regional pain syndrome (CRPS) is an intractable chronic pain syndrome with various signs and symptoms including allodynia/hyperalgesia, edema, swelling, and skin abnormalities. However, a definitive therapeutic treatment for CRPS has not been established. In CRPS patients, inflammatory cytokines such as TNF-α and IL-1β have been shown to increase in affected areas, suggesting that these molecules may be potential therapeutic targets for CRPS. Here, we first created a novel CRPS mouse model (CRPS-II-like) via sciatic nerve injury and cast immobilization, which was characterized by mechanical allodynia, local edema, and skin abnormalities, to evaluate the pathophysiology and pharmacotherapy of CRPS. When an anti-TNF-α antibody was consecutively administered near the injured sciatic nerve of CRPS model mice, persistent allodynia and CRPS-related signs in the ipsilateral hindpaw were markedly attenuated to control levels. Perineural administration of anti-TNF-α antibody also suppressed the upregulation of inflammatory cytokines as well as the activation of macrophages and Schwann cells in the injured sciatic nerve. These findings indicate that persistent allodynia and CRPS-related signs in CRPS models are primarily associated with TNF-α-mediated immune responses in injured peripheral nerves, suggesting that perineural treatment with anti-TNF-α antibody might be therapeutically useful.
Collapse
Affiliation(s)
- Shiho Shibata
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Department of Anesthesiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hideaki Tagashira
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takayuki Nemoto
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Satomi Kita
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Tomo Kita
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kouzaburo Akiyoshi
- Department of Anesthesiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Ken Yamaura
- Department of Anesthesiology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Department of Anesthesiology & Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Iwamoto
- Department of Pharmacology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
7
|
Liu S, Liu S, Li S, Liang B, Han X, Liang Y, Wei X. Nerves within bone and their application in tissue engineering of bone regeneration. Front Neurol 2023; 13:1085560. [PMID: 36818724 PMCID: PMC9933508 DOI: 10.3389/fneur.2022.1085560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 02/05/2023] Open
Abstract
Nerves within bone play an irreplaceable role in promoting bone regeneration. Crosstalk between the nerve system and bone has arisen to the attention of researchers in the field of basic medicine, clinical medicine, and biomaterials science. Successful bone regeneration relies on the appropriate participation of neural system components including nerve fibers, signaling molecules, and neural-related cells. Furthermore, more about the mechanisms through which nerves took part in bone regeneration and how these mechanisms could be integrated into tissue engineering scaffolds were under exploration. In the present review, we aimed to systematically elaborate on the structural and functional interrelationship between the nerve system and bone. In particular, peripheral nerves interact with the bone through innervated axons, multiple neurotrophins, and bone resident cells. Also, we aimed to summarize research that took advantage of the neuro-osteogenic network to design tissue engineering scaffolds for bone repair.
Collapse
|
8
|
Guo TZ, Shi X, Li WW, Wei T, Sahbaie P, Clark JD, Kingery WS. Pronociceptive autoantibodies in the spinal cord mediate nociceptive sensitization, loss of function, and spontaneous pain in the lumbar disk puncture model of chronic back pain. Pain 2023; 164:421-434. [PMID: 35976729 PMCID: PMC9823152 DOI: 10.1097/j.pain.0000000000002725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Previously, we observed that B cells and autoantibodies mediated chronic nociceptive sensitization in the mouse tibia fracture model of complex regional pain syndrome and that complex regional pain syndrome patient antibodies were pronociceptive in fracture mice lacking mature B cells and antibodies (muMT). The current study used a lumbar spinal disk puncture (DP) model of low back pain in wild-type (WT) and muMT mice to evaluate pronociceptive adaptive immune responses. Spinal disks and cords were collected 3 weeks after DP for polymerase chain reaction and immunohistochemistry analyses. Wild-type DP mice developed 24 weeks of hindpaw mechanical allodynia and hyperalgesia, grip weakness, and a conditioned place preference response indicative of spontaneous pain, but pain responses were attenuated or absent in muMT DP mice. Spinal cord expression of inflammatory cytokines, immune cell markers, and complement components were increased in WT DP mice and in muMT DP mice. Dorsal horn immunostaining in WT DP mice demonstrated glial activation and increased complement 5a receptor expressionin spinal neurons. Serum collected from WT DP mice and injected into muMT DP mice caused nociceptive sensitization, as did intrathecal injection of IgM collected from WT DP mice, and IgM immune complexes were observed in lumbar spinal disks and cord of WT DP mice. Serum from WT tibia fracture mice was not pronociceptive in muMT DP mice and vice versa, evidence that each type of tissue trauma chronically generates its own unique antibodies and targeted antigens. These data further support the pronociceptive autoimmunity hypothesis for the transition from tissue injury to chronic musculoskeletal pain state.
Collapse
Affiliation(s)
- Tian-zhi Guo
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Xiaoyou Shi
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Wen-wu Li
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Peyman Sahbaie
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - J. David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Wade S. Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
9
|
Xu X, Yu C, Xu L, Xu J. Emerging roles of keratinocytes in nociceptive transduction and regulation. Front Mol Neurosci 2022; 15:982202. [PMID: 36157074 PMCID: PMC9500148 DOI: 10.3389/fnmol.2022.982202] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023] Open
Abstract
Keratinocytes are the predominant block-building cells in the epidermis. Emerging evidence has elucidated the roles of keratinocytes in a wide range of pathophysiological processes including cutaneous nociception, pruritus, and inflammation. Intraepidermal free nerve endings are entirely enwrapped within the gutters of keratinocyte cytoplasm and form en passant synaptic-like contacts with keratinocytes. Keratinocytes can detect thermal, mechanical, and chemical stimuli through transient receptor potential ion channels and other sensory receptors. The activated keratinocytes elicit calcium influx and release ATP, which binds to P2 receptors on free nerve endings and excites sensory neurons. This process is modulated by the endogenous opioid system and endothelin. Keratinocytes also express neurotransmitter receptors of adrenaline, acetylcholine, glutamate, and γ-aminobutyric acid, which are involved in regulating the activation and migration, of keratinocytes. Furthermore, keratinocytes serve as both sources and targets of neurotrophic factors, pro-inflammatory cytokines, and neuropeptides. The autocrine and/or paracrine mechanisms of these mediators create a bidirectional feedback loop that amplifies neuroinflammation and contributes to peripheral sensitization.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Catherine Yu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States,Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China,*Correspondence: Li Xu,
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States,Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Li Xu,
| |
Collapse
|
10
|
Sun Q, Li G, Liu D, Xie W, Xiao W, Li Y, Cai M. Peripheral nerves in the tibial subchondral bone : the role of pain and homeostasis in osteoarthritis. Bone Joint Res 2022; 11:439-452. [PMID: 35775136 PMCID: PMC9350689 DOI: 10.1302/2046-3758.117.bjr-2021-0355.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent degenerative joint disorder characterized by joint pain and physical disability. Aberrant subchondral bone induces pathological changes and is a major source of pain in OA. In the subchondral bone, which is highly innervated, nerves have dual roles in pain sensation and bone homeostasis regulation. The interaction between peripheral nerves and target cells in the subchondral bone, and the interplay between the sensory and sympathetic nervous systems, allow peripheral nerves to regulate subchondral bone homeostasis. Alterations in peripheral innervation and local transmitters are closely related to changes in nociception and subchondral bone homeostasis, and affect the progression of OA. Recent literature has substantially expanded our understanding of the physiological and pathological distribution and function of specific subtypes of neurones in bone. This review summarizes the types and distribution of nerves detected in the tibial subchondral bone, their cellular and molecular interactions with bone cells that regulate subchondral bone homeostasis, and their role in OA pain. A comprehensive understanding and further investigation of the functions of peripheral innervation in the subchondral bone will help to develop novel therapeutic approaches to effectively prevent OA, and alleviate OA pain. Cite this article: Bone Joint Res 2022;11(7):439–452.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Gen Li
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Cai
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Sahbaie P, Li WW, Guo TZ, Shi XY, Kingery WS, Clark JD. Autonomic Regulation of Nociceptive and Immunologic Changes in a Mouse Model of Complex Regional Pain Syndrome. THE JOURNAL OF PAIN 2022; 23:472-486. [PMID: 34699985 PMCID: PMC8920776 DOI: 10.1016/j.jpain.2021.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/27/2021] [Indexed: 01/16/2023]
Abstract
Chronic pain frequently develops after limb injuries, and its pathogenesis is poorly understood. We explored the hypothesis that the autonomic nervous system regulates adaptive immune system activation and nociceptive sensitization in a mouse model of chronic post-traumatic pain with features of complex regional pain syndrome (CRPS). In studies sympathetic signaling was reduced using 6-hydroxydopamine (6-OHDA) or lofexidine, while parasympathetic signaling was augmented by nicotine administration. Hindpaw allodynia, unweighting, skin temperature, and edema were measured at 3 and 7 weeks after fracture. Hypertrophy of regional lymph nodes and IgM deposition in the skin of injured limbs were followed as indices of adaptive immune system activation. Passive transfer of serum from fracture mice to recipient B cell deficient (muMT) mice was used to assess the formation of pain-related autoantibodies. We observed that 6-OHDA or lofexidine reduced fracture-induced hindpaw nociceptive sensitization and unweighting. Nicotine had similar effects. These treatments also prevented IgM deposition, hypertrophy of popliteal lymph nodes, and the development of pronociceptive serum transfer effects. We conclude that inhibiting sympathetic or augmenting parasympathetic signaling inhibits pro-nociceptive immunological changes accompanying limb fracture. These translational results support the use of similar approaches in trials potentially alleviating persistent post-traumatic pain and, possibly, CRPS. PERSPECTIVE: Selective treatments aimed at autonomic nervous system modulation reduce fracture-related nociceptive and functional sequelae. The same treatment strategies limit pain-supporting immune system activation and the production of pro-nociceptive antibodies. Thus, the therapeutic regulation of autonomic activity after limb injury may reduce the incidence of chronic pain.
Collapse
Affiliation(s)
- Peyman Sahbaie
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Department of Anesthesia, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California.
| | - Wen-Wu Li
- Anesthesiology Service; Veterans Affairs Palo Alto Health Care System; 3801 Miranda Ave, Palo Alto, CA 94304, U.S.A,Department of Anesthesia, Perioperative and Pain Medicine; Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tian-Zhi Guo
- Anesthesiology Service; Veterans Affairs Palo Alto Health Care System; 3801 Miranda Ave, Palo Alto, CA 94304, U.S.A,Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Xiao-you Shi
- Anesthesiology Service; Veterans Affairs Palo Alto Health Care System; 3801 Miranda Ave, Palo Alto, CA 94304, U.S.A,Department of Anesthesia, Perioperative and Pain Medicine; Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wade S. Kingery
- Palo Alto Veterans Institute for Research, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - J David Clark
- Anesthesiology Service; Veterans Affairs Palo Alto Health Care System; 3801 Miranda Ave, Palo Alto, CA 94304, U.S.A,Department of Anesthesia, Perioperative and Pain Medicine; Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Liu Y, Liang Y, Gao M, Li Y, Zhao T, Zhao Y. Animal Models of Complex Regional Pain Syndrome Type I. J Pain Res 2021; 14:3711-3721. [PMID: 34899000 PMCID: PMC8654689 DOI: 10.2147/jpr.s333270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/28/2021] [Indexed: 12/01/2022] Open
Abstract
Complex regional pain syndrome (CRPS) is a chronic pain disorder characterized by spontaneous or evoked regionally-confined pain which is out of proportion to the initial trauma event. The disease can seriously affect the quality of the patients' life, increase the psychological burden, and cause various degrees of disability. Despite the awareness of CRPS among medical practitioners for over a century, its pathogenesis remains unclear, and the available treatment is still unsatisfactory. Effective animal models are the foundation of disease research, which is helpful in understanding the pathogenesis and an in-depth exploration of the appropriate therapeutic approaches. Currently, researchers have established a series of animal models of the disease. There are four main CRPSI animal models: chronic post-ischemic pain (CPIP) model, tibial fracture/cast immobilization model, passive transfer-trauma model, and the needlestick-nerve-injury (NNI) model. The modeling methods of these models are constantly improving over time. In preclinical studies, the interpretation of experimental results and the horizontal comparison between similar studies may be affected by the nature of the experimental animal breeds, sex, diet, and psychology. There is need to facilitate the choice of appropriate animal models and avoid the interference of the factors influencing animal models on the interpretation of research results. The review will provide a basic overview of the influencing factors, modeling methods, and the characteristics of CRPSI animal models.
Collapse
Affiliation(s)
- Yu Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - Ying Liang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - Min Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - Yingchun Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - Tingting Zhao
- Shaanxi University of Traditional Chinese Medicine, Xi’an, Shaanxi, 712046, People’s Republic of China
| | - Yani Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| |
Collapse
|
13
|
Boakye PA, Tang SJ, Smith PA. Mediators of Neuropathic Pain; Focus on Spinal Microglia, CSF-1, BDNF, CCL21, TNF-α, Wnt Ligands, and Interleukin 1β. FRONTIERS IN PAIN RESEARCH 2021; 2:698157. [PMID: 35295524 PMCID: PMC8915739 DOI: 10.3389/fpain.2021.698157] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Intractable neuropathic pain is a frequent consequence of nerve injury or disease. When peripheral nerves are injured, damaged axons undergo Wallerian degeneration. Schwann cells, mast cells, fibroblasts, keratinocytes and epithelial cells are activated leading to the generation of an "inflammatory soup" containing cytokines, chemokines and growth factors. These primary mediators sensitize sensory nerve endings, attract macrophages, neutrophils and lymphocytes, alter gene expression, promote post-translational modification of proteins, and alter ion channel function in primary afferent neurons. This leads to increased excitability and spontaneous activity and the generation of secondary mediators including colony stimulating factor 1 (CSF-1), chemokine C-C motif ligand 21 (CCL-21), Wnt3a, and Wnt5a. Release of these mediators from primary afferent neurons alters the properties of spinal microglial cells causing them to release tertiary mediators, in many situations via ATP-dependent mechanisms. Tertiary mediators such as BDNF, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and other Wnt ligands facilitate the generation and transmission of nociceptive information by increasing excitatory glutamatergic transmission and attenuating inhibitory GABA and glycinergic transmission in the spinal dorsal horn. This review focusses on activation of microglia by secondary mediators, release of tertiary mediators from microglia and a description of their actions in the spinal dorsal horn. Attention is drawn to the substantial differences in the precise roles of various mediators in males compared to females. At least 25 different mediators have been identified but the similarity of their actions at sensory nerve endings, in the dorsal root ganglia and in the spinal cord means there is considerable redundancy in the available mechanisms. Despite this, behavioral studies show that interruption of the actions of any single mediator can relieve signs of pain in experimental animals. We draw attention this paradox. It is difficult to explain how inactivation of one mediator can relieve pain when so many parallel pathways are available.
Collapse
Affiliation(s)
- Paul A. Boakye
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Guo TZ, Shi X, Li W, Wei T, Kingery WS, Clark JD. Dimethyl Fumarate Reduces Oxidative Stress and Pronociceptive Immune Responses in a Murine Model of Complex Regional Pain Syndrome. Anesth Analg 2021; 132:1475-1485. [PMID: 33646995 PMCID: PMC8049952 DOI: 10.1213/ane.0000000000005440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a highly disabling cause of pain often precipitated by surgery or trauma to a limb. Both innate and adaptive immunological changes contribute to this syndrome. Dimethyl fumarate (DMF) works through the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor and other targets to activate antioxidant systems and to suppress immune system activation. We hypothesized that DMF would reduce nociceptive, functional, and immunological changes measured in a model of CRPS. METHODS Male C57BL/6 mice were used in the well-characterized tibial fracture model of CRPS. Some groups of mice received DMF 25 mg/kg/d orally, per os for 3 weeks after fracture versus vehicle alone. Homozygous Nrf2 null mutant mice were used as test subjects to address the need for this transcription factor for DMF activity. Allodynia was assessed using von Frey filaments and hindlimb weight-bearing data were collected. The markers of oxidative stress malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) were quantified in the skin of the fractured mice using immunoassays along with the innate immune system cytokines IL-1β and IL-6. The accumulation of IgM in the fractured limbs and lymph node hypertrophy were used as indexes of adaptive immune system activation, and the passive transfer of serum from wildtype fractured mice to B cell-deficient fractured muMT mice (mice lacking B cells and immunoglobulin) helped to assess the pronociceptive activity of humoral factors. RESULTS We observed that oral DMF administration strongly prevented nociceptive sensitization and reduced uneven hindlimb weight bearing after fracture. DMF was also very effective in reducing the accumulation of markers of oxidative stress, activation of innate immune mediator production, lymph node hypertrophy, and the accumulation of IgM in fractured limbs. The sera of fractured vehicle-treated but not DMF-treated mice conferred pronociceptive activity to recipient mice. Unexpectedly, the effects of DMF were largely unchanged in the Nrf2 null mutant mice. CONCLUSIONS Oxidative stress and immune system activation are robust after hindlimb fracture in mice. DMF strongly reduces activation of those systems, and the Nrf2 transcription factor is not required. DMF or drugs working through similar mechanisms might provide effective therapy for CRPS or other conditions where oxidative stress causes immune system activation.
Collapse
Affiliation(s)
- Tian-zhi Guo
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Xiaoyou Shi
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Wenwu Li
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Wade S. Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - J. David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
15
|
Shi X, Guo TZ, Li WW, Birklein F, Escolano FL, Herrnberger M, Clark JD, Kingery WS. C5a complement and cytokine signaling mediate the pronociceptive effects of complex regional pain syndrome patient IgM in fracture mice. Pain 2021; 162:1400-1415. [PMID: 33259455 PMCID: PMC8049958 DOI: 10.1097/j.pain.0000000000002150] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/03/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT It has been proposed that complex regional pain syndrome (CRPS) is a posttraumatic autoimmune disease. Previously, we observed that B cells contribute to CRPS-like changes in a mouse tibia fracture model, and that early (<12 months duration) CRPS patient IgM antibodies have pronociceptive effects in the skin and spinal cord of muMT fracture mice lacking B cells. The current study evaluated the pronociceptive effects of intraplantar or intrathecal injections of early CRPS IgM (5 µg) in muMT fracture mice. Skin and lumbar spinal cord were collected for immunohistochemistry and polymerase chain reaction analyses. Wild-type mice exhibited postfracture increases in complement component C5a and its receptor expression in skin and spinal cord, predominantly on dermal macrophages and spinal microglia. Intraplantar IgM injection caused nociceptive sensitization in muMT fracture mice with increased complement component C1q and inflammatory cytokine expression, and these IgM effects were blocked by a C5a receptor antagonist (PMX53) or a global cytokine inhibitor (pentoxifylline). Intrathecal IgM injection also had pronociceptive effects with increased spinal cytokine expression, effects that were blocked by PMX53 or pentoxifylline treatment. Intrathecal injection of chronic (>12 months duration) CRPS patient IgM (but not IgG) caused nociceptive sensitization in muMT fracture mice, but intraplantar injection of chronic CRPS IgM or IgG had no effect. We postulate that CRPS IgM antibodies bind to neoantigens in the fracture limb skin and corresponding spinal cord to activate C5a complement signaling in macrophages and microglia, evoking proinflammatory cytokine expression contributing to nociceptive sensitization in the injured limb.
Collapse
Affiliation(s)
- Xiaoyou Shi
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Tian-zhi Guo
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Wen-wu Li
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Frank Birklein
- Department of Neurology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Fabiola L. Escolano
- Department of Neurology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Myriam Herrnberger
- Department of Neurology, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - J. David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, United States
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, United States
| | - Wade S. Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
16
|
Complex regional pain syndrome patient immunoglobulin M has pronociceptive effects in the skin and spinal cord of tibia fracture mice. Pain 2021; 161:797-809. [PMID: 31815913 DOI: 10.1097/j.pain.0000000000001765] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been proposed that complex regional pain syndrome (CRPS) is a post-traumatic autoimmune disease. Previously, we observed that B cells are required for the full expression of CRPS-like changes in a mouse tibia fracture model and that serum immunoglobulin M (IgM) antibodies from fracture mice have pronociceptive effects in muMT fracture mice lacking B cells. The current study evaluated the pronociceptive effects of injecting CRPS patient serum or antibodies into muMT fracture mice by measuring hind paw allodynia and unweighting changes. Complex regional pain syndrome serum binding was measured against autoantigens previously identified in the fracture mouse model. Both CRPS patient serum or IgM antibodies had pronociceptive effects in the fracture limb when injected systemically in muMT fracture mice, but normal subject serum and CRPS patient IgG antibodies had no effect. Furthermore, CRPS serum IgM antibodies had pronociceptive effects when injected into the fracture limb hind paw skin or intrathecally in the muMT fracture mice. Early (1-12 months after injury) CRPS patient (n = 20) sera were always pronociceptive after systemic injection, and chronic (>12 months after injury) CRPS sera were rarely pronociceptive (2/20 patients), while sera from normal subjects (n = 20) and from patients with uncomplicated recoveries from orthopedic surgery and/or fracture (n = 15) were never pronociceptive. Increased CRPS serum IgM binding was observed for keratin 16, histone 3.2, gamma actin, and alpha enolase autoantigens. We postulate that CRPS patient IgM antibodies bind to neoantigens in the fracture mouse skin and spinal cord to initiate a regionally restricted pronociceptive complement response potentially contributing to the CRPS disease process.
Collapse
|
17
|
Chang C, McDonnell P, Gershwin ME. Complex regional pain syndrome - Autoimmune or functional neurologic syndrome. J Transl Autoimmun 2020; 4:100080. [PMID: 33490941 PMCID: PMC7804982 DOI: 10.1016/j.jtauto.2020.100080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Complex regional pain syndrome (CRPS) purports to explain extremity pain accompanied by a variety of subjective complaints, including sensitivity to touch, fatigue, burning sensations, allodynia and signs consistent with voluntary immobilization, including skin changes, edema and trophic changes. By its own definition, CRPS pain is disproportionate to any inciting event or underlying pathology, which means that the syndrome describes non-anatomic and exaggerated symptoms. Although CRPS was coined in the early 1990s, physicians have described unexplained exaggerated pain for centuries. Before a small group of researchers assigned this historical phenomenon with the name CRPS, other physicians in various subspecialties investigated the existence of a common pathophysiologic mechanism but found none. The literature was searched for evidence of a reproducible pathologic mechanism for CRPS. Although some have suggested that CRPS is an autoimmune disease, there is a paucity of evidence to support this. While cytokines such as IL-1β, IL-6 and TNF-α have been detected during the early phases of CRPS, this cannot lead to the conclusion that CRPS is an autoimmune disease, nor that it is an autoinflammatory disorder. Moreover, intravenous immunoglobulin has showed inconsistent results in the treatment of CRPS. On the other hand, CRPS has been found to meet at least three out of four criteria of malingering, which was previously a DSM-IV diagnosis; and its diagnostic criteria are virtually identical to current DSM-5 Functional Neurological Disorder ("FND"), and proposed ICD-11 classification, which includes FND as a distinct neurological diagnosis apart from any psychiatric condition. Unfortunately, the creation of CPRS is not merely misguided brand marketing. It has serious social and health issues. At least in part, the existence of CRPS has led to the labeling of many patients with a diagnosis that allows the inappropriate use of invasive surgery, addictive opioids, and ketamine. The CRPS hypothesis also ignores the nature and purpose of pain, as a symptom of some organic or psychological process. Physicians have long encountered patients who voice symptoms that cannot be biologically explained. Terminology historically used to describe this phenomenon have been medically unexplained symptoms ("MUS"), hysterical, somatic, non-organic, psychogenic, conversion disorder, or dissociative symptoms. The more recent trend describes disorders where there is a functional, rather than structural cause of the symptoms, as "functional disorders." Physicians report high success treating functional neurological symptoms with reassurance, physiotherapy, and cognitive behavior therapy measured in terms of functional improvement. The CRPS label, however, neither leads to functional improvement in these patients nor resolution of symptoms. Under principles of evidence-based medicine, the CRPS label should be abandoned and the syndrome should simply be considered a subset of FNDs, specifically Functional Pain Disorder; and treated appropriately.
Collapse
Affiliation(s)
- Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA.,Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children's Hospital and Memorial Healthcare System, 1131 N 35th Avenue, Suite 220, Hollywood, FL, 33021, USA
| | | | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| |
Collapse
|
18
|
Effects of Early Life Stress on Bone Homeostasis in Mice and Humans. Int J Mol Sci 2020; 21:ijms21186634. [PMID: 32927845 PMCID: PMC7556040 DOI: 10.3390/ijms21186634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/27/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022] Open
Abstract
Bone pathology is frequent in stressed individuals. A comprehensive examination of mechanisms linking life stress, depression and disturbed bone homeostasis is missing. In this translational study, mice exposed to early life stress (MSUS) were examined for bone microarchitecture (μCT), metabolism (qPCR/ELISA), and neuronal stress mediator expression (qPCR) and compared with a sample of depressive patients with or without early life stress by analyzing bone mineral density (BMD) (DXA) and metabolic changes in serum (osteocalcin, PINP, CTX-I). MSUS mice showed a significant decrease in NGF, NPYR1, VIPR1 and TACR1 expression, higher innervation density in bone, and increased serum levels of CTX-I, suggesting a milieu in favor of catabolic bone turnover. MSUS mice had a significantly lower body weight compared to control mice, and this caused minor effects on bone microarchitecture. Depressive patients with experiences of childhood neglect also showed a catabolic pattern. A significant reduction in BMD was observed in depressive patients with childhood abuse and stressful life events during childhood. Therefore, future studies on prevention and treatment strategies for both mental and bone disease should consider early life stress as a risk factor for bone pathologies.
Collapse
|
19
|
Xu X, Tao X, Huang P, Lin F, Liu Q, Xu L, Xu J, Huang Y. N-methyl-d-aspartate receptor subunit 2B on keratinocyte mediates peripheral and central sensitization in chronic post-ischemic pain in male rats. Brain Behav Immun 2020; 87:579-590. [PMID: 32032782 PMCID: PMC8922412 DOI: 10.1016/j.bbi.2020.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
The spinal N-methyl-d-aspartate (NMDA) receptor, and particularly its NR2B subunit, plays a pivotal role in neuropathic pain. However, the role of peripheral NMDA receptor in neuropathic pain is less well understood. We first treated cultured human keratinocytes, HaCaT cells with NMDA or NR2B-specific antagonist, ifenprodil and evaluated the level of total and phosphorylated NR2B at 24 h using Western blot. Next, using the chronic post-ischemia pain (CPIP) model, we administered NMDA or ifenprodil subcutaneously into the hind paws of male rats. Nociceptive behaviors were assessed by measuring mechanical and thermal withdrawal thresholds. Expression and phosphorylation of NR2B on keratinocyte were analyzed at 6, 12, 18, and 24 h on day 1 (initiation of pain) as well as day 2, 6, 10 and 14 (development and maintenance of pain) after the ischemia. The level of peripheral sensitization-related proteins (nuclear factor-κB (NF-κB), extracellular regulated protein kinases (ERK), and interleukin-1β (IL-1β)) in epidermis and dorsal root ganglion (DRG) were evaluated by immunofluorescence and western blot. Central sensitization-related C-fos induction, as well as astrocytes and microglia activation in the spinal cord dorsal horn (SDH) were studied using immunofluorescence. Administration of NMDA upregulated NR2B phosphorylation on HaCaT cells. CPIP-induced mechanical allodynia and thermal hyperalgesia were intensified by NMDA and alleviated by ifenprodil. CPIP resulted in an early upregulation of NR2B (peaked at 24 h) and late phosphorylation of NR2B (peaked at 14d) in hindpaw keratinocytes. CPIP led to an upregulation and phosphorylation of NF-κB and ERK, as well as an increased IL-1β production in the ipsilateral skin and DRG. CPIP-associated c-fos induction in SDH persisted from acute to chronic stages after ischemia, while microglia and astrocyte activation were only observed in chronic phase. These CPIP-induced changes were also suppressed by ifenprodil administered subcutaneously in the hind paw. Our findings reveal a previously unrecognized role of keratinocyte NMDA receptor subunit 2B in peripheral and central nociceptive sensitization induced by CPIP.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Xin Tao
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China,Department of Infectious Disease, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong 510515, China
| | - Ping Huang
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Qing Liu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China.
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States.
| | - Yuguang Huang
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
20
|
Tajerian M, Alvarado SG, Clark JD. Differential olfactory bulb methylation and hydroxymethylation are linked to odor location memory bias in injured mice. Mol Pain 2020; 15:1744806919873475. [PMID: 31407613 PMCID: PMC6712758 DOI: 10.1177/1744806919873475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is often linked to comorbidities such as anxiety and cognitive dysfunction, alterations that are reflected in brain plasticity in regions such as the prefrontal cortex and the limbic area. Despite the growing interest in pain-related cognitive deficits, little is known about the relationship between the emotional valence of the stimulus and the salience of its memory following painful injuries. We used the tibia fracture model of chronic pain in mice to determine whether pleasant and unpleasant odor location memories differ in their salience seven weeks following the onset of the painful injury. Our results indicate that injured mice show a bias toward recalling unpleasant memories, thereby propagating the vicious cycle of chronic pain and negative affect. Next, we linked these behavioral differences to mechanisms of molecular plasticity by measuring the levels of global methylation and hydroxymethylation in the olfactory bulb. Compared to controls, global methylation levels were shown to be increased, while hydroxymethylation levels were decreased in the olfactory bulb of injured mice, indicative of overall changes in DNA regulation machinery and the subsequent alterations in sensory systems.
Collapse
Affiliation(s)
- Maral Tajerian
- 1 Department of Biology, Queens College, City University of New York, Queens, NY, USA
| | - Sebastian G Alvarado
- 1 Department of Biology, Queens College, City University of New York, Queens, NY, USA
| | - J David Clark
- 2 Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,3 Department of Anesthesiology, Stanford University School of Medicine, Stanford, CA, USA.,4 Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
21
|
Morphine Exacerbates Postfracture Nociceptive Sensitization, Functional Impairment, and Microglial Activation in Mice. Anesthesiology 2019; 130:292-308. [PMID: 30418215 DOI: 10.1097/aln.0000000000002495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Emerging evidence suggests that opioid use immediately after surgery and trauma may worsen outcomes. In these studies, the authors aimed to determine whether morphine administered for a clinically relevant time period (7 days) in a tibia fracture orthopedic surgery model had adverse effects on postoperative recovery. METHODS Mice were given morphine twice daily for 7 days after unilateral tibial fracture and intramedullary pin fixation to model orthopedic surgery and limb trauma. Mechanical allodynia, limb-specific weight bearing, gait changes, memory, and anxiety were measured after injury. In addition, spinal cord gene expression changes as well as glial activation were measured. Finally, the authors assessed the effects of a selective Toll-like receptor 4 antagonist, TAK-242, on nociceptive and functional changes after injury. RESULTS Tibial fracture caused several weeks of mechanical nociceptive sensitization (F(1, 216) = 573.38, P < 0.001, fracture + vehicle vs. sham + vehicle, n = 10 per group), and this change was exacerbated by the perioperative administration of morphine (F(1, 216) = 71.61, P < 0.001, fracture + morphine vs. fracture + vehicle, n = 10 per group). In additional testing, injured limb weight bearing, gait, and object location memory were worse in morphine-treated fracture mice than in untreated fracture mice. Postfracture expression levels of several genes previously associated with opioid-induced hyperalgesia, including brain-derived neurotrophic factor and prodynorphin, were unchanged, but neuroinflammation involving Toll-like receptor 4 receptor-expressing microglia was observed (6.8 ± 1.5 [mean ± SD] cells per high-power field for fracture + vehicle vs. 12 ± 2.8 fracture + morphine, P < 0.001, n = 8 per /group). Treatment with a Toll-like receptor 4 antagonist TAK242 improved nociceptive sensitization for about 2 weeks in morphine-treated fracture mice (F(1, 198) = 73.36, P < 0.001, fracture + morphine + TAK242 vs. fracture + morphine, n = 10 per group). CONCLUSIONS Morphine treatment beginning at the time of injury impairs nociceptive recovery and other outcomes. Measures preventing glial activation through Toll-like receptor 4 signaling may reduce the adverse consequences of postoperative opioid administration.
Collapse
|
22
|
Guo TZ, Shi X, Li WW, Wei T, Clark JD, Kingery WS. Sex differences in the temporal development of pronociceptive immune responses in the tibia fracture mouse model. Pain 2019; 160:2013-2027. [PMID: 31033779 PMCID: PMC6699904 DOI: 10.1097/j.pain.0000000000001592] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previously, distinct sex differences were observed in the pronociceptive role of spinal immune cells in neuropathic and inflammatory mouse pain models. Both peripheral and central innate and adaptive immune changes contribute to sensitization in the tibia fracture rodent model of complex regional pain syndrome, and the current study evaluated sex differences in the development of pronociceptive immune responses after fracture. At 4 and 7 weeks after fracture, the analgesic effects of a microglia inhibitor were tested in male and female mice, and polymerase chain reaction was used to measure inflammatory mediator expression in skin and spinal cord. The temporal progression of complex regional pain syndrome-like changes in male and female wild-type and muMT fracture mice lacking B cells and antibodies were evaluated, and IgM antibody deposition measured. Pronociceptive effects of injecting wild-type fracture mouse serum into muMT fracture mice were also tested in both sexes, and the role of sex hormones was evaluated in the postfracture development of pronociceptive immune responses. Long-lasting immune changes developed in the fracture limb and corresponding spinal cord of both male and female mice, including upregulated neuropeptide and cytokine signaling, microglial activation, and pronociceptive autoimmunity. These complex postfracture immune responses were sexually dichotomous and interacted in temporally evolving patterns that generated post-traumatic nociceptive sensitization in both sexes lasting for up to 5 months. Unfortunately, the redundancy and plasticity of these chronic post-traumatic immune responses suggest that clinical interventions focusing on any single specific pronociceptive immune change are likely to be ineffectual.
Collapse
Affiliation(s)
- Tian-zhi Guo
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Xiaoyou Shi
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, and Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| | - Wen-wu Li
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, and Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - J. David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System Palo Alto, CA, and Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| | - Wade S. Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
23
|
Brazill JM, Beeve AT, Craft CS, Ivanusic JJ, Scheller EL. Nerves in Bone: Evolving Concepts in Pain and Anabolism. J Bone Miner Res 2019; 34:1393-1406. [PMID: 31247122 PMCID: PMC6697229 DOI: 10.1002/jbmr.3822] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022]
Abstract
The innervation of bone has been described for centuries, and our understanding of its function has rapidly evolved over the past several decades to encompass roles of subtype-specific neurons in skeletal homeostasis. Current research has been largely focused on the distribution and function of specific neuronal populations within bone, as well as their cellular and molecular relationships with target cells in the bone microenvironment. This review provides a historical perspective of the field of skeletal neurobiology that highlights the diverse yet interconnected nature of nerves and skeletal health, particularly in the context of bone anabolism and pain. We explore what is known regarding the neuronal subtypes found in the skeleton, their distribution within bone compartments, and their central projection pathways. This neuroskeletal map then serves as a foundation for a comprehensive discussion of the neural control of skeletal development, homeostasis, repair, and bone pain. Active synthesis of this research recently led to the first biotherapeutic success story in the field. Specifically, the ongoing clinical trials of anti-nerve growth factor therapeutics have been optimized to titrated doses that effectively alleviate pain while maintaining bone and joint health. Continued collaborations between neuroscientists and bone biologists are needed to build on this progress, leading to a more complete understanding of neural regulation of the skeleton and development of novel therapeutics. © 2019 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer M Brazill
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA
| | - Alec T Beeve
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Clarissa S Craft
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Erica L Scheller
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
24
|
Exercise Reverses Nociceptive Sensitization, Upregulated Neuropeptide Signaling, Inflammatory Changes, Anxiety, and Memory Impairment in a Mouse Tibia Fracture Model. Anesthesiology 2019; 129:557-575. [PMID: 29994924 DOI: 10.1097/aln.0000000000002332] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: This study tested the hypothesis that ad lib running wheel exercise in a tibia fracture model of complex regional pain syndrome can reverse hindlimb nociceptive sensitization and inflammation in mice. METHODS Three weeks after tibia fracture, the cast was removed and hindlimb von Frey thresholds and unweighting were tested; the mice were then randomized to either ad lib access to a running wheel for 4 weeks or no wheel access. After 4 weeks the behavioral testing was repeated and then skin, sciatic nerve, and spinal cord tissues collected for polymerase chain reaction and enzyme immunoassay measurements of neuropeptide and inflammatory mediator levels. A similar protocol was used in fracture mice treated with exercise for 4 weeks, and then the running wheel was removed for 2 weeks. Memory and anxiety were measured in both groups with use of open-field, zero-maze, and novel-objects recognition assays. RESULTS At 7 weeks postfracture the mice with no wheel access exhibited hindlimb allodynia and unweighting, anxiety, memory loss, upregulated spinal neuropeptide signaling, and increased hind paw and spinal inflammatory mediator expression, but the postfracture mice allowed to exercise for 4 weeks exhibited none of these changes (n = 12/cohort). When exercise was stopped for 2 weeks after 4 weeks of running, hindlimb allodynia and unweighting were rekindled, and this nociceptive sensitization was associated with increased sciatic nerve neuropeptide levels and hind paw skin interleukin 6 and nerve growth factor expression (n = 12/cohort). CONCLUSIONS Daily exercise reversed nociceptive sensitization, inflammation, anxiety, and memory loss after tibia fracture.
Collapse
|
25
|
Abstract
CGRP has long been suspected as a mediator of arthritis pain, although evidence that CGRP directly mediates human musculoskeletal pain remains circumstantial. This chapter describes in depth the evidence surrounding CGRP's association with pain in musculoskeletal disorders and also summarises evidence for CGRP being a direct cause of pain in other conditions. CGRP-immunoreactive nerves are present in musculoskeletal tissues, and CGRP expression is altered in musculoskeletal pain. CGRP modulates musculoskeletal pain through actions both in the periphery and central nervous system. Human observational studies, research on animal arthritis models and the few reported randomised controlled trials in humans of treatments that target CGRP provide the context of CGRP as a possible pain biomarker or mediator in conditions other than migraine.
Collapse
Affiliation(s)
- David A Walsh
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre and Division of ROD, University of Nottingham, Nottingham, UK.
- Rheumatology, Sherwood Forest Hospitals NHS Foundation Trust, Nottinghamshire, UK.
| | - Daniel F McWilliams
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre and Division of ROD, University of Nottingham, Nottingham, UK
| |
Collapse
|
26
|
Gutierrez S, Alvarado-Vázquez PA, Eisenach JC, Romero-Sandoval EA, Boada MD. Tachykinins modulate nociceptive responsiveness and sensitization: In vivo electrical characterization of primary sensory neurons in tachykinin knockout (Tac1 KO) mice. Mol Pain 2019; 15:1744806919845750. [PMID: 31012376 PMCID: PMC6505240 DOI: 10.1177/1744806919845750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 01/08/2023] Open
Abstract
Since the failure of specific substance P antagonists to induce analgesia, the role of tachykinins in the development of neuropathic pain states has been discounted. This conclusion was reached without studies on the role of tachykinins in normal patterns of primary afferents response and sensitization or the consequences of their absence on the modulation of primary mechanonociceptive afferents after injury. Nociceptive afferents from animals lacking tachykinins (Tac1 knockout) showed a disrupted pattern of activation to tonic suprathreshold mechanical stimulation. These nociceptors failed to encode the duration and magnitude of natural pronociceptive stimuli or to develop mechanical sensitization as consequence of this stimulation. Moreover, paw edema, hypersensitivity, and weight bearing were also reduced in Tac1 knockout mice 24 h after paw incision surgery. At this time, nociceptive afferents from these animals did not show the normal sensitization to mechanical stimulation or altered membrane electrical hyperexcitability as observed in wild-type animals. These changes occurred despite a similar increase in calcitonin gene-related peptide immunoreactivity in sensory neurons in Tac1 knockout and normal mice. Based on these observations, we conclude that tachykinins are critical modulators of primary nociceptive afferents, with a preeminent role in the electrical control of their excitability with sustained activation or injury.
Collapse
Affiliation(s)
| | | | | | | | - M Danilo Boada
- Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
27
|
Sahbaie P, Tajerian M, Yang P, Irvine KA, Huang TT, Luo J, Wyss-Coray T, Clark JD. Nociceptive and Cognitive Changes in a Murine Model of Polytrauma. THE JOURNAL OF PAIN 2018; 19:1392-1405. [DOI: 10.1016/j.jpain.2018.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022]
|
28
|
Birklein F, Ibrahim A, Schlereth T, Kingery WS. The Rodent Tibia Fracture Model: A Critical Review and Comparison With the Complex Regional Pain Syndrome Literature. THE JOURNAL OF PAIN 2018; 19:1102.e1-1102.e19. [PMID: 29684510 PMCID: PMC6163066 DOI: 10.1016/j.jpain.2018.03.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/28/2018] [Accepted: 03/30/2018] [Indexed: 12/23/2022]
Abstract
Distal limb fracture is the most common cause of complex regional pain syndrome (CRPS), thus the rodent tibia fracture model (TFM) was developed to study CRPS pathogenesis. This comprehensive review summarizes the published TFM research and compares these experimental results with the CRPS literature. The TFM generated spontaneous and evoked pain behaviors, inflammatory symptoms (edema, warmth), and trophic changes (skin thickening, osteoporosis) resembling symptoms in early CRPS. Neuropeptides, inflammatory cytokines, and nerve growth factor (NGF) have been linked to pain behaviors, inflammation, and trophic changes in the TFM model and proliferating keratinocytes were identified as the primary source of cutaneous cytokines and NGF. Tibia fracture also activated spinal glia and upregulated spinal neuropeptide, cytokine, and NGF expression, and in the brain it changed dendritic architecture. B cell-expressed immunoglobulin M antibodies also contributed to pain behavior, indicating a role for adaptive immunity. These results modeled many findings in early CRPS, but significant differences were also noted. PERSPECTIVE Multiple neuroimmune signaling mechanisms contribute to the pain, inflammation, and trophic changes observed in the injured limb of the rodent TFM. This model replicates many of the symptoms, signs, and pathophysiology of early CRPS, but most post-fracture changes resolve within 5 months and may not contribute to perpetuating chronic CRPS.
Collapse
Affiliation(s)
- Frank Birklein
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Alaa Ibrahim
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Tanja Schlereth
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California.
| |
Collapse
|
29
|
David Clark J, Tawfik VL, Tajerian M, Kingery WS. Autoinflammatory and autoimmune contributions to complex regional pain syndrome. Mol Pain 2018; 14:1744806918799127. [PMID: 30124090 PMCID: PMC6125849 DOI: 10.1177/1744806918799127] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Complex regional pain syndrome (CRPS) is a highly enigmatic syndrome typically developing after injury or surgery to a limb. Severe pain and disability are common among those with chronic forms of this condition. Accumulating evidence suggests that CRPS may involve both autoinflammatory and autoimmune components. In this review article, evidence for dysfunction of both the innate and adaptive immune systems in CRPS is presented. Findings from human studies in which cytokines and other inflammatory mediators were measured in the skin of affected limbs are discussed. Additional results from studies of mediator levels in animal models are evaluated in this context. Similarly, the evidence from human, animal, and translational studies of the production of autoantibodies and the potential targets of those antibodies is reviewed. Compelling evidence of autoinflammation in skin and muscle of the affected limb has been collected from CRPS patients and laboratory animals. Cytokines including IL-1β, IL-6, TNFα, and others are reliably identified during the acute phases of the syndrome. More recently, autoimmune contributions have been suggested by the discovery of self-directed pain-promoting IgG and IgM antibodies in CRPS patients and model animals. Both the autoimmune and the autoinflammatory components of CRPS appear to be regulated by neuropeptide-containing peripheral nerve fibers and the sympathetic nervous system. While CRPS displays a complex neuroimmunological pathogenesis, therapeutic interventions could be designed targeting autoinflammation, autoimmunity, or the neural support for these phenomena.
Collapse
Affiliation(s)
- J David Clark
- 1 Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vivianne L Tawfik
- 2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Maral Tajerian
- 2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wade S Kingery
- 3 Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
30
|
Abstract
It has been proposed that complex regional pain syndrome (CRPS) is a posttraumatic autoimmune disease, and we previously observed that B cells are required for the full expression of CRPS-like changes in a mouse tibia fracture CRPS model. The current study used the mouse model to evaluate the progression of postfracture CRPS-like changes in wild-type (WT) and muMT fracture mice lacking B cells and antibodies. The pronociceptive effects of injecting WT fracture mouse serum antibodies into muMT fracture mice were also evaluated. Postfracture pain behaviors transitioned from being initially dependent on both innate and autoimmune inflammatory mechanisms at 3 weeks after fracture to being entirely mediated by antibody responses at 12 weeks after fracture and spontaneously resolving by 21 weeks after fracture. Furthermore, serum IgM antibodies from WT fracture mice had pronociceptive effects in the fracture limb when injected into muMT fracture mice. IgM antibody levels gradually increased in the fracture limb hind paw skin, sciatic nerve, and corresponding lumbar cord, peaking at 12 to 18 weeks after fracture and then declining. Immunohistochemistry localized postfracture IgM antibody binding to antigens in the fracture limb hind paw dermal cell nuclei. We postulate that fracture induces expression of neoantigens in the fracture limb skin, sciatic nerve, and cord, which trigger B cells to secret IgM antibodies that bind those antigens and initiate a pronociceptive antibody response. Autoimmunity plays a key role in the progression of nociceptive and vascular changes in the mouse fracture model and potentially contributes to the CRPS disease process.
Collapse
|
31
|
Guo TZ, Wei T, Huang TT, Kingery WS, Clark JD. Oxidative Stress Contributes to Fracture/Cast-Induced Inflammation and Pain in a Rat Model of Complex Regional Pain Syndrome. THE JOURNAL OF PAIN 2018; 19:1147-1156. [PMID: 29715519 DOI: 10.1016/j.jpain.2018.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/02/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
Clinical evidence suggests that vitamin C (Vit C) may protect against the development of complex regional pain syndrome (CRPS) after fracture or surgery. Tibia fracture followed by 4 weeks of cast immobilization (fracture/cast) in rats results in nociceptive, vascular, and bone changes resembling clinical CRPS. In this study, fracture/cast rats were treated with the oxidative stress inhibitors Vit C, N-acetyl cysteine, or 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl to examine their effects on CRPS-related nociceptive and vascular changes. Administration of these agents significantly reduced fracture/cast-induced cutaneous allodynia by 64 to 78%, muscle hyperalgesia by 34 to 40%, and hind limb unweighting by 48 to 89%. Treatments with Vit C and N-acetyl cysteine reduced the oxidative stress markers malondialdehyde in the skin, muscle, and sciatic nerve, and lactate in the gastrocnemius muscle of the fracture/cast limb. Furthermore, Vit C treatment inhibited the post-fracture upregulation of substance P and calcitonin gene-related peptide in the sciatic nerve and the increased expression of the pain-related inflammatory mediators, including interleukin (IL)-6, and nerve growth factor in the skin and IL-1β, and IL-6 in the muscle of the post-fracture/cast limb. These data suggest that oxidative stress may contribute to the nociceptive features of the rat CRPS model. PERSPECTIVE Vit C reduced the CRPS-like signs, oxidative stress, and the upregulation of neuropeptide production and inflammatory mediators observed after tibia fracture and casting in rats. Limiting oxidative stress by use of Vit C or alternative strategies could reduce the risk of developing CRPS after surgery or other forms of trauma.
Collapse
Affiliation(s)
- Tian-Zhi Guo
- Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, Palo Alto, California.
| | - Ting-Ting Huang
- Department of Neurology, Stanford University School of Medicine, Stanford, California; Health Science, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Palo Alto, California
| | - John David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Department of Anesthesiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
32
|
Li WW, Guo TZ, Shi X, Birklein F, Schlereth T, Kingery WS, Clark JD. Neuropeptide regulation of adaptive immunity in the tibia fracture model of complex regional pain syndrome. J Neuroinflammation 2018; 15:105. [PMID: 29642930 PMCID: PMC5896028 DOI: 10.1186/s12974-018-1145-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/02/2018] [Indexed: 11/17/2022] Open
Abstract
Background Both dysfunctional neuropeptide signaling and immune system activation are characteristic of complex regional pain syndrome (CRPS). Unknown is whether substance P (SP) or calcitonin gene-related peptide (CGRP) support autoantibody production and, consequently, nociceptive sensitization. Methods These experiments involved the use of a well-characterized tibia fracture model of CRPS. Mice deficient in SP expression (Tac1−/−) and CGRP signaling (RAMP1−/−) were used to probe the neuropeptide dependence of post-fracture sensitization and antibody production. The deposition of IgM in the spinal cord, sciatic nerves, and skin was followed using Western blotting, as was expression of the CRPS-related autoantigen cytokeratin 16 (Krt16). Passive serum transfer to B-cell-deficient muMT mice was used to assess the production of functional autoantibodies in CRPS model mice. The use of immunohistochemistry allowed us to assess neuropeptide-containing fiber distribution and Langerhans cell abundance in mouse and human CRPS patient skin, while Langerhans cell-deficient mice were used to assess the functional contributions of these cells. Results Functional SP and CGRP signaling were required both for the full development of nociceptive sensitization after fracture and the deposition of IgM in skin and neural tissues. Furthermore, the passive transfer of serum from wildtype but not neuropeptide-deficient mice to fractured muMT mice caused enhanced allodynia and postural unweighting. Langerhans cells were increased in number in the skin of fracture mice and CRPS patients, and those increases in mice were reduced in neuropeptide signaling-deficient animals. Unexpectedly, Langerhans cell-deficient mice showed normal nociceptive sensitization after fracture. However, the increased expression of Krt16 after tibia fracture was not seen in neuropeptide-deficient mice. Conclusions Collectively, these data support the hypothesis that neuropeptide signaling in the fracture limb of mice is required for autoantigenic IgM production and nociceptive sensitization. The mechanism may be related to neuropeptide-supported autoantigen expression.
Collapse
Affiliation(s)
- Wen-Wu Li
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA
| | - Tian-Zhi Guo
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Xiaoyou Shi
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA
| | - Frank Birklein
- Department of Neurology, University Medical Center, Mainz, Germany
| | - Tanja Schlereth
- Department of Neurology, University Medical Center, Mainz, Germany.,Department of Neurology, DKD Helios Klinik Wiesbaden, Wiesbaden, Germany
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - J David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. .,Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
33
|
Udit S, Burton M, Rutkowski JM, Lee S, Bookout AL, Scherer PE, Elmquist JK, Gautron L. Na v1.8 neurons are involved in limiting acute phase responses to dietary fat. Mol Metab 2017; 6:1081-1091. [PMID: 29031710 PMCID: PMC5641637 DOI: 10.1016/j.molmet.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE AND METHODS Metabolic viscera and their vasculature are richly innervated by peripheral sensory neurons. Here, we examined the metabolic and inflammatory profiles of mice with selective ablation of all Nav1.8-expressing primary afferent neurons. RESULTS While mice lacking sensory neurons displayed no differences in body weight, food intake, energy expenditure, or body composition compared to controls on chow diet, ablated mice developed an exaggerated inflammatory response to high-fat feeding characterized by bouts of weight loss, splenomegaly, elevated circulating interleukin-6 and hepatic serum amyloid A expression. This phenotype appeared to be directly mediated by the ingestion of saturated lipids. CONCLUSIONS These data demonstrate that the Nav1.8-expressing afferent neurons are not essential for energy balance but are required for limiting the acute phase response caused by an obesogenic diet.
Collapse
Affiliation(s)
- Swalpa Udit
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Michael Burton
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Joseph M Rutkowski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Angie L Bookout
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA.
| | - Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA.
| |
Collapse
|
34
|
König S, Schlereth T, Birklein F. Molecular signature of complex regional pain syndrome (CRPS) and its analysis. Expert Rev Proteomics 2017; 14:857-867. [DOI: 10.1080/14789450.2017.1366859] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | | | | |
Collapse
|
35
|
Wang L, Guo TZ, Hou S, Wei T, Li WW, Shi X, Clark JD, Kingery WS. Bisphosphonates Inhibit Pain, Bone Loss, and Inflammation in a Rat Tibia Fracture Model of Complex Regional Pain Syndrome. Anesth Analg 2017; 123:1033-45. [PMID: 27636578 DOI: 10.1213/ane.0000000000001518] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Bisphosphonates are used to prevent the bone loss and fractures associated with osteoporosis, bone metastases, multiple myeloma, and osteogenesis deformans. Distal limb fractures cause regional bone loss with cutaneous inflammation and pain in the injured limb that can develop into complex regional pain syndrome (CRPS). Clinical trials have reported that antiresorptive bisphosphonates can prevent fracture-induced bone loss, inhibit serum inflammatory cytokine levels, and alleviate CRPS pain. Previously, we observed that the inhibition of inflammatory cytokines or adaptive immune responses attenuated the development of pain behavior in a rat fracture model of CRPS, and we hypothesized that bisphosphonates could prevent pain behavior, trabecular bone loss, postfracture cutaneous cytokine upregulation, and adaptive immune responses in this CRPS model. METHODS Rats underwent tibia fracture and cast immobilization for 4 weeks and were chronically administered either subcutaneously perfused alendronate or oral zoledronate. Behavioral measurements included hindpaw von Frey allodynia, unweighting, warmth, and edema. Bone microarchitecture was measured by microcomputed tomography, and bone cellular activity was evaluated by static and dynamic histomorphometry. Spinal cord Fos immunostaining was performed, and skin cytokine (tumor necrosis factor, interleukin [IL]-1, IL-6) and nerve growth factor (NGF) levels were determined by enzyme immunoassay. Skin and sciatic nerve immunoglobulin levels were determined by enzyme immunoassay. RESULTS Rats with tibia fractures developed hindpaw allodynia, unweighting, warmth, and edema, increased spinal Fos expression and trabecular bone loss in the lumbar vertebra and bilateral distal femurs as measured by microcomputed tomography, increased trabecular bone resorption and osteoclast surface with decreased bone formation rates, increased cutaneous inflammatory cytokine and NGF expression, and elevated immunocomplex deposition in skin and nerve. Alendronate (60 μg/kg/d subcutaneously [s.c.]) or zoledronate (3 mg/kg/d orally) treatment for 28 days, started at the time of fracture, completely inhibited the development of hindpaw allodynia and reduced hindpaw unweighting by 44% ± 13% and 58% ± 5%, respectively. Orally administered zoledronate (3 mg/kg/d for 21 days) treatment also completely reversed established allodynia and unweighting when started at 4 weeks postfracture. Histomorphometric and microcomputed tomography analysis demonstrated that both the 3 and 60 μg/kg/d alendronate treatments reversed trabecular bone loss (an 88% ± 25% and 188% ± 39% increase in the ipsilateral distal femur BV/TV, respectively) and blocked the increase in osteoclast numbers and erosion surface observed in bilateral distal femurs and in L5 vertebra of the fracture rats. Alendronate treatment inhibited fracture-induced increases in hindpaw inflammatory mediators, reducing postfracture levels of tumor necrosis factor by 43% ± 9%, IL-1 by 60% ± 9%, IL-6 by 56% ± 14%, and NGF by 37% ± 14%, but had no effect on increased spinal cord Fos expression, or skin and sciatic nerve immunocomplex deposition. CONCLUSIONS Collectively, these results indicate that bisphosphonate therapy inhibits pain, osteoclast activation, trabecular bone loss, and cutaneous inflammation in the rat fracture model of CRPS, data supporting the hypothesis that bisphosphonate therapy can provide effective multimodal treatment for CRPS.
Collapse
Affiliation(s)
- Liping Wang
- From the *Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; †Department of Anesthesiology, Stanford University School of Medicine, Stanford, California; and ‡Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Craft CS, Scheller EL. Evolution of the Marrow Adipose Tissue Microenvironment. Calcif Tissue Int 2017; 100:461-475. [PMID: 27364342 PMCID: PMC5618436 DOI: 10.1007/s00223-016-0168-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/21/2016] [Indexed: 12/29/2022]
Abstract
Adipocytes of the marrow adipose tissue (MAT) are distributed throughout the skeleton, are embedded in extracellular matrix, and are surrounded by cells of the hematopoietic and osteogenic lineages. MAT is a persistent component of the skeletal microenvironment and has the potential to impact local processes including bone accrual and hematopoietic function. In this review, we discuss the initial evolution of MAT in vertebrate lineages while emphasizing comparisons to the development of peripheral adipose, hematopoietic, and skeletal tissues. We then apply these evolutionary clues to define putative functions of MAT. Lastly, we explore the regulation of MAT by two major components of its microenvironment, the extracellular matrix and the nerves embedded within. The extracellular matrix and nerves contribute to both rapid and continuous modification of the MAT niche and may help to explain evolutionary conserved mechanisms underlying the coordinated regulation of blood, bone, and MAT within the skeleton.
Collapse
Affiliation(s)
- Clarissa S Craft
- Department of Cell Biology & Physiology, Washington University, Saint Louis, MO, 63110, USA
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University, Saint Louis, MO, 63110, USA
| | - Erica L Scheller
- Department of Cell Biology & Physiology, Washington University, Saint Louis, MO, 63110, USA.
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University, Saint Louis, MO, 63110, USA.
| |
Collapse
|
37
|
Hay DL, Walker CS. CGRP and its receptors. Headache 2017; 57:625-636. [PMID: 28233915 DOI: 10.1111/head.13064] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 02/01/2023]
Abstract
The calcitonin gene-related peptide (CGRP) neuropeptide system is an important but still evolving target for migraine. A fundamental consideration for all of the current drugs in clinical trials and for ongoing development in this area is the identity, expression pattern, and function of CGRP receptors because this knowledge informs safety and efficacy considerations. In recent years, only the calcitonin receptor-like receptor/receptor activity-modifying protein 1 (RAMP1) complex, known as the CGRP receptor, has generally been considered relevant. However, CGRP is capable of activating multiple receptors and could have more than one endogenous receptor. The recent identification of the CGRP-responsive calcitonin receptor/RAMP1 complex (AMY1 receptor - amylin subtype 1 receptor) in the trigeminovascular system warrants a deeper consideration of the molecular identity of CGRP receptor(s) involved in the pathophysiology, and thus potential treatment of migraine. This perspective considers some of the issues and implications.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Hirsch S, Ibrahim A, Krämer L, Escolano-Lozano F, Schlereth T, Birklein F. Bone Trauma Causes Massive but Reversible Changes in Spinal Circuitry. THE JOURNAL OF PAIN 2017; 18:468-476. [PMID: 28062308 DOI: 10.1016/j.jpain.2016.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/06/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022]
Abstract
Bone fracture with subsequent immobilization of the injured limb can cause complex regional pain syndrome (CRPS) in humans. Mechanisms of CRPS are still not completely understood but bone fracture with casting in mice leads to a similar post-traumatic inflammation as seen in humans and might therefore be an analog to human CRPS. In this article we report behavioral and spinal electrophysiological changes in mice that developed swelling of the paw, warming of the skin, and pain in the injured limb after bone fracture. The receptive field sizes of spinal neurons representing areas of the hind paws increased after trauma and recovered over time-as did the behavioral signs of inflammation and pain. Interestingly, both sides-the ipsi- and the contralateral limb-showed changes in mechanical sensitivity and neuronal network organization after the trauma. The characteristics of evoked neuronal responses recorded in the dorsal horn of the mice were similar between uninjured controls and fractured animals. However, we saw a caudal extension of the represented area of the hind paw in the spinal cord at the injured side and an occurrence of large receptive fields of wide dynamic range neurons. The findings in mice compare with human symptoms in CRPS with ipsi- and also contralateral allodynia and pain. In all mice tested, all signs subsided 12 weeks after trauma. Our data suggest a significant reorganization of spinal circuitry after limb trauma, in a degree more comprehensive than most models of neuropathies. This process seems to be reversible in the rodent. PERSPECTIVE The discovery of enlarged spinal neuronal receptive fields and caudal extension of the representation area of the injured body part, which subsides several weeks after a bone trauma in mice, might give hope to patients of CRPS if-in the future-we are able to translate the rodent recovery mechanisms to post-traumatic humans.
Collapse
Affiliation(s)
- Silke Hirsch
- Department of Neurology, University of Mainz, Mainz, Germany.
| | - Alaa Ibrahim
- Department of Neurology, University of Mainz, Mainz, Germany
| | - Laura Krämer
- Department of Neurology, University of Mainz, Mainz, Germany
| | | | - Tanja Schlereth
- Department of Neurology, University of Mainz, Mainz, Germany
| | - Frank Birklein
- Department of Neurology, University of Mainz, Mainz, Germany
| |
Collapse
|
39
|
Facilitated spinal neuropeptide signaling and upregulated inflammatory mediator expression contribute to postfracture nociceptive sensitization. Pain 2016; 156:1852-1863. [PMID: 25932690 PMCID: PMC4578973 DOI: 10.1097/j.pain.0000000000000204] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinal neuropeptide signaling and inflammatory mediator expression supports nociceptive sensitization in a fracture model of complex regional pain syndrome. Tibia fracture induces exaggerated substance P (SP) and calcitonin gene–related peptide (CGRP) signaling and neuropeptide-dependent nociceptive and inflammatory changes in the hind limbs of rats similar to those seen in complex regional pain syndrome. Inflammatory changes in the spinal cord contribute to nociceptive sensitization in a variety of animal pain models. This study tested the hypothesis that fracture-induced exaggerated neuropeptide signaling upregulates spinal inflammatory mediator expression, leading to postfracture hind limb nociceptive sensitization. At 4 weeks after performing tibia fracture and casting in rats, we measured hind limb allodynia, unweighting, warmth, edema, and spinal cord neuropeptide and inflammatory mediator content. The antinociceptive effects of intrathecally injected neuropeptide and inflammatory mediator receptor antagonists were evaluated in fracture rats. Transgenic fracture mice lacking SP or the CGRP RAMP1 receptor were used to determine the effects of neuropeptide signaling on postfracture pain behavior and spinal inflammatory mediator expression. Hind limb allodynia, unweighting, warmth, edema, increased spinal SP and CGRP, and increased spinal inflammatory mediator expression (TNF, IL-1, IL-6, CCL2, and nerve growth factor) were observed at 4 weeks after fracture in rats. Fracture-induced increases in spinal inflammatory mediators were not observed in fracture mice lacking SP or the CGRP receptor, and these mice had attenuated postfracture nociceptive sensitization. Intrathecal injection of selective receptor antagonists for SP, CGRP, TNF, IL-1, IL-6, CCL2, or nerve growth factor each reduced pain behaviors in the fracture rats. Collectively, these data support the hypothesis that facilitated spinal neuropeptide signaling upregulates the expression of spinal inflammatory mediators contributing to nociceptive sensitization in a rodent fracture model of complex regional pain syndrome.
Collapse
|
40
|
Differential Efficacy of Ketamine in the Acute versus Chronic Stages of Complex Regional Pain Syndrome in Mice. Anesthesiology 2016; 123:1435-47. [PMID: 26492479 DOI: 10.1097/aln.0000000000000889] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a painful, disabling, and often chronic condition, where many patients transition from an acute phase with prominent peripheral neurogenic inflammation to a chronic phase with evident central nervous system changes. Ketamine is a centrally acting agent believed to work through blockade of N-methyl-D- aspartate receptors and is being increasingly used for the treatment of refractory CRPS, although the basis for the drug's effects and efficacy at different stages of the syndrome remains unclear. METHODS The authors used a mouse model of CRPS (n = 8 to 12/group) involving tibia fracture/cast immobilization to test the efficacy of ketamine (2 mg kg day; 7 days) or vehicle infusion during acute (3 weeks after fracture) and chronic (7 weeks after fracture) stages. RESULTS Acute-phase fracture mice displayed increased limb temperature, edema, and nociceptive sensitization that were not reduced by ketamine. Fracture mice treated with ketamine during the chronic phase showed reduced nociceptive sensitization that persisted beyond completion of the infusion. During this chronic phase, ketamine also reduced latent nociceptive sensitization and improved motor function at 18 weeks after fracture. No side effects of the infusions were identified. These behavioral changes were associated with altered spinal astrocyte activation and expression of pain-related proteins including N-methyl-D-aspartate receptor 2b, Ca/calmodulin-dependent protein kinase II, and brain-derived neurotrophic factor. CONCLUSIONS Collectively, these results demonstrate that ketamine is efficacious in the chronic, but not acute, stage of CRPS, suggesting that the centrally acting drug is relatively ineffective in early CRPS when peripheral mechanisms are more critical for supporting nociceptive sensitization.
Collapse
|
41
|
Alves CJ, Neto E, Sousa DM, Leitão L, Vasconcelos DM, Ribeiro-Silva M, Alencastre IS, Lamghari M. Fracture pain-Traveling unknown pathways. Bone 2016; 85:107-14. [PMID: 26851411 DOI: 10.1016/j.bone.2016.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/14/2015] [Accepted: 01/08/2016] [Indexed: 12/15/2022]
Abstract
An increase of fracture incidence is expected for the next decades, mostly due to the undeniable increase of osteoporotic fractures, associated with the rapid population ageing. The rise in sports-related fractures affecting the young and active population also contributes to this increased fracture incidence, and further amplifies the economical burden of fractures. Fracture often results in severe pain, which is a primary symptom to be treated, not only to guarantee individual's wellbeing, but also because an efficient management of fracture pain is mandatory to ensure proper bone healing. Here, we review the available data on bone innervation and its response to fracture, and discuss putative mechanisms of fracture pain signaling. In addition, the common therapeutic approaches to treat fracture pain are discussed. Although there is still much to learn, research in fracture pain has allowed an initial insight into the mechanisms involved. During the inflammatory response to fracture, several mediators are released and will putatively activate and sensitize primary sensory neurons, in parallel, intense nerve sprouting that occurs in the fracture callus area is also suggested to be involved in pain signaling. The establishment of hyperalgesia and allodynia after fracture indicates the development of peripheral and central sensitization, still, the underlying mechanisms are largely unknown. A major concern during the treatment of fracture pain needs to be the preservation of proper bone healing. However, the most common therapeutic agents, NSAIDS and opiates, can cause significant side effects that include fracture repair impairment. The understanding of the mechanisms of fracture pain signaling will allow the development of mechanisms-based therapies to effectively and safely manage fracture pain.
Collapse
Affiliation(s)
- Cecília J Alves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal
| | - Estrela Neto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal; Faculdade de Medicina, Universidade do Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Daniela M Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal
| | - Luís Leitão
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Daniel M Vasconcelos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Manuel Ribeiro-Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal; Faculdade de Medicina, Universidade do Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Serviço de Ortopedia e Traumatologia, Centro Hospitalar São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Inês S Alencastre
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen, 208, 4150-180 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade de Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
42
|
Abstract
Despite the severe pain and disability associated with complex regional pain syndrome (CRPS), the lack of understanding of the pathophysiological mechanisms supporting this enigmatic condition prevents the rational design of new therapies, a situation that is frustrating to both the physician and the patient. The review highlights some of the mechanisms thought to be involved in the pathophysiology of CRPS in preclinical models and CRPS patients, with the ultimate goal that understanding these mechanisms will lead to the design of efficacious, mechanism-based treatments available to the clinic.
Collapse
Affiliation(s)
- Maral Tajerian
- Veterans Affairs Palo Alto Health Care System Palo Alto, CA, USA,Department of Anesthesiology, Stanford University School of Medicine, Stanford, CA, USA
| | - J David Clark
- Veterans Affairs Palo Alto Health Care System Palo Alto, CA, USA,Department of Anesthesiology, Stanford University School of Medicine, Stanford, CA, USA,Corresponding author: J David Clark, MD, PhD., Anesthesia Service, Veterans Affairs Palo Alto Health Care, System, 3801 Miranda Ave., Palo Alto, CA 94304, USA, Tel: 650-493-5000 ext. 60479, Fax: 650-852-3423,
| |
Collapse
|
43
|
Wei T, Guo TZ, Li WW, Kingery WS, Clark JD. Acute versus chronic phase mechanisms in a rat model of CRPS. J Neuroinflammation 2016; 13:14. [PMID: 26785976 PMCID: PMC4719337 DOI: 10.1186/s12974-015-0472-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 12/29/2015] [Indexed: 12/28/2022] Open
Abstract
Background Tibia fracture followed by cast immobilization in rats evokes nociceptive, vascular, epidermal, and bone changes resembling complex regional pain syndrome (CRPS). In most cases, CRPS has three stages. Over time, this acute picture, allodynia, warmth, and edema observed at 4 weeks, gives way to a cold, dystrophic but still painful limb. In the acute phase (at 4 weeks post fracture), cutaneous immunological and NK1-receptor signaling mechanisms underlying CRPS have been discovered; however, the mechanisms responsible for the chronic phase are still unknown. The purpose of this study is to understand the mechanisms responsible for the chronic phases of CRPS (at 16 weeks post fracture) at both the peripheral and central levels. Methods We used rat tibial fracture/cast immobilization model of CRPS to study molecular, vascular, and nociceptive changes at 4 and 16 weeks post fracture. Immunoassays and Western blotting were carried out to monitor changes in inflammatory response and NK1-receptor signaling in the skin and spinal cord. Skin temperature and thickness were measured to elucidate vascular changes, whereas von Frey testing and unweighting were carried out to study nociceptive changes. All data were analyzed by one-way analysis of variance (ANOVA) followed by Neuman-Keuls multiple comparison test to compare among all cohorts. Results In the acute phase (at 4 weeks post fracture), hindpaw allodynia, unweighting, warmth, edema, and/or epidermal thickening were observed among 90 % fracture rats, though by 16 weeks (chronic phase), only the nociceptive changes persisted. The expression of the neuropeptide signaling molecule substance P (SP), NK1 receptor, inflammatory mediators TNFα, IL-1β, and IL-6 and nerve growth factor (NGF) were elevated at 4 weeks in sciatic nerve and/or skin, returning to normal levels by 16 weeks post fracture. The systemic administration of a peripherally restricted IL-1 receptor antagonist (anakinra) or of anti-NGF inhibited nociceptive behaviors at 4 weeks but not 16 weeks. However, spinal levels of NK1 receptor, TNFα, IL-1β, and NGF were elevated at 4 and 16 weeks, and intrathecal injection of an NK1-receptor antagonist (LY303870), anakinra, or anti-NGF each reduced nociceptive behaviors at both 4 and 16 weeks. Conclusions These results demonstrate that tibia fracture and immobilization cause peripheral changes in neuropeptide signaling and inflammatory mediator production acutely, but central spinal changes may be more important for the persistent nociceptive changes in this CRPS model.
Collapse
Affiliation(s)
- Tzuping Wei
- Physical Medicine and Rehabilitation Service, (RM A-132), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA.
| | - Tian-Zhi Guo
- Physical Medicine and Rehabilitation Service, (RM A-132), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA.
| | - Wen-Wu Li
- Physical Medicine and Rehabilitation Service, (RM A-132), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA.
| | - Wade S Kingery
- Physical Medicine and Rehabilitation Service, (RM A-132), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA.
| | - John David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue (112-A), Palo Alto, CA, 94304, USA. .,Department of Anesthesiology, Stanford University School of Medicine, Stanford, CA, 94304, USA.
| |
Collapse
|
44
|
Castel D, Sabbag I, Brenner O, Meilin S. Peripheral Neuritis Trauma in Pigs: A Neuropathic Pain Model. THE JOURNAL OF PAIN 2016; 17:36-49. [DOI: 10.1016/j.jpain.2015.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/21/2015] [Accepted: 09/26/2015] [Indexed: 12/29/2022]
|
45
|
Majuta LA, Longo G, Fealk MN, McCaffrey G, Mantyh PW. Orthopedic surgery and bone fracture pain are both significantly attenuated by sustained blockade of nerve growth factor. Pain 2015; 156:157-165. [PMID: 25599311 DOI: 10.1016/j.pain.0000000000000017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The number of patients suffering from postoperative pain due to orthopedic surgery and bone fracture is projected to dramatically increase because the human life span, weight, and involvement in high-activity sports continue to rise worldwide. Joint replacement or bone fracture frequently results in skeletal pain that needs to be adequately controlled for the patient to fully participate in needed physical rehabilitation. Currently, the 2 major therapies used to control skeletal pain are nonsteroidal anti-inflammatory drugs and opiates, both of which have significant unwanted side effects. To assess the efficacy of novel therapies, mouse models of orthopedic and fracture pain were developed and evaluated here. These models, orthopedic surgery pain and bone fracture pain, resulted in skeletal pain-related behaviors that lasted 3 weeks and 8 to 10 weeks, respectively. These skeletal pain behaviors included spontaneous and palpation-induced nocifensive behaviors, dynamic weight bearing, limb use, and voluntary mechanical loading of the injured hind limb. Administration of anti-nerve growth factor before orthopedic surgery or after bone fracture attenuated skeletal pain behaviors by 40% to 70% depending on the end point being assessed. These data suggest that nerve growth factor is involved in driving pain due to orthopedic surgery or bone fracture. These animal models may be useful in developing an understanding of the mechanisms that drive postoperative orthopedic and bone fracture pain and the development of novel therapies to treat these skeletal pains.
Collapse
Affiliation(s)
- Lisa A Majuta
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
46
|
Sex differences in a Murine Model of Complex Regional Pain Syndrome. Neurobiol Learn Mem 2015; 123:100-9. [PMID: 26070658 DOI: 10.1016/j.nlm.2015.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/21/2015] [Accepted: 06/03/2015] [Indexed: 01/23/2023]
Abstract
Complex Regional Pain Syndrome (CRPS) is a major cause of chronic pain after surgery or trauma to the limbs. Despite evidence showing that the prevalence and severity of many forms of chronic pain, including CRPS, differ between males and females, laboratory studies on sex-related differences in animal models of CRPS are not available, and the impact of sex on the transition from acute to chronic CRPS pain and disability are unexplored. Here we make use of a tibia fracture/cast mouse model that recapitulates the nociceptive, functional, vascular, trophic, inflammatory and immune aspects of CRPS. Our aim is to describe the chronic time course of nociceptive, motor and memory changes associated with fracture/cast in male and female mice, in addition to exploring their underlying spinal mechanisms. Our behavioral data shows that, compared to males, female mice display lower nociceptive thresholds following fracture in the absence of any differences in ongoing or spontaneous pain. Furthermore, female mice show exaggerated signs of motor dysfunction, deficits in fear memory, and latent sensitization that manifests long after the normalization of nociceptive thresholds. Our biochemical data show differences in the spinal cord levels of the glutamate receptor NR2b, suggesting sex differences in mechanisms of central sensitization that could account for differences in duration and severity of CRPS symptoms between the two groups.
Collapse
|
47
|
Yamanaka H, Yamanaka H. [Relationship between cutaneous temperature and hand edema and allodynia after stroke--the etiology of shoulder-hand syndrome]. Rinsho Shinkeigaku 2015; 55:1-7. [PMID: 25672857 DOI: 10.5692/clinicalneurol.55.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The etiology of shoulder-hand syndrome is as yet unknown. We hypothesized that it may be due to damaged unmyelinated fibers in front of the subscapular muscle. We examined the existence of edema and hypersensitivity to pain in the hands of stroke patients during the subacute stage and their relationships to cutaneous temperatures of the index fingertips in 75 hemiplegic patients (23 without edema, 32 with only edema, and 20 with edema plus allodynia). Patients were placed into two groups (comfortable and warm) depending on room temperature (22.2-25.6°C and 25.7-30°C, respectively). Of the patients with hand edema plus allodynia, 75% had a large lesion in the capsula, cortical white matter, and putamen. It was previously reported that the cutaneous temperature of the arm on the paralysis side of patients with lesions of the capsula or putamen was lower than that on the non-paralysis side. In the edema plus allodynia group, the temperature of the index fingertip on the affected side was higher than that of their contralateral fingers; the differences were smaller under warm conditions possibly due to blockade of the sympathetic nerves in the peripheral nerve. By contrast, in patients in the edema group, there were no differences in cutaneous temperatures of their two index fingers. Thus, it appears that patients with mild cases of shoulder-hand syndrome have conduction blocks in the posterior cord of the brachial plexus, while those with severe cases have both conduction blocks and neurogenic inflammation in both the lateral and posterior cords.
Collapse
|
48
|
Brain neuroplastic changes accompany anxiety and memory deficits in a model of complex regional pain syndrome. Anesthesiology 2014; 121:852-65. [PMID: 25093591 DOI: 10.1097/aln.0000000000000403] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a painful condition with approximately 50,000 annual new cases in the United States. It is a major cause of work-related disability, chronic pain after limb fractures, and persistent pain after extremity surgery. Additionally, CRPS patients often experience cognitive changes, anxiety, and depression. The supraspinal mechanisms linked to these CRPS-related comorbidities remain poorly understood. METHODS The authors used a previously characterized mouse model of tibia fracture/cast immobilization showing the principal stigmata of CRPS (n = 8 to 20 per group) observed in humans. The central hypothesis was that fracture/cast mice manifest changes in measures of thigmotaxis (indicative of anxiety) and working memory reflected in neuroplastic changes in amygdala, perirhinal cortex, and hippocampus. RESULTS The authors demonstrate that nociceptive sensitization in these mice is accompanied by altered thigmotactic behaviors in the zero maze but not open field assay, and working memory dysfunction in novel object recognition and social memory but not in novel location recognition. Furthermore, the authors found evidence of structural changes and synaptic plasticity including changes in dendritic architecture and decreased levels of synaptophysin and brain-derived neurotrophic factor in specific brain regions. CONCLUSIONS The study findings provide novel observations regarding behavioral changes and brain plasticity in a mouse model of CRPS. In addition to elucidating some of the supraspinal correlates of the syndrome, this work supports the potential use of therapeutic interventions that not only directly target sensory input and other peripheral mechanisms, but also attempt to ameliorate the broader pain experience by modifying its associated cognitive and emotional comorbidities.
Collapse
|
49
|
Drummond ES, Dawson LF, Finch PM, Li W, Guo TZ, Kingery WS, Drummond PD. Increased bilateral expression of α1-adrenoceptors on peripheral nerves, blood vessels and keratinocytes does not account for pain or neuroinflammatory changes after distal tibia fracture in rats. Neuroscience 2014; 281:99-109. [PMID: 25267387 DOI: 10.1016/j.neuroscience.2014.09.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/18/2014] [Accepted: 09/19/2014] [Indexed: 11/25/2022]
Abstract
In certain forms of nerve injury and inflammation, noradrenaline augments pain via actions on up-regulated α1-adrenoceptors (α1-ARs). The aim of this study was to use immunohistochemistry to examine α1-AR expression on peripheral neurons, cutaneous blood vessels and keratinocytes after distal tibia fracture and cast immobilization, a model of complex regional pain syndrome type 1. We hypothesized that there would be increased α1-AR expression on neurons and keratinocytes in the injured limb in comparison to the contralateral unaffected limb after distal tibia fracture, in association with inflammatory changes and pain. α1-AR expression was increased on plantar keratinocytes, dermal blood vessels and peripheral nerve fibers at 16weeks after injury both in the fractured and contralateral uninjured limb. Similar changes were seen in controls whose limb had been immobilized in a cast for 4weeks but not fractured. Neurofilament 200 (NF200), a marker of myelinated neurons, and calcitonin gene-related peptide (CGRP), a neuropeptide involved in neuro-inflammatory signaling, decreased 4weeks after fracture and casting but then increased at the 16-week time point. As some of these changes were also detected in the contralateral hind limb, they probably were triggered by a systemic response to fracture and casting. Soon after the cast was removed, intraplantar injections of the α1-AR antagonist prazosin released local vasoconstrictor tone but had no effect on pain behaviors. However, systemic injection of prazosin inhibited behavioral signs of pain, suggesting that fracture and/or casting triggered an up-regulation of α1-ARs in central nociceptive pathways that augmented pain. Together, these findings indicate that α1-AR expression increases in the hind limbs after distal tibia fracture and cast immobilization. However, these peripheral increases do not contribute directly to residual pain.
Collapse
Affiliation(s)
- E S Drummond
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia
| | - L F Dawson
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia
| | - P M Finch
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia
| | - W Li
- Physical Medicine and Rehabilitation Services, VAPAHCS, Palo Alto, CA, USA; Department of Anesthesia, Stanford University, Stanford, CA, USA
| | - T-Z Guo
- Physical Medicine and Rehabilitation Services, VAPAHCS, Palo Alto, CA, USA
| | - W S Kingery
- Physical Medicine and Rehabilitation Services, VAPAHCS, Palo Alto, CA, USA
| | - P D Drummond
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
50
|
Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 2014; 94:1099-142. [PMID: 25287861 PMCID: PMC4187032 DOI: 10.1152/physrev.00034.2013] [Citation(s) in RCA: 778] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide. Discovered 30 years ago, it is produced as a consequence of alternative RNA processing of the calcitonin gene. CGRP has two major forms (α and β). It belongs to a group of peptides that all act on an unusual receptor family. These receptors consist of calcitonin receptor-like receptor (CLR) linked to an essential receptor activity modifying protein (RAMP) that is necessary for full functionality. CGRP is a highly potent vasodilator and, partly as a consequence, possesses protective mechanisms that are important for physiological and pathological conditions involving the cardiovascular system and wound healing. CGRP is primarily released from sensory nerves and thus is implicated in pain pathways. The proven ability of CGRP antagonists to alleviate migraine has been of most interest in terms of drug development, and knowledge to date concerning this potential therapeutic area is discussed. Other areas covered, where there is less information known on CGRP, include arthritis, skin conditions, diabetes, and obesity. It is concluded that CGRP is an important peptide in mammalian biology, but it is too early at present to know if new medicines for disease treatment will emerge from our knowledge concerning this molecule.
Collapse
Affiliation(s)
- F A Russell
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - R King
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S-J Smillie
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - X Kodji
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S D Brain
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| |
Collapse
|