1
|
Estradera-Bel M, La Touche R, Pro-Marín D, Cuenca-Martínez F, Paris-Alemany A, Grande-Alonso M. Exploring temporal congruence in motor imagery and movement execution in non-specific chronic low back pain. Brain Cogn 2024; 182:106227. [PMID: 39454412 DOI: 10.1016/j.bandc.2024.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Chronic non-specific low back pain (NSCLBP) is linked to sensorimotor dysfunctions and altered motor planning, likely due to neuroplastic changes. Motor imagery (MI) and movement execution share neural pathways, but the relationship between imagined and executed movements in NSCLBP patients remains underexplored. This study aimed to assess the temporal congruence between imagined and executed movements in NSCLBP sufferers, with secondary goals of investigating group differences in movement chronometry, psychological well-being, and disability, as well as possible correlations among these factors. Fifty-six participants, including 28 NSCLBP patients and 28 asymptomatic subjects (AS), performed lumbar flexion and Timed Up and Go (TUG) tasks. NSCLBP patients showed significant temporal incongruence in both tasks, executing movements more slowly than imagined, whereas AS displayed incongruence only in the TUG task. NSCLBP patients also took longer to imagine and execute lumbar flexion movements compared to AS, with correlations observed between execution delays, higher disability, and greater fear of movement. The findings highlight a lack of temporal congruence in NSCLBP patients, especially in lumbar flexion, emphasizing the complex relationship between chronic pain, motor ability, and psychological factors. These results suggest that integrated treatment approaches addressing cognitive and emotional aspects are crucial for managing NSCLBP.
Collapse
Affiliation(s)
- Manuel Estradera-Bel
- Unidad de Trastornos Musculoesqueléticos, Instituto de Rehabilitación Funcional (IRF) La Salle, Centro Superior Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roy La Touche
- Motion in Brains Research Group, Centro Superior de Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Dolor Craneofacial y Neuromusculoesquelético (INDCRAN), Madrid, Spain; Departamento de Fisioterapia, Centro Superior de Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Pro-Marín
- Unidad de Trastornos Musculoesqueléticos, Instituto de Rehabilitación Funcional (IRF) La Salle, Centro Superior Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ferran Cuenca-Martínez
- Department of Physiotherapy, University of Valencia, Gascó Oliag n° 5, Valencia 46010, Spain
| | - Alba Paris-Alemany
- Motion in Brains Research Group, Centro Superior de Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Dolor Craneofacial y Neuromusculoesquelético (INDCRAN), Madrid, Spain; Departamento de Radiología, Rehabilitación y Fisioterapia. Facultad de Enfermería, Fisioterapia y Podología. Universidad Complutense de Madrid, Madrid, Spain.
| | - Mónica Grande-Alonso
- Universidad de Alcalá, Facultad de Medicina, Departamento de Cirugía, Ciencias Médicas y Sociales, Alcalá de Henares, Spain
| |
Collapse
|
2
|
Shraim MA, Massé-Alarie H, Farrell MJ, Cavaleri R, Loggia ML, Hodges PW. Neuroinflammatory activation in sensory and motor regions of the cortex is related to sensorimotor function in individuals with low back pain maintained by nociplastic mechanisms: A preliminary proof-of-concept study. Eur J Pain 2024; 28:1607-1626. [PMID: 39007713 DOI: 10.1002/ejp.2313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Chronic pain involves communication between neural and immune systems. Recent data suggest localization of glial (brain immune cells) activation to the sensorimotor regions of the brain cortex (S1/M1) in chronic low back pain (LBP). As glia perform diverse functions that impact neural function, activation might contribute to sensorimotor changes, particularly in LBP maintained by increased nervous system sensitivity (i.e., nociplastic pain). This preliminary proof-of-concept study aimed to: (i) compare evidence of neuroinflammatory activation in S1/M1 between individuals with and without LBP (and between nociceptive and nociplastic LBP phenotypes), and (ii) evaluate relationships between neuroinflammatory activation and sensorimotor function. METHODS Simultaneous PET-fMRI measured neuroinflammatory activation in functionally defined S1/M1 in pain-free individuals (n = 8) and individuals with chronic LBP (n = 9; nociceptive: n = 4, nociplastic: n = 5). Regions of S1/M1 related to the back were identified using fMRI during motor tasks and thermal stimuli. Sensorimotor measures included single and paired-pulse transcranial magnetic stimulation (TMS) and quantitative sensory testing (QST). Sleep, depression, disability and pain questionnaires were administered. RESULTS Neuroinflammatory activation was greater in the lower back cortical representation of S1/M1 of the nociplastic LBP group than both nociceptive LBP and pain-free groups. Neuroinflammatory activation in S1/M1 was positively correlated with sensitivity to hot (r = 0.52) and cold (r = 0.55) pain stimuli, poor sleep, depression, disability and BMI, and negatively correlated with intracortical facilitation (r = -0.41). CONCLUSION This preliminary proof-of-concept study suggests that neuroinflammation in back regions of S1/M1 in individuals with nociplastic LBP could plausibly explain some characteristic features of this LBP phenotype. SIGNIFICANCE STATEMENT Neuroinflammatory activation localized to sensorimotor areas of the brain in individuals with nociplastic pain might contribute to changes in sensory and motor function and aspects of central sensitization. If cause-effect relationships are established in longitudinal studies, this may direct development of therapies that target neuroinflammatory activation.
Collapse
Affiliation(s)
- Muath A Shraim
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
| | - Hugo Massé-Alarie
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
- Centre Interdisciplinaire de Recherche en réadaptation et Integration Sociale (CIRRIS), Université Laval, Québec City, Québec, Canada
| | - Michael J Farrell
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Rocco Cavaleri
- Brain Stimulation and Rehabilitation Lab, Western Sydney University, School of Health Sciences, Sydney, New South Wales, Australia
| | - Marco L Loggia
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul W Hodges
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
| |
Collapse
|
3
|
Lynch WB, Miracle SA, Goldstein SI, Beierle JA, Bhandari R, Gerhardt ET, Farnan A, Nguyen BM, Wingfield KK, Kazerani I, Saavedra GA, Averin O, Baskin BM, Ferris MT, Reilly CA, Emili A, Bryant CD. Validation studies and multi-omics analysis of Zhx2 as a candidate quantitative trait gene underlying brain oxycodone metabolite (oxymorphone) levels and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610534. [PMID: 39257803 PMCID: PMC11383981 DOI: 10.1101/2024.08.30.610534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Sensitivity to the subjective reinforcing properties of opioids has a genetic component and can predict addiction liability of opioid compounds. We previously identified Zhx2 as a candidate gene underlying increased brain concentration of the oxycodone (OXY) metabolite oxymorphone (OMOR) in BALB/cJ (J) versus BALB/cByJ (By) females that could increase OXY state-dependent reward. A large structural intronic variant is associated with a robust reduction of Zhx2 expression in J mice, which we hypothesized enhances OMOR levels and OXY addiction-like behaviors. We tested this hypothesis by restoring the Zhx2 loss-of-function in Js (MVKO) and modeling the loss-of-function variant through knocking out the Zhx2 coding exon (E3KO) in Bys and assessing brain OXY metabolite levels and behavior. Consistent with our hypothesis, Zhx2 E3KO females showed an increase in brain OMOR levels and OXY-induced locomotor activity. However, contrary to our hypothesis, state-dependent expression of OXY-CPP was decreased in E3KO females and increased in E3KO males. We also overexpressed Zhx2 in the livers and brains of Js and observed Zhx2 overexpression in select brain regions that was associated with reduced OXY state-dependent learning. Integrative transcriptomic and proteomic analysis of E3KO mice identified astrocyte function, cell adhesion, extracellular matrix properties, and endothelial cell functions as pathways influencing brain OXY metabolite concentration and behavior. These results support Zhx2 as a quantitative trait gene underlying brain OMOR concentration that is associated with changes in OXY behavior and implicate potential quantitative trait mechanisms that together inform our overall understanding of Zhx2 in brain function.
Collapse
Affiliation(s)
- William B Lynch
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program for Neuroscience, Graduate Medical Sciences, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University, Boston, MA USA
| | - Sophia A Miracle
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program for Neuroscience, Graduate Medical Sciences, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Stanley I Goldstein
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Rhea Bhandari
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Ethan T Gerhardt
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Undergraduate Research Opportunity Program (UROP), Boston University, Boston, MA USA
| | - Ava Farnan
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Binh-Minh Nguyen
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Kelly K Wingfield
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Ida Kazerani
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Summer Research Internship Program, National Institute on Drug Abuse, North Bethesda, MD USA
| | - Gabriel A Saavedra
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Research in Science and Engineering Program, Boston University, Boston, MA USA
| | - Olga Averin
- Center for Human Toxicology, University of Utah Health, Salt Lake City, UT USA
| | - Britahny M Baskin
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Training Program on Development of Medications for Substance Use Disorder, Northeastern University, Boston, MA USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC USA
| | | | - Andrew Emili
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| |
Collapse
|
4
|
Gilliam JR, Sahu PK, Vendemia JMC, Silfies SP. Association between seated trunk control and cortical sensorimotor white matter brain changes in patients with chronic low back pain. PLoS One 2024; 19:e0309344. [PMID: 39208294 PMCID: PMC11361694 DOI: 10.1371/journal.pone.0309344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Trunk control involves integration of sensorimotor information in the brain. Individuals with chronic low back pain (cLBP) have impaired trunk control and show differences in brain structure and function in sensorimotor areas compared with healthy controls (HC). However, the relationship between brain structure and trunk control in this group is not well understood. This cross-sectional study aimed to compare seated trunk control and sensorimotor white matter (WM) structure in people with cLBP and HC and explore relationships between WM properties and trunk control in each group. Thirty-two people with cLBP and 35 HC were tested sitting on an unstable chair to isolate trunk control; performance was measured using the 95% confidence ellipse area (CEA95) of center-of-pressure tracing. A WM network between cortical sensorimotor regions of interest was derived using probabilistic tractography. WM microstructure and anatomical connectivity between cortical sensorimotor regions were assessed. A mixed-model ANOVA showed that people with cLBP had worse trunk control than HC (F = 12.96; p < .001; ηp2 = .091). There were no differences in WM microstructure or anatomical connectivity between groups (p = 0.564 to 0.940). In the cLBP group, WM microstructure was moderately correlated (|r| = .456 to .565; p ≤ .009) with trunk control. Additionally, the cLBP group demonstrated stronger relationships between anatomical connectivity and trunk control (|r| = .377 to .618 p < .034) compared to the HC group. Unique to the cLBP group, WM connectivity between right somatosensory and left motor areas highlights the importance of interhemispheric information exchange for trunk control. Parietal areas associated with attention and spatial reference frames were also relevant to trunk control. These findings suggest that people with cLBP adopt a more cortically driven sensorimotor integration strategy for trunk control. Future research should replicate these findings and identify interventions to effectively modulate this strategy.
Collapse
Affiliation(s)
- John R. Gilliam
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Pradeep K. Sahu
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Jennifer M. C. Vendemia
- Department of Psychology, University of South Carolina, Columbia, SC, United States of America
| | - Sheri P. Silfies
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
- Physical Therapy Program, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
5
|
Čeko M, Baeuerle T, Webster L, Wager TD, Lumley MA. The effects of virtual reality neuroscience-based therapy on clinical and neuroimaging outcomes in patients with chronic back pain: a randomized clinical trial. Pain 2024; 165:1860-1874. [PMID: 38466872 DOI: 10.1097/j.pain.0000000000003198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/06/2024] [Indexed: 03/13/2024]
Abstract
ABSTRACT Chronic pain remains poorly managed. The integration of immersive technologies (ie, virtual reality [VR]) with neuroscience-based principles may provide effective pain treatment by targeting cognitive and affective neural processes that maintain pain and therefore potentially changing neurobiological circuits associated with pain chronification and amplification. We tested the effectiveness of a novel VR neuroscience-based therapy (VRNT) to improve pain-related outcomes in n = 31 participants with chronic back pain, evaluated against usual care (waitlist control; n = 30) in a 2-arm randomized clinical trial ( NCT04468074) . We also conducted pre-treatment and post-treatment MRI to test whether VRNT affects brain networks previously linked to chronic pain and treatment effects. Compared with the control condition, VRNT led to significantly reduced pain intensity (g = 0.63) and pain interference (g = 0.84) at post-treatment vs pre-treatment, with effects persisting at 2-week follow-up. These improvements were partially mediated by reduced kinesiophobia and pain catastrophizing. Several secondary clinical outcomes were also improved by VRNT, including disability, quality of life, sleep, and fatigue. In addition, VRNT was associated with increases in dorsomedial prefrontal functional connectivity with the superior somatomotor, anterior prefrontal and visual cortices, and decreased white matter fractional anisotropy in the corpus callosum adjacent to the anterior cingulate, relative to the control condition. Thus, VRNT showed preliminary efficacy in significantly reducing pain and improving overall functioning, possibly through changes in somatosensory and prefrontal brain networks.
Collapse
Affiliation(s)
- Marta Čeko
- Institute of Cognitive Science, University of Colorado, Boulder, CO, United States
| | | | - Lynn Webster
- U.S. Center for Policy, Scientific Affairs, Dr. Vince Clinical Research, Salt Lake City, UT, United States
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Mark A Lumley
- Department of Psychology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
6
|
Gu SY, Shi FC, Wang S, Wang CY, Yao XX, Sun YF, Luo CX, Liu WT, Hu JB, Chen F, Pan PL, Li WH. Altered cortical thickness and structural covariance networks in chronic low back pain. Brain Res Bull 2024; 212:110968. [PMID: 38679110 DOI: 10.1016/j.brainresbull.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Despite regional brain structural changes having been reported in patients with chronic low back pain (CLBP), the topological properties of structural covariance networks (SCNs), which refer to the organization of the SCNs, remain unclear. This study applied graph theoretical analysis to explore the alterations of the topological properties of SCNs, aiming to comprehend the integration and separation of SCNs in patients with CLBP. METHODS A total of 38 patients with CLBP and 38 healthy controls (HCs), balanced for age and sex, were scanned using three-dimensional T1-weighted magnetic resonance imaging. The cortical thickness was extracted from 68 brain regions, according to the Desikan-Killiany atlas, and used to reconstruct the SCNs. Subsequently, graph theoretical analysis was employed to evaluate the alterations of the topological properties in the SCNs of patients with CLBP. RESULTS In comparison to HCs, patients with CLBP had less cortical thickness in the left superior frontal cortex. Additionally, the cortical thickness of the left superior frontal cortex was negatively correlated with the Visual Analogue Scale scores of patients with CLBP. Furthermore, patients with CLBP, relative to HCs, exhibited lower global efficiency and small-worldness, as well as a longer characteristic path length. This indicates a decline in the brain's capacity to transmit and process information, potentially impacting the processing of pain signals in patients with CLBP and contributing to the development of CLBP. In contrast, there were no significant differences in the clustering coefficient, local efficiency, nodal efficiency, nodal betweenness centrality, or nodal degree between the two groups. CONCLUSIONS From the regional cortical thickness to the complex brain network level, our study demonstrated changes in the cortical thickness and topological properties of the SCNs in patients with CLBP, thus aiding in a better understanding of the pathophysiological mechanisms of CLBP.
Collapse
Affiliation(s)
- Si-Yu Gu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Feng-Chao Shi
- Department of Orthopedics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Shu Wang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Cheng-Yu Wang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Xin-Xin Yao
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Yi-Fan Sun
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Chuan-Xu Luo
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Wan-Ting Liu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Jian-Bin Hu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Fei Chen
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Ping-Lei Pan
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Wen-Hui Li
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China; The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, PR China.
| |
Collapse
|
7
|
Kaplan CM, Kelleher E, Irani A, Schrepf A, Clauw DJ, Harte SE. Deciphering nociplastic pain: clinical features, risk factors and potential mechanisms. Nat Rev Neurol 2024; 20:347-363. [PMID: 38755449 DOI: 10.1038/s41582-024-00966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Nociplastic pain is a mechanistic term used to describe pain that arises or is sustained by altered nociception, despite the absence of tissue damage. Although nociplastic pain has distinct pathophysiology from nociceptive and neuropathic pain, these pain mechanisms often coincide within individuals, which contributes to the intractability of chronic pain. Key symptoms of nociplastic pain include pain in multiple body regions, fatigue, sleep disturbances, cognitive dysfunction, depression and anxiety. Individuals with nociplastic pain are often diffusely tender - indicative of hyperalgesia and/or allodynia - and are often more sensitive than others to non-painful sensory stimuli such as lights, odours and noises. This Review summarizes the risk factors, clinical presentation and treatment of nociplastic pain, and describes how alterations in brain function and structure, immune processing and peripheral factors might contribute to the nociplastic pain phenotype. This article concludes with a discussion of two proposed subtypes of nociplastic pain that reflect distinct neurobiological features and treatment responsivity.
Collapse
Affiliation(s)
- Chelsea M Kaplan
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Eoin Kelleher
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anushka Irani
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Division of Rheumatology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Andrew Schrepf
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel J Clauw
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steven E Harte
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
8
|
van der Schaaf ME, Geerligs L, Toni I, Knoop H, Oosterman JM. Disentangling pain and fatigue in chronic fatigue syndrome: a resting state connectivity study before and after cognitive behavioral therapy. Psychol Med 2024; 54:1735-1748. [PMID: 38193344 DOI: 10.1017/s0033291723003690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
BACKGROUND Fatigue is a central feature of myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), but many ME/CFS patients also report comorbid pain symptoms. It remains unclear whether these symptoms are related to similar or dissociable brain networks. This study used resting-state fMRI to disentangle networks associated with fatigue and pain symptoms in ME/CFS patients, and to link changes in those networks to clinical improvements following cognitive behavioral therapy (CBT). METHODS Relationships between pain and fatigue symptoms and cortico-cortical connectivity were assessed within ME/CFS patients at baseline (N = 72) and after CBT (N = 33) and waiting list (WL, N = 18) and compared to healthy controls (HC, N = 29). The analyses focused on four networks previously associated with pain and/or fatigue, i.e. the fronto-parietal network (FPN), premotor network (PMN), somatomotor network (SMN), and default mode network (DMN). RESULTS At baseline, variation in pain and fatigue symptoms related to partially dissociable brain networks. Fatigue was associated with higher SMN-PMN connectivity and lower SMN-DMN connectivity. Pain was associated with lower PMN-DMN connectivity. CBT improved SMN-DMN connectivity, compared to WL. Larger clinical improvements were associated with larger increases in frontal SMN-DMN connectivity. No CBT effects were observed for PMN-DMN or SMN-PMN connectivity. CONCLUSIONS These results provide insight into the dissociable neural mechanisms underlying fatigue and pain symptoms in ME/CFS and how they are affected by CBT in successfully treated patients. Further investigation of how and in whom behavioral and biomedical treatments affect these networks is warranted to improve and individualize existing or new treatments for ME/CFS.
Collapse
Affiliation(s)
- Marieke E van der Schaaf
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
- Department of cognitive neuropsychology Tilburg University, Tilburg, The Netherlands
| | - Linda Geerligs
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Ivan Toni
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Hans Knoop
- Department of Medical Psychology and Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joukje M Oosterman
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Del Mauro G, Sevel LS, Boissoneault J, Wang Z. Divergent association between pain intensity and resting-state fMRI-based brain entropy in different age groups. J Neurosci Res 2024; 102:e25341. [PMID: 38751218 PMCID: PMC11154588 DOI: 10.1002/jnr.25341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 06/11/2024]
Abstract
Pain is a multidimensional subjective experience sustained by multiple brain regions involved in different aspects of pain experience. We used brain entropy (BEN) estimated from resting-state fMRI (rsfMRI) data to investigate the neural correlates of pain experience. BEN was estimated from rs-fMRI data provided by two datasets with different age range: the Human Connectome Project-Young Adult (HCP-YA) and the Human Connectome project-Aging (HCP-A) datasets. Retrospective assessment of experienced pain intensity was retrieved from both datasets. No main effect of pain intensity was observed. The interaction between pain and age, however, was related to increased BEN in several pain-related brain regions, reflecting greater variability of spontaneous brain activity. Dividing the sample into a young adult group (YG) and a middle age-aging group (MAG) resulted in two divergent patterns of pain-BEN association: In the YG, pain intensity was related to reduced BEN in brain regions involved in the sensory processing of pain; in the MAG, pain was associated with increased BEN in areas related to both sensory and cognitive aspects of pain experience.
Collapse
Affiliation(s)
- Gianpaolo Del Mauro
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Landrew Samuel Sevel
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeff Boissoneault
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Ho RL, Park J, Wang WE, Thomas JS, Cruz-Almeida Y, Coombes SA. Lower individual alpha frequency in individuals with chronic low back pain and fear of movement. Pain 2024; 165:1033-1043. [PMID: 38112575 PMCID: PMC11018483 DOI: 10.1097/j.pain.0000000000003098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/27/2023] [Indexed: 12/21/2023]
Abstract
ABSTRACT Significant progress has been made in linking measures of individual alpha frequency (IAF) and pain. A lower IAF has been associated with chronic neuropathic pain and with an increased sensitivity to pain in healthy young adults. However, the translation of these findings to chronic low back pain (cLBP) are sparse and inconsistent. To address this limitation, we assessed IAFs in a cohort of 70 individuals with cLBP, implemented 3 different IAF calculations, and separated cLBP subjects based on psychological variables. We hypothesized that a higher fear movement in cLBP is associated with a lower IAF at rest. A total of 10 minutes of resting data were collected from 128 electroencephalography channels. Our results offer 3 novel contributions to the literature. First, the high fear group had a significantly lower peak alpha frequency. The high fear group also reported higher pain and higher disability. Second, we calculated individual alpha frequency using 3 different but established methods; the effect of fear on individual alpha frequency was robust across all methods. Third, fear of movement, pain intensity, and disability highly correlated with each other and together significantly predicted IAF. Our findings are the first to show that individuals with cLBP and high fear have a lower peak alpha frequency.
Collapse
Affiliation(s)
- Rachel L.M. Ho
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| | - Jinhan Park
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| | - Wei-en Wang
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| | - James S. Thomas
- Motor Control Lab, Department of Physical Therapy, Virginia Commonwealth University
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence, Department of Community Dentistry, University of Florida
| | - Stephen A. Coombes
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| |
Collapse
|
11
|
Florence TJ, Bari A, Vivas AC. Functional Stimulation and Imaging to Predict Neuromodulation of Chronic Low Back Pain. Neurosurg Clin N Am 2024; 35:191-197. [PMID: 38423734 DOI: 10.1016/j.nec.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Back pain is one of the most common aversive sensations in human experience. Pain is not limited to the sensory transduction of tissue damage; rather, it encompasses a range of nervous system activities including lateral modulation, long-distance transmission, encoding, and decoding. Although spine surgery may address peripheral pain generators directly, aberrant signals along canonical aversive pathways and maladaptive influence of affective and cognitive states can result in persistent subjective pain refractory to classical surgical intervention. The clinical identification of who will benefit from surgery-and who will not-is increasingly grounded in neurophysiology.
Collapse
Affiliation(s)
- Timothy J Florence
- UCLA Neurosurgery, 300 Stein Plaza Driveway, Suite 562, Los Angeles, CA 90095, USA
| | - Ausaf Bari
- UCLA Neurosurgery, 300 Stein Plaza Driveway, Suite 562, Los Angeles, CA 90095, USA
| | - Andrew C Vivas
- UCLA Neurosurgery, 300 Stein Plaza Driveway, Suite 562, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Gu SY, Shi FC, Wang S, Wang CY, Yao XX, Sun YF, Hu JB, Chen F, Pan PL, Li WH. Altered volume of the amygdala subregions in patients with chronic low back pain. Front Neurol 2024; 15:1351335. [PMID: 38606278 PMCID: PMC11007205 DOI: 10.3389/fneur.2024.1351335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Background Neuroimaging studies have suggested a pivotal role for the amygdala involvement in chronic low back pain (CLBP). However, the relationship between the amygdala subregions and CLBP has not yet been delineated. This study aimed to analyze whether the amygdala subregions were linked to the development of CLBP. Methods A total of 45 patients with CLBP and 45 healthy controls (HCs) were included in this study. All subjects were asked to complete a three-dimensional T1-weighted magnetic resonance imaging (3D-T1 MRI) scan. FreeSurfer 7.3.2 was applied to preprocess the structural MRI images and segment the amygdala into nine subregions. Afterwards, comparisons were made between the two groups in terms of the volumes of the amygdala subregions. Correlation analysis is utilized to examine the relationship between the amygdala subregion and the scale scores, as well as the pain duration in patients with CLBP. Additionally, logistic regression was used to explore the risk of the amygdala and its subregions for CLBP. Results In comparison to HCs, patients with CLBP exhibited a significant enlargement of the left central nucleus (Ce) and left cortical nucleus (Co). Furthermore, the increased volume of the left Ce was associated with a higher risk of CLBP. Conclusion Our study suggests that the left Ce and left Co may be involved in the pathophysiological processes of CLBP. Moreover, the volume of the left Ce may be a biomarker for detecting the risk of CLBP.
Collapse
Affiliation(s)
- Si-Yu Gu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Feng-Chao Shi
- Department of Orthopedics, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Shu Wang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Cheng-Yu Wang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Xin-Xin Yao
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Yi-Fan Sun
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Jian-Bin Hu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Fei Chen
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Ping-Lei Pan
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Wen-Hui Li
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| |
Collapse
|
13
|
Song A, Sunday K, Silfies SP, Vendemia JMC. MRI Compatible Lumbopelvic Movement Measurement System to Validate and Capture Task Performance During Neuroimaging. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1380-1385. [PMID: 38512737 PMCID: PMC11026086 DOI: 10.1109/tnsre.2024.3380057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Research suggests that structural and functional changes within the brain are associated with chronic low back pain, and these cortical alterations might contribute to impaired sensorimotor control of the trunk and hips in this population. However, linking sensorimotor brain changes with altered movement of the trunk and hips during task-based neuroimaging presents significant challenges. An MRI-safe pressure measurement system was developed to ensure proper task completion during neuroimaging by capturing movement patterns of the trunk (sensors under the lower back) and hips (sensors embedded in the foam roll under the knees). Pressure changes were measured outside of the scanner by digital differential pressure sensors to capture time-series data and analog pressure gauges for real-time determination of task performance occurring within an MRI bore during brain imaging. This study examined the concurrent validity of air pressure changes between the digital and analog sensors. The digital and analog data were compared in 23 participants during the performance of modified bilateral and unilateral right and left hip bridges. Spearman's correlations were calculated for each sensor during the three bridging tasks and showed high positive correlations, indicating that over 87% of pressure change from the analog gauge can be explained by the pressure from the digital sensor. Bland-Altman plots showed no bias and mean differences were under three mmHg. This pressure system improves the rigor of future studies by validating the digital data from the system and increasing the capabilities of capturing lumbopelvic task performance occurring inside the scanner bore.
Collapse
|
14
|
Mei YD, Gao H, Chen WF, Zhu W, Gu C, Zhang JP, Tao JM, Hua XY. Research on the multidimensional brain remodeling mechanisms at the level of brain regions, circuits, and networks in patients with chronic lower back pain caused by lumbar disk herniation. Front Neurosci 2024; 18:1357269. [PMID: 38516315 PMCID: PMC10956359 DOI: 10.3389/fnins.2024.1357269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Chronic lower back pain (cLBP), frequently attributed to lumbar disk herniation (LDH), imposes substantial limitations on daily activities. Despite its prevalence, the neural mechanisms underlying lower back pain remain incompletely elucidated. Functional magnetic resonance imaging (fMRI) emerges as a non-invasive modality extensively employed for investigating neuroplastic changes in neuroscience. In this study, task-based and resting-state fMRI methodologies are employed to probe the central mechanisms of lower back pain. Methods The study included 71 chronic lower back pain patients (cLBP group) due to LDH and 80 age, gender, and education-matched healthy volunteers (HC group). The subjects are mainly middle-aged and elderly individuals. Visual Analog Scale (VAS), Oswestry Disability Index (ODI), and Japanese Orthopedic Association Scores (JOA) were recorded. Resting-state and task-based fMRI data were collected. Results/discussion No significant differences were observed in age, gender, and education level between the two groups. In the cLBP group during task execution, there was diffuse and reduced activation observed in the primary motor cortex and supplementary motor area. Additionally, during resting states, notable changes were detected in brain regions, particularly in the frontal lobe, primary sensory area, primary motor cortex, precuneus, and caudate nucleus, accompanied by alterations in Amplitude of Low Frequency Fluctuation, Regional Homogeneity, Degree Centrality, and functional connectivity. These findings suggest that chronic lower back pain may entail reduced excitability in sensory-motor areas during tasks and heightened activity in the sensory-motor network during resting states, along with modified functional connectivity in various brain regions.
Collapse
Affiliation(s)
- Yuan-Dong Mei
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Hang Gao
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Fei Chen
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Wei Zhu
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Chen Gu
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji-Ming Tao
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Vande Vyvere T, De Groote A, De Groef A, Haenen V, Tjalma W, Van Dyck P, Meeus M. Morphological and functional brain changes in chronic cancer-related pain: A systematic review. Anat Rec (Hoboken) 2024; 307:285-297. [PMID: 36342941 DOI: 10.1002/ar.25113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to perform a systematic review of the available literature on morphological and functional brain changes measured by modern neuroimaging techniques in patients suffering from chronic cancer-related pain. A systematic search was conducted in PubMed, Embase, and Web of Science using different keyword combinations. In addition, a hand search was performed on the reference lists and several databases to retrieve supplementary primary studies. Eligible articles were assessed for methodological quality and risk of bias and reviewed by two independent researchers. The search yielded only four studies, three of which used MRI and one PET-CT. None of the studies measured longitudinal morphological (i.e., gray or white matter) changes. All studies investigated functional brain changes and found differences in specific brain regions and networks between patients with chronic cancer-related pain and pain-free cancer patients or healthy volunteers. Some of these alterations were found in brain networks that also show changes in non-cancer populations with chronic pain (e.g., the default mode network and salience network). However, specific findings were inconsistent, and there was substantial variation in imaging methodology, analysis, sample size, and study quality. There is a striking lack of research on morphological brain changes in patients with chronic cancer-related pain. Moreover, only a few studies investigated functional brain changes. In the retrieved studies, there is some evidence that alterations occur in brain networks also involved in other chronic non-cancer pain syndromes. However, the low sample sizes of the studies, finding inconsistencies, and methodological heterogeneity do not allow for robust conclusions.
Collapse
Affiliation(s)
- Thijs Vande Vyvere
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Department of Radiology, Antwerp University Hospital, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
| | - Amber De Groote
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
| | - An De Groef
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Vincent Haenen
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Wiebren Tjalma
- Department of Gynecological Oncology, Antwerp University Hospital, Antwerp, Belgium
- Multidisciplinary Breast Clinic, Antwerp University Hospital, Antwerp, Belgium
| | - Pieter Van Dyck
- Department of Radiology, Antwerp University Hospital, Antwerp, Belgium
- mVISION, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Mira Meeus
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group (PiM), Antwerp, Belgium
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Fan N, Chen J, Zhao B, Liu L, Yang W, Chen X, Lu Z, Wang L, Cao H, Ma A. Neural correlates of central pain sensitization in chronic low back pain: a resting-state fMRI study. Neuroradiology 2023; 65:1767-1776. [PMID: 37882803 DOI: 10.1007/s00234-023-03237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE The objective of this study is to explore the neural correlates of pain sensitization in patients with chronic low back pain (cLBP). While the association between cLBP and pain sensitization has been widely reported, the underlying brain mechanism responsible for this relationship requires further investigation. METHODS Our study included 56 cLBP patients and 56 healthy controls (HC). Functional magnetic resonance imaging data were obtained, and the voxel-wise amplitude of low-frequency fluctuation (ALFF) was calculated to identify brain alterations in cLBP patients compared to HC groups. Pearson correlation coefficients were computed to explore the association between clinical data and brain alterations. Furthermore, mediation analyses were performed to investigate the path association between brain alterations and pain-related behaviors. RESULTS Our findings revealed that patients with cLBP exhibited higher sensitivity, attention, and catastrophizing tendencies towards pain compared to HC. Furthermore, cLBP patients displayed significantly higher ALFF in various brain regions within the "pain matrix" and the default mode network when compared to HC. The altered precuneus ALFF was positively correlated with pain intensity (R = 0.51, P<0.001) and was negatively correlated with pain sensitivity (R = -0.43, P<0.001) in cLBP patients. Importantly, the effect of altered precuneus ALFF on pain intensity was mediated by pain threshold in these patients. CONCLUSION Our study suggests that altered neural activity in the precuneus may contribute to pain hypersensitivity, which further exacerbating pain in cLBP patients.
Collapse
Affiliation(s)
- NingJian Fan
- Department of Spinal Surgery, The Second Hospital of Tangshan, Tangshan, China
| | - JiXi Chen
- Pediatric Neurology Department EEG Room, Maternal and Child Health Hospital of Tangshan, Tangshan, China
| | - Bing Zhao
- Department of Spinal Surgery, The Second Hospital of Tangshan, Tangshan, China
| | - LiYun Liu
- Department of Spinal Surgery, The Second Hospital of Tangshan, Tangshan, China
| | - WeiZhen Yang
- Department of Spinal Surgery, The Second Hospital of Tangshan, Tangshan, China
| | - Xian Chen
- Department of Spinal Surgery, The Second Hospital of Tangshan, Tangshan, China
| | - ZhanBin Lu
- Department of Spinal Surgery, The Second Hospital of Tangshan, Tangshan, China
| | - LiGong Wang
- Department of Spinal Surgery, The Second Hospital of Tangshan, Tangshan, China
| | - HengCong Cao
- Department of Spinal Surgery, The Second Hospital of Tangshan, Tangshan, China
| | - AiGuo Ma
- Department of Trauma, The Second Hospital of Tangshan, Tangshan, China.
| |
Collapse
|
17
|
Papassidero P, Wichert-Ana L, Lia EN, Alexandre-Santos L, Trevisan AC, Coelho EB, Della Pasqua O, Lanchote VL, Dach F. Pharmacodynamic effect of gabapentin on central nervous system in patients with chronic low back pain: a [99mTc]Tc-ECD SPECT study. Reg Anesth Pain Med 2023; 48:408-413. [PMID: 37001886 DOI: 10.1136/rapm-2022-104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/19/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Gabapentin is an effective therapeutic alternative for chronic low back pain, indicated in several guidelines for treating neuropathic pain as first-line medication. This study aimed to describe the pharmacodynamics of gabapentin in the central nervous system of patients with chronic low back pain (CLBP) by using single-photon emission CT (SPECT) with [99mTc]Tc-ECD. METHODS We selected 13 patients with CLBP due to lumbar disc herniation. They underwent SPECT before and after using gabapentin, compared with a SPECT database of healthy volunteers. A second analysis compared regional cerebral blood flow (rCBF) changes between responders and non-responders to gabapentin and the healthy controls. RESULTS The mean age of patients was 41 years, and the mean pain intensity was 5.92 points, measured by the Numeric Rating Scale. After using gabapentin, SPECT showed an increase of rCBF in the bilateral anterior cingulate gyrus and a decrease of rCBF in periaqueductal gray matter. Non-responder patients with gabapentin showed a post-treatment decrease of rCBF in the paracentral lobule of the brain. CONCLUSIONS A lack of improvement in some patients with gabapentin may be associated with an activated affective circuit of pain, evidenced by the increase of rCBF of the anterior cingulate cortex. A maladaptive brain state in chronic pain can explain the decrease of rCBF in the default mode network structures. Gabapentin acts directly or indirectly on neurons of periaqueductal gray substance by increasing the pain threshold and decreasing the rCBF of this structure.
Collapse
Affiliation(s)
- Priscila Papassidero
- Department of Neurosciences and Behavioral Sciences, USP Ribeirao Preto, Ribeirao Preto, Brazil
| | - Lauro Wichert-Ana
- Nuclear Medicine and PET/CT Laboratory, Department of Medical Imaging, Hematology and Clinical Oncology, USP Ribeirao Preto, Ribeirao Preto, Brazil
| | - Erica Negrini Lia
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Leonardo Alexandre-Santos
- Nuclear Medicine and PET/CT Laboratory, Department of Medical Imaging, Hematology and Clinical Oncology, USP Ribeirao Preto, Ribeirao Preto, Brazil
| | - Ana Carolina Trevisan
- Nuclear Medicine and PET/CT Laboratory, Department of Medical Imaging, Hematology and Clinical Oncology, USP Ribeirao Preto, Ribeirao Preto, Brazil
| | | | - Oscar Della Pasqua
- Department of Pharmacology, UCL School of Pharmacy, London, UK
- Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline Plc, London, UK
| | - Vera Lúcia Lanchote
- Department of Clinical Analysis, Food Science and Toxicology, USP Ribeirao Preto, Ribeirao Preto, Brazil
| | - Fabíola Dach
- Department of Neurosciences and Behavioral Sciences, USP Ribeirao Preto, Ribeirao Preto, Brazil
| |
Collapse
|
18
|
Čeko M, Baeuerle T, Webster L, Wager TD, Lumley MA. The Effects of Virtual Reality Neuroscience-based Therapy on Clinical and Neuroimaging Outcomes in Patients with Chronic Back Pain: A Randomized Clinical Trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.24.23293109. [PMID: 37546872 PMCID: PMC10402228 DOI: 10.1101/2023.07.24.23293109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Chronic pain remains poorly managed. The integration of innovative immersive technologies (i.e., virtual reality (VR)) with recent neuroscience-based principles that position the brain as the key organ of chronic pain may provide a more effective pain treatment than traditional behavioral therapies. By targeting cognitive and affective processes that maintain pain and potentially directly changing neurobiological circuits associated with pain chronification and amplification, VR-based pain treatment has the potential for significant and long-lasting pain relief. We tested the effectiveness of a novel VR neuroscience-based therapy (VRNT) to improve pain-related outcomes in n = 31 participants with chronic back pain, evaluated against usual care (n = 30) in a 2-arm randomized clinical trial ( NCT04468074) . We also conducted pre- and post-treatment MRI to test whether VRNT affects brain networks previously linked to chronic pain and treatment effects. Compared to the control condition, VRNT led to significantly reduced pain intensity (g = 0.63) and pain interference (g = 0.84) at post-treatment vs. pre-treatment, with effects persisting at 2-week follow-up. The improvements were partially mediated by reduced kinesiophobia and pain catastrophizing. Several secondary clinical outcomes were also improved, including disability, quality of life, sleep, and fatigue. In addition, VRNT was associated with modest increases in functional connectivity of the somatomotor and default mode networks and decreased white matter fractional anisotropy in the corpus callosum adjacent to anterior cingula, relative to the control condition. This, VRNT showed preliminary efficacy in significantly reducing pain and improving overall functioning, possibly via changes in somatosensory and prefrontal brain networks.
Collapse
|
19
|
Huang Y, Zhang Y, Hodges S, Li H, Yan Z, Liu X, Hou X, Chen W, Chai-Zhang T, Kong J, Liu B. The modulation effects of repeated transcutaneous auricular vagus nerve stimulation on the functional connectivity of key brainstem regions along the vagus nerve pathway in migraine patients. Front Mol Neurosci 2023; 16:1160006. [PMID: 37333617 PMCID: PMC10275573 DOI: 10.3389/fnmol.2023.1160006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Background Previous studies have shown a significant response to acute transcutaneous vagus nerve stimulation (taVNS) in regions of the vagus nerve pathway, including the nucleus tractus solitarius (NTS), raphe nucleus (RN) and locus coeruleus (LC) in both healthy human participants and migraine patients. This study aims to investigate the modulation effect of repeated taVNS on these brainstem regions by applying seed-based resting-state functional connectivity (rsFC) analysis. Methods 70 patients with migraine were recruited and randomized to receive real or sham taVNS treatments for 4 weeks. fMRI data were collected from each participant before and after 4 weeks of treatment. The rsFC analyses were performed using NTS, RN and LC as the seeds. Results 59 patients (real group: n = 33; sham group: n = 29) completed two fMRI scan sessions. Compared to sham taVNS, real taVNS was associated with a significant reduction in the number of migraine attack days (p = 0.024) and headache pain intensity (p = 0.008). The rsFC analysis showed repeated taVNS modulated the functional connectivity between the brain stem regions of the vagus nerve pathway and brain regions associated with the limbic system (bilateral hippocampus), pain processing and modulation (bilateral postcentral gyrus, thalamus, and mPFC), and basal ganglia (putamen/caudate). In addition, the rsFC change between the RN and putamen was significantly associated with the reduction in the number of migraine days. Conclusion Our findings suggest that taVNS can significantly modulate the vagus nerve central pathway, which may contribute to the potential treatment effects of taVNS for migraine.Clinical Trial Registration: http://www.chictr.org.cn/hvshowproject.aspx?id=11101, identifier ChiCTR-INR-17010559.
Collapse
Affiliation(s)
- Yiting Huang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Hui Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weicui Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Thalia Chai-Zhang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
Cheng X, Yang J, Hao Z, Li Y, Fu R, Zu Y, Ma J, Lo WLA, Yu Q, Zhang G, Wang C. The effects of proprioceptive weighting changes on posture control in patients with chronic low back pain: a cross-sectional study. Front Neurol 2023; 14:1144900. [PMID: 37273697 PMCID: PMC10235490 DOI: 10.3389/fneur.2023.1144900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Patients with chronic low back pain (CLBP) exhibit changes in proprioceptive weighting and impaired postural control. This study aimed to investigate proprioceptive weighting changes in patients with CLBP and their influence on posture control. Methods Sixteen patients with CLBP and 16 healthy controls were recruited. All participants completed the joint reposition test sense (JRS) and threshold to detect passive motion test (TTDPM). The absolute errors (AE) of the reposition and perception angles were recorded. Proprioceptive postural control was tested by applying vibrations to the triceps surae or lumbar paravertebral muscles while standing on a stable or unstable force plate. Sway length and sway velocity along the anteroposterior (AP) and mediolateral (ML) directions were assessed. Relative proprioceptive weighting (RPW) was used to evaluate the proprioception reweighting ability. Higher values indicated increased reliance on calf proprioception. Results There was no significant difference in age, gender, and BMI between subjects with and without CLBP. The AE and motion perception angle in the CLBP group were significantly higher than those in the control group (JRS of 15°: 2.50 (2.50) vs. 1.50 (1.42), JRS of 35°: 3.83 (3.75) vs. 1.67 (2.00), pJRS < 0.01; 1.92 (1.18) vs. 0.68 (0.52), pTTDPM < 0.001). The CLBP group demonstrated a significantly higher RPW value than the healthy controls on an unstable surface (0.58 ± 0.21 vs. 0.41 ± 0.26, p < 0.05). Under the condition of triceps surae vibration, the sway length (pstable < 0.05; punstable < 0.001), AP velocity (pstable < 0.01; punstable < 0.001) and ML velocity (punstable < 0.05) had significant group main effects. Moreover, when the triceps surae vibrated under the unstable surface, the differences during vibration and post vibration in sway length and AP velocity between the groups were significantly higher in the CLBP group than in the healthy group (p < 0.05). However, under the condition of lumbar paravertebral muscle vibration, no significant group main effect was observed. Conclusion The patients with CLBP exhibited impaired dynamic postural control in response to disturbances, potentially linked to changes in proprioceptive weighting.
Collapse
Affiliation(s)
- Xue Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zengming Hao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruochen Fu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yao Zu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinjin Ma
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuhua Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guifang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
García-Dopico N, de la Torre-Luque A, Sitges C, Velasco-Roldán O. Proprioceptive acuity is core for back awareness in chronic low back pain: Further analysis of the content validity of the Spanish version of the Fremantle Back Awareness Questionnaire. Front Hum Neurosci 2023; 16:1070402. [PMID: 36875741 PMCID: PMC9983349 DOI: 10.3389/fnhum.2022.1070402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/28/2022] [Indexed: 02/19/2023] Open
Abstract
Treatments aimed at increasing self-perception may improve chronic low back pain (CLBP) symptomatology and present novel management approaches. Consequently, it is important to have valid, complete, and reliable tools for its assessment, and to understand which variables influence altered back awareness. We aimed to evaluate the face/content validity of the Spanish version of the Fremantle Back Awareness Questionnaire (FreBAQ-S) among people with and without CLBP, and to explore additional variables suggested to be involved in back awareness. A total of 264 individuals with CLBP and 128 healthy controls (HC) answered an online survey, including the FreBAQ-S, and questions regarding the completeness, comprehensibility, time-to-complete adequacy, and time spent completing it. If participants declared a lack of completeness, they had to report which aspects would be incorporated into the questionnaire to explore additional back-awareness-related variables. A statistically significant difference in completeness emerged between groups (p < 0.01). The questionnaire was comprehensible for more than 85% of participants, regardless of the group (p = 0.45). CLBP participants spent significantly more time in completing the questionnaire than controls (p < 0.01), but no differences were found between groups regarding the time-to-complete adequacy (p = 0.49). Regarding the back-awareness-related variables, 77 suggestions from CLBP group and seven from the HC were received. Most of them were related to proprioceptive acuity such as posture, weight, or movement patterns, among others. The FreBAQ-S demonstrated adequate face/content validity, completeness, comprehensibility, and adequate time of response. The feedback provided will help improve currently available assessment tools.
Collapse
Affiliation(s)
- Nuria García-Dopico
- Department of Nursing and Physiotherapy, University of the Balearic Islands (UIB), Palma, Spain
- Research Institute of Health Sciences (IUNICS), Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Alejandro de la Torre-Luque
- Department of Legal Medicine, Psychiatry and Pathology, CIBERSAM ISCIII, Complutense University of Madrid (UCM), Madrid, Spain
| | - Carolina Sitges
- Research Institute of Health Sciences (IUNICS), Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Psychology, University of the Balearic Islands (UIB), Palma, Spain
| | - Olga Velasco-Roldán
- Department of Nursing and Physiotherapy, University of the Balearic Islands (UIB), Palma, Spain
- Research Institute of Health Sciences (IUNICS), Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
22
|
Kim HJ, Meeker TJ, Jung JY, Kim JW, Kim HA. Biological sex influences psychological aspects of the biopsychosocial model related to chronic pain intensity and interference among South Korean patients with chronic secondary musculoskeletal pain in rheumatic diseases. Front Psychol 2023; 14:1063164. [PMID: 37138999 PMCID: PMC10150094 DOI: 10.3389/fpsyg.2023.1063164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Pain is a prominent contributor to negative personal and social outcomes, including increased disability and mortality, in many rheumatic diseases. In the Biopsychosocial model of chronic pain, psychological and social factors share roles with the biology of the injury in determining each patient's pain and suffering. The current study explored factors associated with clinical pain intensity and interference among patients with chronic secondary musculoskeletal pain in rheumatic diseases. Methods In total, 220 patients experiencing chronic secondary musculoskeletal pain participated. Biological factors (age, biological sex, pain condition, pain duration, pain sensitivity, and comorbidity), socio-economic factors, psychological factors (pain catastrophizing and depressive symptoms), and pain intensity and interference were measured. Descriptive, multivariable linear regression and partial correlation analyses were conducted. Subgroup analysis by sex was conducted to examine differences in how different factors affect the pain experience. Results The mean age of the participants was 52.3 years (SD = 12.07) and ranged from 22 to 78. Average pain intensity was 3.01 (0-10 scale) and average total pain interference score was 21.07 (0-70 scale). Partial correlation found positive correlations between pain intensity and interference with depression (intensity: R = 0.224; p = 0.0011; interference: R = 0.351; p < 0.001) and pain catastrophizing (intensity: R = 0.520; p < 0.001; interference: R = 0.464; p < 0.001). In males, pain condition (β = -0.249, p = 0.032) and pain catastrophizing (R = 0.480, p < 0.001) were associated with pain intensity. In males, the simple correlation between pain intensity and depression (R = 0.519; p < 0.001) was driven by pain catastrophizing. In females, pain catastrophizing (R = 0.536, p < 0.001) and depressive symptoms (R = 0.228, p = 0.0077) were independently associated with pain intensity. Age (β = -0.251, p = 0.042) and pain catastrophizing (R = 0.609, p < 0.001) were associated with pain interference in males, while depressive symptoms (R = 0.439, p < 0.001) and pain catastrophizing (R = 0.403, p < 0.001) were associated with pain interference in females. Again, in males, the simple correlation between pain interference and depression (R = 0.455; p < 0.001) was driven by pain catastrophizing. Discussion In this study, females were more directly affected by depressive symptoms than males, regarding pain intensity and interference. Pain catastrophizing was a significant factor influencing chronic pain for both males and females. Based on these findings, a sex-specific approach to the Biopsychosocial model should be considered in understanding and managing pain among Asians with chronic secondary musculoskeletal pain.
Collapse
Affiliation(s)
- Hee Jun Kim
- School of Nursing, The George Washington University, Washington, DC, United States
- *Correspondence: Hyoun-Ah Kim,
| | - Timothy J. Meeker
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, Suwon-si, Republic of Korea
| | - Ji-Won Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon-si, Republic of Korea
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon-si, Republic of Korea
| |
Collapse
|
23
|
Sun R, Zhang SY, Cheng X, Zhang P, Qiao PG, Li GJ. Changes in sensory-related brain networks of patients with moyamoya disease with limb paresthesia: A resting-state fMRI-based functional connectivity analysis. Neuroimage Clin 2022; 36:103267. [PMID: 36510412 PMCID: PMC9668639 DOI: 10.1016/j.nicl.2022.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
This study's aim was to investigate functional brain connectivity changes among patients with moyamoya disease (MMD) with limb paresthesia, using functional connectivity analysis based on resting-state functional magnetic resonance imaging (rs-fMRI). A total of 181 patients with MMD were enrolled, including 57 with left limb paresthesia (MLP group), 61 with right limb paresthesia (MRP group), and 63 without paresthesia (MWP group). Encephaloduroarteriosynangiosis (EDAS) was performed in 20 of the 57 patients with left limb paresthesia and 15 of the 61 patients with right limb paresthesia. Twenty-nine age- and sex-matched healthy controls (HC group) were recruited during the same period. All participants underwent rs-fMRI examination, and the patients treated with EDAS were re-examined 3-4 months after the surgery. After data preprocessing, we selected Brodmann area 3 on each side of the brain as the seed region to construct a functional connectivity network of the whole brain, and then we analyzed the differences in functional connectivity between the HC group, MWP group, MLP group, and MRP group. The functional connectivity of Brodmann area 3 (on either side) with the ipsilateral frontal (superior frontal gyrus, middle frontal gyrus, and inferior frontal gyrus) and parietal (supramarginal gyrus, angular gyrus, and superior parietal lobule) cortices was increased among patients with MMD. The functional connectivity enhancement in these brain regions was broader and greater in patients with contralateral limb paresthesia than in patients without paresthesia, and the regions with functional connectivity changes were roughly distributed symmetrically among the MLP group and the MRP group. There were no changes 3-4 months after EDAS in the increased functional connectivity between the frontal and parietal cortices and Brodmann area 3. Limb paresthesia in patients with MMD may be driven by abnormal functional connectivity in the frontal and parietal cortices. Functional changes in associated brain regions may be a target for evaluating the severity of MMD and its response to treatment.
Collapse
Affiliation(s)
- Rujing Sun
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shi-Yu Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xu Cheng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng-Gang Qiao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China,Department of Radiology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China,Corresponding authors at: Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 YongAn Road, Beijing 100050, China, (P.-G. Qiao). Department of Radiology, Affiliated hospital of Academy of Military Medical Sciences, #8 Fengtai dong street, Fengtai district, Beijing 100071, China, (G.-J. Li).
| | - Gong-Jie Li
- Department of Radiology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China,Corresponding authors at: Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 YongAn Road, Beijing 100050, China, (P.-G. Qiao). Department of Radiology, Affiliated hospital of Academy of Military Medical Sciences, #8 Fengtai dong street, Fengtai district, Beijing 100071, China, (G.-J. Li).
| |
Collapse
|
24
|
Chang P, Fabrizi L, Fitzgerald M. Early Life Pain Experience Changes Adult Functional Pain Connectivity in the Rat Somatosensory and the Medial Prefrontal Cortex. J Neurosci 2022; 42:8284-8296. [PMID: 36192150 PMCID: PMC9653276 DOI: 10.1523/jneurosci.0416-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Early life pain (ELP) experience alters adult pain behavior and increases injury-induced pain hypersensitivity, but the effect of ELP on adult functional brain connectivity is not known. We have performed continuous local field potential (LFP) recording in the awake adult male rats to test the effect of ELP on functional cortical connectivity related to pain behavior. Primary somatosensory cortex (S1) and medial prefrontal cortex (mPFC) LFPs evoked by mechanical hindpaw stimulation were recorded simultaneously with pain reflex behavior for 10 d after adult incision injury. We show that, after adult injury, sensory evoked S1 LFP δ and γ energy and S1 LFP δ/γ frequency coupling are significantly increased in ELP rats compared with controls. Adult injury also induces increases in S1-mPFC functional connectivity, but this is significantly prolonged in ELP rats, lasting 4 d compared with 1 d in controls. Importantly, the increases in LFP energy and connectivity in ELP rats were directly correlated with increased behavioral pain hypersensitivity. Thus, ELP alters adult brain functional connectivity, both within and between cortical areas involved in sensory and affective dimensions of pain. The results reveal altered brain connectivity as a mechanism underlying the effects of ELP on adult pain perception.SIGNIFICANCE STATEMENT Pain and stress in early life has a lasting impact on pain behavior and may increase vulnerability to chronic pain in adults. Here, we record pain-related cortical activity and simultaneous pain behavior in awake adult male rats previously exposed to pain in early life. We show that functional connectivity within and between the somatosensory cortex and the medial prefrontal cortex (mPFC) is increased in these rats and that these increases are correlated with their behavioral pain hypersensitivity. The results reveal that early life pain (ELP) alters adult brain connectivity, which may explain the impact of childhood pain on adult chronic pain vulnerability.
Collapse
Affiliation(s)
- Pishan Chang
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
25
|
Adhia DB, Mani R, Reynolds JN, Hall M, Vanneste S, De Ridder D. High-Definition Transcranial Infraslow Pink-Noise Stimulation Can Influence Functional and Effective Cortical Connectivity in Individuals With Chronic Low Back Pain: A Pilot Randomized Placebo-Controlled Study. Neuromodulation 2022:S1094-7159(22)01225-9. [DOI: 10.1016/j.neurom.2022.08.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022]
|
26
|
Medrano-Escalada Y, Plaza-Manzano G, Fernández-de-las-Peñas C, Valera-Calero JA. Structural, Functional and Neurochemical Cortical Brain Changes Associated with Chronic Low Back Pain. Tomography 2022; 8:2153-2163. [PMID: 36136876 PMCID: PMC9498382 DOI: 10.3390/tomography8050180] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 12/19/2022] Open
Abstract
Chronic low back pain (CLBP) is one of the most prevalent musculoskeletal disorders, being one of the leading contributors to disability worldwide and involving an important economic and social burden. Up to 90% of CLBP is non-specific (not associated with specific injuries), with a chronicity expectation estimated at 10%. Currently, motivational and emotional central circuits are being investigated due to their role in CLBP persistency and chronification. Therefore, this narrative review aimed to summarize the evidence regarding the cortical brain changes described for proposing novel multidisciplinary approaches. Novel advances in neuroimaging techniques demonstrated structural (e.g., decrease in the grey matter located at the dorsolateral prefrontal cortex), functional (e.g., connectivity impairments in those areas involved in pain processing), and neurochemical changes (e.g., decrease in cerebral metabolites). In addition, significant changes were found in the primary somatosensory and motor cortex, contributing to the alteration of low back muscles activation and function.
Collapse
Affiliation(s)
| | - Gustavo Plaza-Manzano
- Department of Radiology, Rehabilitation and Physiotherapy, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Grupo InPhysio, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913-941-545
| | - César Fernández-de-las-Peñas
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
- Clínica e Investigación en Fisioterapia, Terapia Manual, Punción Seca y Ejercicio Terapéutico, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Juan Antonio Valera-Calero
- VALTRADOFI Research Group, Department of Physiotherapy, Faculty of Health, Universidad Camilo José Cela, Villanueva de la Cañada, 28692 Madrid, Spain
- Department of Physiotherapy, Faculty of Health, Universidad Camilo José Cela, Villanueva de la Cañada, 28692 Madrid, Spain
| |
Collapse
|
27
|
Baran TM, Lin FV, Geha P. Functional brain mapping in patients with chronic back pain shows age-related differences. Pain 2022; 163:e917-e926. [PMID: 34799532 DOI: 10.1097/j.pain.0000000000002534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Low back pain is the most common pain condition and cause for disability in older adults. Older adults suffering from low back pain are more disabled than their healthy peers, are more predisposed to frailty, and tend to be undertreated. The cause of increased prevalence and severity of this chronic pain condition in older adults is unknown. Here, we draw on accumulating data demonstrating a critical role for brain limbic and sensory circuitries in the emergence and experience of chronic low back pain (CLBP) and the availability of resting-state brain activity data collected at different sites to study how brain activity patterns predictive of CLBP differ between age groups. We apply a data-driven multivariate searchlight analysis to amplitude of low-frequency fluctuation brain maps to classify patients with CLBP with >70% accuracy. We observe that the brain activity pattern including the paracingulate gyrus, insula/secondary somatosensory area, inferior frontal, temporal, and fusiform gyrus predicted CLBP. When separated by age groups, brain patterns predictive of older patients with CLBP showed extensive involvement of limbic brain areas including the ventromedial prefrontal cortex, the nucleus accumbens, and hippocampus, whereas only anterior insula paracingulate and fusiform gyrus predicted CLBP in the younger patients. In addition, we validated the relationships between back pain intensity ratings and CLBP brain activity patterns in an independent data set not included in our initial patterns' identification. Our results are the first to directly address how aging affects the neural signature of CLBP and point to an increased role of limbic brain areas in older patients with CLBP.
Collapse
Affiliation(s)
- Timothy M Baran
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Feng V Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| | - Paul Geha
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
28
|
Hazra S, Handa G, Nayak P, Sahu S, Sarkar K, Venkataraman S. A Dysfunctional Descending Pain Modulation System in Chronic Nonspecific Low Back Pain: A Systematic Review and ALE Meta-Analysis. Neurol India 2022; 70:1344-1360. [PMID: 36076626 DOI: 10.4103/0028-3886.355137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pain, a physiological protective mechanism, turns into a complex dynamic neural response when it becomes chronic. The role of neuroplastic brain changes is more evident than the peripheral factors in the maintenance, modulation and amplification of chronic low back pain (cLBP). In this background, we summarise the brain changes in cLBP in a coordinate-based activation likelihood estimation (ALE) meta-analysis of previous functional magnetic resonance imaging (fMRI) studies. Databases ('PubMed', 'Scopus' and 'Sleuth') were searched till May 2022 and the activity pattern was noted under the 'without stimulation' and 'with stimulation' groups. A total of 312 studies were selected after removing duplicates. Seventeen (553 cLBP patients, 192 activation foci) studies were fulfilled the eligibility criteria and included in the 'without stimulation' group. Twelve statistically significant clusters are localized in the prefrontal cortex, primary somatosensory cortex, primary motor cortex, parietal cortex, anterior cingulate cortex, caudate, putamen, globus pallidus amygdala, occipital lobe, temporal lobe and associated white matter in this group. Ten studies (353 cLBP patients, 125 activation foci) were selected in the' with stimulation' groups. In this group, seven statistically significant clusters were found in the frontal cortex, orbitofrontal cortex, premotor cortex, parietal cortex, claustrum and insula. These statistically significant clusters indicate a probable imbalance in GABAergic modulation of brain circuits and dysfunction in the descending pain modulation system. This disparity in the pain neuro-matrix is the source of spontaneous and persisting pain in cLBP.
Collapse
Affiliation(s)
- Sandipan Hazra
- Department of Physical Medicine and Rehabilitation, R. G. Kar Medical College, Kolkata, West Bengal, India
| | - Gita Handa
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, New Delhi, India
| | - Prasunpriya Nayak
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Samantak Sahu
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Kaushik Sarkar
- Department of Electronics and Communication Engineering, Narula Institute of Technology, Kolkata, West Bengal, India
| | - Srikumar Venkataraman
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
29
|
Li H, Li X, Wang J, Gao F, Wiech K, Hu L, Kong Y. Pain-related reorganization in the primary somatosensory cortex of patients with postherpetic neuralgia. Hum Brain Mapp 2022; 43:5167-5179. [PMID: 35751551 PMCID: PMC9812237 DOI: 10.1002/hbm.25992] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 01/15/2023] Open
Abstract
Studies on functional and structural changes in the primary somatosensory cortex (S1) have provided important insights into neural mechanisms underlying several chronic pain conditions. However, the role of S1 plasticity in postherpetic neuralgia (PHN) remains elusive. Combining psychophysics and magnetic resonance imaging (MRI), we investigated whether pain in PHN patients is linked to S1 reorganization as compared with healthy controls. Results from voxel-based morphometry showed no structural differences between groups. To characterize functional plasticity, we compared S1 responses to noxious laser stimuli of a fixed intensity between both groups and assessed the relationship between S1 activation and spontaneous pain in PHN patients. Although the intensity of evoked pain was comparable in both groups, PHN patients exhibited greater activation in S1 ipsilateral to the stimulated hand. Pain-related activity was identified in contralateral superior S1 (SS1) in controls as expected, but in bilateral inferior S1 (IS1) in PHN patients with no overlap between SS1 and IS1. Contralateral SS1 engaged during evoked pain in controls encoded spontaneous pain in patients, suggesting functional S1 reorganization in PHN. Resting-state fMRI data showed decreased functional connectivity between left and right SS1 in PHN patients, which scaled with the intensity of spontaneous pain. Finally, multivariate pattern analyses (MVPA) demonstrated that BOLD activity and resting-state functional connectivity of S1 predicted within-subject variations of evoked and spontaneous pain intensities across groups. In summary, functional reorganization in S1 might play a key role in chronic pain related to PHN and could be a potential treatment target in this patient group.
Collapse
Affiliation(s)
- Hong Li
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina,Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaoyun Li
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| | - Jiyuan Wang
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina,Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Fei Gao
- Department of Pain MedicinePeking University People's HospitalBeijingChina
| | - Katja Wiech
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Li Hu
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina,Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina,Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical NeurosciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| |
Collapse
|
30
|
Adhia DB, Mani R, Reynolds JNJ, Vanneste S, De Ridder D. High-definition transcranial infraslow pink noise stimulation for chronic low back pain: protocol for a pilot, safety and feasibility randomised placebo-controlled trial. BMJ Open 2022; 12:e056842. [PMID: 35705354 PMCID: PMC9204463 DOI: 10.1136/bmjopen-2021-056842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Chronic low back pain (CLBP) is a common disabling health condition. Current treatments demonstrate modest effects, warranting newer therapies. Brain imaging demonstrates altered electrical activities in cortical areas responsible for pain modulation, emotional and sensory components of pain experience. Treatments targeting to change electrical activities of these key brain regions may produce clinical benefits. This pilot study aims to (1) evaluate feasibility, safety and acceptability of a novel neuromodulation technique, high-definition transcranial infraslow pink noise stimulation (HD-tIPNS), in people with CLBP, (2) explore the trend of effect of HD-tIPNS on pain and function, and (3) derive treatment estimates to support sample size calculation for a fully powered trial should trends of effectiveness be present. METHODS AND ANALYSIS A pilot, triple-blinded randomised two-arm placebo-controlled parallel trial. Participants (n=40) with CLBP will be randomised to either sham stimulation or HD-tIPNS (targeting somatosensory cortex and dorsal and pregenual anterior cingulate cortex). Primary outcomes include feasibility and safety measures, and clinical outcomes of pain (Brief Pain Inventory) and disability (Roland-Morris disability questionnaire). Secondary measures include clinical, psychological, quantitative sensory testing and electroencephalography collected at baseline, immediately postintervention, and at 1-week, 1-month and 3 months postintervention. All data will be analysed descriptively. A nested qualitative study will assess participants perceptions about acceptability of intervention and analysed thematically. ETHICS AND DISSEMINATION Ethical approval has been obtained from Health and Disability Ethics Committee (Ref:20/NTB/67). Findings will be reported to regulatory and funding bodies, presented at conferences, and published in a scientific journal. TRIAL REGISTRATION NUMBER ACTRN12620000505909p.
Collapse
Affiliation(s)
- Divya Bharatkumar Adhia
- Department of Surgical Sciences, and Pain@Otago Research Theme, University of Otago - Dunedin Campus, Dunedin, New Zealand
| | - Ramakrishnan Mani
- Centre for Health, Activity and Rehabilitation Research, School of Physiotherapy, and Pain@Otago Research Theme, University of Otago - Dunedin Campus, Dunedin, New Zealand
| | - John N J Reynolds
- Department of Anatomy and the Brain Health Research Centre, University of Otago - Dunedin Campus, Dunedin, New Zealand
| | - Sven Vanneste
- School of Psychology, Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Dirk De Ridder
- Department of Surgical Sciences, and Pain@Otago Research Theme, University of Otago - Dunedin Campus, Dunedin, New Zealand
| |
Collapse
|
31
|
Aberrant Spontaneous Brain Activity in Coronary Heart Disease Using Fractional Amplitude of Low-Frequency Fluctuations: A Preliminary Resting-State Functional MRI Study. DISEASE MARKERS 2022; 2022:2501886. [PMID: 35692880 PMCID: PMC9187430 DOI: 10.1155/2022/2501886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/14/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Objective This study is aimed at exploring the spontaneous brain activity changes by measuring the fractional amplitude of low-frequency fluctuations (fALFF) and their relationship with clinical characteristics in patients with coronary heart disease (CHD). Methods Coronary heart disease patients (n = 25) and age, gender, and education level-matched control subjects (controls, n = 35) were included. The grey matter volume (GMV) and fALFF values were calculated to assess the difference in brain structure and function between the two groups, respectively. Correlation analyses between the fALFF values and clinical characteristics were further assessed in CHD patients. In addition, receiver operating characteristic (ROC) curves were conducted to access the diagnostic ability of the fALFF method. Results There was no significant difference in GMV between the CHD and control groups. Compared with the control group, patients with CHD showed significantly decreased fALFF in the left precentral/postcentral gyrus and increased fALFF in the right inferior cerebellum. Patients with a history of myocardial infarction (MI) showed significantly decreased fALFF values of the right inferior cerebellum than patients without MI. There was no significant correlation between the fALFF values in specific brain regions and disease duration. Furthermore, the ROC curves of abnormal brain regions showed the perfect accuracy of the fALFF value in distinguishing between CHD patients and controls. Conclusion CHD demonstrated aberrant neural activity in specific brain regions mainly related to sensorimotor networks and pain processing, which may contribute to understanding the underlying neurological mechanism of CHD.
Collapse
|
32
|
Tonic pain alters functional connectivity of the descending pain modulatory network involving amygdala, periaqueductal gray, parabrachial nucleus and anterior cingulate cortex. Neuroimage 2022; 256:119278. [PMID: 35523367 PMCID: PMC9250649 DOI: 10.1016/j.neuroimage.2022.119278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Resting state functional connectivity (FC) is widely used to assess functional brain alterations in patients with chronic pain. However, reports of FC accompanying tonic pain in pain-free persons are rare. A network we term the Descending Pain Modulatory Network (DPMN) is implicated in healthy and pathologic pain modulation. Here, we evaluate the effect of tonic pain on FC of specific nodes of this network: anterior cingulate cortex (ACC), amygdala (AMYG), periaqueductal gray (PAG), and parabrachial nuclei (PBN). METHODS In 50 pain-free participants (30F), we induced tonic pain using a capsaicin-heat pain model. functional MRI measured resting BOLD signal during pain-free rest with a 32°C thermode and then tonic pain where participants experienced a previously warm temperature combined with capsaicin. We evaluated FC from ACC, AMYG, PAG, and PBN with correlation of self-report pain intensity during both states. We hypothesized tonic pain would diminish FC dyads within the DPMN. RESULTS Of all hypothesized FC dyads, only PAG and subgenual ACC was weakly altered during pain (F=3.34; p=0.074; pain-free>pain d=0.25). After pain induction sACC-PAG FC became positively correlated with pain intensity (R=0.38; t=2.81; p=0.007). Right PBN-PAG FC during pain-free rest positively correlated with subsequently experienced pain (R=0.44; t=3.43; p=0.001). During pain, this connection's FC was diminished (paired t=-3.17; p=0.0026). In whole-brain analyses, during pain-free rest, FC between left AMYG and right superior parietal lobule and caudate nucleus were positively correlated with subsequent pain. During pain, FC between left AMYG and right inferior temporal gyrus negatively correlated with pain. Subsequent pain positively correlated with right AMYG FC with right claustrum; right primary visual cortex and right temporo-occipitoparietal junction Conclusion: We demonstrate sACC-PAG tonic pain FC positively correlates with experienced pain and resting right PBN-PAG FC correlates with subsequent pain and is diminished during tonic pain. Finally, we reveal PAG- and right AMYG-anchored networks which correlate with subsequently experienced pain intensity. Our findings suggest specific connectivity patterns within the DPMN at rest are associated with subsequently experienced pain and modulated by tonic pain. These nodes and their functional modulation may reveal new therapeutic targets for neuromodulation or biomarkers to guide interventions.
Collapse
|
33
|
Mao CP, Wilson G, Cao J, Meshberg N, Huang Y, Kong J. Abnormal Anatomical and Functional Connectivity of the Thalamo-sensorimotor Circuit in Chronic Low Back Pain: Resting-state Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging Study. Neuroscience 2022; 487:143-154. [PMID: 35134490 PMCID: PMC8930700 DOI: 10.1016/j.neuroscience.2022.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/29/2022]
Abstract
Thalamocortical dysfunction is thought to underlie the pathophysiology of chronic pain revealed by electroencephalographic studies. The thalamus serves as a primary relay center to transmit sensory information and motor impulses via dense connections with the somatosensory and motor cortex. In this study, diffusion tensor imaging (DTI) (probabilistic tractography) and resting-state functional magnetic resonance imaging (functional connectivity) were used to characterize the anatomical and functional integrity of the thalamo-sensorimotor pathway in chronic low back pain (cLBP). Fifty-four patients with cLBP and 54 healthy controls were included. The results suggested significantly increased anatomical connectivity of the left thalamo-motor pathway characterized by probabilistic tractography in patients with cLBP. Moreover, there was significantly altered resting-state functional connectivity (rsFC) of bilateral thalamo-motor/somatosensory pathways in patients with cLBP as compared to healthy controls. We also detected a significant correlation between pain intensity during the MRI scan and rsFC of the right thalamo-somatosensory pathway in cLBP. Our findings highlight the involvement of the thalamo-sensorimotor circuit in the pathophysiology of cLBP.
Collapse
Affiliation(s)
- Cui Ping Mao
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Georgia Wilson
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jin Cao
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Nathaniel Meshberg
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Yiting Huang
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
34
|
Chronic pain precedes disrupted eating behavior in low-back pain patients. PLoS One 2022; 17:e0263527. [PMID: 35143525 PMCID: PMC8830732 DOI: 10.1371/journal.pone.0263527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic pain is associated with anhedonia and decreased motivation. These behavioral alterations have been linked to alterations in the limbic brain and could explain the increased risk for obesity in pain patients. The mechanism of these behavioral changes and how they set in in relation to the development of chronic pain remain however poorly understood. Here we asked how eating behavior was affected in low-back pain patients before and after they transitioned to chronic pain, compared to patients whose pain subsided. Additionally, we assessed how the hedonic perception of fat-rich food, which is altered in chronic pain patients, related to the properties of the nucleus accumbens in this patients' population. We hypothesized that the accumbens would be directly implicated in the hedonic processing of fat-rich food in pain patients because of its well-established role in hedonic feeding and fat ingestion, and its emerging role in chronic pain. Accordingly, we used behavioral assays and structural brain imaging to test sub-acute back pain patients (SBP) and healthy control subjects at baseline and at approximately one-year follow-up. We also studied a sample of chronic low-back pain patients (CLBP) at one time point only. We found that SBP patients who recovered at follow-up (SBPr) and CLBP patients showed disrupted eating behaviors. In contrast, SBP patients who persisted in having pain at follow-up (SBPp) showed intact eating behavior. From a neurological standpoint, only SBPp and CLBP patients showed a strong and direct relationship between hedonic perception of fat-rich food and nucleus accumbens volume. This suggests that accumbens alterations observed in SBPp patients in previous works might protect them from hedonic eating disruptions during the early course of the illness. We conclude that disrupted eating behavior specifically sets in after pain chronification and is accompanied by structural changes in the nucleus accumbens.
Collapse
|
35
|
Liu X, Gu L, Liu J, Hong S, Luo Q, Wu Y, Yang J, Jiang J. MRI Study of Cerebral Cortical Thickness in Patients with Herpes Zoster and Postherpetic Neuralgia. J Pain Res 2022; 15:623-632. [PMID: 35250306 PMCID: PMC8894103 DOI: 10.2147/jpr.s352105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To measure the changes in cerebral cortical thickness in patients with herpes zoster (HZ) and postherpetic neuralgia (PHN) by surface-based morphometry (SBM) and further estimate its correlation with clinical scores. Materials and Methods Twenty-nine HZ patients, 30 PHN patients and 30 well-matched healthy controls (HCs) were included. Magnetic resonance imaging (MRI) data from all subjects were collected and then analyzed by SBM. The changes in cortical thickness among the HZ, PHN and HC groups were analyzed by ANOVA and correlated with clinical scores. Results The thickness of the bilateral primary visual cortex (V1, V2) and right primary visual cortex (V3), left somatosensory cortex (L3A), right anterior cingulate gyrus and medial prefrontal cortex (RS32) increased in PHN group, and the thickness the left insular and frontal opercular cortex (LFOP4), left motor cortex (L3B), and right superior temporal visual cortex (RSTV) were decreased in the HZ and PHN groups compared to the HC group. The thickness measurements of RS32, LFOP4, and (L3B) in HZ and PHN patients were correlated with the duration of disease. In HZ and PHN patients, the Hamilton Anxiety Scale (HAMA) and Hamilton Depression Scale (HAMD) scores were significantly positively correlated. Conclusion Changes in cortical thickness in the areas related to sensory, motor, and cognitive/emotional changes in patients with PHN affect the neuroplasticity process of the brain, which may be the reason for the transformation of HZ into PHN and provide a possible explanation for the neuropathological mechanism of pain persistence in PHN patients.
Collapse
Affiliation(s)
- Xian Liu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Lili Gu
- Department of Pain, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jiaqi Liu
- Department of Radiology, The Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shunda Hong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Qing Luo
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Ying Wu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jiaojiao Yang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Correspondence: Jian Jiang, Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People’s Republic of China, Tel +86 791 8869 3825, Email
| |
Collapse
|
36
|
Individually unique dynamics of cortical connectivity reflect the ongoing intensity of chronic pain. Pain 2022; 163:1987-1998. [PMID: 35082250 DOI: 10.1097/j.pain.0000000000002594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Chronic pain diseases are characterised by an ongoing and fluctuating endogenous pain, yet it remains to be elucidated how this is reflected by the dynamics of ongoing functional cortical connections.Here, we investigated the cortical encoding of 20 chronic back pain patients and 20 chronic migraineurs in four repeated fMRI sessions. A brain parcellation approach subdivided the whole brain into 408 regions. Linear mixed effects models were fitted for each pair of brain regions to explore the relationship between the dynamic cortical connectivity and the observed trajectory of the patients' ratings of fluctuating endogenous pain.Overall, we found that periods of high and increasing pain were predominantly related to low cortical connectivity. The change of pain intensity in chronic back pain was subserved by connections in left parietal opercular regions, right insular regions, as well as large parts of the parietal, cingular and motor cortices. The change of pain intensity direction in chronic migraine was reflected by decreasing connectivity between the anterior insular cortex and orbitofrontal areas, as well as between the PCC and frontal and ACC regions.Interestingly, the group results were not mirrored by the individual patterns of pain-related connectivity, which is suggested to deny the idea of a common neuronal core problem for chronic pain diseases. The diversity of the individual cortical signatures of chronic pain encoding results adds to the understanding of chronic pain as a complex and multifaceted disease. The present findings support recent developments for more personalised medicine.
Collapse
|
37
|
Ashar YK, Gordon A, Schubiner H, Uipi C, Knight K, Anderson Z, Carlisle J, Polisky L, Geuter S, Flood TF, Kragel PA, Dimidjian S, Lumley MA, Wager TD. Effect of Pain Reprocessing Therapy vs Placebo and Usual Care for Patients With Chronic Back Pain: A Randomized Clinical Trial. JAMA Psychiatry 2022; 79:13-23. [PMID: 34586357 PMCID: PMC8482298 DOI: 10.1001/jamapsychiatry.2021.2669] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE Chronic back pain (CBP) is a leading cause of disability, and treatment is often ineffective. Approximately 85% of cases are primary CBP, for which peripheral etiology cannot be identified, and maintenance factors include fear, avoidance, and beliefs that pain indicates injury. OBJECTIVE To test whether a psychological treatment (pain reprocessing therapy [PRT]) aiming to shift patients' beliefs about the causes and threat value of pain provides substantial and durable pain relief from primary CBP and to investigate treatment mechanisms. DESIGN, SETTING, AND PARTICIPANTS This randomized clinical trial with longitudinal functional magnetic resonance imaging (fMRI) and 1-year follow-up assessment was conducted in a university research setting from November 2017 to August 2018, with 1-year follow-up completed by November 2019. Clinical and fMRI data were analyzed from January 2019 to August 2020. The study compared PRT with an open-label placebo treatment and with usual care in a community sample. INTERVENTIONS Participants randomized to PRT participated in 1 telehealth session with a physician and 8 psychological treatment sessions over 4 weeks. Treatment aimed to help patients reconceptualize their pain as due to nondangerous brain activity rather than peripheral tissue injury, using a combination of cognitive, somatic, and exposure-based techniques. Participants randomized to placebo received an open-label subcutaneous saline injection in the back; participants randomized to usual care continued their routine, ongoing care. MAIN OUTCOMES AND MEASURES One-week mean back pain intensity score (0 to 10) at posttreatment, pain beliefs, and fMRI measures of evoked pain and resting connectivity. RESULTS At baseline, 151 adults (54% female; mean [SD] age, 41.1 [15.6] years) reported mean (SD) pain of low to moderate severity (mean [SD] pain intensity, 4.10 [1.26] of 10; mean [SD] disability, 23.34 [10.12] of 100) and mean (SD) pain duration of 10.0 (8.9) years. Large group differences in pain were observed at posttreatment, with a mean (SD) pain score of 1.18 (1.24) in the PRT group, 2.84 (1.64) in the placebo group, and 3.13 (1.45) in the usual care group. Hedges g was -1.14 for PRT vs placebo and -1.74 for PRT vs usual care (P < .001). Of 151 total participants, 33 of 50 participants (66%) randomized to PRT were pain-free or nearly pain-free at posttreatment (reporting a pain intensity score of 0 or 1 of 10), compared with 10 of 51 participants (20%) randomized to placebo and 5 of 50 participants (10%) randomized to usual care. Treatment effects were maintained at 1-year follow-up, with a mean (SD) pain score of 1.51 (1.59) in the PRT group, 2.79 (1.78) in the placebo group, and 3.00 (1.77) in the usual care group. Hedges g was -0.70 for PRT vs placebo (P = .001) and -1.05 for PRT vs usual care (P < .001) at 1-year follow-up. Longitudinal fMRI showed (1) reduced responses to evoked back pain in the anterior midcingulate and the anterior prefrontal cortex for PRT vs placebo; (2) reduced responses in the anterior insula for PRT vs usual care; (3) increased resting connectivity from the anterior prefrontal cortex and the anterior insula to the primary somatosensory cortex for PRT vs both control groups; and (4) increased connectivity from the anterior midcingulate to the precuneus for PRT vs usual care. CONCLUSIONS AND RELEVANCE Psychological treatment centered on changing patients' beliefs about the causes and threat value of pain may provide substantial and durable pain relief for people with CBP. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03294148.
Collapse
Affiliation(s)
- Yoni K. Ashar
- Department of Psychiatry, Weill Cornell Medical College, New York City, New York,Department of Psychology and Neuroscience, University of Colorado, Boulder,Institute of Cognitive Science, University of Colorado, Boulder
| | - Alan Gordon
- Pain Psychology Center, Los Angeles, California
| | - Howard Schubiner
- Ascension Providence Hospital, Southfield, Michigan,Michigan State University College of Human Medicine, East Lansing
| | | | - Karen Knight
- Panorama Orthopedics and Spine Center, Golden, Colorado
| | - Zachary Anderson
- Department of Psychology and Neuroscience, University of Colorado, Boulder,Institute of Cognitive Science, University of Colorado, Boulder,Department of Psychology, Northwestern University, Evanston, Illinois
| | - Judith Carlisle
- Department of Psychology and Neuroscience, University of Colorado, Boulder,Institute of Cognitive Science, University of Colorado, Boulder,Department of Philosophy, Washington University in Saint Louis, Saint Louis, Missouri
| | - Laurie Polisky
- Department of Psychology and Neuroscience, University of Colorado, Boulder,Institute of Cognitive Science, University of Colorado, Boulder
| | - Stephan Geuter
- Department of Psychology and Neuroscience, University of Colorado, Boulder,Institute of Cognitive Science, University of Colorado, Boulder,Johns Hopkins University Department of Biostatistics, Baltimore, Maryland
| | - Thomas F. Flood
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Philip A. Kragel
- Department of Psychology and Neuroscience, University of Colorado, Boulder,Institute of Cognitive Science, University of Colorado, Boulder,Department of Psychology, Emory University, Atlanta, Georgia
| | - Sona Dimidjian
- Department of Psychology and Neuroscience, University of Colorado, Boulder,Renée Crown Wellness Institute, University of Colorado, Boulder
| | - Mark A. Lumley
- Department of Psychology, Wayne State University, Detroit, Michigan
| | - Tor D. Wager
- Department of Psychology and Neuroscience, University of Colorado, Boulder,Institute of Cognitive Science, University of Colorado, Boulder,Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
38
|
Tagliaferri SD, Ng SK, Fitzgibbon BM, Owen PJ, Miller CT, Bowe SJ, Belavy DL. Relative contributions of the nervous system, spinal tissue and psychosocial health to non-specific low back pain: Multivariate meta-analysis. Eur J Pain 2021; 26:578-599. [PMID: 34748265 DOI: 10.1002/ejp.1883] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/31/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Nervous system, psychosocial and spinal tissue biomarkers are associated with non-specific low back pain (nsLBP), though relative contributions are unclear. DATABASES AND DATA TREATMENT MEDLINE, EMBASE, CINAHL, PsycINFO and SPORTDiscus were searched up to 25 March 2020. Related reviews and reference lists were also screened. Observational studies examining structural and functional nervous system biomarkers (e.g. quantitative sensory tests, structural and functional brain measures), psychosocial factors (e.g. mental health, catastrophizing) and structural spinal imaging biomarkers (e.g. intervertebral disc degeneration, paraspinal muscle size) between nsLBP and pain-free controls were included. For multivariate meta-analysis, two of three domains were required in each study. Random-effects pairwise and multivariate meta-analyses were performed. GRADE approach assessed evidence certainty. Newcastle-Ottawa scale assessed risk of bias. Main outcomes were the effect size difference of domains between nsLBP and pain-free controls. RESULTS Of 4519 unique records identified, 33 studies (LBP = 1552, referents = 1322) were meta-analysed. Psychosocial state (Hedges' g [95%CI]: 0.90 [0.69-1.10], p < 0.001) in nsLBP showed larger effect sizes than nervous system (0.31 [0.13-0.49], p < 0.001; difference: 0.61 [0.36-0.86], p < 0.001) and spine imaging biomarkers (0.55 [0.37-0.73], p < 0.001; difference: 0.36 [0.04-0.67], p = 0.027). The relationship between domains changes depending on if pain duration is acute or chronic. CONCLUSIONS Psychosocial effect sizes in nsLBP are greater than that for spinal imaging and nervous system biomarkers. Limitations include cross-sectional design of studies included and inference of causality. Future research should investigate the clinical relevance of these effect size differences in relation to pain intensity and disability. STUDY REGISTRATION PROSPERO-CRD42020159188. SIGNIFICANCE Spinal imaging (e.g. intervertebral disc degeneration), psychosocial (e.g. depression) and nervous system (e.g. quantitative sensory tests, structural and functional brain measures) biomarkers contribute to non-specific low back pain. However, psychosocial factors may be more compromised than nervous system and spinal imaging biomarkers. This relationship depends on if the pain is acute or chronic. These findings underscore that the 'non-specific' label in back pain should be reconsidered, and more specific multidimensional categories evaluated to guide patient management.
Collapse
Affiliation(s)
- Scott D Tagliaferri
- Deakin University, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia
| | - Sin-Ki Ng
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Bernadette M Fitzgibbon
- Monash University, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Melbourne, Victoria, Australia
| | - Patrick J Owen
- Deakin University, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia
| | - Clint T Miller
- Deakin University, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia
| | - Steven J Bowe
- Deakin University, Faculty of Health, Biostatistics Unit, Geelong, Victoria, Australia
| | - Daniel L Belavy
- Deakin University, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia.,Division of Physiotherapy, Department of Applied Health Sciences, Hochschule für Gesundheit (University of Applied Sciences), Bochum, Germany
| |
Collapse
|
39
|
Li W, Gong Y, Liu J, Guo Y, Tang H, Qin S, Zhao Y, Wang S, Xu Z, Chen B. Peripheral and Central Pathological Mechanisms of Chronic Low Back Pain: A Narrative Review. J Pain Res 2021; 14:1483-1494. [PMID: 34079363 PMCID: PMC8166276 DOI: 10.2147/jpr.s306280] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/01/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic low back pain (CLBP), lasting >3 months, is the end result of multiple pathogenic factors. Unfortunately, little is known about CLBP pathogenesis, which limits its advancements in clinical therapy and disease management. This paper summarizes the known pathological axes of CLBP, involving both peripheral and central systems. In particular, this paper details injurious nerve stimulation, inflammation-induced peripheral pathway, and central sensitization. Lumbar components, such as intervertebral disc (IVD), facet joints, muscles, fascia, ligaments, and joint capsules, contain pain receptors called nociceptors. Degeneration of the aforementioned lumbar components activates inflammatory pathways, which can directly damage nerves, lower nociceptor threshold to fire action potentials (AP), and cause pain. Additionally, damaged lumbar IVDs and endplates can also lead to the pathologic invasion of nerve growth and innervation, followed by the compression of herniated IVDs on nerve roots, thereby causing traumatic neuropathic pain. The central mechanism of CLBP involves alteration of the sensory processing of the brain and malfunction of the descending pain modulatory system, which facilitates pain amplification in the center nervous system (CNS). Lastly, abnormalities in the brain biochemical metabolism, activation of glial cells, and subsequent inflammation also play important roles in CLBP development. Taken together, inflammation plays an important role in both peripheral and central sensitization of CLBP. Due to the heterogeneity of CLBP, its pathological mechanism remains complex and difficult to understand. Therefore, it is a worthy field for future research into the subcomponents of CLBP pathogenesis, in order to distinguish the specific form of the disease, identify its origins, and develop corresponding highly effective comprehensive therapy against CLBP.
Collapse
Affiliation(s)
- Wei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yongming Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Huiling Tang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Siru Qin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yadan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Songtao Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| |
Collapse
|
40
|
Kashanian A, Tsolaki E, Pouratian N, Bari AA. Deep Brain Stimulation of the Subgenual Cingulate Cortex for the Treatment of Chronic Low Back Pain. Neuromodulation 2021; 25:202-210. [PMID: 33872423 DOI: 10.1111/ner.13388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Despite converging basic scientific and clinical evidence of the link between chronic pain and depression, existing therapies do not often take advantage of this overlap. Here, we provide a critical review of the literature that highlights the intersection in brain networks between chronic low back pain (CLBP) and depression and discuss findings from previous deep brain stimulation (DBS) studies for pain. Based on a multidimensional model of pain processing and the connectivity of the subgenual cingulate cortex (SCC) with areas that are implicated in both CLBP and depression, we propose a novel approach to the treatment of CLBP using DBS of the SCC. MATERIALS AND METHODS A narrative review with literature assessment. RESULTS CLBP is associated with a shift away from somatosensory representation toward brain regions that mediate emotional processes. There is a high degree of overlap between these regions and those involved in depression, including the anterior cingulate cortex, medial prefrontal cortex, nucleus accumbens, and amygdala. Whereas targets sites from previous DBS trials for pain were not anatomically positioned to engage these areas and their associated networks, the SCC is structurally connected to all of these regions and as well as others involved in mediating sensory, cognitive, and affective processing in CLBP. CONCLUSIONS CLBP and depression share a common underlying brain network interconnected by the SCC. Current data and novel technology provide an optimal opportunity to develop clinically effective trials of SCC DBS for CLBP.
Collapse
Affiliation(s)
- Alon Kashanian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Evangelia Tsolaki
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ausaf A Bari
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
41
|
Pinto SM, Cheung JPY, Samartzis D, Karppinen J, Zheng YP, Pang MYC, Wong AYL. Differences in Proprioception Between Young and Middle-Aged Adults With and Without Chronic Low Back Pain. Front Neurol 2020; 11:605787. [PMID: 33408687 PMCID: PMC7779670 DOI: 10.3389/fneur.2020.605787] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: While young adults with chronic low back pain (CLBP) exhibit impaired lumbar proprioception, it remains unclear if the same phenomenon is observed in middle-aged adults with CLBP. Objectives: This study aimed to investigate whether young or middle-aged adults with CLBP displayed different proprioception ability as compared to age-matched asymptomatic controls. Methods: Sixty-four young adults with [median age:34 [interquartile range (IQR): 29-37] years] and without [median age:29 (IQR; 23-34) years] CLBP, and 87 middle-aged adults with [median age:53 (IQR: 49-58) years] and without [median age: 54 (IQR: 45-64) years] CLBP underwent postural sway tests on a force-plate with (unstable surface) and without a foam (stable surface), while bilateral L5/S1 multifidi and triceps-surae were vibrated separately. An individual's proprioception reweighting ability was estimated by relative proprioceptive reweighting (RPW). Higher RPW values indicate less reliance on lumbar multifidus proprioceptive signals for balance. Participants also underwent lumbar repositioning tests in sitting to determine repositioning errors in reproducing target lumbar flexion/extension positions. Results: Young adults with CLBP demonstrated significantly higher median RPW values than age-matched asymptomatic controls for maintaining standing balance [stable surface: CLBP: 0.9 (IQR: 0.7-0.9), asymptomatic: 0.7 (IQR: 0.6-0.8), p < 0.05; unstable surface: CLBP: 0.6 (IQR: 0.4-0.8), asymptomatic: 0.5 (IQR: 0.3-0.7), p < 0.05]. No significant differences in repositioning error were noted between young or middle-aged adults with and without CLBP (p > 0.05). RPW values were unrelated to repositioning errors in all groups (p > 0.05). Conclusion: Young adults with CLBP, and middle-aged adults with and without CLBP had inferior proprioceptive reweighting capability. This finding may indicate potential age-related deterioration in central and peripheral processing of lumbar proprioceptive signals. Future studies should use advanced imaging and/or electroencephalogram to determine mechanisms underlying changes in proprioceptive reweighting in middle-aged adults.
Collapse
Affiliation(s)
- Sabina M. Pinto
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jason P. Y. Cheung
- Department of Orthopedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Dino Samartzis
- Department of Orthopedics Surgery, Rush University Medical Center, Chicago, IL, United States
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, United States
| | - Jaro Karppinen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Rehabilitation Services of South Karelia Social and Health Care District, Lappeenranta, Finland
| | - Yong-ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Marco Y. C. Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Arnold Y. L. Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
42
|
Multi-modal biomarkers of low back pain: A machine learning approach. NEUROIMAGE-CLINICAL 2020; 29:102530. [PMID: 33338968 PMCID: PMC7750450 DOI: 10.1016/j.nicl.2020.102530] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022]
Abstract
Widespread differences in cortical thickness (CT) were observed in patients with low back pain. Changes in CT correlated with self-reported clinical scores of pain and emotion. Changes in resting state fMRI metrics of functional networks. Support vector machines separated low back pain patients from controls with a high performance. Multi-modal biomarkers can be useful when identifying personalized treatments for low back pain.
Chronic low back pain (LBP) is a very common health problem worldwide and a major cause of disability. Yet, the lack of quantifiable metrics on which to base clinical decisions leads to imprecise treatments, unnecessary surgery and reduced patient outcomes. Although, the focus of LBP has largely focused on the spine, the literature demonstrates a robust reorganization of the human brain in the setting of LBP. Brain neuroimaging holds promise for the discovery of biomarkers that will improve the treatment of chronic LBP. In this study, we report on morphological changes in cerebral cortical thickness (CT) and resting-state functional connectivity (rsFC) measures as potential brain biomarkers for LBP. Structural MRI scans, resting state functional MRI scans and self-reported clinical scores were collected from 24 LBP patients and 27 age-matched healthy controls (HC). The results suggest widespread differences in CT in LBP patients relative to HC. These differences in CT are correlated with self-reported clinical summary scores, the Physical Component Summary and Mental Component Summary scores. The primary visual, secondary visual and default mode networks showed significant age-corrected increases in connectivity with multiple networks in LBP patients. Cortical regions classified as hubs based on their eigenvector centrality (EC) showed differences in their topology within motor and visual processing regions. Finally, a support vector machine trained using CT to classify LBP subjects from HC achieved an average classification accuracy of 74.51%, AUC = 0.787 (95% CI: 0.66–0.91). The findings from this study suggest widespread changes in CT and rsFC in patients with LBP while a machine learning algorithm trained using CT can predict patient group. Taken together, these findings suggest that CT and rsFC may act as potential biomarkers for LBP to guide therapy.
Collapse
|
43
|
Correlation Between Central Sensitization and Remote Muscle Performance in Individuals With Chronic Low Back Pain. J Manipulative Physiol Ther 2020; 44:14-24. [PMID: 33248751 DOI: 10.1016/j.jmpt.2020.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The purpose of this study was to examine associations between the degree of central sensitization (CS) and remote muscle performance in people with chronic low back pain (CLBP). METHODS The 2011 fibromyalgia (FM) criteria and severity scales (2011 FM survey) were used as a surrogate measure of CS to divide the participants into 2 groups: FM-positive CLBP and FM-negative CLBP. Measures related to central sensitization included the 2011 FM survey and pressure pain threshold of the thumbnail. Measures related to muscle performance included neck flexor muscle strength and endurance and plantar flexor muscle strength. Between-groups and correlation analyses were performed. RESULTS Sixty people with CLBP were enrolled (30 FM-positive, 30 FM-negative). There was no significant difference between the subgroups in age, sex, or pain duration (P > .05). The FM-positive CLBP group showed poorer neck flexor muscle endurance (P = .01) and plantar flexor muscle strength (P = .002) than the FM-negative CLBP group, whereas neck flexor muscle strength was not different between the groups (P = .175). Scores for FM and values for pressure pain thresholds of the thumbnail were associated with neck flexor muscle strength (respectively, r = -0.320, P = .013, and r = 0.467, P < .001), endurance (r = -0.242, P < .001, and r = 0.335, P = .009), and plantar flexor muscle strength (r = -0.469, P < .001, and r = 0.500, P < .001). CONCLUSION We found associations between the degree of CS and remote muscle strength and endurance, suggesting that poor remote muscle performance is possibly a clinical sign of CS in people with CLBP.
Collapse
|
44
|
Tu Y, Cao J, Bi Y, Hu L. Magnetic resonance imaging for chronic pain: diagnosis, manipulation, and biomarkers. SCIENCE CHINA-LIFE SCIENCES 2020; 64:879-896. [PMID: 33247802 DOI: 10.1007/s11427-020-1822-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Pain is a multidimensional subjective experience with biological, psychological, and social factors. Whereas acute pain can be a warning signal for the body to avoid excessive injury, long-term and ongoing pain may be developed as chronic pain. There are more than 100 million people in China living with chronic pain, which has raised a huge socioeconomic burden. Studying the mechanisms of pain and developing effective analgesia approaches are important for basic and clinical research. Recently, with the development of brain imaging and data analytical approaches, the neural mechanisms of chronic pain have been widely studied. In the first part of this review, we briefly introduced the magnetic resonance imaging and conventional analytical approaches for brain imaging data. Then, we reviewed brain alterations caused by several chronic pain disorders, including localized and widespread primary pain, primary headaches and orofacial pain, musculoskeletal pain, and neuropathic pain, and present meta-analytical results to show brain regions associated with the pathophysiology of chronic pain. Next, we reviewed brain changes induced by pain interventions, such as pharmacotherapy, neuromodulation, and acupuncture. Lastly, we reviewed emerging studies that combined advanced machine learning and neuroimaging techniques to identify diagnostic, prognostic, and predictive biomarkers in chronic pain patients.
Collapse
Affiliation(s)
- Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin Cao
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, 02129, USA
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Pain Management, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
45
|
Distinct thalamocortical network dynamics are associated with the pathophysiology of chronic low back pain. Nat Commun 2020; 11:3948. [PMID: 32769984 PMCID: PMC7414843 DOI: 10.1038/s41467-020-17788-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/21/2020] [Indexed: 01/09/2023] Open
Abstract
Thalamocortical dysrhythmia is a key pathology of chronic neuropathic pain, but few studies have investigated thalamocortical networks in chronic low back pain (cLBP) given its non-specific etiology and complexity. Using fMRI, we propose an analytical pipeline to identify abnormal thalamocortical network dynamics in cLBP patients and validate the findings in two independent cohorts. We first identify two reoccurring dynamic connectivity states and their associations with chronic and temporary pain. Further analyses show that cLBP patients have abnormal connectivity between the ventral lateral/posterolateral nucleus (VL/VPL) and postcentral gyrus (PoCG) and between the dorsal/ventral medial nucleus and insula in the less frequent connectivity state, and temporary pain exacerbation alters connectivity between the VL/VPL and PoCG and the default mode network in the more frequent connectivity state. These results extend current findings on thalamocortical dysfunction and dysrhythmia in chronic pain and demonstrate that cLBP pathophysiology and clinical pain intensity are associated with distinct thalamocortical network dynamics. Thalamocortical dysrhythmia is a key pathology of chronic pain. Here, the authors propose an analytical pipeline to study dynamic fMRI brain networks and demonstrate that chronic low back pain pathophysiology and clinical pain intensity are associated with distinct thalamocortical network dynamics.
Collapse
|
46
|
Pei Y, Zhang Y, Zhu Y, Zhao Y, Zhou F, Huang M, Wu L, Gong H. Hyperconnectivity and High Temporal Variability of the Primary Somatosensory Cortex in Low-Back-Related Leg Pain: An fMRI Study of Static and Dynamic Functional Connectivity. J Pain Res 2020; 13:1665-1675. [PMID: 32753942 PMCID: PMC7351631 DOI: 10.2147/jpr.s242807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/23/2020] [Indexed: 01/10/2023] Open
Abstract
Objective To investigate the functional connectivity (FC) and its variability in the primary somatosensory cortex (S1) of patients with low-back-related leg pain (LBLP) in the context of the persistent stimuli of pain and numbness. Patients and Methods We performed functional magnetic resonance imaging on LBLP patients (n = 26) and healthy controls (HCs; n = 34) at rest. We quantified and compared static FC (sFC) using a seed-based analysis strategy, with 6 predefined bilateral paired spherical regions of interest (ROIs) in the S1 cortex. Then, we captured the dynamic FC using sliding window correlation of ROIs in both the LBLP patients and HCs. Furthermore, we performed a correlational analysis between altered static and dynamic FC and clinical measures in LBLP patients. Results Compared with controls, the LBLP patients had 1) significantly increased static FC between the left S1back (the representation of the back in the S1) and right superior and middle frontal gyrus (SFG/MFG), between the left S1chest and right SFG/MFG, between right S1chest and right SFG/MFG, between the left S1face and right MFG, and between the right S1face and right inferior parietal lobule (P < 0.001, Gaussian random field theory correction); 2) increased dynamic FC only between the right S1finger and the left precentral and postcentral gyrus and between the right S1hand and the right precentral and postcentral gyrus (P < 0.01, Gaussian random field theory correction); and 3) a negative correlation between the Barthel index and the increased static FC between the left S1face and right inferior parietal lobule (P = 0.048). Conclusion The present study demonstrated the hyperconnectivity of the S1 cortex to the default mode and executive control network in a spatial pattern and an increase in the tendency for signal variability in the internal network connections of the S1 cortex in patients with LBLP.
Collapse
Affiliation(s)
- Yixiu Pei
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, People's Republic of China
| | - Yong Zhang
- Department of Pain Clinic, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, People's Republic of China
| | - Yanlin Zhao
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, People's Republic of China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, People's Republic of China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, People's Republic of China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, People's Republic of China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, People's Republic of China
| |
Collapse
|
47
|
Somatotopically specific primary somatosensory connectivity to salience and default mode networks encodes clinical pain. Pain 2020; 160:1594-1605. [PMID: 30839429 DOI: 10.1097/j.pain.0000000000001541] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although several studies have found that chronic pain is characterized by increased cross-network connectivity between salience network, sensorimotor network, and default mode network (DMN), a large sample-size investigation allowing for a more reliable evaluation of somatotopic specificity and subgroup analyses with linkage to clinical pain intensity has been lacking. We enrolled healthy adults and a large cohort of patients (N = 181) suffering from chronic low back pain (cLBP). To specifically link brain connectivity with clinical pain intensity, patients were scanned at baseline and after performing physical maneuvers that exacerbated pain. Compared with healthy adults, patients with cLBP demonstrated increased connectivity between the functionally localized back representation in the primary somatosensory cortex (S1back) and both salience network and DMN. Pain exacerbation maneuvers increased S1back connectivity to salience network regions, but decreased connectivity to DMN, with greater pain intensity increase associated with greater shifts in these connectivity patterns. Furthermore, only in patients with cLBP reporting high pain catastrophizing, DMN connectivity was increased to a cardinal node of the salience network, anterior insula cortex, which was correlated with increased postmaneuver pain in this cLBP subgroup. Hence, increased information transfer between salience processing regions, particularly anterior insula, and DMN may be strongly influenced by pain catastrophizing. Increased information transfer between the salience network and S1 likely plays an important role in shifting nociceptive afference away from self-referential processing, reallocating attentional focus, and affective coding of nociceptive afference from specific body areas. These results demonstrate S1 somatotopic specificity for cross-network connectivity in encoding clinical back pain and moderating influence of catastrophizing for DMN/insula connectivity.
Collapse
|
48
|
Yu S, Li W, Shen W, Edwards RR, Gollub RL, Wilson G, Park J, Ortiz A, Cao J, Gerber J, Mawla I, Chan ST, Lee J, Wasan AD, Napadow V, Kaptchuk TJ, Rosen B, Kong J. Impaired mesocorticolimbic connectivity underlies increased pain sensitivity in chronic low back pain. Neuroimage 2020; 218:116969. [PMID: 32439536 DOI: 10.1016/j.neuroimage.2020.116969] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic low back pain (cLBP) is a prevalent disorder. A growing body of evidence linking the pathology of the reward network to chronic pain suggests that pain sensitization may contribute to cLBP chronification via disruptions of mesocortical and mesolimbic circuits in the reward system. Resting-state (RS) functional magnetic resonance imaging (fMRI) data was acquired from 90 patients with cLBP and 74 matched pain-free controls (HCs) at baseline and after a manipulation for back pain intensification. The ventral tegmental area (VTA) was chosen as a seed region to perform RS functional connectivity (FC) analysis. Baseline rsFC of both the mesocortical (between the VTA and bilateral rostral anterior cingulate cortex (rACC)/and medial prefrontal cortex (mPFC)) and mesolimbic (between the VTA and bilateral hippocampus/parahippocampus) pathways was reduced in patients with cLBP (vs. HCs). In addition, patients exhibiting higher back pain intensity (compared to the relatively lower back pain intensity condition) also showed increases in both mesocortical and mesolimbic connectivity, implicating these pathways in pain downregulation in cLBP. Mediation analysis further isolated the mesolimbic (VTA-hippocampus/parahippocampus) dysconnectivity as a neural mechanism mediating the association between mechanical pain sensitivity (indexed by P40 pressure) and cLBP severity. In sum, the current study demonstrates deficient mesocorticolimbic connectivity in cLBP, with mesolimbic dysconnectivity potentially mediating the contribution of pain sensitization to pain chronification. These reward network dysfunctions and purportedly, dopaminergic dysregulations, may help us to identify key brain targets of neuromodulation in the treatment of cLBP.
Collapse
Affiliation(s)
- Siyi Yu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Wen Li
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Wei Shen
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Randy L Gollub
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Georgia Wilson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Joel Park
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ana Ortiz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jin Cao
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jessica Gerber
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ishtiaq Mawla
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Suk-Tak Chan
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jeungchan Lee
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ajay D Wasan
- Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vitaly Napadow
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ted J Kaptchuk
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bruce Rosen
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
49
|
Abnormal medial prefrontal cortex functional connectivity and its association with clinical symptoms in chronic low back pain. Pain 2020; 160:1308-1318. [PMID: 31107712 DOI: 10.1097/j.pain.0000000000001507] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Accumulating evidence has shown that complicated brain systems are involved in the development and maintenance of chronic low back pain (cLBP), but the association between brain functional changes and clinical outcomes remains unclear. Here, we used resting-state functional magnetic resonance imaging (fMRI) and multivariate pattern analysis to identify abnormal functional connectivity (FC) between the default mode, sensorimotor, salience, and central executive brain networks in cLBP and tested whether abnormal FCs are related to pain and comorbid symptoms. Fifty cLBP patients and 44 matched healthy controls (HCs) underwent an fMRI scan, from which brain networks were identified by independent component analysis. Multivariate pattern analysis, graph theory approaches, and correlation analyses were applied to find abnormal FCs that were associated with clinical symptoms. Findings were validated on a second cohort of 30 cLBP patients and 30 matched HCs. Results showed that the medial prefrontal cortex/rostral anterior cingulate cortex had abnormal FCs with brain regions within the default mode network and with other brain networks in cLBP patients. These altered FCs were also correlated with pain duration, pain severity, and pain interference. Finally, we found that resting-state FC could discriminate cLBP patients from HCs with 91% accuracy in the first cohort and 78% accuracy in the validation cohort. Our findings suggest that the medial prefrontal cortex/rostral anterior cingulate cortex may be an important hub for linking the default mode network with the other 3 networks in cLBP patients. Elucidating the altered FCs and their association with clinical outcomes will enhance our understanding of the pathophysiology of cLBP and may facilitate the development of pain management approaches.
Collapse
|
50
|
González-Roldán AM, Terrasa JL, Sitges C, van der Meulen M, Anton F, Montoya P. Age-Related Changes in Pain Perception Are Associated With Altered Functional Connectivity During Resting State. Front Aging Neurosci 2020; 12:116. [PMID: 32457594 PMCID: PMC7221150 DOI: 10.3389/fnagi.2020.00116] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/07/2020] [Indexed: 01/08/2023] Open
Abstract
Aging affects pain experience and brain functioning. However, how aging leads to changes in pain perception and brain functional connectivity has not yet been completely understood. To investigate resting-state and pain perception changes in old and young participants, this study employed region of interest (ROI) to ROI resting-state functional connectivity (rsFC) analysis of imaging data by using regions implicated in sensory and affective dimensions of pain, descending pain modulation, and the default-mode networks (DMNs). Thirty-seven older (66.86 ± 4.04 years; 16 males) and 38 younger healthy participants (20.74 ± 4.15 years; 19 males) underwent 10 min’ eyes-closed resting-state scanning. We examined the relationship between rsFC parameters with pressure pain thresholds. Older participants showed higher pain thresholds than younger. Regarding rsFC, older adults displayed increased connectivity of pain-related sensory brain regions in comparison to younger participants: increased rsFC between bilateral primary somatosensory area (SI) and anterior cingulate cortex (ACC), and between SI(L) and secondary somatosensory area (SII)-(R) and dorsolateral prefrontal cortex (PFC). Moreover, decreased connectivity in the older compared to the younger group was found among descending pain modulatory regions: between the amygdala(R) and bilateral insula(R), thalamus(R), ACC, and amygdala(L); between the amygdala(L) and insula(R) and bilateral thalamus; between ACC and bilateral insula, and between periaqueductal gray (PAG) and bilateral thalamus. Regarding the DMN, the posterior parietal cortex and lateral parietal (LP; R) were more strongly connected in the older group than in the younger group. Correlational analyses also showed that SI(L)-SII(R) rsFC was positively associated with pressure pain thresholds in older participants. In conclusion, these findings suggest a compensatory mechanism for the sensory changes that typically accompanies aging. Furthermore, older participants showed reduced functional connectivity between key nodes of the descending pain inhibitory pathway.
Collapse
Affiliation(s)
- Ana M González-Roldán
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS) and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| | - Juan L Terrasa
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS) and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| | - Carolina Sitges
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS) and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| | - Marian van der Meulen
- Institute for Health and Behaviour, University of Luxembourg, Luxembourg, Luxembourg
| | - Fernand Anton
- Institute for Health and Behaviour, University of Luxembourg, Luxembourg, Luxembourg
| | - Pedro Montoya
- Cognitive and Affective Neuroscience and Clinical Psychology, Research Institute of Health Sciences (IUNICS) and Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands (UIB), Palma, Spain
| |
Collapse
|