1
|
Benjaskulluecha S, Boonmee A, Haque M, Wongprom B, Pattarakankul T, Pongma C, Sri-ngern-ngam K, Keawvilai P, Sukdee T, Saechue B, Kueanjinda P, Palaga T. O 6-methylguanine DNA methyltransferase regulates β-glucan-induced trained immunity of macrophages via farnesoid X receptor and AMPK. iScience 2024; 27:108733. [PMID: 38235325 PMCID: PMC10792243 DOI: 10.1016/j.isci.2023.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Trained immunity is the heightened state of innate immune memory that enhances immune response resulting in nonspecific protection. Epigenetic changes and metabolic reprogramming are critical steps that regulate trained immunity. In this study, we reported the involvement of O6-methylguanine DNA methyltransferase (MGMT), a DNA repair enzyme of lesion induced by alkylating agents, in regulation the trained immunity induced by β-glucan (BG). Pharmacological inhibition or silencing of MGMT expression altered LPS stimulated pro-inflammatory cytokine productions in BG-trained bone marrow derived macrophages (BMMs). Targeted deletion of Mgmt in BMMs resulted in reduction of the trained responses both in vitro and in vivo models. The transcriptomic analysis revealed that the dampening trained immunity in MGMT KO BMMs is partially mediated by ATM/FXR/AMPK axis affecting the MAPK/mTOR/HIF1α pathways and the reduction in glycolysis function. Taken together, a failure to resolve a DNA damage may have consequences for innate immune memory.
Collapse
Affiliation(s)
- Salisa Benjaskulluecha
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - MdFazlul Haque
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjawan Wongprom
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chitsuda Pongma
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittitach Sri-ngern-ngam
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornlapat Keawvilai
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thadaphong Sukdee
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjawan Saechue
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- One Health Research Unit, Faculty of Veterinary Science, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Patipark Kueanjinda
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Marquina Escalante F, Lévano Díaz C, Fuster Guillén D. [New therapeutic advances in patients with lung cancer immunosuppressed with chronic lung diseases in the period 2014-2022 from the review of the literature.]. Rev Esp Salud Publica 2023; 97:e202302015. [PMID: 37057359 PMCID: PMC10541256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/26/2023] [Indexed: 04/15/2023] Open
Abstract
Lung cancer is a malignant neoplasm with a high prevalence and mortality, more so in patients with respiratory comorbidities, whose cells have a massive proliferation capacity in the lung tissue, managing to invade other organs, which deteriorates the patient's physical and emotional state, decreasing their quality of life and defense system; therefore, treatment today is not sufficient for patient survival and there has been evidence of a certain evolution in the treatment of the disease or early detection to prevent it. This article aimed to analyze the new therapeutic advances in patients with lung cancer associated with chronic lung diseases in the period 2014-2022 based on a review of the literature. Several parameters were used to limit the search, extrapolating the articles of interest, validating fifty three articles, six doctoral theses and two books, which were in Spanish and English.The various search strategies used were keywords, subject and author follow-up. The sections developed in this review are the concept of Lung Cancer (LC), clinical manifestations, risk factors, relationship between LC and chronic lung diseases, diagnosis, treatment, prevention and new therapeutic advances. All the filtered information of the selected articles shows us the importance that the use of various biomarkers is taking for its early detection; however, the transfer of antitumor T cells in patients with underlying lung disease had an efficiency of 48.
Collapse
Affiliation(s)
- Fiorella Marquina Escalante
- Escuela de Medicina Humana, Universidad Privada San Juan BautistaUniversidad Privada San Juan BautistaChorrillosPerú
| | - César Lévano Díaz
- Escuela de Medicina Humana, Universidad Privada San Juan BautistaUniversidad Privada San Juan BautistaChorrillosPerú
| | - Doris Fuster Guillén
- Escuela de Medicina Humana, Universidad Privada San Juan BautistaUniversidad Privada San Juan BautistaChorrillosPerú
| |
Collapse
|
3
|
Forder A, Zhuang R, Souza VGP, Brockley LJ, Pewarchuk ME, Telkar N, Stewart GL, Benard K, Marshall EA, Reis PP, Lam WL. Mechanisms Contributing to the Comorbidity of COPD and Lung Cancer. Int J Mol Sci 2023; 24:ijms24032859. [PMID: 36769181 PMCID: PMC9918127 DOI: 10.3390/ijms24032859] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Lung cancer and chronic obstructive pulmonary disease (COPD) often co-occur, and individuals with COPD are at a higher risk of developing lung cancer. While the underlying mechanism for this risk is not well understood, its major contributing factors have been proposed to include genomic, immune, and microenvironment dysregulation. Here, we review the evidence and significant studies that explore the mechanisms underlying the heightened lung cancer risk in people with COPD. Genetic and epigenetic changes, as well as the aberrant expression of non-coding RNAs, predispose the lung epithelium to carcinogenesis by altering the expression of cancer- and immune-related genes. Oxidative stress generated by tobacco smoking plays a role in reducing genomic integrity, promoting epithelial-mesenchymal-transition, and generating a chronic inflammatory environment. This leads to abnormal immune responses that promote cancer development, though not all smokers develop lung cancer. Sex differences in the metabolism of tobacco smoke predispose females to developing COPD and accumulating damage from oxidative stress that poses a risk for the development of lung cancer. Dysregulation of the lung microenvironment and microbiome contributes to chronic inflammation, which is observed in COPD and known to facilitate cancer initiation in various tumor types. Further, there is a need to better characterize and identify the proportion of individuals with COPD who are at a high risk for developing lung cancer. We evaluate possible novel and individualized screening strategies, including biomarkers identified in genetic studies and exhaled breath condensate analysis. We also discuss the use of corticosteroids and statins as chemopreventive agents to prevent lung cancer. It is crucial that we optimize the current methods for the early detection and management of lung cancer and COPD in order to improve the health outcomes for a large affected population.
Collapse
Affiliation(s)
- Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rebecca Zhuang
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Vanessa G P Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Liam J Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michelle E Pewarchuk
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Greg L Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Erin A Marshall
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Patricia P Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Multifactorial Diseases of the Heart, Kidneys, Lungs, and Liver and Incident Cancer: Epidemiology and Shared Mechanisms. Cancers (Basel) 2023; 15:cancers15030729. [PMID: 36765688 PMCID: PMC9913123 DOI: 10.3390/cancers15030729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Within the aging population, the frequency of cancer is increasing dramatically. In addition, multiple genetic and environmental factors lead to common multifactorial diseases, including cardiovascular disease, chronic kidney disease, chronic obstructive pulmonary disease, and metabolic-associated fatty liver disease. In recent years, there has been a growing awareness of the connection between cancer and multifactorial diseases, as well as how one can affect the other, resulting in a vicious cycle. Although the exact mechanistic explanations behind this remain to be fully explored, some progress has been made in uncovering the common pathologic mechanisms. In this review, we focus on the nature of the link between cancer and common multifactorial conditions, as well as specific shared mechanisms, some of which may represent either preventive or therapeutic targets. Rather than organ-specific interactions, we herein focus on the shared mechanisms among the multifactorial diseases, which may explain the increased cancer risk. More research on this subject will highlight the significance of developing new drugs that target multiple systems rather than just one disease.
Collapse
|
5
|
Benjaskulluecha S, Boonmee A, Pattarakankul T, Wongprom B, Klomsing J, Palaga T. Screening of compounds to identify novel epigenetic regulatory factors that affect innate immune memory in macrophages. Sci Rep 2022; 12:1912. [PMID: 35115604 PMCID: PMC8814160 DOI: 10.1038/s41598-022-05929-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Trained immunity and tolerance are part of the innate immune memory that allow innate immune cells to differentially respond to a second encounter with stimuli by enhancing or suppressing responses. In trained immunity, treatment of macrophages with β-glucan (BG) facilitates the production of proinflammatory cytokines upon lipopolysaccharide (LPS) stimulation. For the tolerance response, LPS stimulation leads to suppressed inflammatory responses during subsequent LPS exposure. Epigenetic reprogramming plays crucial roles in both phenomena, which are tightly associated with metabolic flux. In this study, we performed a screening of an epigenetics compound library that affects trained immunity or LPS tolerance in macrophages using TNFα as a readout. Among the 181 compounds tested, one compound showed suppressive effects, while 2 compounds showed promoting effects on BG-trained TNFα production. In contrast, various inhibitors targeting Aurora kinase, histone methyltransferase, histone demethylase, histone deacetylase and DNA methyltransferase showed inhibitory activity against LPS tolerance. Several proteins previously unknown to be involved in innate immune memory, such as MGMT, Aurora kinase, LSD1 and PRMT5, were revealed. Protein network analysis revealed that the trained immunity targets are linked via Trp53, while LPS tolerance targets form three clusters of histone-modifying enzymes, cell division and base-excision repair. In trained immunity, the histone lysine methyltransferase SETD7 was identified, and its expression was increased during BG treatment. Level of the histone lysine demethylase, LSD1, increased during LPS priming and siRNA-mediated reduction resulted in increased expression of Il1b in LPS tolerance. Taken together, this screening approach confirmed the importance of epigenetic modifications in innate immune memory and provided potential novel targets for intervention.
Collapse
Affiliation(s)
- Salisa Benjaskulluecha
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Atsadang Boonmee
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Benjawan Wongprom
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jeerameth Klomsing
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Varela RB, Cararo JH, Tye SJ, Carvalho AF, Valvassori SS, Fries GR, Quevedo J. Contributions of epigenetic inheritance to the predisposition of major psychiatric disorders: theoretical framework, evidence, and implications. Neurosci Biobehav Rev 2022; 135:104579. [DOI: 10.1016/j.neubiorev.2022.104579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
|
7
|
Lambrou GI, Poulou M, Giannikou K, Themistocleous M, Zaravinos A, Braoudaki M. Differential and Common Signatures of miRNA Expression and Methylation in Childhood Central Nervous System Malignancies: An Experimental and Computational Approach. Cancers (Basel) 2021; 13:cancers13215491. [PMID: 34771655 PMCID: PMC8583574 DOI: 10.3390/cancers13215491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are considered of utmost significance for tumor ontogenesis and progression. Especially, it has been found that miRNA expression, as well as DNA methylation plays a significant role in central nervous system tumors during childhood. A total of 49 resected brain tumors from children were used for further analysis. DNA methylation was identified with methylation-specific MLPA and, in particular, for the tumor suppressor genes CASP8, RASSF1, MGMT, MSH6, GATA5, ATM1, TP53, and CADM1. miRNAs were identified with microarray screening, as well as selected samples, were tested for their mRNA expression levels. CASP8, RASSF1 were the most frequently methylated genes in all tumor samples. Simultaneous methylation of genes manifested significant results with respect to tumor staging, tumor type, and the differentiation of tumor and control samples. There was no significant dependence observed with the methylation of one gene promoter, rather with the simultaneous presence of all detected methylated genes' promoters. miRNA expression was found to be correlated to gene methylation. Epigenetic regulation appears to be of major importance in tumor progression and pathophysiology, making it an imperative field of study.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Myrto Poulou
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Marios Themistocleous
- Department of Neurosurgery, “Aghia Sofia” Children’s Hospital, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Group, European University Cyprus, Nicosia 1516, Cyprus
- Correspondence: (A.Z.); (M.B.)
| | - Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hertfordshire AL10 9AB, UK
- Correspondence: (A.Z.); (M.B.)
| |
Collapse
|
8
|
He ZC, Yang F, Guo LL, Wei Z, Dong X. LncRNA TP73-AS1 promotes the development of Epstein-Barr virus associated gastric cancer by recruiting PRC2 complex to regulate WIF1 methylation. Cell Signal 2021:110094. [PMID: 34314802 DOI: 10.1016/j.cellsig.2021.110094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epstein-Barr virus associated gastric cancer (EBVaGC) become a growing health problem. TP73-AS1 showed high expression in EBVaGC cells. However, the function role and underlying mechanism of TP73-AS1 need further exploration. METHODS The expressions of TP73-AS1, WIF1, EZH2, β-catenin and epithelial-mesenchymal transition (EMT)-related proteins were detected using qRT-PCR and Western blotting. Cell proliferation, apoptosis, migration and invasion were measured by CCK-8, colony formation, flow cytometry, wound healing and transwell assays, respectively. WIF1 promoter methylation was analyzed by MS-PCR (MSP). RNA immunoprecipitation assay (RIP) and Chromatin immunoprecipitation assay (ChIP) measured the interactions of TP73-AS1/EZH2 and EZH2/WIF1. Subcutaneous tumor growth was monitored in nude mice and immunohistochemistry (IHC) detected proliferation marker Ki-67 expression. RESULTS TP73-AS1 was increased while WIF1 was decreased in EBVaGC cells. Silencing of TP73-AS1 or overexpression of WIF1 repressed the growth and migration while promoted apoptosis of EBVaGC cells. Knockdown of WIF1 reversed the anticancer effect of TP73-AS1 silencing. TP73-AS1 promoted the binding of EZH2 to the WIF1 promoter by directly binding to EZH2, and thus inhibiting the expression of WIF1 by enhancing H3K27me3 level of WIF1 promoter. Moreover, TP73-AS1 activated Wnt/β-catenin signaling pathway and promoted EMT by down-regulating WIF1. TP73-AS1 silencing inhibited the progression of EBVaGC in nude mice by epigenetically regulating WIF1. CONCLUSION TP73-AS1 regulated the promoter methylation of WIF1 by recruiting PRC2 complex to WIF1 promoter region, thereby promoting the progression of EBVaGC. These observations provided a novel theoretical basis to investigate more effective therapies of EBVaGC.
Collapse
Affiliation(s)
- Zhao-Cai He
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi Province, PR China.
| | - Fan Yang
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi Province, PR China
| | - Li-Li Guo
- Department of Gastroenterology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi Province, PR China
| | - Zhen Wei
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi Province, PR China
| | - Xin Dong
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi Province, PR China
| |
Collapse
|
9
|
Huo X, Jin S, Wang Y, Ma L. DNA methylation in chronic obstructive pulmonary disease. Epigenomics 2021; 13:1145-1155. [PMID: 34142873 DOI: 10.2217/epi-2021-0111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a complex disease with polygenetic tendency, is one of the most important health problems in the world. Recently, in the study of the pathogenesis of the COPD, epigenetic changes caused by environmental factors, such as DNA methylation, started to attract more attention than genetic factors. In this review, we discuss the main features of DNA methylation, such as DNA methyltransferases and the methylation sites that modulate the DNA methylation level, and their roles in COPD progression. Finally, to promote new ideas for the prevention and treatment of COPD, we focus on the potential of DNA methylation as a COPD therapeutic target.
Collapse
Affiliation(s)
- XinXin Huo
- School of Public Health, Lanzhou University, Lanzhou, China
| | - SiHui Jin
- School of Public Health, Lanzhou University, Lanzhou, China
| | - YiGe Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Li N, Dhilipkannah P, Jiang F. High-Throughput Detection of Multiple miRNAs and Methylated DNA by Droplet Digital PCR. J Pers Med 2021; 11:jpm11050359. [PMID: 33946992 PMCID: PMC8146424 DOI: 10.3390/jpm11050359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 01/04/2023] Open
Abstract
Altered miRNA expression and DNA methylation have highly active and diverse roles in carcinogenesis. Simultaneous detection of the molecular aberrations may have a synergistic effect on the diagnosis of malignancies. Herein, we develop a high-throughput assay for detecting multiple miRNAs and DNA methylation using droplet digital PCR (ddPCR) coupled with a 96-microwell plate. The microplate-based ddPCR could absolutely and reproducibly quantify 15 miRNAs and 14 DNA methylation sites with a high sensitivity (one copy/µL and 0.1%, respectively). Analyzing sputum and plasma of 40 lung cancer patients and 36 cancer-free smokers by this approach identified an integrated biomarker panel consisting of two sputum miRNAs (miRs-31-5p and 210-3p), one sputum DNA methylation (RASSF1A), and two plasma miRNAs (miR-21-5p and 126) for the diagnosis of lung cancer with higher sensitivity and specificity compared with a single type of biomarker. The diagnostic value of the integrated biomarker panel for the early detection of lung cancer was confirmed in a different cohort of 36 lung cancer patients and 39 cancer-free smokers. The high-throughput assay for quantification of multiple molecular aberrations across sputum and plasma could improve the early detection of lung cancer.
Collapse
|
11
|
Teuber-Hanselmann S, Worm K, Macha N, Junker A. MGMT-Methylation in Non-Neoplastic Diseases of the Central Nervous System. Int J Mol Sci 2021; 22:ijms22083845. [PMID: 33917711 PMCID: PMC8068191 DOI: 10.3390/ijms22083845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Quantifying O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation plays an essential role in assessing the potential efficacy of alkylating agents in the chemotherapy of malignant gliomas. MGMT promoter methylation is considered to be a characteristic of subgroups of certain malignancies but has also been described in various peripheral inflammatory diseases. However, MGMT promoter methylation levels have not yet been investigated in non-neoplastic brain diseases. This study demonstrates for the first time that one can indeed detect slightly enhanced MGMT promoter methylation in individual cases of inflammatory demyelinating CNS diseases such as multiple sclerosis and progressive multifocal leucencephalopathy (PML), as well as in other demyelinating diseases such as central pontine and exptrapontine myelinolysis, and diseases with myelin damage such as Wallerian degeneration. In this context, we identified a reduction in the expression of the demethylase TET1 as a possible cause for the enhanced MGMT promoter methylation. Hence, we show for the first time that MGMT hypermethylation occurs in chronic diseases that are not strictly associated to distinct pathogens, oncogenic viruses or neoplasms but that lead to damage of the myelin sheath in various ways. While this gives new insights into epigenetic and pathophysiological processes involved in de- and remyelination, which might offer new therapeutic opportunities for demyelinating diseases in the future, it also reduces the specificity of MGMT hypermethylation as a tumor biomarker.
Collapse
Affiliation(s)
- Sarah Teuber-Hanselmann
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
| | - Karl Worm
- Institute of Pathology, University Hospital Essen, D-45147 Essen, Germany;
| | - Nicole Macha
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
- Correspondence: ; Tel.: +49-201-723-3315
| |
Collapse
|
12
|
He LX, Tang ZH, Huang QS, Li WH. DNA Methylation: A Potential Biomarker of Chronic Obstructive Pulmonary Disease. Front Cell Dev Biol 2020; 8:585. [PMID: 32733890 PMCID: PMC7358425 DOI: 10.3389/fcell.2020.00585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a serious public health concern worldwide. By 2040, 4.41 million people are estimated to expire annually due to COPD. However, till date, it has remained difficult to alter the activity or progress of the disease through treatment. In order to address this issue, the best way would be to find biomarkers and new therapeutic targets for COPD. DNA methylation (DNAm) may be a potential biomarker for disease prevention, diagnosis, and prognosis, and its reversibility further makes it a potential drug design target in COPD. In this review, we aimed to explore the role of DNAm as biomarkers and disease mediators in different tissue samples from patients with COPD.
Collapse
Affiliation(s)
- Lin-Xi He
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao-Hui Tang
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing-Song Huang
- Department of Respiratory, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei-Hong Li
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Aggarwal T, Wadhwa R, Thapliyal N, Sharma K, Rani V, Maurya PK. Oxidative, inflammatory, genetic, and epigenetic biomarkers associated with chronic obstructive pulmonary disorder. J Cell Physiol 2018; 234:2067-2082. [DOI: 10.1002/jcp.27181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Taru Aggarwal
- Amity Institute of Biotechnology, Amity UniversityNoida India
| | - Ridhima Wadhwa
- Amity Institute of Biotechnology, Amity UniversityNoida India
| | | | - Kanishka Sharma
- Amity Education GroupOakdale, Long Island (Suffolk) New York
| | - Varsha Rani
- Amity Education GroupOakdale, Long Island (Suffolk) New York
| | - Pawan K. Maurya
- Amity Institute of Biotechnology, Amity UniversityNoida India
- Amity Education GroupOakdale, Long Island (Suffolk) New York
- Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Department of PsychiatryFederal University of São PauloSão Paulo Brazil
| |
Collapse
|
14
|
Philley JV, Hertweck KL, Kannan A, Brown-Elliott BA, Wallace RJ, Kurdowska A, Ndetan H, Singh KP, Miller EJ, Griffith DE, Dasgupta S. Sputum Detection of Predisposing Genetic Mutations in Women with Pulmonary Nontuberculous Mycobacterial Disease. Sci Rep 2018; 8:11336. [PMID: 30054559 PMCID: PMC6063893 DOI: 10.1038/s41598-018-29471-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Abstract
Nontuberculous mycobacterial lung disease (NTM), including Mycobacterium avium complex (MAC), is a growing health problem in North America and worldwide. Little is known about the molecular alterations occurring in the tissue microenvironment during NTM pathogenesis. Utilizing next generation sequencing, we sequenced sputum and matched lymphocyte DNA in 15 MAC patients for a panel of 19 genes known to harbor cancer susceptibility associated mutations. Thirteen of 15 NTM subjects had a diagnosis of breast cancer (BCa) before or after NTM infection. Thirty three percent (4/12) of these NTM-BCa cases exhibited at least 3 somatic mutations in sputa compared to matched lymphocytes. Twenty four somatic mutations were detected with at least one mutation in ATM, ERBB2, BARD1, BRCA1, BRCA2, AR, TP53, PALB2, CASP8, BRIP1, NBN and TGFB1 genes. All four NTM-BCa patients harboring somatic mutations also exhibited 15 germ line BRCA1 and BRCA2 mutations. The two NTM subjects without BCa exhibited twenty somatic mutations spanning BRCA1, BRCA1, BARD1, BRIP1, CHEK2, ERBB2, TP53, ATM, PALB2, TGFB1 and 3 germ line mutations in BRCA1 and BRCA2 genes. A single copy loss of STK11 and AR gene was noted in NTM-BCa subjects. Periodic screening of sputa may aid to develop risk assessment biomarkers for neoplastic diseases in NTM patients.
Collapse
Affiliation(s)
- Julie V Philley
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Kate L Hertweck
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Anbarasu Kannan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Barbara A Brown-Elliott
- Department of The Mycobacteria/Nocardia Research Laboratory Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Richard J Wallace
- Department of The Mycobacteria/Nocardia Research Laboratory Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Anna Kurdowska
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Harrison Ndetan
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Karan P Singh
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Edmund J Miller
- Department of The Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - David E Griffith
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA.
| |
Collapse
|
15
|
Su Y, Fang HB, Jiang F. An epigenetic classifier for early stage lung cancer. Clin Epigenetics 2018; 10:68. [PMID: 29796119 PMCID: PMC5964676 DOI: 10.1186/s13148-018-0502-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background Methylated genes detected in sputum are promise biomarkers for lung cancer. Yet the current PCR technologies for quantification of DNA methylation and diagnostic value of the sputum biomarkers are not sufficient to be used for lung cancer early detection. The emerging droplet digital PCR (ddPCR) is a straightforward means for precise, direct, and absolute quantification of nucleic acids. Here, we investigate whether ddPCR can sensitively and robustly quantify DNA methylation in sputum for more precise diagnosis of lung cancer. Results First, the analytic performance of methylation-specific ddPCR (ddMSP) and quantitative methylation-specific PCR (qMSP) is determined in methylated and unmethylated DNA samples. Second, 29 genes, previously proposed as potential sputum biomarkers for lung cancer, are analyzed by using ddMSP in a training set of 127 lung cancer patients and 159 controls. ddMSP has higher sensitivity, precision, and reproducibility for quantification of methylation compared with qMSP (all p < 0.05). A classifier comprising four sputum methylation biomarkers for lung cancer is developed by using ddMSP, producing 86.6% sensitivity and 90.6% specificity, independent of stage and histology of lung cancer (all p > 0.05). The classifier has higher accuracy compared with sputum cytology (88.8 vs. 70.6%, p < 0.01). The diagnostic performance is confirmed in a testing set of 89 cases and 107 controls. Conclusions ddMSP is a robust tool for reliable quantification of DNA methylation in sputum, and the epigenetic classifier could help diagnose lung cancer at the early stage.
Collapse
Affiliation(s)
- Yun Su
- 1Department of Surgery, Jiangsu Province Hospital of Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023 China
| | - Hong Bin Fang
- 2Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, 4000 Reservoir Road, N.W, Washington D.C., 20057 USA
| | - Feng Jiang
- 3Department of Pathology, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
16
|
Mateu-Jimenez M, Curull V, Rodríguez-Fuster A, Aguiló R, Sánchez-Font A, Pijuan L, Gea J, Barreiro E. Profile of epigenetic mechanisms in lung tumors of patients with underlying chronic respiratory conditions. Clin Epigenetics 2018; 10:7. [PMID: 29371906 PMCID: PMC5771157 DOI: 10.1186/s13148-017-0437-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/19/2017] [Indexed: 02/06/2023] Open
Abstract
Background Chronic lung diseases such as chronic obstructive pulmonary disease (COPD) and epigenetic events underlie lung cancer (LC) development. The study objective was that lung tumor expression levels of specific microRNAs and their downstream biomarkers may be differentially regulated in patients with and without COPD. Methods In lung specimens (tumor and non-tumor), microRNAs known to be involved in lung tumorigenesis (miR-21, miR-200b, miR-126, miR-451, miR-210, miR-let7c, miR-30a-30p, miR-155 and miR-let7a, qRT-PCR), DNA methylation, and downstream biomarkers were determined (qRT-PCR and immunoblotting) in 40 patients with LC (prospective study, subdivided into LC-COPD and LC, N = 20/group). Results Expression of miR-21, miR-200b, miR-210, and miR-let7c and DNA methylation were greater in lung tumor specimens of LC-COPD than of LC patients. Expression of downstream markers PTEN, MARCKs, TPM-1, PDCD4, SPRY-2, ETS-1, ZEB-2, FGFRL-1, EFNA-3, and k-RAS together with P53 were selectively downregulated in tumor samples of LC-COPD patients. In these patients, tumor expression of miR-126 and miR-451 and that of the biomarkers PTEN, MARCKs, FGFRL-1, SNAIL-1, P63, and k-RAS were reduced. Conclusions Biomarkers of mechanisms involved in tumor growth, angiogenesis, migration, and apoptosis were differentially expressed in tumors of patients with underlying respiratory disease. These findings shed light into the underlying biology of the reported greater risk to develop LC seen in patients with chronic respiratory conditions. The presence of an underlying respiratory disease should be identified in all patients with LC as the differential biological profile may help determine tumor progression and the therapeutic response. Additionally, epigenetic events offer a niche for pharmacological therapeutic targets.
Collapse
Affiliation(s)
- Mercè Mateu-Jimenez
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Víctor Curull
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | | | - Rafael Aguiló
- Thoracic Surgery Department, Hospital del Mar-IMIM, Parc de Salut Mar, Barcelona, Spain
| | - Albert Sánchez-Font
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Lara Pijuan
- Pathology Department, Hospital del Mar-IMIM, Parc de Salut Mar, Barcelona, Spain
| | - Joaquim Gea
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department, Lung Cancer and Muscle Research Group, Hospital del Mar-IMIM, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), C/ Dr. Aiguader, 88, E-08003 Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
17
|
DNA Methylation as a Noninvasive Epigenetic Biomarker for the Detection of Cancer. DISEASE MARKERS 2017; 2017:3726595. [PMID: 29038612 PMCID: PMC5605861 DOI: 10.1155/2017/3726595] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/10/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022]
Abstract
In light of the high incidence and mortality rates of cancer, early and accurate diagnosis is an important priority for assigning optimal treatment for each individual with suspected illness. Biomarkers are crucial in the screening of patients with a high risk of developing cancer, diagnosing patients with suspicious tumours at the earliest possible stage, establishing an accurate prognosis, and predicting and monitoring the response to specific therapies. Epigenetic alterations are innovative biomarkers for cancer, due to their stability, frequency, and noninvasive accessibility in bodily fluids. Epigenetic modifications are also reversible and potentially useful as therapeutic targets. Despite this, there is still a lack of accurate biomarkers for the conclusive diagnosis of most cancer types; thus, there is a strong need for continued investigation to expand this area of research. In this review, we summarise current knowledge on methylated DNA and its implications in cancer to explore its potential as an epigenetic biomarker to be translated for clinical application. We propose that the identification of biomarkers with higher accuracy and more effective detection methods will enable improved clinical management of patients and the intervention at early-stage disease.
Collapse
|
18
|
A novel SHARPIN-PRMT5-H3R2me1 axis is essential for lung cancer cell invasion. Oncotarget 2017; 8:54809-54820. [PMID: 28903384 PMCID: PMC5589623 DOI: 10.18632/oncotarget.18957] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022] Open
Abstract
SHARPIN (Shank-associated RH domain interacting protein) is the main component of the linear ubiquitin chain activation complex (LUBAC). SHARPIN is involved in regulating inflammation and cancer progression. However, whether SHARPIN plays an important role in lung cancer metastasis and the potential underlying mechanism are still unknown. Here, for the first time, we reported that SHARPIN expression is closely related to lung cancer progression. Moreover, SHARPIN plays a central role in controlling lung cancer cell metastasis. Mechanistic studies further revealed that PRMT5 (Protein arginine methyltransferase 5), responsible for catalyzing arginine methylation on histones, is a novel cofactor of SHARPIN. This finding provides the basis for further study of the crosstalk between protein ubiquitination and histone methylation. We further found that SHARPIN-PRMT5 is essential for the monomethylation of histones of chromatins at key metastasis-related genes, defining a new mechanism regulating cancer invasion. A novel MLL complex (ASH2 and WDR5) was implied in the link between histone arginine2 monomethylation (H3R2me1) and histone lysine4 trimethylation (H3K4me3) for the activation of metastasis-related genes. These novel findings establish a new epigenetic paradigm in which SHARPIN-PRMT5 has distinct roles in orchestrating chromatin environments for cancer-related genes via integrating signaling between H3R2me1 and H3K4me3.
Collapse
|
19
|
Liu D, Peng H, Sun Q, Zhao Z, Yu X, Ge S, Wang H, Fang H, Gao Q, Liu J, Wu L, Song M, Wang Y. The Indirect Efficacy Comparison of DNA Methylation in Sputum for Early Screening and Auxiliary Detection of Lung Cancer: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017. [PMID: 28644424 PMCID: PMC5551117 DOI: 10.3390/ijerph14070679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: DNA methylation in sputum has been an attractive candidate biomarker for the non-invasive screening and detection of lung cancer. Materials and Methods: Databases including PubMed, Ovid, Cochrane library, Web of Science databases, Chinese Biological Medicine (CBM), Chinese National Knowledge Infrastructure (CNKI), Wanfang, Vip Databases and Google Scholar were searched to collect the diagnostic trials on aberrant DNA methylation in the screening and detection of lung cancer published until 1 December 2016. Indirect comparison meta-analysis was used to evaluate the diagnostic value of the included candidate genes. Results: The systematic literature search yielded a total of 33 studies including a total of 4801 subjects (2238 patients with lung cancer and 2563 controls) and covering 32 genes. We identified that methylated genes in sputum samples for the early screening and auxiliary detection of lung cancer yielded an overall sensitivity of 0.46 (0.41–0.50) and specificity of 0.83 (0.80–0.86). Combined indirect comparisons identified the superior gene of SOX17 (sensitivity: 0.84, specificity: 0.88), CDO1 (sensitivity: 0.78, specificity: 0.67), ZFP42 (sensitivity: 0.87, specificity: 0.63) and TAC1 (sensitivity: 0.86, specificity: 0.75). Conclusions: The present meta-analysis demonstrates that methylated SOX17, CDO1, ZFP42, TAC1, FAM19A4, FHIT, MGMT, p16, and RASSF1A are potential superior biomarkers for the screening and auxiliary detection of lung cancer.
Collapse
Affiliation(s)
- Di Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Hongli Peng
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Qi Sun
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Zhongyao Zhao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Xinwei Yu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia.
| | - Siqi Ge
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia.
| | - Hao Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Honghong Fang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Qing Gao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Jiaonan Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Lijuan Wu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Manshu Song
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Youxin Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China.
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia.
| |
Collapse
|
20
|
Sundar IK, Yin Q, Baier BS, Yan L, Mazur W, Li D, Susiarjo M, Rahman I. DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD. Clin Epigenetics 2017; 9:38. [PMID: 28416970 PMCID: PMC5391602 DOI: 10.1186/s13148-017-0335-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/29/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Epigenetics changes have been shown to be affected by cigarette smoking. Cigarette smoke (CS)-mediated DNA methylation can potentially affect several cellular and pathophysiological processes, acute exacerbations, and comorbidity in the lungs of patients with chronic obstructive pulmonary disease (COPD). We sought to determine whether genome-wide lung DNA methylation profiles of smokers and patients with COPD were significantly different from non-smokers. We isolated DNA from parenchymal lung tissues of patients including eight lifelong non-smokers, eight current smokers, and eight patients with COPD and analyzed the samples using Illumina's Infinium HumanMethylation450 BeadChip. RESULTS Our data revealed that the differentially methylated genes were related to top canonical pathways (e.g., G beta gamma signaling, mechanisms of cancer, and nNOS signaling in neurons), disease and disorders (organismal injury and abnormalities, cancer, and respiratory disease), and molecular and cellular functions (cell death and survival, cellular assembly and organization, cellular function and maintenance) in patients with COPD. The genome-wide DNA methylation analysis identified suggestive genes, such as NOS1AP, TNFAIP2, BID, GABRB1, ATXN7, and THOC7 with DNA methylation changes in COPD lung tissues that were further validated by pyrosequencing. Pyrosequencing validation confirmed hyper-methylation in smokers and patients with COPD as compared to non-smokers. However, we did not detect significant differences in DNA methylation for TNFAIP2, ATXN7, and THOC7 genes in smokers and COPD groups despite the changes observed in the genome-wide analysis. CONCLUSIONS Our study suggests that DNA methylation in suggestive genes, such as NOS1AP, BID, and GABRB1 may be used as epigenetic signatures in smokers and patients with COPD if the same is validated in a larger cohort. Future studies are required to correlate DNA methylation status with transcriptomics of selective genes identified in this study and elucidate their role and involvement in the progression of COPD and its exacerbations.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, 14642 NY USA
| | - Qiangzong Yin
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, 14642 NY USA
| | - Brian S Baier
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, 14642 NY USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY USA
| | - Witold Mazur
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, 14642 NY USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, 14642 NY USA
| |
Collapse
|
21
|
Analysis of DNA Methylation Status in Bodily Fluids for Early Detection of Cancer. Int J Mol Sci 2017; 18:ijms18040735. [PMID: 28358330 PMCID: PMC5412321 DOI: 10.3390/ijms18040735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 02/07/2023] Open
Abstract
Epigenetic alterations by promoter DNA hypermethylation and gene silencing in cancer have been reported over the past few decades. DNA hypermethylation has great potential to serve as a screening marker, a prognostic marker, and a therapeutic surveillance marker in cancer clinics. Some bodily fluids, such as stool or urine, were obtainable without any invasion to the body. Thus, such bodily fluids were suitable samples for high throughput cancer surveillance. Analyzing the methylation status of bodily fluids around the cancer tissue may, additionally, lead to the early detection of cancer, because several genes in cancer tissues are reported to be cancer-specifically hypermethylated. Recently, several studies that analyzed the methylation status of DNA in bodily fluids were conducted, and some of the results have potential for future development and further clinical use. In fact, a stool DNA test was approved by the U.S. Food and Drug Administration (FDA) for the screening of colorectal cancer. Another promising methylation marker has been identified in various bodily fluids for several cancers. We reviewed studies that analyzed DNA methylation in bodily fluids as a less-invasive cancer screening.
Collapse
|
22
|
Datta S, Nam HS, Hayashi M, Maldonado L, Goldberg R, Brait M, Sidransky D, Illei P, Baras A, Vij N, Hoque MO. Expression of GULP1 in bronchial epithelium is associated with the progression of emphysema in chronic obstructive pulmonary disease. Respir Med 2017; 124:72-78. [DOI: 10.1016/j.rmed.2017.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 11/16/2022]
|
23
|
Wang DC, Shi L, Zhu Z, Gao D, Zhang Y. Genomic mechanisms of transformation from chronic obstructive pulmonary disease to lung cancer. Semin Cancer Biol 2017; 42:52-59. [DOI: 10.1016/j.semcancer.2016.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/08/2016] [Indexed: 01/17/2023]
|
24
|
Ahmed N, Bezabeh T, Ijare OB, Myers R, Alomran R, Aliani M, Nugent Z, Banerji S, Kim J, Qing G, Bshouty Z. Metabolic Signatures of Lung Cancer in Sputum and Exhaled Breath Condensate Detected by 1H Magnetic Resonance Spectroscopy: A Feasibility Study. MAGNETIC RESONANCE INSIGHTS 2016; 9:29-35. [PMID: 27891048 PMCID: PMC5117486 DOI: 10.4137/mri.s40864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Lung cancer is one of the most lethal cancers. Currently, there are no biomarkers for early detection, monitoring treatment response, and detecting recurrent lung cancer. We undertook this study to determine if 1H magnetic resonance spectroscopy (MRS) of sputum and exhaled breath condensate (EBC), as a noninvasive tool, can identify metabolic biomarkers of lung cancer. MATERIALS AND METHODS Sputum and EBC samples were collected from 20 patients, comprising patients with pathologically confirmed non-small cell lung cancer (n = 10) and patients with benign respiratory conditions (n = 10). Both sputum and EBC samples were collected from 18 patients; 2 patients provided EBC samples only. 1H MR spectra were obtained on a Bruker Avance 400 MHz nuclear magnetic resonance (NMR) spectrometer. Sputum samples were further confirmed cytologically to distinguish between true sputum and saliva. RESULTS In the EBC samples, median concentrations of propionate, ethanol, acetate, and acetone were higher in lung cancer patients compared to the patients with benign conditions. Median concentration of methanol was lower in lung cancer patients (0.028 mM) than in patients with benign conditions (0.067 mM; P = 0.028). In the combined sputum and saliva and the cytologically confirmed sputum samples, median concentrations of N-acetyl sugars, glycoprotein, propionate, lysine, acetate, and formate were lower in the lung cancer patients than in patients with benign conditions. Glucose was found to be consistently absent in the combined sputum and saliva samples (88%) as well as in the cytologically confirmed sputum samples (86%) of lung cancer patients. CONCLUSION Absence of glucose in sputum and lower concentrations of methanol in EBC of lung cancer patients discerned by 1H MRS may serve as metabolic biomarkers of lung cancer for early detection, monitoring treatment response, and detecting recurrence.
Collapse
Affiliation(s)
- Naseer Ahmed
- CancerCare Manitoba, Winnipeg, Manitoba, Canada
- University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tedros Bezabeh
- Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba, Canada
- Current address: College of Natural and Applied Sciences, University of Guam, Guam, USA
| | - Omkar B. Ijare
- Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Renelle Myers
- Department of Respirology, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Reem Alomran
- CancerCare Manitoba, Winnipeg, Manitoba, Canada
- University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michel Aliani
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | | | - Shantanu Banerji
- CancerCare Manitoba, Winnipeg, Manitoba, Canada
- University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julian Kim
- CancerCare Manitoba, Winnipeg, Manitoba, Canada
- University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gefei Qing
- Department of Pathology, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zoheir Bshouty
- Department of Respirology, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
25
|
Weng DY, Chen J, Taslim C, Hsu PC, Marian C, David SP, Loffredo CA, Shields PG. Persistent alterations of gene expression profiling of human peripheral blood mononuclear cells from smokers. Mol Carcinog 2016; 55:1424-37. [PMID: 26294040 PMCID: PMC4860148 DOI: 10.1002/mc.22385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/04/2015] [Accepted: 08/03/2015] [Indexed: 01/12/2023]
Abstract
The number of validated biomarkers of tobacco smoke exposure is limited, and none exist for tobacco-related cancer. Additional biomarkers for smoke, effects on cellular systems in vivo are needed to improve early detection of lung cancer, and to assist the Food and Drug Administration in regulating exposures to tobacco products. We assessed the effects of smoking on the gene expression using human cell cultures and blood from a cross-sectional study. We profiled global transcriptional changes in cultured smokers' peripheral blood mononuclear cells (PBMCs) treated with cigarette smoke condensate (CSC) in vitro (n = 7) and from well-characterized smokers' blood (n = 36). ANOVA with adjustment for covariates and Pearson correlation were used for statistical analysis in this study. CSC in vitro altered the expression of 1 178 genes (177 genes with > 1.5-fold-change) at P < 0.05. In vivo, PBMCs of heavy and light smokers differed for 614 genes (29 with > 1.5-fold-change) at P < 0.05 (309 remaining significant after adjustment for age, race, and gender). Forty-one genes were persistently altered both in vitro and in vivo, 22 having the same expression pattern reported for non-small cell lung cancer. Our data provides evidence that persistent alterations of gene expression in vitro and in vivo may relate to carcinogenic effects of cigarette smoke, and the identified genes may serve as potential biomarkers for cancer. The use of an in vitro model to corroborate results from human studies provides a novel way to understand human exposure and effect. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jinguo Chen
- Center for Human Immunology, National Institute of Health, Bethesda, Maryland
| | - Cenny Taslim
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Ping-Ching Hsu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Catalin Marian
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- University of Medicine and Pharmacy, Timisoara, Romania
| | - Sean P David
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Christopher A Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
26
|
O'Shea K, Cameron SJS, Lewis KE, Lu C, Mur LAJ. Metabolomic-based biomarker discovery for non-invasive lung cancer screening: A case study. Biochim Biophys Acta Gen Subj 2016; 1860:2682-7. [PMID: 27423423 DOI: 10.1016/j.bbagen.2016.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/09/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Lung cancer (LC) is one of the leading lethal cancers worldwide, with an estimated 18.4% of all cancer deaths being attributed to the disease. Despite developments in cancer diagnosis and treatment over the previous thirty years, LC has seen little to no improvement in the overall five year survival rate after initial diagnosis. METHODS In this paper, we extended a recent study which profiled the metabolites in sputum from patients with lung cancer and age-matched volunteers smoking controls using flow infusion electrospray ion mass spectrometry. We selected key metabolites for distinguishing between different classes of lung cancer, and employed artificial neural networks and leave-one-out cross-validation to evaluate the predictive power of the identified biomarkers. RESULTS The neural network model showed excellent performance in classification between lung cancer and control groups with the area under the receiver operating characteristic curve of 0.99. The sensitivity and specificity of for detecting cancer from controls were 96% and 94% respectively. Furthermore, we have identified six putative metabolites that were able to discriminate between sputum samples derived from patients suffering small cell lung cancer (SCLC) and non-small cell lung cancer. These metabolites achieved excellent cross validation performance with a sensitivity of 80% and specificity of 100% for predicting SCLC. CONCLUSIONS These results indicate that sputum metabolic profiling may have potential for screening of lung cancer and lung cancer recurrence, and may greatly improve effectiveness of clinical intervention. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- Keiron O'Shea
- Institute of Biological, Environmental and Rural Studies, Aberystwyth University, Aberystwyth, Wales SY23 3DA, UK
| | - Simon J S Cameron
- Institute of Biological, Environmental and Rural Studies, Aberystwyth University, Aberystwyth, Wales SY23 3DA, UK; Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, W6 8RP, UK
| | - Keir E Lewis
- Department of Respiratory Medicine, Prince Philip Hospital, Llanelli, Wales SA14 8LY, UK
| | - Chuan Lu
- Department of Computer Science, Aberystwyth University, Aberystwyth, Wales SY23 3DA, UK
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Studies, Aberystwyth University, Aberystwyth, Wales SY23 3DA, UK.
| |
Collapse
|
27
|
Verma M. The Role of Epigenomics in the Study of Cancer Biomarkers and in the Development of Diagnostic Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 867:59-80. [PMID: 26530360 DOI: 10.1007/978-94-017-7215-0_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetics plays a key role in cancer development. Genetics alone cannot explain sporadic cancer and cancer development in individuals with no family history or a weak family history of cancer. Epigenetics provides a mechanism to explain the development of cancer in such situations. Alterations in epigenetic profiling may provide important insights into the etiology and natural history of cancer. Because several epigenetic changes occur before histopathological changes, they can serve as biomarkers for cancer diagnosis and risk assessment. Many cancers may remain asymptomatic until relatively late stages; in managing the disease, efforts should be focused on early detection, accurate prediction of disease progression, and frequent monitoring. This chapter describes epigenetic biomarkers as they are expressed during cancer development and their potential use in cancer diagnosis and prognosis. Based on epigenomic information, biomarkers have been identified that may serve as diagnostic tools; some such biomarkers also may be useful in identifying individuals who will respond to therapy and survive longer. The importance of analytical and clinical validation of biomarkers is discussed, along with challenges and opportunities in this field.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Suite# 4E102. 9609 Medical Center Drive, MSC 9763, Bethesda, MD, 20892-9726, USA.
| |
Collapse
|
28
|
Li H, Hedmer M, Wojdacz T, Hossain MB, Lindh CH, Tinnerberg H, Albin M, Broberg K. Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:684-93. [PMID: 26013103 PMCID: PMC4755249 DOI: 10.1002/em.21958] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/01/2015] [Indexed: 05/27/2023]
Abstract
Evidence suggests that exposure to welding fumes is a risk factor for lung cancer. We examined relationships between low-to-moderate occupational exposure to particles from welding fumes and cancer-related biomarkers for oxidative stress, changes in telomere length, and alterations in DNA methylation. We enrolled 101 welders and 127 controls (all currently nonsmoking men) from southern Sweden. We performed personal sampling of respirable dust and measured 8-oxodG concentrations in urine using a simplified liquid chromatography tandem mass spectrometry method. Telomere length in peripheral blood was measured by quantitative polymerase chain reaction. Methylation status of 10 tumor suppressor genes was determined by methylation-sensitive high-resolution melting analysis. All analyses were adjusted for age, body mass index, previous smoking, passive smoking, current residence, and wood burning stove/boiler at home. Welders were exposed to respirable dust at 1.2 mg/m(3) (standard deviation, 3.3 mg/m(3); range, 0.1-19.3), whereas control exposures did not exceed 0.1 mg/m(3) (P < 0.001). Welders and controls did not differ in 8-oxodG levels (β = 1.2, P = 0.17) or relative telomere length (β = -0.053, P = 0.083) in adjusted models. Welders showed higher probability of adenomatous polyposis coli (APC) methylation in the unadjusted model (odds ratio = 14, P = 0.014), but this was not significant in the fully adjusted model (P = 0.052). Every working year as a welder was associated with 0.0066 units shorter telomeres (95% confidence interval -0.013 to -0.00053, P = 0.033). Although there were no clear associations between concentrations of respirable dust and the biomarkers, there were modest signs of associations between oxidative stress, telomere alterations, DNA methylation, and occupational exposure to low-to-moderate levels of particles.
Collapse
Affiliation(s)
- Huiqi Li
- Department of Laboratory Medicine, Section of Occupational and Environmental MedicineLund UniversityLundSweden
| | - Maria Hedmer
- Department of Laboratory Medicine, Section of Occupational and Environmental MedicineLund UniversityLundSweden
| | - Tomasz Wojdacz
- Institute of Environmental Medicine, Karolinska InstitutetStockholmSweden
| | - Mohammad Bakhtiar Hossain
- Department of Laboratory Medicine, Section of Occupational and Environmental MedicineLund UniversityLundSweden
| | - Christian H. Lindh
- Department of Laboratory Medicine, Section of Occupational and Environmental MedicineLund UniversityLundSweden
| | - Håkan Tinnerberg
- Department of Laboratory Medicine, Section of Occupational and Environmental MedicineLund UniversityLundSweden
| | - Maria Albin
- Department of Laboratory Medicine, Section of Occupational and Environmental MedicineLund UniversityLundSweden
| | - Karin Broberg
- Department of Laboratory Medicine, Section of Occupational and Environmental MedicineLund UniversityLundSweden
- Institute of Environmental Medicine, Karolinska InstitutetStockholmSweden
| |
Collapse
|
29
|
Bergougnoux A, Claustres M, De Sario A. Nasal epithelial cells: a tool to study DNA methylation in airway diseases. Epigenomics 2015; 7:119-26. [PMID: 25687471 DOI: 10.2217/epi.14.65] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A number of chronic airway diseases are characterized by high inflammation and unbalanced activation of the immune response, which lead to tissue damage and progressive reduction of the pulmonary function. Because they are exposed to various environmental stimuli, lung cells are prone to epigenomic changes. Many genes responsible for the immune response and inflammation are tightly regulated by DNA methylation, which suggests that alteration of the epigenome in lung cells may have a considerable impact on the penetrance and/or the severity of airway diseases. A major hurdle in clinical epigenomic studies is to gather appropriate biospecimens. Herein, we show that nasal epithelial cells are suitable to analyze DNA methylation in human diseases primarily affecting the lower airway tract.
Collapse
Affiliation(s)
- Anne Bergougnoux
- Laboratory Genetics of Rare Diseases, INSERM U827, Montpellier, France
| | | | | |
Collapse
|
30
|
Signaling network of lipids as a comprehensive scaffold for omics data integration in sputum of COPD patients. Biochim Biophys Acta Mol Cell Biol Lipids 2015. [PMID: 26215076 DOI: 10.1016/j.bbalip.2015.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous and progressive inflammatory condition that has been linked to the dysregulation of many metabolic pathways including lipid biosynthesis. How lipid metabolism could affect disease progression in smokers with COPD remains unclear. We cross-examined the transcriptomics, proteomics, metabolomics, and phenomics data available on the public domain to elucidate the mechanisms by which lipid metabolism is perturbed in COPD. We reconstructed a sputum lipid COPD (SpLiCO) signaling network utilizing active/inactive, and functional/dysfunctional lipid-mediated signaling pathways to explore how lipid-metabolism could promote COPD pathogenesis in smokers. SpLiCO was further utilized to investigate signal amplifiers, distributers, propagators, feed-forward and/or -back loops that link COPD disease severity and hypoxia to disruption in the metabolism of sphingolipids, fatty acids and energy. Also, hypergraph analysis and calculations for dependency of molecules identified several important nodes in the network with modular regulatory and signal distribution activities. Our systems-based analyses indicate that arachidonic acid is a critical and early signal distributer that is upregulated by the sphingolipid signaling pathway in COPD, while hypoxia plays a critical role in the elevated dependency to glucose as a major energy source. Integration of SpLiCo and clinical data shows a strong association between hypoxia and the upregulation of sphingolipids in smokers with emphysema, vascular disease, hypertension and those with increased risk of lung cancer.
Collapse
|
31
|
Yamaya Y, Sugiya H, Watari T. Methylation of free-floating deoxyribonucleic acid fragments in the bronchoalveolar lavage fluid of dogs with chronic bronchitis exposed to environmental tobacco smoke. Ir Vet J 2015; 68:7. [PMID: 25937920 PMCID: PMC4417338 DOI: 10.1186/s13620-015-0035-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/25/2015] [Indexed: 11/13/2022] Open
Abstract
Background The etiology of canine chronic bronchitis (CB) is not completely understood, although exposure to environmental tobacco smoke (ETS) affects the airway inflammatory responses in some dogs with CB. The mechanism by which this occurs is unknown. Findings We investigated the concentrations and methylation rates of free-floating DNA fragments in bronchoalveolar lavage fluid (BALF) from dogs with chronic bronchitis. Based on serum cotinine levels, dogs with CB were divided into 2 groups: dogs that either had or had not been exposed to ETS. Our results demonstrated that the total nucleated cell and macrophage numbers increased in BALF of ETS-exposed dogs with CB. There were no significant differences in DNA concentrations and methylation rates in BALF between the 2 groups. However, 3 out of 8 dogs exposed to ETS had high DNA methylation rates in their BALF samples. Conclusion Our results suggest that ETS exposure leads to epigenetic modifications of cellular components in BALF in dogs diagnosed with CB.
Collapse
Affiliation(s)
- Yoshiki Yamaya
- Laboratory of Comprehensive Veterinary Clinical Studies, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa Japan
| | - Toshihiro Watari
- Laboratory of Comprehensive Veterinary Clinical Studies, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa Japan
| |
Collapse
|
32
|
Yu Q, Guo Q, Chen L, Liu S. Clinicopathological significance and potential drug targeting of CDH1 in lung cancer: a meta-analysis and literature review. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2171-8. [PMID: 25931811 PMCID: PMC4404966 DOI: 10.2147/dddt.s78537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background CDH1 is a protein encoded by the CDH1 gene in humans. Mutations in this gene are linked with several types of cancer. Loss of CDH1 function contributes to the progression of cancer by increasing proliferation, invasion, and/or metastasis. However, the association between and clinicopathological significance of CDH1 promoter methylation and lung cancer remains unclear. In this study, we systematically reviewed the studies of CDH1 promoter methylation and lung cancer, and evaluated the association between CDH1 promoter methylation and lung cancer using meta-analysis methods. Methods A comprehensive search of the PubMed and Embase databases was performed up to July 2014. The methodological quality of the studies was also evaluated. The data were extracted and assessed by two reviewers independently. Analyses of pooled data were performed. Odds ratios (ORs) were calculated and summarized. Results Finally, an analysis of 866 patients with non-small cell lung cancer from 13 eligible studies was performed. The CDH1 methylation level in the cancer group was significantly higher than in the controls (OR 3.89, 95% confidence interval [CI] 2.87–5.27, P<0.00001). However, there were no correlations between CDH1 promoter methylation and clinicopathological characteristics (sex status, OR 0.78, 95% CI 0.41–1.50, P=0.46; smoking history, OR 0.97, 95% CI 0.53–1.79, P=0.93; pathological type, OR 0.97, 95% CI 0.59–1.60, P=0.91; clinical staging, OR 1.48, 95% CI 0.81–2.68, P=0.2; lymph node metastasis, OR 0.68, 95% CI 0.13–3.63, P=0.65; or differentiation degree, OR 1.01, 95% CI 0.34–3.02, P=0.99). Conclusion The results of this meta-analysis suggest that CDH1 methylation is associated with an increased risk of lung cancer. CDH1 hypermethylation, which induces inactivation of the CDH1 gene, plays an important role in carcinogenesis and may serve as a potential drug target in lung cancer. However, CDH1 methylation does not correlate with other factors, such as smoking history, clinical stage, pathological type, sex status, lymph node metastasis, or degree of differentiation.
Collapse
Affiliation(s)
- Qiaowen Yu
- Shandong Provincial Key Laboratory of Mental Disorders, Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Beijing, People's Republic of China
| | - Qisen Guo
- Respiratory Medicine, Shandong Cancer Hospital, Jinan, Beijing, People's Republic of China
| | - Liangan Chen
- Department of Respiratory Diseases, People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Shuwei Liu
- Shandong Provincial Key Laboratory of Mental Disorders, Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Beijing, People's Republic of China
| |
Collapse
|
33
|
Zhong K, Chen W, Xiao N, Zhao J. The clinicopathological significance and potential drug target of E-cadherin in NSCLC. Tumour Biol 2015; 36:6139-48. [PMID: 25758052 DOI: 10.1007/s13277-015-3298-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/01/2015] [Indexed: 01/01/2023] Open
Abstract
Human epithelial cadherin (E-cadherin), a member of transmembrane glycoprotein family, encoded by the E-cadherin gene, plays a key role in cell-cell adhesion, adherent junction in normal epithelial tissues, contributing to tissue differentiation and homeostasis. Although previous studies indicated that inactivation of the E-cadherin is mainly induced by hypermethylation of E-cadherin gene, evidence concerning E-cadherin hypermethylation in the carcinogenesis and development of non-small cell lung carcinoma (NSCLC) remains controversial. In this study, we conducted a meta-analysis to quantitatively evaluate the effects of E-cadherin hypermethylation on the incidence and clinicopathological characteristics of NSCLC. A comprehensive search of PubMed and Embase databases was performed up to October 2014. Analyses of pooled data were performed. Odds ratios (ORs) were calculated and summarized. Our meta-analysis combining 18 published articles demonstrated that the hypermethylation frequencies in NSCLC were significantly higher than those in normal control tissues, OR = 3.55, 95 % confidence interval (CI) = 1.98-6.36, p < 0.0001. Further analysis showed that E-cadherin hypermethylation was not strongly associated with the sex or smoking status in NSCLC patients. In addition, E-cadherin hypermethylation was also not strongly associated with pathological types, differentiated status, clinical stages, or metastatic status in NSCLC patients. The results from the current study indicate that the hypermethylation frequency of E-cadherin in NSCLC is strongly associated with NSCLC incidence and it may be an early event in carcinogenesis of NSCLC. We also discussed the potential value of E-cadherin as a drug target that may bring new direction and hope for cancer treatment through gene-targeted therapy.
Collapse
Affiliation(s)
- Kaize Zhong
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China
| | | | | | | |
Collapse
|
34
|
Abstract
Lung cancer is the most frequently occurring cancer in the world and continually leads in mortality among cancers. The overall 5-year survival rate for lung cancer has risen only 4% (from 12% to 16%) over the past 4 decades, and late diagnosis is a major obstacle in improving lung cancer prognosis. Survival of patients undergoing lung resection is greater than 80%, suggesting that early detection and diagnosis of cancers before they become inoperable and lethal will greatly improve mortality. Lung cancer biomarkers can be used for screening, detection, diagnosis, prognosis, prediction, stratification, therapy response monitoring, and so on. This review focuses on noninvasive diagnostic and prognostic biomarkers. For that purpose, our discussion in this review will focus on biological fluid-based biomarkers. The body fluids include blood (serum or plasma), sputum, saliva, BAL, pleural effusion, and VOC. Since it is rich in different cellular and molecular elements and is one of the most convenient and routine clinical procedures, serum or plasma is the main source for the development and validation of many noninvasive biomarkers. In terms of molecular aspects, the most widely validated ones are proteins, some of which are used in the clinical sector, though in limited accessory purposes. We will also discuss the lung cancer (protein) biomarkers in clinical trials and currently in the validation phase with hundreds of samples. After proteins, we will discuss microRNAs, methylated DNA, and circulating tumor cells, which are being vigorously developed and validated as potential lung cancer biomarkers. The main aim of this review is to provide researchers and clinicians with an understanding of the potential noninvasive lung cancer biomarkers in biological fluids that have recently been discovered.
Collapse
|
35
|
Comer BS, Ba M, Singer CA, Gerthoffer WT. Epigenetic targets for novel therapies of lung diseases. Pharmacol Ther 2014; 147:91-110. [PMID: 25448041 DOI: 10.1016/j.pharmthera.2014.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 12/13/2022]
Abstract
In spite of substantial advances in defining the immunobiology and function of structural cells in lung diseases there is still insufficient knowledge to develop fundamentally new classes of drugs to treat many lung diseases. For example, there is a compelling need for new therapeutic approaches to address severe persistent asthma that is insensitive to inhaled corticosteroids. Although the prevalence of steroid-resistant asthma is 5-10%, severe asthmatics require a disproportionate level of health care spending and constitute a majority of fatal asthma episodes. None of the established drug therapies including long-acting beta agonists or inhaled corticosteroids reverse established airway remodeling. Obstructive airways remodeling in patients with chronic obstructive pulmonary disease (COPD), restrictive remodeling in idiopathic pulmonary fibrosis (IPF) and occlusive vascular remodeling in pulmonary hypertension are similarly unresponsive to current drug therapy. Therefore, drugs are needed to achieve long-acting suppression and reversal of pathological airway and vascular remodeling. Novel drug classes are emerging from advances in epigenetics. Novel mechanisms are emerging by which cells adapt to environmental cues, which include changes in DNA methylation, histone modifications and regulation of transcription and translation by noncoding RNAs. In this review we will summarize current epigenetic approaches being applied to preclinical drug development addressing important therapeutic challenges in lung diseases. These challenges are being addressed by advances in lung delivery of oligonucleotides and small molecules that modify the histone code, DNA methylation patterns and miRNA function.
Collapse
Affiliation(s)
- Brian S Comer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Mariam Ba
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - William T Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
36
|
E-cadherin gene methylation in lung cancer. Tumour Biol 2014; 35:9027-33. [PMID: 24906605 DOI: 10.1007/s13277-014-2076-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022] Open
Abstract
E-cadherin, a tumor repressor gene, has been shown to play an important role in maintaining the polarity and structural integrity of epithelial and is closely associated with tumorigenesis, invasion, and metastasis. The current study aimed to investigate the effects of E-cadherin methylation on lung cancer (LC) quantitatively through a meta-analysis. We searched electronic databases to identify eligible studies from their inception through September 30, 2013. Pooled odds ratio (OR) with 95 % confidence interval (CI) was used to assess the relationship between E-cadherin gene methylation and LC risk. A hazard ratio (HR) with 95 % CI was used to assess the impact of E-cadherin gene methylation on overall survival (OS) of LC patients. Seventeen studies comprising 983 LC cases and 669 controls met the inclusion criteria. Summary results revealed that hypermethylation frequencies in LC tissues were significantly higher than those in normal control tissues (OR = 4.11, 95 % CI 2.78-6.07, P < 0.001). Subgroup analysis indicated that higher methylation frequencies were observed in Asian population. Interestingly, we found that hypermethylation of E-cadherin was associated with significantly better survival with HR of 0.47 (95 % CI 0.31-0.71). This meta-analysis revealed that E-cadherin gene promoter methylation was associated with an increased risk of LC, especially in Asian population, and methylated E-cadherin predicted long survival in patients with LC. However, further studies with large numbers of patients will be needed to confirm the findings.
Collapse
|
37
|
Zeng Y, Liu R, Zhang H. [Meta-analysis of association between E-cadherin promoter methylation and lung cancer risk]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 16:353-8. [PMID: 23866665 PMCID: PMC6000657 DOI: 10.3779/j.issn.1009-3419.2013.07.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
背景与目的 上皮细胞钙粘蛋白E-cadherin在维持上皮的极性和结构完整性等方面起着重要作用,并与肿瘤的发生、浸润和转移密切相关。E-cadherin基因启动子区甲基化与肿瘤发生发展的关系一直是研究的热点,而该基因甲基化与肺癌易感性的关系尚存在争议。本研究旨在通过meta分析的方法更好地探讨E-cadherin基因启动子区甲基化与肺癌易感性之间的关系。 方法 利用PubMed/MedLine和EMBASE数据库检索2013年3月以前的相关文献,由两位研究人员做独立文献筛选和资料提取,并交叉审核。使用优势比(odds ratio, OR)及95%置信区间(confidence interval, CI)衡量E-cadherin基因启动子区甲基化与肺癌易感性关系的强弱。 结果 根据检索条件,共有13项研究(共涉及1, 288例实验样本)被纳入当前的meta分析。分析结果显示E-cadherin基因启动子区甲基化明显增加了肺癌发生风险(OR=4.04, 95%CI: 2.00-8.13, P < 0.001),且这种相关性同时存在于亚洲人群和高加索人群(OR=3.28, 95%CI: 1.20-8.92; OR=5.72, 95%CI: 2.40-13.62)。 结论 E-cadherin基因启动子区甲基化与肺癌易感性之间存在明显相关性。
Collapse
Affiliation(s)
- Yuanyuan Zeng
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou Key Laboratory
for Molecular Cancer Genetic, Suzhou 215123, China
| | | | | |
Collapse
|
38
|
Walter K, Holcomb T, Januario T, Yauch RL, Du P, Bourgon R, Seshagiri S, Amler LC, Hampton GM, S Shames D. Discovery and development of DNA methylation-based biomarkers for lung cancer. Epigenomics 2014; 6:59-72. [DOI: 10.2217/epi.13.81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lung cancer remains the primary cause of cancer-related deaths worldwide. Improved tools for early detection and therapeutic stratification would be expected to increase the survival rate for this disease. Alterations in the molecular pathways that drive lung cancer, which include epigenetic modifications, may provide biomarkers to help address this major unmet clinical need. Epigenetic changes, which are defined as heritable changes in gene expression that do not alter the primary DNA sequence, are one of the hallmarks of cancer, and prevalent in all types of cancer. These modifications represent a rich source of biomarkers that have the potential to be implemented in clinical practice. This perspective describes recent advances in the discovery of epigenetic biomarkers in lung cancer, specifically those that result in the methylation of DNA at CpG sites. We discuss one approach for methylation-based biomarker assay development that describes the discovery at a genome-scale level, which addresses some of the practical considerations for design of assays that can be implemented in the clinic. We emphasize that an integrated technological approach will enable the development of clinically useful DNA methylation-based biomarker assays. While this article focuses on current literature and primary research findings in lung cancer, the principles we describe here apply to the discovery and development of epigenetic biomarkers for other types of cancer.
Collapse
Affiliation(s)
- Kimberly Walter
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Thomas Holcomb
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Tom Januario
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Robert L Yauch
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Pan Du
- Department of Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Richard Bourgon
- Department of Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Somasekar Seshagiri
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lukas C Amler
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Garret M Hampton
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - David S Shames
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
39
|
Ginori A, Barone A, Bennett D, Butorano MAGM, Mastrogiulio MG, Fossi A, Rottoli P, Spina D. Diffuse panbronchiolitis in a patient with common variable immunodeficiency: a casual association or a pathogenetic correlation? Diagn Pathol 2014; 9:12. [PMID: 24443813 PMCID: PMC3937127 DOI: 10.1186/1746-1596-9-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/10/2014] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED Diffuse panbronchiolitis (DPB) is an idiopathic inflammatory disease that seems to have an immunological pathogenesis and that causes a severe progressive suppurative and obstructive respiratory disorder. Common variable immunodeficiency (CVID) is the most common serious primary immunodeficiency and it is often associated with respiratory diseases. Herein, we describe a case of DPB in a 41-year-old man affected by CVID. We examined the patient's lungs, focusing on the characteristics of the inflammatory cells and of the foamy macrophagic nodules typical of DPB. Immunohistochemical typing of the lymphocytic infiltrate showed that B-cells were almost absent, matching the immunological profile of CVID. The case described is the first case reported in the literature of DPB in a patient affected by CVID. Moreover it seems to confirm the correlation between an immunodeficiency status and the development of DPB and provides more information on the accumulation of nodules of foamy macrophages in DPB. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5310709471138338.
Collapse
Affiliation(s)
- Alessandro Ginori
- Department of Medical Biotechnologies, Pathology Unit, University of Siena, strada delle Scotte 6, Siena 53100, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Fleischhacker M, Dietrich D, Liebenberg V, Field JK, Schmidt B. The role of DNA methylation as biomarkers in the clinical management of lung cancer. Expert Rev Respir Med 2014; 7:363-83. [DOI: 10.1586/17476348.2013.814397] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Shilo K, Wu X, Sharma S, Welliver M, Duan W, Villalona-Calero M, Fukuoka J, Sif S, Baiocchi R, Hitchcock CL, Zhao W, Otterson GA. Cellular localization of protein arginine methyltransferase-5 correlates with grade of lung tumors. Diagn Pathol 2013; 8:201. [PMID: 24326178 PMCID: PMC3933389 DOI: 10.1186/1746-1596-8-201] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/03/2013] [Indexed: 12/19/2022] Open
Abstract
Background Protein arginine methyltransferase-5 (PRMT5) is a chromatin-modifying enzyme capable of methylating histone and non-histone proteins, and is involved in a wide range of cellular processes that range from transcriptional regulation to organelle biosynthesis. As such, its overexpression has been linked to tumor suppressor gene silencing, enhanced tumor cell growth and survival. Material and methods Quantitative real-time polymerase chain reaction, Western immunoblot and immunohistochemistry were used to characterize PRMT5 expression in lung cancer cell lines and human tumors. Clinicopathological findings of tissue microarray based samples from 229 patients with non-small cell lung carcinomas (NSCLC) and 133 cases with pulmonary neuroendocrine tumors (NET) were analyzed with regard to nuclear and cytoplasmic PRMT5 expression. Results There was statistically significant difference in PRMT5 messenger RNA expression between tumors and nonneoplastic lung tissues. Immunoblot experiments showed abundant expression of PRMT5 and its symmetric methylation mark H4R3 in lung carcinoma but not in non-neoplastic human pulmonary alveolar and bronchial epithelial cell lines. More than two thirds of lung tumors expressed PRMT5. High levels of cytoplasmic PRMT5 were detected in 20.5% of NSCLC and in 16.5% of NET; high levels of nuclear PRMT5 were detected in 38.0% of NSCLC and 24.0% of NET. Cytoplasmic PRMT5 was associated with high grade in both NSCLC and pulmonary NET while nuclear PRMT5 was more frequent in carcinoid tumors (p < 0.05). Conclusion The observed findings support the role of PRMT5 in lung tumorigenesis and reflect its functional dichotomy in cellular compartments. Virtual slide The virtual slides for this article can be found here:
http://www.diagnosticpathology.diagnomx.eu/vs/1611895162102528
Collapse
Affiliation(s)
- Konstantin Shilo
- Department of Pathology, The Wexner Medical Center at the Ohio State University, 410 W, 10th Avenue, Columbus, OH, 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Xu Z, Yu L, Zhang X. Association between the hOGG1 Ser326Cys polymorphism and lung cancer susceptibility: a meta-analysis based on 22,475 subjects. Diagn Pathol 2013; 8:144. [PMID: 23971971 PMCID: PMC3853705 DOI: 10.1186/1746-1596-8-144] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/08/2013] [Indexed: 11/12/2022] Open
Abstract
Objectives The Ser326Cys polymorphism in the human 8-oxogunaine glycosylase (hOGG1) gene with lung cancer susceptibility had been investigated, but results were inconsistent and underpowered. The aim of this study was to conduct a meta-analysis assessing the association of hOGG1 Ser326Cys polymorphism with risk of lung cancer. Materials and methods Relevant studies were identified through a search of MEDLINE, PubMed, Web of Science, EMBASE, and Chinese Biomedical Literature database (CBM) using terms “lung cancer”, “hOGG1” or “OGG1”, “polymorphism” or “variation” and the last search updated on May 1, 2013. In this meta-analysis, we assessed 30 published studies involving 22,475 subjects that investigated the association between the hOGG1 Ser326Cys polymorphism and lung cancer susceptibility. Results Overall, the hOGG1 Ser326Cys polymorphism was not associated with lung cancer susceptibility in different genetic models (dominant model comparison: OR = 0.133; 95% CI = 0.111–0.161; Pheterogeneity = 0.000), and recessive model: OR = 0.543; 95% CI = 0.399–0.739; Pheterogeneity = 0.000). Similarly, in the stratified analyses by ethnicity, significantly increased risks were found among Asians for homozygote comparison (OR = 0.850; 95% CI = 0.732 0.986; Pheterogeneity = 0.064), and dominant model (OR = 0.160; 95% CI = 0.137–0.187; Pheterogeneity = 0.001), and Caucasians for dominant model (OR = 1.35; 95% CI = 1.03–1.77; Pheterogeneity = 0.015), and recessive model (OR = 1.35; 95% CI = 1.03–1.77; Pheterogeneity = 0.015). In population-based populations, marginally significant increased risks were found in dominant model (OR = 0.143; 95% CI = 0.111 0.184; Pheterogeneity = 0.000) and recessive model (OR = 0.429; 95% CI = 0.261–0.705; Pheterogeneity = 0.000). We also found a significant difference between hOGG1 Ser326Cys genotype and lung cancer susceptibility in studies with hospital-based controls for homozygote model (OR = 0.798; 95% CI = 0.649–0.982; Pheterogeneity = 0.007),dominant model (OR = 0.122; 95% CI = 0.091–0.163; Pheterogeneity = 0.000). Conclusion Our data showed that the hOGG1 Ser326Cys polymorphism contributed to the risk of lung cancer. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/3842531131031605
Collapse
Affiliation(s)
- Zhaoguo Xu
- Department of Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110003, China.
| | | | | |
Collapse
|
43
|
Hubers AJ, Prinsen CFM, Sozzi G, Witte BI, Thunnissen E. Molecular sputum analysis for the diagnosis of lung cancer. Br J Cancer 2013; 109:530-7. [PMID: 23868001 PMCID: PMC3738145 DOI: 10.1038/bjc.2013.393] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/08/2013] [Accepted: 06/21/2013] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality rate worldwide, mainly because of the presence of metastatic disease at the time of diagnosis. Early detection of lung cancer improves prognosis, and towards this end, large screening trials in high-risk individuals have been conducted since the past century. Despite all efforts, the need for novel (complementary) lung cancer diagnostic and screening methods still exists. In this review, we focus on the assessment of lung cancer-related biomarkers in sputum in the past decennium. Besides cytology, mutation and microRNA analysis, special attention has been paid to DNA promoter hypermethylation, of which all available literature is summarised without time restriction. A model is proposed to aid in the distinction between diagnostic and risk markers. Research on the use of sputum for non-invasive detection of early-stage lung cancer has brought new insights and advanced molecular techniques. The sputum shows a promising potential for routine diagnostic and possibly screening purposes.
Collapse
Affiliation(s)
- A J Hubers
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Current World Literature. Curr Opin Oncol 2013; 25:205-208. [DOI: 10.1097/cco.0b013e32835ec49f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
D'Urso V, Doneddu V, Marchesi I, Collodoro A, Pirina P, Giordano A, Bagella L. Sputum analysis: Non-invasive early lung cancer detection. J Cell Physiol 2013; 228:945-51. [DOI: 10.1002/jcp.24263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 01/20/2023]
|
46
|
Decramer M, Janssens W. Chronic obstructive pulmonary disease and comorbidities. THE LANCET RESPIRATORY MEDICINE 2013; 1:73-83. [PMID: 24321806 DOI: 10.1016/s2213-2600(12)70060-7] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Results of epidemiological studies have shown that chronic obstructive pulmonary disease (COPD) is frequently associated with comorbidities, the most serious and prevalent being cardiovascular disease, lung cancer, osteoporosis, muscle weakness, and cachexia. Mechanistically, environmental risk factors such as smoking, unhealthy diet, exacerbations, and physical inactivity or inherent factors such as genetic background and ageing contribute to this association. No convincing evidence has been provided to suggest that treatment of COPD would reduce comorbidities, although some indirect indications are available. Clear evidence that treatment of comorbidities improves COPD is also lacking, although observational studies would suggest such an effect for statins, β blockers, and angiotensin-converting enzyme blockers and receptor antagonists. Large-scale prospective studies are needed. Reduction of common risk factors seems to be the most powerful approach to reduce comorbidities. Whether reduction of so-called spill-over of local inflammation from the lungs or systemic inflammation with inhaled or systemic anti-inflammatory drugs, respectively, would also reduce COPD-related comorbidities is doubtful.
Collapse
Affiliation(s)
- Marc Decramer
- Respiratory Division, University of Leuven, Leuven, Belgium.
| | | |
Collapse
|
47
|
Suter MA, Anders AM, Aagaard KM. Maternal smoking as a model for environmental epigenetic changes affecting birthweight and fetal programming. Mol Hum Reprod 2012; 19:1-6. [PMID: 23139402 DOI: 10.1093/molehr/gas050] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although the association between maternal smoking and low birthweight infants has been well established, the mechanisms behind reduced fetal growth are still being elucidated. While many infants are exposed to tobacco smoke in utero, not all are born growth restricted or small for gestational age. Many hypotheses have emerged to explain the differential response to in utero maternal tobacco smoke exposure (MTSE). Studies have shown that both maternal and fetal genotypes may contribute to the discrepant outcomes. However, the contribution of epigenetic changes cannot be ignored. In this review we address two important questions regarding the effect of MTSE on the fetal epigenome. First, does exposure to maternal tobacco smoke in utero alter the fetal epigenome? Secondly, could these alterations be associated with the reduced fetal growth observed with MTSE?
Collapse
Affiliation(s)
- Melissa A Suter
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, 1 Baylor Plaza, Jones 314, Houston, TX 77030, USA
| | | | | |
Collapse
|