1
|
Liu Q, Wu P, Lei J, Bai P, Zhong P, Yang M, Wei P. Old concepts, new tricks: How peptide vaccines are reshaping cancer immunotherapy? Int J Biol Macromol 2024; 279:135541. [PMID: 39270889 DOI: 10.1016/j.ijbiomac.2024.135541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Over the past few decades, research on cancer immunotherapy has firmly established immune cells as key players in effective cancer treatment. Peptide vaccines directly targeting immune cells have demonstrated immense potential due to their specificity and applicability. However, developing peptide vaccines to generate tumor-reactive T cells remains challenging, primarily due to suboptimal immunogenicity and overcoming the immunosuppressive tumor microenvironment (TME). In this review, we discuss various elements of effective peptide vaccines, including antigen selection, peptide epitope optimization, vaccine adjuvants, and the combination of multiple immunotherapies, in addition to recent advances in tumor neoantigens as well as epitopes bound by non-classical human leukocyte antigen (HLA) molecules, to increase the understanding of cancer peptide vaccines and provide multiple references for the design of subsequent T cell-based peptide vaccines.
Collapse
Affiliation(s)
- Qingyang Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Peihua Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Jun Lei
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Laboratory Medicine, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Peng Bai
- In Vivo Pharmacology Unit, WuXi AppTec, Nantong, Jiangsu, China
| | - Peiluan Zhong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Min Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Pengcheng Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Felch KL, Crider JD, Bhattacharjee D, Huhn C, Wilson M, Bengtén E. TLR7 in channel catfish (Ictalurus punctatus) is expressed in the endolysosome and is stimulated by synthetic ssRNA analogs, imiquimod, and resiquimod. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105197. [PMID: 38763479 PMCID: PMC11234115 DOI: 10.1016/j.dci.2024.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Toll-like receptors (TLRs) are pivotal pattern recognition receptors (PRRs) and key mediators of innate immunity. Despite the significance of channel catfish (Ictalurus punctatus) in comparative immunology and aquaculture, its 20 TLR genes remain largely functionally uncharacterized. In this study, our aim was to determine the catfish TLR7 agonists, signaling potential, and cellular localization. Using a mammalian reporter system, we identified imiquimod and resiquimod, typical ssRNA analogs, as potent catfish TLR7 agonists. Notably, unlike grass carp TLR7, catfish TLR7 lacks the ability to respond to poly (I:C). Confocal microscopy revealed predominant catfish TLR7 expression in lysosomes, co-localizing with the endosomal chaperone protein, UNC93B1. Furthermore, imiquimod stimulation elicited robust IFNb transcription in peripheral blood leukocytes isolated from adult catfish. These findings underscore the conservation of TLR7 signaling in catfish, reminiscent of mammalian TLR7 responses. Our study sheds light on the functional aspects of catfish TLR7 and contributes to a better understanding of its role in immune defense mechanisms.
Collapse
Affiliation(s)
- Kristianna L Felch
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Jonathan D Crider
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA; Department of Biology, Belmont University, 1900 Belmont Blvd, 37212, Nashville, TN, USA.
| | - Debduti Bhattacharjee
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Cameron Huhn
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Melanie Wilson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA; Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| | - Eva Bengtén
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA; Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, 39216, Jackson, MS, USA.
| |
Collapse
|
3
|
Tandel N, Patel D, Thakkar M, Shah J, Tyagi RK, Dalai SK. Poly(I:C) and R848 ligands show better adjuvanticity to induce B and T cell responses against the antigen(s). Heliyon 2024; 10:e26887. [PMID: 38455541 PMCID: PMC10918150 DOI: 10.1016/j.heliyon.2024.e26887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Poly(I:C) and R848, synthetic ligands that activate Toll-like receptor 3 (TLR3) and TLR7/8 respectively, have been well-established for their ability to stimulate the immune system and induce antigen-specific immune responses. These ligands are capable of inducing the production of cytokines and chemokines, and hence support the activation and differentiation of B and T cells. We saw the long-lasting and perdurable immune responses by these adjuvants essentially required for an efficacious subunit vaccine. In this study, we investigated the potential of poly(I:C) and R848 to elicit B and T cell responses to the OVA antigen. We assessed the stimulatory effects of these ligands on the immune system, their impact on B and T cell activation, and their ability to enhanced generation of B and T cells. Collectively, our findings contribute to the understanding how poly(I:C) and R848 can be utilized as an adjuvant system to enhance immune responses to protein-based subunit vaccines. In the end, this work provides insights for the development of novel vaccination strategies and improving the vaccine efficacy. Present work shall help formulate newer strategies for subunit vaccines to address the infectious diseases.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Digna Patel
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Mansi Thakkar
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Jagrut Shah
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Translational-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K. Dalai
- Institute of Science, Nirma University, SG highway, Ahmedabad, Gujarat, India
| |
Collapse
|
4
|
Yao Y, Zhang Z, Yang Z. The combination of vaccines and adjuvants to prevent the occurrence of high incidence of infectious diseases in bovine. Front Vet Sci 2023; 10:1243835. [PMID: 37885619 PMCID: PMC10598632 DOI: 10.3389/fvets.2023.1243835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
As the global population grows, the demand for beef and dairy products is also increasing. The cattle industry is facing tremendous pressures and challenges. The expanding cattle industry has led to an increased risk of disease in cattle. These diseases not only cause economic losses but also pose threats to public health and safety. Hence, ensuring the health of cattle is crucial. Vaccination is one of the most economical and effective methods of preventing bovine infectious diseases. However, there are fewer comprehensive reviews of bovine vaccines available. In addition, the variable nature of bovine infectious diseases will result in weakened or even ineffective immune protection from existing vaccines. This shows that it is crucial to improve overall awareness of bovine vaccines. Adjuvants, which are crucial constituents of vaccines, have a significant role in enhancing vaccine response. This review aims to present the latest advances in bovine vaccines mainly including types of bovine vaccines, current status of development of commonly used vaccines, and vaccine adjuvants. In addition, this review highlights the main challenges and outstanding problems of bovine vaccines and adjuvants in the field of research and applications. This review provides a theoretical and practical basis for the eradication of global bovine infectious diseases.
Collapse
Affiliation(s)
- Yiyang Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Wang L, Lin X, Sheng Y, Zhu H, Li Z, Su Z, Yu R, Zhang S. Synthesis of a crystalline zeolitic imidazole framework-8 nano-coating on single environment-sensitive viral particles for enhanced immune responses. NANOSCALE ADVANCES 2023; 5:1433-1449. [PMID: 36866262 PMCID: PMC9972853 DOI: 10.1039/d2na00767c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Encapsulating antigens with zeolitic imidazole framework-8 (ZIF-8) exhibits many advantages in vaccine development. However, most viral antigens with complex particulate structures are sensitive to pH or ionic strength, which cannot tolerate harsh synthesis conditions of ZIF-8. Balancing the viral integrity and the growth of ZIF-8 crystals is crucial for the successful encapsulation of these environment-sensitive antigens in ZIF-8. Here, we explored the synthesis of ZIF-8 on inactivated foot and mouth disease virus (known as 146S), which is easily disassociated into no immunogenic subunits under the existing ZIF-8 synthesis conditions. Our results showed that intact 146S could be encapsulated into ZIF-8 with high embedding efficiency by lowering the pH of the 2-MIM solution to 9.0. The size and morphology of 146S@ZIF-8 could be further optimized by increasing the amount of Zn2+ or adding cetyltrimethylammonium bromide (CTAB). 146S@ZIF-8 with a uniform diameter of about 49 nm could be synthesized by adding 0.01% CTAB, which was speculated to be composed of single 146S armored with nanometer-scale ZIF-8 crystal networks. Plenty of histidine on the 146S surface forms a unique His-Zn-MIM coordination in the near vicinity of 146S particles, which greatly increases the thermostability of 146S by about 5 °C, and the nano-scale ZIF-8 crystal coating exhibited extraordinary stability to resist EDTE-treatment. More importantly, the well-controlled size and morphology enabled 146S@ZIF-8(0.01% CTAB) to facilitate antigen uptake. The immunization of 146S@ZIF-8(4×Zn2+) or 146S@ZIF-8(0.01% CTAB) significantly enhanced the specific antibody titers and promoted the differentiation of memory T cells without adding another immunopotentiator. This study reported for the first time the strategy of the synthesis of crystalline ZIF-8 on an environment-sensitive antigen and demonstrated that the nano-size and appropriate morphology of ZIF-8 are crucial to exert adjuvant effects, thus expanding the application of MOFs in vaccine delivery.
Collapse
Affiliation(s)
- Liuyang Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University Chengdu 610041 China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China +86-10-82544958
| | - Xuan Lin
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China +86-10-82544958
| | - Yanan Sheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China +86-10-82544958
| | - Hongyu Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China +86-10-82544958
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University Kiryu 376-8515 Japan
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China +86-10-82544958
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China +86-10-82544958
| | - Rong Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China +86-10-82544958
| |
Collapse
|
6
|
Lee G, Kang HR, Kim A, Park JH, Lee MJ, Kim SM. Antiviral effect of vesatolimod (GS-9620) against foot-and-mouth disease virus both in vitro and invivo. Antiviral Res 2022; 205:105384. [PMID: 35863499 DOI: 10.1016/j.antiviral.2022.105384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
Foot-and-mouth disease (FMD) is an acute contagious disease of cloven-hoofed animals such as cows, pigs, sheep, and deer. The current emergency FMD vaccines, to induce early protection, have limited use, as their protective effect in pigs does not begin until 7 days after vaccination. Therefore, the use of antiviral agents would be required for reducing the spread of foot-and-mouth disease virus (FMDV) during outbreaks. Vesatolimod (GS-9620), a toll-like receptor 7 agonist, is an antiviral agent against various human disease-causing viruses. However, its antiviral effect against FMDV has not been reported yet. The aim of this study was to investigate the antiviral effects of GS-9620 against FMDV both in vitro and in vivo. The inhibitory effect of GS-9620 on FMDV in swine cells involved the induction of porcine interferon (IFN)-α and upregulation of interferon-simulated genes. Protective effect in mice injected with GS-9620 against FMDV was maintained for 5 days after injection, and cytokines such as IFN-γ, interleukin (IL)-12, IL-6, and IFN-γ inducible protein-10 could be detected following the treatment with GS-9620. Furthermore, the combination of GS-9620 with an FMD-inactivated vaccine was found to be highly effective for early protection in mice. Overall, we suggest GS-9620 as a novel and effective antiviral agent for controlling FMDV infection.
Collapse
Affiliation(s)
- Gyeongmin Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Hyo Rin Kang
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Aro Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Jong-Hyeon Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Su-Mi Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
7
|
Tang XD, Lü KL, Yu J, Du HJ, Fan CQ, Chen L. In vitro and in vivo evaluation of DC-targeting PLGA nanoparticles encapsulating heparanase CD4 + and CD8 + T-cell epitopes for cancer immunotherapy. Cancer Immunol Immunother 2022; 71:2969-2983. [PMID: 35546204 DOI: 10.1007/s00262-022-03209-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/08/2022] [Indexed: 12/17/2022]
Abstract
Heparanase has been identified as a universal tumor-associated antigen, but heparanase epitope peptides are difficult to recognize. Therefore, it is necessary to explore novel strategies to ensure efficient delivery to antigen-presenting cells. Here, we established a novel immunotherapy model targeting antigens to dendritic cell (DC) receptors using a combination of heparanase CD4+ and CD8+ T-cell epitope peptides to achieve an efficient cytotoxic T-cell response, which was associated with strong activation of DCs. First, pegylated poly(lactic-coglycolic acid) (PLGA) nanoparticles (NPs) were used to encapsulate a combined heparanase CD4+ and CD8+ T-cell epitope alone or in combination with Toll-like receptor 3 and 7 ligands as a model antigen to enhance immunogenicity. The ligands were then targeted to DC cell-surface molecules using a DEC-205 antibody. The binding and internalization of these PLGA NPs and the activation of DCs, the T-cell response and the tumor-killing effect were assessed. The results showed that PLGA NPs encapsulating epitope peptides (mHpa399 + mHpa519) could be targeted to and internalized by DCs more efficiently, stimulating higher levels of IL-12 production, T-cell proliferation and IFN-γ production by T cells in vitro. Moreover, vaccination with DEC-205-targeted PLGA NPs encapsulating combined epitope peptides exhibited higher tumor-killing efficacy both in vitro and in vivo. In conclusion, delivery of PLGA NP vaccines targeting DEC-205 based on heparanase CD4+ and CD8+ T-cell epitopes are suitable immunogens for antitumor immunotherapy and have promising potential for clinical applications.
Collapse
Affiliation(s)
- Xu-Dong Tang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Kui-Lin Lü
- Department of Pediatrics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Jin Yu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Han-Jian Du
- Department of Neurosurgery, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Chao-Qiang Fan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.
| | - Lei Chen
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.
| |
Collapse
|
8
|
Zhou Y, Chen X, Cao Z, Li J, Long H, Wu Y, Zhang Z, Sun Y. R848 Is Involved in the Antibacterial Immune Response of Golden Pompano ( Trachinotus ovatus) Through TLR7/8-MyD88-NF-κB-Signaling Pathway. Front Immunol 2021; 11:617522. [PMID: 33537035 PMCID: PMC7848160 DOI: 10.3389/fimmu.2020.617522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/01/2020] [Indexed: 01/24/2023] Open
Abstract
R848 is an imidazoquinoline compound that is a specific activator of toll-like receptor (TLR) 7/8 and is often used in immunological research in mammals and teleosts. However, the immune responses initiated by R848 through the TLR7/8 pathway in response to bacterial infection remain largely unexplored in teleosts. In the current study, we investigated the antibacterial response and the participating signaling pathway initiated by R848 in golden pompano (Trachinotus ovatus). We found that R848 could stimulate the proliferation of head kidney lymphocytes (HKLs) in a dose-dependent manner, enhance the survival rate of HKLs, and inhibit the replication of bacteria in vivo. However, these effects induced by R848 were significantly reduced when chloroquine (CQ) was used to blocked endosomal acidification. Additionally, an in vivo study showed that R848 strengthened the antibacterial immunity of fish through a TLR7/8 and Myd88-dependent signaling pathway. A cellular experiment showed that Pepinh-MYD (a Myd88 inhibitor) significantly reduced the R848-mediated proliferation and survival of HKLs. Luciferase activity analysis showed that R848 enhanced the nuclear factor kappa B (NF-κB) activity, whereas this activity was reduced when CQ and Pepinh-MYD were present. Additionally, when an NF-κB inhibitor was present, the R848-mediated pro-proliferative and pro-survival effects on HKLs were significantly diminished. An in vivo study showed that knockdown of TLR7, TLR8, and Myd88 expression in golden pompano via siRNA following injection of R848 resulted in increased bacterial dissemination and colonization in fish tissues compared to that of fish injection of R848 alone, suggesting that R848-induced antibacterial immunity was significantly reduced. In conclusion, these results indicate that R848 plays an essential role in the antibacterial immunity of golden pompano via the TLR7/8-Myd88-NF-κB- signaling pathway.
Collapse
Affiliation(s)
- Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Xiaojuan Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Jianlong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ying Wu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Zhengshi Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| |
Collapse
|
9
|
Andrianov AK, Langer R. Polyphosphazene immunoadjuvants: Historical perspective and recent advances. J Control Release 2021; 329:299-315. [PMID: 33285104 PMCID: PMC7904599 DOI: 10.1016/j.jconrel.2020.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
The development of successful vaccines has been increasingly reliant on the use of immunoadjuvants - additives, which can enhance and modulate immune responses to vaccine antigens. Immunoadjuvants of the polyphosphazene family encompass synthetic biodegradable macromolecules, which attain in vivo activity via antigen delivery and immunostimulation mechanisms. Over the last decades, the technology has witnessed evolvement of next generation members, expansion to include various antigens and routes of administration, and progression to clinical phase. This was accompanied by gaining important insights into the mechanism of action and the development of a novel class of virus-mimicking nano-assemblies for antigen delivery. The present review evaluates in vitro and in vivo data generated to date in the context of latest advances in understanding the primary function and biophysical behavior of these macromolecules. It also provides an overview of relevant synthetic and characterization methods, macromolecular biodegradation pathways, and polyphosphazene-based multi-component, nanoparticulate, and microfabricated formulations.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Andrianov AK, Marin A, Wang R, Karauzum H, Chowdhury A, Agnihotri P, Yunus AS, Mariuzza RA, Fuerst TR. Supramolecular assembly of Toll-like receptor 7/8 agonist into multimeric water-soluble constructs enables superior immune stimulation in vitro and in vivo. ACS APPLIED BIO MATERIALS 2020; 3:3187-3195. [PMID: 33880435 DOI: 10.1021/acsabm.0c00189] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resiquimod or R848 (RSQD) is a Toll-like receptor (TLR) 7/8 agonist which shows promise as vaccine adjuvant due to its potential to promote highly desirable cellular immunity. The development of this small molecule in the field to date has been largely impeded by its rapid in vivo clearance and lack of association with vaccine antigens. Here, we report a multimeric TLR 7/8 construct of nano-scale size, which results from a spontaneous self-assembly of RSQD with a water-soluble clinical-stage polymer - poly[di(carboxylatophenoxy)phosphazene] (PCPP). The formation of ionically paired construct (PCPP-R) and a ternary complex, which also includes Hepatitis C virus (HCV) antigen, has been demonstrated by dynamic lights scattering (DLS), turbidimetry, fluorescence spectroscopy, asymmetric flow field flow fractionation (AF4), and 1H NMR spectroscopy methods. The resulting supramolecular assembly PCPP-R enabled superior immunostimulation in cellular assays (mouse macrophage reporter cell line) and displayed improved in vitro hemocompatibility (human erythrocytes). In vivo studies demonstrated that PCPP-R adjuvanted HCV formulation induced higher serum neutralization titers in BALB/c mice and shifted the response towards desirable cellular immunity, as evaluated by antibody isotype ratio (IgG2a/IgG1) and ex vivo analysis of cytokine secreting splenocytes (higher levels of interferon gamma (IFN-γ) single and tumor necrosis factor alpha (TNF-α)/IFN-γ double producing cells). The non-covalent multimerization approach stands in contrast to previously suggested RSQD delivery methods, which involve covalent conjugation or encapsulation, and offers a flexible methodology that can be potentially integrated with other parenterally administered drugs.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | - Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | | | - Ananda Chowdhury
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | - Pragati Agnihotri
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA.,W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Abdul S Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | - Roy A Mariuzza
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA.,W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| |
Collapse
|
11
|
Lee MJ, Jo H, Shin SH, Kim SM, Kim B, Shim HS, Park JH. Mincle and STING-Stimulating Adjuvants Elicit Robust Cellular Immunity and Drive Long-Lasting Memory Responses in a Foot-and-Mouth Disease Vaccine. Front Immunol 2019; 10:2509. [PMID: 31736952 PMCID: PMC6828931 DOI: 10.3389/fimmu.2019.02509] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/08/2019] [Indexed: 01/18/2023] Open
Abstract
Conventional foot-and-mouth disease (FMD) vaccines exhibit several limitations, such as the slow induction of antibodies, short-term persistence of antibody titers, as well as low vaccine efficacy and safety, in pigs. Despite the importance of cellular immune response in host defense at the early stages of foot-and-mouth disease virus (FMDV) infection, most FMD vaccines focus on humoral immune response. Antibody response alone is insufficient to provide full protection against FMDV infection; cellular immunity is also required. Therefore, it is necessary to design a strategy for developing a novel FMD vaccine that induces a more potent, cellular immune response and a long-lasting humoral immune response that is also safe. Previously, we demonstrated the potential of various pattern recognition receptor (PRR) ligands and cytokines as adjuvants for the FMD vaccine. Based on these results, we investigated PRR ligands and cytokines adjuvant-mediated memory response in mice. Additionally, we also investigated cellular immune response in peripheral blood mononuclear cells (PBMCs) isolated from cattle and pigs. We further evaluated target-specific adjuvants, including Mincle, STING, TLR-7/8, and Dectin-1/2 ligand, for their role in generating ligand-mediated and long-lasting memory responses in cattle and pigs. The combination of Mincle and STING-stimulating ligands, such as trehalose-6, 6′dibehenate (TDB), and bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP), induced high levels of antigen-specific and virus-neutralizing antibody titers at the early stages of vaccination and maintained a long-lasting immune memory response in pigs. These findings are expected to provide important clues for the development of a robust FMD vaccine that stimulates both cellular and humoral immune responses, which would elicit a long-lasting, effective immune response, and address the limitations seen in the current FMD vaccine.
Collapse
Affiliation(s)
- Min Ja Lee
- Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Hyundong Jo
- Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Sung Ho Shin
- Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Su-Mi Kim
- Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Byounghan Kim
- Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Hang Sub Shim
- Gyeonggi Veterinary Service Laboratory, Yangju-si, South Korea
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| |
Collapse
|
12
|
Abstract
Vaccines are essential tools for the prevention and control of infectious diseases in animals. One of the most important steps in vaccine development is the selection of a suitable adjuvant. The focus of this review is the adjuvants used in vaccines for animals. We will discuss current commercial adjuvants and experimental formulations with attention to mineral salts, emulsions, bacterial-derived components, saponins, and several other immunoactive compounds. In addition, we will also examine the mechanisms of action for different adjuvants, examples of adjuvant combinations in one vaccine formulation, and challenges in the research and development of veterinary vaccine adjuvants.
Collapse
Affiliation(s)
- Yulia Burakova
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas.,2 Department of Chemical Engineering, College of Engineering, Kansas State University , Manhattan, Kansas
| | - Rachel Madera
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| | - Scott McVey
- 3 United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, Kansas
| | - John R Schlup
- 2 Department of Chemical Engineering, College of Engineering, Kansas State University , Manhattan, Kansas
| | - Jishu Shi
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| |
Collapse
|
13
|
Robinson L, Knight-Jones TJD, Charleston B, Rodriguez LL, Gay CG, Sumption KJ, Vosloo W. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 3 - Vaccines. Transbound Emerg Dis 2017; 63 Suppl 1:30-41. [PMID: 27320164 DOI: 10.1111/tbed.12521] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 11/28/2022]
Abstract
This study assessed research knowledge gaps in the field of FMDV (foot-and-mouth disease virus) vaccines. The study took the form of a literature review (2011-15) combined with research updates collected in 2014 from 33 institutes from across the world. Findings were used to identify priority areas for future FMD vaccine research. Vaccines play a vital role in FMD control, used both to limit the spread of the virus during epidemics in FMD-free countries and as the mainstay of disease management in endemic regions, particularly where sanitary controls are difficult to apply. Improvements in the performance or cost-effectiveness of FMD vaccines will allow more widespread and efficient disease control. FMD vaccines have changed little in recent decades, typically produced by inactivation of whole virus, the quantity and stability of the intact viral capsids in the final preparation being key for immunogenicity. However, these are exciting times and several promising novel FMD vaccine candidates have recently been developed. This includes the first FMD vaccine licensed for manufacture and use in the USA; this adenovirus-vectored FMD vaccine causes in vivo expression of viral capsids in vaccinated animals. Another promising vaccine candidate comprises stabilized empty FMDV capsids produced in vitro in a baculovirus expression system. Recombinant technologies are also being developed to improve otherwise conventionally produced inactivated vaccines, for example, by creating a chimeric vaccine virus to increase capsid stability and by inserting sequences into the vaccine virus for desired antigen expression. Other important areas of ongoing research include enhanced adjuvants, vaccine quality control procedures and predicting vaccine protection from immune correlates, thus reducing dependency on animal challenge studies. Globally, the degree of independent vaccine evaluation is highly variable, and this is essential for vaccine quality. Previously neglected, the importance of evaluating vaccination programme effectiveness and impact is increasingly being recognized.
Collapse
Affiliation(s)
| | | | | | - L L Rodriguez
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY, USA
| | - C G Gay
- Agricultural Research Service, USDA, National Program 103-Animal Health, Beltsville, MD, USA
| | - K J Sumption
- European Commission for the Control of FMD (EuFMD), FAO, Rome, Italy
| | - W Vosloo
- Australian Animal Health Laboratory, CSIRO-Biosecurity Flagship, Geelong, Vic., Australia
| |
Collapse
|
14
|
Diaz-San Segundo F, Medina GN, Stenfeldt C, Arzt J, de Los Santos T. Foot-and-mouth disease vaccines. Vet Microbiol 2016; 206:102-112. [PMID: 28040311 DOI: 10.1016/j.vetmic.2016.12.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/04/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. The disease affects many areas of the world, often causing extensive epizootics in livestock, mostly farmed cattle and swine, although sheep, goats and many wild species are also susceptible. In countries where food and farm animals are essential for subsistence agriculture, outbreaks of FMD seriously impact food security and development. In highly industrialized developed nations, FMD endemics cause economic and social devastation mainly due to observance of health measures adopted from the World Organization for Animal Health (OIE). High morbidity, complex host-range and broad genetic diversity make FMD prevention and control exceptionally challenging. In this article we review multiple vaccine approaches developed over the years ultimately aimed to successfully control and eradicate this feared disease.
Collapse
Affiliation(s)
- Fayna Diaz-San Segundo
- Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Greenport, New York, USA; Department of Pathobiology and Veterinary Science, CANR, University of Connecticut, Storrs, CT 06269, USA.
| | - Gisselle N Medina
- Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Greenport, New York, USA; PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Greenport, New York, USA; PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Greenport, New York, USA
| | - Teresa de Los Santos
- Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Greenport, New York, USA.
| |
Collapse
|
15
|
Li W, Wang K, Kang S, Deng S, Han H, Lian L, Lian Z. Tongue Epithelium Cells from shRNA Mediated Transgenic Goat Show High Resistance to Foot and Mouth Disease Virus. Sci Rep 2015; 5:17897. [PMID: 26671568 PMCID: PMC4680861 DOI: 10.1038/srep17897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/06/2015] [Indexed: 01/22/2023] Open
Abstract
Foot and mouth disease induced by foot and mouth disease virus (FMDV) is severe threat to cloven-hoofed domestic animals. The gene 3Dpol in FMDV genome encodes the viral RNA polymerase, a vital element for FMDV replication. In this study, a conserved 3D-7414shRNA targeting FMDV-3Dpol gene was designed and injected into pronuclear embryos to produce the transgenic goats. Sixty-one goats were produced, of which, seven goats positively integrated 3D-7414shRNA. Loss of function assay demonstrated that siRNA effectively knockdown 3Dpol gene in skin epithelium cells of transgenic goats. Subsequently, the tongue epithelium cells from transgenic and non-transgenic goats were infected with FMDV O/YS/CHA/05 strain. A significant decrease of virus titres and virus copy number was observed in cells of transgenic goats compared with that of non-transgenic goats, which indicated that 3D-7414siRNA inhibited FMDV replication by interfering FMDV-3Dpol gene. Furthermore, we found that expression of TLR7, RIG-I and TRAF6 was lower in FMDV infected cells from transgenic goats compared to that from non-transgenic goats, which might result from lower virus copy number in transgenic goats’ cells. In conclusion, we successfully produced transgenic goats highly expressing 3D-7414siRNA targeting 3Dpol gene, and the tongue epithelium cells from the transgenic goats showed effective resistance to FMDV.
Collapse
Affiliation(s)
- Wenting Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kejun Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shimeng Kang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shoulong Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongbing Han
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ling Lian
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhengxing Lian
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
16
|
Thomas M, Wang Z, Sreenivasan CC, Hause BM, Gourapura J Renukaradhya, Li F, Francis DH, Kaushik RS, Khatri M. Poly I:C adjuvanted inactivated swine influenza vaccine induces heterologous protective immunity in pigs. Vaccine 2014; 33:542-8. [PMID: 25437101 PMCID: PMC7115561 DOI: 10.1016/j.vaccine.2014.11.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 11/28/2022]
Abstract
Intranasal administration of Poly I:C adjuvanted bivalent swine influenza vaccine induced challenge virus-specific HI antibodies. Poly I:C adjuvanted vaccine also induced IgA and IgG antibodies in the lungs. Poly I:C adjuvanted vaccine provided protection against antigenic variant and heterologous swine influenza viruses.
Swine influenza is widely prevalent in swine herds in North America and Europe causing enormous economic losses and a public health threat. Pigs can be infected by both avian and mammalian influenza viruses and are sources of generation of reassortant influenza viruses capable of causing pandemics in humans. Current commercial vaccines provide satisfactory immunity against homologous viruses; however, protection against heterologous viruses is not adequate. In this study, we evaluated the protective efficacy of an intranasal Poly I:C adjuvanted UV inactivated bivalent swine influenza vaccine consisting of Swine/OH/24366/07 H1N1 and Swine/CO/99 H3N2, referred as PAV, in maternal antibody positive pigs against an antigenic variant and a heterologous swine influenza virus challenge. Groups of three-week-old commercial-grade pigs were immunized intranasally with PAV or a commercial vaccine (CV) twice at 2 weeks intervals. Three weeks after the second immunization, pigs were challenged with the antigenic variant Swine/MN/08 H1N1 (MN08) and the heterologous Swine/NC/10 H1N2 (NC10) influenza virus. Antibodies in serum and respiratory tract, lung lesions, virus shedding in nasal secretions and virus load in lungs were assessed. Intranasal administration of PAV induced challenge viruses specific-hemagglutination inhibition- and IgG antibodies in the serum and IgA and IgG antibodies in the respiratory tract. Importantly, intranasal administration of PAV provided protection against the antigenic variant MN08 and the heterologous NC10 swine influenza viruses as evidenced by significant reductions in lung virus load, gross lung lesions and significantly reduced shedding of challenge viruses in nasal secretions. These results indicate that Poly I:C or its homologues may be effective as vaccine adjuvants capable of generating cross-protective immunity against antigenic variants/heterologous swine influenza viruses in pigs.
Collapse
Affiliation(s)
- Milton Thomas
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Zhao Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Chithra C Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Ben M Hause
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Feng Li
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA; Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - David H Francis
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Radhey S Kaushik
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA; Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Mahesh Khatri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA.
| |
Collapse
|
17
|
Dowling QM, Schwartz AM, Vedvick TS, Fox CB, Kramer RM. Quantitative measurement of Toll-like receptor 4 agonists adsorbed to Alhydrogel(®) by Fourier transform infrared-attenuated total reflectance spectroscopy. J Pharm Sci 2014; 104:768-74. [PMID: 25242027 DOI: 10.1002/jps.24180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/07/2014] [Accepted: 09/02/2014] [Indexed: 01/15/2023]
Abstract
Aluminum salts have a long history as safe and effective vaccine adjuvants. In addition, aluminum salts have high adsorptive capacities for vaccine antigens and adjuvant molecules, for example, Toll-like receptor 4 (TLR4) agonists. However, the physicochemical properties of aluminum salts make direct quantitation of adsorbed molecules challenging. Typical methods for quantifying adsorbed molecules require advanced instrumentation, extreme sample processing, often destroy the sample, or rely on an indirect measurement. A simple, direct, and quantitative method for analysis of adsorbed adjuvant molecules is needed. This report presents a method utilizing Fourier transform infrared spectroscopy with a ZnSe-attenuated total reflectance attachment to directly measure low levels (<30 μg/mL) of TLR4 agonists adsorbed on aluminum salts with minimal sample preparation.
Collapse
|
18
|
|
19
|
Diaz-San Segundo F, Dias CC, Moraes MP, Weiss M, Perez-Martin E, Salazar AM, Grubman MJ, de Los Santos T. Poly ICLC increases the potency of a replication-defective human adenovirus vectored foot-and-mouth disease vaccine. Virology 2014; 468-470:283-292. [PMID: 25216089 DOI: 10.1016/j.virol.2014.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/15/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have previously demonstrated that a replication-defective human adenovirus 5 vector carrying the FMDV capsid coding region of serotype A24 Cruzeiro (Ad5-CI-A24-2B) protects swine and cattle against FMDV challenge by 7 days post-vaccination. However, since relatively large amounts of Ad5-CI-A24-2B are required to induce protection this strategy could be costly for livestock production. Poly ICLC is a synthetic double stranded RNA that activates multiple innate and adaptive immune pathways. In this study, we have tested for the first time, the adjuvant effect of poly ICLC in combination with Ad5-CI-A24-2B in swine. We found that the combination resulted in a reduction of the vaccine protective dose by 80-fold. Interestingly, the lowest dose of Ad5-CI-A24-2B plus 1mg of poly ICLC protected animals against challenge even in the absence of detectable FMDV-specific neutralizing antibodies at the time of challenge.
Collapse
Affiliation(s)
- Fayna Diaz-San Segundo
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, United States
| | - Camila C Dias
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, United States; Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37831, United States
| | - Mauro P Moraes
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, United States; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, United States
| | - Marcelo Weiss
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, United States; Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37831, United States
| | - Eva Perez-Martin
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, United States; Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37831, United States
| | | | - Marvin J Grubman
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, United States.
| | - Teresa de Los Santos
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, United States.
| |
Collapse
|