1
|
Epigenetic Changes in Saccharomyces cerevisiae Alters the Aromatic Profile in Alcoholic Fermentation. Appl Environ Microbiol 2022; 88:e0152822. [PMID: 36374027 PMCID: PMC9746323 DOI: 10.1128/aem.01528-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epigenetic changes in genomics provide phenotypic modification without DNA sequence alteration. This study shows that benzoic acid, a common food additive and known histone deacetylase inhibitor (HDACi), has an epigenetic effect on Saccharomyces cerevisiae. Benzoic acid stimulated formation of epigenetic histone marks H3K4Me2, H3K27Me2, H3K18ac, and H3Ser10p in S. cerevisiae and altered their phenotypic behavior, resulting in increased production of phenylethyl alcohol and ester compounds during alcoholic fermentation using wine as a representative model system. Our study demonstrates the HDACi activity of certain dietary compounds such as sodium butyrate, curcumin and anacardic acid, suggests the potential use of these dietary compounds in altering S. cerevisiae phenotypes without altering host-cell DNA. This study highlights the potential to use common dietary compounds to exploit epigenetic modifications for various fermentation and biotechnology applications as an alternative to genetic modification. These findings indicate that benzoic acid and other food additives may have potential epigenetic effects on human gut microbiota, in which several yeast species are involved. IMPORTANCE The manuscript investigates and reports for the first time utilizing a non-GMO approach to alter the fermentation process of Pinot Noir wines. We have experimentally demonstrated that certain dietary compounds possess histone deacetylase (HDAC) inhibiting activity and can alter the wine characteristics by potentially altering yeast gene transcription, which was resulted from epigenetic effects. We have previously proposed the term "nutrifermentics" to represent this newly proposed field of research that provides insights on the effect of certain dietary compounds on microbial strains and their potential application in fermentation. This technological approach is a novel way to manipulate microorganisms for innovative food and beverage production with quality attributes catering for consumer's needs. Using a multidisciplinary approach with an emphasis on food fermentation and biotechnology, this study will be substantially useful and of broad interest to food microbiologists and biotechnologists who seek for innovative concepts with real-world application potential.
Collapse
|
2
|
Bauer I, Graessle S. Fungal Lysine Deacetylases in Virulence, Resistance, and Production of Small Bioactive Compounds. Genes (Basel) 2021; 12:1470. [PMID: 34680865 PMCID: PMC8535771 DOI: 10.3390/genes12101470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
The growing number of immunocompromised patients begs for efficient therapy strategies against invasive fungal infections. As conventional antifungal treatment is increasingly hampered by resistance to commonly used antifungals, development of novel therapy regimens is required. On the other hand, numerous fungal species are industrially exploited as cell factories of enzymes and chemicals or as producers of medically relevant pharmaceuticals. Consequently, there is immense interest in tapping the almost inexhaustible fungal portfolio of natural products for potential medical and industrial applications. Both the pathogenicity and production of those small metabolites are significantly dependent on the acetylation status of distinct regulatory proteins. Thus, classical lysine deacetylases (KDACs) are crucial virulence determinants and important regulators of natural products of fungi. In this review, we present an overview of the members of classical KDACs and their complexes in filamentous fungi. Further, we discuss the impact of the genetic manipulation of KDACs on the pathogenicity and production of bioactive molecules. Special consideration is given to inhibitors of these enzymes and their role as potential new antifungals and emerging tools for the discovery of novel pharmaceutical drugs and antibiotics in fungal producer strains.
Collapse
Affiliation(s)
| | - Stefan Graessle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
3
|
Transcription and chromatin-based surveillance mechanism controls suppression of cryptic antisense transcription. Cell Rep 2021; 36:109671. [PMID: 34496258 PMCID: PMC8441049 DOI: 10.1016/j.celrep.2021.109671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/26/2020] [Accepted: 08/13/2021] [Indexed: 12/25/2022] Open
Abstract
Phosphorylation of the RNA polymerase II C-terminal domain Y1S2P3T4S5P6S7 consensus sequence coordinates key events during transcription, and its deregulation leads to defects in transcription and RNA processing. Here, we report that the histone deacetylase activity of the fission yeast Hos2/Set3 complex plays an important role in suppressing cryptic initiation of antisense transcription when RNA polymerase II phosphorylation is dysregulated due to the loss of Ssu72 phosphatase. Interestingly, although single Hos2 and Set3 mutants have little effect, loss of Hos2 or Set3 combined with ssu72Δ results in a synergistic increase in antisense transcription globally and correlates with elevated sensitivity to genotoxic agents. We demonstrate a key role for the Ssu72/Hos2/Set3 mechanism in the suppression of cryptic antisense transcription at the 3' end of convergent genes that are most susceptible to these defects, ensuring the fidelity of gene expression within dense genomes of simple eukaryotes.
Collapse
|
4
|
Lee J, Lee JJ, Jeon J. A histone deacetylase, MoHOS2 regulates asexual development and virulence in the rice blast fungus. J Microbiol 2019; 57:1115-1125. [DOI: 10.1007/s12275-019-9363-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/31/2019] [Accepted: 09/17/2019] [Indexed: 01/28/2023]
|
5
|
Cai Q, Tong SM, Shao W, Ying SH, Feng MG. Pleiotropic effects of the histone deacetylase Hos2 linked to H4-K16 deacetylation, H3-K56 acetylation, and H2A-S129 phosphorylation in Beauveria bassiana. Cell Microbiol 2018. [PMID: 29543404 DOI: 10.1111/cmi.12839] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Histone acetyltransferases and deacetylases maintain dynamics of lysine acetylation/deacetylation on histones and nonhistone substrates involved in gene regulation and cellular events. Hos2 is a Class I histone deacetylases that deacetylates unique histone H4-K16 site in yeasts. Here, we report that orthologous Hos2 deacetylates H4-K16 and is also involved in the acetylation of histone H3-K56 and the phosphorylation of histone H2A-S129 and cyclin-dependent kinase 1 CDK1-Y15 in Beauveria bassiana, a filamentous fungal insect pathogen. These site-specific modifications are evidenced with hyperacetylated H4-K16, hypoacetylated H3-K56, and both hypophosphorylated H2A-S129 and CDK1-Y15 in absence of hos2. Consequently, the Δhos2 mutant suffered increased sensitivities to DNA-damaging and oxidative stresses, disturbed cell cycle, impeded cytokinesis, increased cell size or length, reduced conidiation capacity, altered conidial properties, and attenuated virulence. These phenotypic changes correlated well with dramatic repression of many genes that are essential for DNA damage repair, G1 /S transition and DNA synthesis, hyphal septation, and asexual development. The uncovered ability for Hos2 to directly deacetylate H4-K16 and to indirectly modify H3-K56, H2A-S129, and CDK1-Y15 provides novel insight into more subtle regulatory role for Hos2 in genomic stability and diverse cellular events in the fungal insect pathogen than those revealed previously in nonentomophathogenic fungi.
Collapse
Affiliation(s)
- Qing Cai
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sen-Miao Tong
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Shao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
A Genetic Screen for Fission Yeast Gene Deletion Mutants Exhibiting Hypersensitivity to Latrunculin A. G3-GENES GENOMES GENETICS 2016; 6:3399-3408. [PMID: 27466272 PMCID: PMC5068959 DOI: 10.1534/g3.116.032664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Fission yeast cells treated with low doses of the actin depolymerizing drug, latrunculin A (LatA), delay entry into mitosis via a mechanism that is dependent on both the Clp1p and Rad24p proteins. During this delay, cells remain in a cytokinesis-competent state that is characterized by continuous repair and/or reestablishment of the actomyosin ring. In this manner, cells ensure the faithful completion of the preceding cytokinesis in response to perturbation of the cell division machinery. To uncover other genes with a role in this response, or simply genes with roles in adapting to LatA-induced stress, we carried out a genome-wide screen and identified a group of 38 gene deletion mutants that are hyper-sensitive to the drug. As expected, we found genes affecting cytokinesis and/or the actin cytoskeleton within this set (ain1, acp2, imp2). We also identified genes with roles in histone modification (tra1, ngg1), intracellular transport (apl5, aps3), and glucose-mediated signaling (git3, git5, git11, pka1, cgs2). Importantly, while the identified gene deletion mutants are prone to cytokinesis failure in the presence of LatA, they are nevertheless fully capable of cell division in the absence of the drug. These results indicate that fission yeast cells make use of a diverse set of regulatory modules to counter abnormal cytoskeletal perturbations, and furthermore, that these modules act redundantly to ensure cell survival and proliferation.
Collapse
|
7
|
Zullo KM, Guo Y, Cooke L, Jirau-Serrano X, Mangone M, Scotto L, Amengual JE, Mao Y, Nandakumar R, Cremers S, Duong J, Mahadevan D, O'Connor OA. Aurora A Kinase Inhibition Selectively Synergizes with Histone Deacetylase Inhibitor through Cytokinesis Failure in T-cell Lymphoma. Clin Cancer Res 2015; 21:4097-109. [PMID: 25878331 PMCID: PMC4581881 DOI: 10.1158/1078-0432.ccr-15-0033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/24/2015] [Indexed: 01/23/2023]
Abstract
PURPOSE Aurora A kinase (AAK) is expressed exclusively during mitosis, and plays a critical role in centrosome duplication and spindle formation. Alisertib is a highly selective AAK inhibitor that has demonstrated marked clinical activity of alisertib across a spectrum of lymphomas, though particularly in patients with T-cell lymphoma (TCL). We sought to compare and contrast the activity of alisertib in preclinical models of B-cell lymphoma (BCL) and TCL, and identify combinations worthy of clinical study. High-throughput screening of pralatrexate, the proteasome inhibitor (ixazomib), and the histone deacetylase (HDAC) inhibitor (romidepsin) revealed that only romidepsin synergized with alisertib, and only in models of TCL. We discovered that the mechanism of synergy between AAK inhibitors and HDAC inhibitors appears to be mediated through cytokinesis failure. EXPERIMENTAL DESIGN A high-throughput screening approach was used to identify drugs that were potentially synergistic in combination with alisertib. Live-cell imaging was used to explore the mechanistic basis for the drug: drug interaction between alisertib and romidepsin. An in vivo xenograft TCL model was used to confirm in vitro results. RESULTS In vitro, alisertib exhibited concentration-dependent cytotoxicity in BCL and TCL cell lines. Alisertib was synergistic with romidepsin in a T-cell-specific fashion that was confirmed in vivo. Live-cell imaging demonstrated that the combination treatment resulted in profound cytokinesis failure. CONCLUSIONS These data strongly suggest that the combination of alisertib and romidepsin is highly synergistic in TCL through modulation of cytokinesis and merits clinical development.
Collapse
Affiliation(s)
- Kelly M Zullo
- Department of Medicine, Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Yige Guo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Laurence Cooke
- University of Tennessee Health Science Center, West Cancer Center, Memphis, Tennessee
| | - Xavier Jirau-Serrano
- Department of Medicine, Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Michael Mangone
- Department of Medicine, Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Luigi Scotto
- Department of Medicine, Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Jennifer E Amengual
- Department of Medicine, Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Yinghui Mao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Renu Nandakumar
- Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, New York
| | - Serge Cremers
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York. Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, New York
| | - Jimmy Duong
- Mailman School of Public Health, Columbia University, New York, New York
| | - Daruka Mahadevan
- University of Tennessee Health Science Center, West Cancer Center, Memphis, Tennessee
| | - Owen A O'Connor
- Department of Medicine, Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York.
| |
Collapse
|
8
|
Blackmore JK, Karmakar S, Gu G, Chaubal V, Wang L, Li W, Smith CL. The SMRT coregulator enhances growth of estrogen receptor-α-positive breast cancer cells by promotion of cell cycle progression and inhibition of apoptosis. Endocrinology 2014; 155:3251-61. [PMID: 24971610 PMCID: PMC4138560 DOI: 10.1210/en.2014-1002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The SMRT coregulator functions as a dual coactivator and corepressor for estrogen receptor-α (ERα) in a gene-specific manner, and in several studies its elevated expression correlates with poor outcome for breast cancer patients. A specific role of SMRT in breast cancer progression has not been elucidated, but SMRT knock-down limits estradiol-dependent growth of MCF-7 breast cancer cells. In this study, small-interfering RNA (siRNA) and short-hairpin RNA (shRNA) approaches were used to determine the effects of SMRT depletion on growth of ERα-positive MCF-7 and ZR-75-1 breast cancer cells, as well as the ERα-negative MDA-MB-231 breast cancer line. Depletion of SMRT inhibited growth of ERα-positive cells grown in monolayer but had no effect on growth of the ERα-negative cells. Reduced SMRT levels also negatively impacted the anchorage-independent growth of MCF-7 cells as assessed by soft agar colony formation assays. The observed growth inhibitions were due to a loss of estradiol-induced progression through the G1/S transition of the cell cycle and increased apoptosis in SMRT-depleted compared with control cells. Gene expression analyses indicated that SMRT inhibits apoptosis by a coordinated regulation of genes involved in apoptosis. Functioning as a dual coactivator for anti-apoptotic genes and corepressor for pro-apoptotic genes, SMRT can limit apoptosis. Together these data indicate that SMRT promotes breast cancer progression through multiple pathways leading to increased proliferation and decreased apoptosis.
Collapse
Affiliation(s)
- Julia K Blackmore
- Molecular and Cellular Biology (J.K.B., S.K., V.C., C.L.S.), Lester and Sue Smith Breast Center (G.G.), and Dan L Duncan Cancer Center (L.W., W.L.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | |
Collapse
|