1
|
Ahmad R, Barcellini A, Baumann K, Benje M, Bender T, Bragado P, Charalampopoulou A, Chowdhury R, Davis AJ, Ebner DK, Eley J, Kloeber JA, Mutter RW, Friedrich T, Gutierrez-Uzquiza A, Helm A, Ibáñez-Moragues M, Iturri L, Jansen J, Morcillo MÁ, Puerta D, Kokko AP, Sánchez-Parcerisa D, Scifoni E, Shimokawa T, Sokol O, Story MD, Thariat J, Tinganelli W, Tommasino F, Vandevoorde C, von Neubeck C. Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology Subcommittee Report. Int J Part Ther 2024; 13:100626. [PMID: 39258166 PMCID: PMC11386331 DOI: 10.1016/j.ijpt.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Particle therapy (PT) represents a significant advancement in cancer treatment, precisely targeting tumor cells while sparing surrounding healthy tissues thanks to the unique depth-dose profiles of the charged particles. Furthermore, their linear energy transfer and relative biological effectiveness enhance their capability to treat radioresistant tumors, including hypoxic ones. Over the years, extensive research has paved the way for PT's clinical application, and current efforts aim to refine its efficacy and precision, minimizing the toxicities. In this regard, radiobiology research is evolving toward integrating biotechnology to advance drug discovery and radiation therapy optimization. This shift from basic radiobiology to understanding the molecular mechanisms of PT aims to expand the therapeutic window through innovative dose delivery regimens and combined therapy approaches. This review, written by over 30 contributors from various countries, provides a comprehensive look at key research areas and new developments in PT radiobiology, emphasizing the innovations and techniques transforming the field, ranging from the radiobiology of new irradiation modalities to multimodal radiation therapy and modeling efforts. We highlight both advancements and knowledge gaps, with the aim of improving the understanding and application of PT in oncology.
Collapse
Affiliation(s)
- Reem Ahmad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Clinical Department Radiation Oncology Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Kilian Baumann
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany
- Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Malte Benje
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tamara Bender
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Paloma Bragado
- Biochemistry and Molecular Biology Department, Complutense University of Madrid, Madrid, Spain
| | - Alexandra Charalampopoulou
- University School for Advanced Studies (IUSS), Pavia, Italy
- Radiobiology Unit, Development and Research Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Reema Chowdhury
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anthony J. Davis
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel K. Ebner
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Eley
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jake A. Kloeber
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert W. Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Friedrich
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Alexander Helm
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marta Ibáñez-Moragues
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Jeannette Jansen
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Miguel Ángel Morcillo
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Daniel Puerta
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, Granada, Spain
| | | | | | - Emanuele Scifoni
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Takashi Shimokawa
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Juliette Thariat
- Centre François Baclesse, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, Caen, France
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Francesco Tommasino
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
2
|
Ripoll-Viladomiu I, Prina-Mello A, Movia D, Marignol L. Extracellular vesicles and the "six Rs" in radiotherapy. Cancer Treat Rev 2024; 129:102799. [PMID: 38970839 DOI: 10.1016/j.ctrv.2024.102799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Over half of patients with cancer receive radiation therapy during the course of their disease. Decades of radiobiological research have identified 6 parameters affecting the biological response to radiation referred to as the 6 "Rs": Repair, Radiosensitivity, Repopulation, Redistribution, Reoxygenation, and Reactivation of the anti-tumour immune response. Extracellular Vesicles (EVs) are small membrane-bound particles whose multiple biological functions are increasingly documented. Here we discuss the evidence for a role of EVs in the orchestration of the response of cancer cells to radiotherapy. We highlight that EVs are involved in DNA repair mechanisms, modulation of cellular sensitivity to radiation, and facilitation of tumour repopulation. Moreover, EVs influence tumour reoxygenation dynamics, and play a pivotal role in fostering radioresistance. Last, we examine how EV-related strategies could be translated into novel strategies aimed at enhancing the efficacy of radiation therapy against cancer.
Collapse
Affiliation(s)
- Isabel Ripoll-Viladomiu
- Trinity St. James's Cancer Institute, Radiobiology and Molecular Oncology Research Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland; Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Dania Movia
- Trinity St. James's Cancer Institute, Radiobiology and Molecular Oncology Research Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland; Department of Biology and Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Callan Building, Maynooth, Ireland
| | - Laure Marignol
- Trinity St. James's Cancer Institute, Radiobiology and Molecular Oncology Research Group, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland.
| |
Collapse
|
3
|
Liu W, Liu Y, Li P, Chen J, Liu J, Shi Z, Liu H, Ye J. Identification of candidate plasma miRNA biomarkers for the diagnosis of head and neck squamous cell carcinoma. Future Sci OA 2024; 10:FSO928. [PMID: 38827810 PMCID: PMC11140639 DOI: 10.2144/fsoa-2023-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 06/05/2024] Open
Abstract
Aim: Current head and neck squamous cell carcinoma (HNSCC) diagnostic tools are limited, so this study aimed to identify diagnostic microRNA (miRNA) biomarkers from plasma. Materials & methods: A total of 76 HNSCC and 76 noncancerous control (NC) plasma samples underwent microarray analysis and quantitative reverse transcription PCR to screen for diagnostic plasma miRNAs. The diagnostic potential of the miRNAs was evaluated by the receiver operating characteristic curve. Results: miR-95-3p and miR-579-5p expression was shown to be significantly upregulated, and that of miR-1298-3p to be downregulated in HNSCC patients compared with controls. The final diagnostic panel included miR-95-3p, miR-579-5p and miR-1298-3p with an area under the curve of 0.83. Conclusion: This three-miRNA panel has potential for the diagnosis of HNSCC.
Collapse
Affiliation(s)
- Weixing Liu
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Liu
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pei Li
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia Chen
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiamin Liu
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi Shi
- Jinan University, Guangzhou, Guangdong, China
| | - Hui Liu
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Ye
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Chen Z, Li C, Zhou Y, Yao Y, Liu J, Wu M, Su J. Liquid biopsies for cancer: From bench to clinic. MedComm (Beijing) 2023; 4:e329. [PMID: 37492785 PMCID: PMC10363811 DOI: 10.1002/mco2.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
Over the past two decades, liquid biopsy has been increasingly used as a supplement, or even, a replacement to the traditional biopsy in clinical oncological practice, due to its noninvasive and early detectable properties. The detections can be based on a variety of features extracted from tumor‑derived entities, such as quantitative alterations, genetic changes, and epigenetic aberrations, and so on. So far, the clinical applications of cancer liquid biopsy mainly aimed at two aspects, prediction (early diagnosis, prognosis and recurrent evaluation, therapeutic response monitoring, etc.) and intervention. In spite of the rapid development and great contributions achieved, cancer liquid biopsy is still a field under investigation and deserves more clinical practice. To better open up future work, here we systematically reviewed and compared the latest progress of the most widely recognized circulating components, including circulating tumor cells, cell-free circulating DNA, noncoding RNA, and nucleosomes, from their discovery histories to clinical values. According to the features applied, we particularly divided the contents into two parts, beyond epigenetics and epigenetic-based. The latter was considered as the highlight along with a brief overview of the advances in both experimental and bioinformatic approaches, due to its unique advantages and relatively lack of documentation.
Collapse
Affiliation(s)
- Zhenhui Chen
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Chenghao Li
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yue Zhou
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Yinghao Yao
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Min Wu
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Jianzhong Su
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
5
|
Zhong Q, Nie Q, Wu R, Huang Y. Exosomal miR-18a-5p promotes EMT and metastasis of NPC cells via targeting BTG3 and activating the Wnt/β-catenin signaling pathway. Cell Cycle 2023; 22:1544-1562. [PMID: 37287276 PMCID: PMC10361138 DOI: 10.1080/15384101.2023.2216508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
This study investigated the underlying mechanism of miR-18a-5p regulating the proliferation, invasion, and metastasis of nasopharyngeal carcinoma (NPC) cells in vitro and in vivo to indicate the pathogenesis of NPC. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was utilized to determine miR-18a-5p expression level in NPC tissues and cell lines. Besides, 2,5-diphenyl-2 H-tetrazolium bromide (MTT) and colony formation assays were employed to detect the effect of miR-18a-5p expression level on NPC cell proliferation. Wound healing and Transwell assays were utilized to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expression levels of epithelial-mesenchymal transition (EMT)-related proteins (Vimentin, N-cadherin, and E-cadherin) were identified by Western blot assay. After collecting exosomes from CNE-2 cells, it was found that exosomal miR-18a-5p secreted from NPC cells promoted NPC cell proliferation, migration, invasion, and EMT, whereas inhibition of miR-18a-5p expression level led to the opposite results. The dual-luciferase reporter assay showed that BTG anti-proliferation factor 3 (BTG3) was the target gene of miR-18a-5p, and BTG3 could overturn the effect of miR-18a-5p on NPC cells. Xenograft mouse model of NPC nude mice showed that miR-18a-5p promoted NPC growth and metastasis in vivo. This study revealed that exosomal miR-18a-5p derived from NPC cells promoted angiogenesis via targeting BTG3 and activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qiong Zhong
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| | - Qihong Nie
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| | - Renrui Wu
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| | - Yun Huang
- Department of Oncology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi Province, China
| |
Collapse
|
6
|
Yerukala Sathipati S, Ho SY. Survival associated miRNA signature in patients with head and neck carcinomas. Heliyon 2023; 9:e17218. [PMID: 37360084 PMCID: PMC10285236 DOI: 10.1016/j.heliyon.2023.e17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Head and neck carcinoma (HNSC) is often diagnosed at advanced stage, incurring poor patient outcome. Despite of advances in chemoradiation and surgery approaches, limited improvements in survival rates of HNSC have been observed over the last decade. Accumulating evidences have demonstrated the importance of microRNAs (miRNAs) in carcinogenesis. In this context, we sought to identify a miRNA signature associated with the survival time in patients with HNSC. This study proposed a survival estimation method called HNSC-Sig that identified a miRNA signature consists of 25 miRNAs associated with the survival in 133 patients with HNSC. HNSC-Sig achieved 10-fold cross validation a mean correlation coefficient and a mean absolute error of 0.85 ± 0.01 and 0.46 ± 0.02 years, respectively, between actual and estimated survival times. The survival analysis revealed that five miRNAs, hsa-miR-3605-3p, hsa-miR-629-3p, hsa-miR-3127-5p, hsa-miR-497-5p, and hsa-miR-374a-5p, were significantly associated with prognosis in patients with HNSC. Comparing the relative expression difference of top 10 prioritized miRNAs, eight miRNAs, hsa-miR-629-3p, hsa-miR-3127-5p, hsa-miR-221-3p, hsa-miR-501-5p, hsa-miR-491-5p, hsa-miR-149-3p, hsa-miR-3934-5p, and hsa-miR-3170, were significantly expressed between cancer and normal groups. In addition, biological relevance, disease association, and target interactions of the miRNA signature were discussed. Our results suggest that identified miRNA signature have potential to serve as biomarker for diagnosis and clinical practice in HNSC.
Collapse
Affiliation(s)
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
7
|
Huang B, Wu G, Peng C, Peng X, Huang M, Ding J, Zhang H, Wu X. miR-126 regulates the proliferation, migration, invasion, and apoptosis of non-small lung cancer cells via AKT2/HK2 axis. IUBMB Life 2023; 75:186-195. [PMID: 34320278 DOI: 10.1002/iub.2531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022]
Abstract
This study tended to clarify the role of miR-126 in non-small cell lung cancer (NSCLC) cell biological behaviors in vitro, containing cell proliferation, migration, invasion, and apoptosis. miRNA expression microarray related to NSCLC was accessed from gene expression omnibus (GEO) database and subjected to differential analysis using the "limma" package. Real-time quantitative PCR was conducted to assess the expression of miR-126 in NSCLC cell lines. wIn vitro experiments including 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), wound healing assay, Transwell, and flow cytometry assay were used for evaluating the effect of miR-126 on cell proliferation, migration, invasion, and apoptosis. Additionally, target mRNA for miR-126 was predicted and further validated by bioinformatics analysis and dual-luciferase reporter assay, respectively. It suggested that miR-126 was significantly down-regulated in NSCLS based on the expression microarray, and similar expression trend was exhibited in cancer cell lines. In the meantime, overexpression of miR-126 was found to result in inhibition of cell proliferation, migration, and invasion while promotion of cell apoptosis, with reductions in protein expression of AKT2 and phosphorylated HK2 (p-HK2) as well. AKT2, identified to be a direct target of miR-126 in NSCLC as judged by dual-luciferase reporter assay. Additionally, overexpression of AKT2 was observed to have the ability of elevating p-HK2 protein expression and reversing the effect of miR-126 on NSCLC cell proliferation, migration, and invasion. Given the above findings, we can see that miR-126 exerts its role in NSCLC cell proliferation, migration, invasion, and apoptosis with the aid of AKT2/HK2 axis.
Collapse
Affiliation(s)
- Bin Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital/The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Gongzhi Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital/The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Chongxiong Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital/The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xuyang Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital/The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Mingjiang Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital/The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Jianyang Ding
- Department of Cardiothoracic Surgery, Lishui People's Hospital/The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Huaizhong Zhang
- Department of Cardiothoracic Surgery, Lishui People's Hospital/The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xuhui Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital/The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
8
|
Mohammadi E, Aliarab A, Babaei G, Habibi NK, Jafari SM, Mir SM, Memar MY. MicroRNAs in esophageal squamous cell carcinoma: Application in prognosis, diagnosis, and drug delivery. Pathol Res Pract 2022; 240:154196. [PMID: 36356334 DOI: 10.1016/j.prp.2022.154196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) play a vital role in various cell biology processes, including cancer formation. These small non-coding RNAs could function as diagnostic and prognostic markers. They may involve esophageal squamous cell carcinoma (ESCC) and distinctive miRNA expression profiles; they are also known as therapeutic targets in human diseases. Therefore, in this study, the function of miRNAs was reviewed regarding the prognosis and diagnosis of ESCC. The changes in miRNAs before and after cancer therapy and the effects of miRNAs on chemo-susceptibility patterns were also investigated. MiRNA delivery systems in ESCC were also highlighted, providing a perspective on how these systems can improve miRNA efficiency.
Collapse
Affiliation(s)
- Elahe Mohammadi
- Department of Nutrition, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Azadeh Aliarab
- Department of Clinical Biochemistry, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nasim Kouhi Habibi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Barwal TS, Singh N, Sharma U, Bazala S, Rani M, Behera A, Kumawat RK, Kumar P, Uttam V, Khandelwal A, Barwal J, Jain M, Jain A. miR-590-5p: A double-edged sword in the oncogenesis process. Cancer Treat Res Commun 2022; 32:100593. [PMID: 35752082 DOI: 10.1016/j.ctarc.2022.100593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Accumulating evidence suggests the critical role of miR-590-5p in various aspects of cellular homeostasis, including cancer. Furthermore, we and others have recently demonstrated that miRNA-590-5p acts as an oncogene in some cancers while it acts as a tumor-suppressor in others. However, the role of miR-590-5p in oncogenesis is more complex, like a double-edged sword. Thus, this systematic review introduces the concept, mechanism, and biological function of miR-590-5p to resolve this apparent paradox. We have also described the involvement of miR-590-5p in crucial cancer-hallmarks processes like proliferation, invasion, metastasis, and chemo radioresistance. Finally, we have presented the possible genes/pathways targets of miR-590-5p through bioinformatics analysis. This review may help in designing better biomarkers and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India; GreyB consultancy services, Mohali, Punjab 160062, India
| | - Neha Singh
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Sonali Bazala
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Medha Rani
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Alisha Behera
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Ram Kumar Kumawat
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Pawan Kumar
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Vivek Uttam
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Akanksha Khandelwal
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Jyoti Barwal
- Department of Zoology, Government Post Graduate College, Bilaspur, Himachal Pradesh, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
10
|
Fu X, He Y, Song J, Wang L, Guo P, Cao J. MiRNA-181b-5p Modulates Cell Proliferation, Cell Cycle and Apoptosis by Targeting SSX2IP in Acute Lymphoblastic Leukemia. Turk J Haematol 2022; 39:160-169. [PMID: 35658330 PMCID: PMC9421343 DOI: 10.4274/tjh.galenos.2022.2022.0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Accumulating evidence indicates that miRNAs can negatively influence the expression of their downstream genes, thereby affecting the development of human cancers. The pathogenesis of acute lymphoblastic leukemia (ALL) is complex and more biomarkers and functional molecules need to be found. We attempted to reveal the specific mechanisms and functions of miRNA-181b-5p in ALL and investigated the effects of the miRNA-181b-5p/SSX2IP axis on ALL. Materials and Methods: Bioinformatics analyses were initially performed to screen out differentially expressed miRNAs in ALL and determine the research subject. qRT-PCR and western blotting were applied to evaluate the expression levels of target genes. Cell function experiments and mouse experiments were conducted to analyze the roles of the target genes in ALL. Results: miRNA-181b-5p was highly and differentially expressed in ALL and may target SSX2IP. The upregulation of miRNA-181b-5p and downregulation of SSX2IP were observed in ALL cells. miRNA-181b-5p could control multiple pathological processes of ALL, including cell proliferation, the cell cycle, and apoptosis, and miRNA-181b-5p could also facilitate tumor growth in vivo. Conclusion: miRNA-181b-5p promoted the malignant progression of ALL by downregulating SSX2IP. The miRNA-181b-5p/SSX2IP axis may be a promising target for intervention against the malignant behaviors of ALL.
Collapse
|
11
|
Meng B, Wang P, Zhao C, Yin G, Meng X, Li L, Cai S, Yan C. miR-21-5p serves as a promoter in renal cell carcinoma progression through ARHGAP24 downregulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39985-39993. [PMID: 35112252 DOI: 10.1007/s11356-021-18343-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Renal cell carcinoma (RCC) is a highly recurrent aggressive tumor. This study works for the regulation of miR-21-5p on RCC cell functions and novel ideas for therapies of RCC. Isoform expression quantification data were offered by The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) to investigate differentially expressed miRNAs. The way miR-21-5p works on biological functions of RCC was examined with MTT and Transwell assays. The downstream targets of miR-21-5p were predicted using bioinformatics analysis. The binding of two researched objects was verified by the dual-luciferase method. TCGA data manifested a considerably high level of miR-21-5p in RCC tissue, while ARHGAP24 was significantly lowly expressed. miR-21-5p bound ARHGAP24 and stimulated RCC cell functions, whereas ARHGAP24 mimic could reverse such promotion. This work observed miR-21-5p, a stimulator in RCC, and it deteriorated this cancer via repressing its downstream target gene ARHGAP24 expression.
Collapse
Affiliation(s)
- Bin Meng
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Pengfei Wang
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Chaofei Zhao
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Guangwei Yin
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Xin Meng
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Lin Li
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Shengyong Cai
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China
| | - Chengquan Yan
- Department of Urology, Area 3, Tangshan Gongren Hospital, LubeiDistrict, No.27 Wenhua Road, Tangshan, Hebei, 063000, People's Republic of China.
| |
Collapse
|
12
|
Jia M, Wang Z. MicroRNAs as Biomarkers for Ionizing Radiation Injury. Front Cell Dev Biol 2022; 10:861451. [PMID: 35309926 PMCID: PMC8927810 DOI: 10.3389/fcell.2022.861451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Accidental radiation exposures such as industrial accidents and nuclear catastrophes pose a threat to human health, and the potential or substantial injury caused by ionizing radiation (IR) from medical treatment that cannot be ignored. Although the mechanisms of IR-induced damage to various organs have been gradually investigated, medical treatment of irradiated individuals is still based on clinical symptoms. Hence, minimally invasive biomarkers that can predict radiation damage are urgently needed for appropriate medical management after radiation exposure. In the field of radiation biomarker, finding molecular biomarkers to assess different levels of radiation damage is an important direction. In recent years, microRNAs have been widely reported as several diseases’ biomarkers, such as cancer and cardiovascular diseases, and microRNAs are also of interest to the ionizing radiation field as radiation response molecules, thus researchers are turning attention to the potential of microRNAs as biomarkers in tumor radiation response and the radiation toxicity prediction of normal tissues. In this review, we summarize the distribution of microRNAs, the progress on research of microRNAs as markers of IR, and make a hypothesis about the origin and destination of microRNAs in vivo after IR.
Collapse
|
13
|
Fu Y, Liu Y, Nasiroula A, Wang Q, Cao X. Long non‑coding RNA HCG22 inhibits the proliferation, invasion and migration of oral squamous cell carcinoma cells by downregulating miR‑425‑5p expression. Exp Ther Med 2022; 23:246. [PMID: 35222723 PMCID: PMC8815030 DOI: 10.3892/etm.2022.11171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/28/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yating Fu
- Department of Radiology, Urumqi Stomatological Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Ying Liu
- Department of General Special Requirements, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Aheli Nasiroula
- Department of General Special Requirements, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Qichao Wang
- Department of Oncology II, Dalian Fifth People's Hospital, Dalian, Liaoning 116021, P.R. China
| | - Xinhua Cao
- Department of Radiology, Urumqi Stomatological Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| |
Collapse
|
14
|
miR-31-5p modulates cell progression in lung adenocarcinoma through TNS1/p53 axis. Strahlenther Onkol 2022; 198:304-314. [PMID: 35037949 DOI: 10.1007/s00066-021-01895-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To clarify the modulatory mechanism of miR-31-5p in lung adenocarcinoma (LUAD) progression in vivo and in vitro. METHODS The Cancer Genome Atlas (TCGA) database was employed to access LUAD-related miRNA and mRNA expression data. Downstream targets of miR-31-5p were predicted by public databases. The interaction between miR-31-5p and TNS1 was determined by dual-luciferase reporter assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to measure miR-31-5p and TNS1 expression levels in LUAD cells. Western blot was introduced to test protein expression levels of TNS1, p53, and apoptosis-related proteins. In-vitro functional assays were conducted to evaluate the biological effects of miR-31-5p on cell proliferation, colony formation, migration, and apoptosis. In-vivo tumor xenograft experiment was applied to examine the effects of miR-31-5p on LUAD tumor growth, followed by immunochemistry assays for assessing TNS1 and p53 expression levels in the tumor tissue. RESULTS miR-31-5p was prominently upregulated in LUAD tissue and was identified to present a similar trend in LUAD cell lines H1299, H23, and A549. miR-31-5p overexpression exerted an active role in cell proliferation and migration, but it suppressed cell apoptosis. Additionally, a reverse correlation between miR-31-5p and TNS1 regarding the expression level was identified, and TNS1 was verified to be a direct target of miR-31-5p. Besides, it was further validated by the rescue experiments that the tumor-promoting effects of miR-31-5p on LUAD cell functions were attenuated by TNS1 overexpression to some extent. The results based on the tumor xenograft experiment revealed that LUAD cell growth could be facilitated by miR-31-5p via the TNS1/p53 axis. CONCLUSION miR-31-5p facilitates LUAD cell progression mediated by the TNS1/p53 axis.
Collapse
|
15
|
Tan W, Li Z, Xia W, Zhu J, Fan R. miR-221-3p regulates hepatocellular carcinoma cell proliferation, migration and invasion via targeting LIFR. Ann Hepatol 2022; 27 Suppl 1:100567. [PMID: 34699986 DOI: 10.1016/j.aohep.2021.100567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatocellular carcinoma (HCC) is one of the most common and fatal cancers in the world. This study aims to investigate the mechanism by which miR-221-3p regulates HCC cell proliferation, migration and invasion, so as to provide a new idea for targeted therapy towards HCC. MATERIALS AND METHODS Expression quantification data including mature miRNA and mRNA were accessed from TCGA-LIHC dataset, and matched clinical information was obtained as well, which helped identify the miRNA of interest. Thereafter, effect of the miRNA on HCC cell biological functions was assessed with a series of in vitro experiments, such as qRT-PCR, MTT, wound healing assay and Transwell. To gain more insight into the mechanism of the miRNA in HCC, bioinformatics method was conducted to predict downstream target gene. The potential targeting relationship between the miRNA and the predicted mRNA was validated by dual-luciferase reporter assay. Western blot was performed to test protein expression. RESULTS MiR-221-3p identified by differential expression analysis was found to be significantly elevated in HCC tissue. Overexpressing miR-221-3p noticeably enhanced HCC cell proliferative, migratory and invasive abilities. Leukemia inhibitory factor receptor (LIFR), confirmed as a downstream target of miR-221-3p in HCC by dual-luciferase reporter assay, was poorly expressed in HCC tissue and cells. Additionally, the expression of LIFR was decreased following the targeted binding between miR-221-3p and LIFR 3'-UTR, while increasing the expression of LIFR attenuated the promoting effect of miR-221-3p on HCC cells. CONCLUSION MiR-221-3p is an oncogene in HCC cells, and it exerts its role in HCC cell viability and motility via targeting LIFR.
Collapse
Affiliation(s)
- Wei Tan
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang province, China
| | - Zhuokai Li
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang province, China
| | - Weifen Xia
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang province, China
| | - Jinde Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang province, China
| | - Rengen Fan
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First people's Hospital of Yancheng, 166 West Yulong Road, Yancheng 224000, Jiangsu province, China.
| |
Collapse
|
16
|
Port M, Hérodin F, Drouet M, Valente M, Majewski M, Ostheim P, Lamkowski A, Schüle S, Forcheron F, Tichy A, Sirak I, Malkova A, Becker BV, Veit DA, Waldeck S, Badie C, O'Brien G, Christiansen H, Wichmann J, Beutel G, Davidkova M, Doucha-Senf S, Abend M. Gene Expression Changes in Irradiated Baboons: A Summary and Interpretation of a Decade of Findings. Radiat Res 2021; 195:501-521. [PMID: 33788952 DOI: 10.1667/rade-20-00217.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/05/2021] [Indexed: 11/03/2022]
Affiliation(s)
- M Port
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - F Hérodin
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Drouet
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Valente
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - M Majewski
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - A Lamkowski
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - S Schüle
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - F Forcheron
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - A Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czech Republic and Biomedical Research Centre, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - I Sirak
- Department of Oncology and Radiotherapy, University Hospital, Hradec Králové, Hradec Králové, Czech Republic
| | - A Malkova
- Department of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - B V Becker
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - D A Veit
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - S Waldeck
- Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany
| | - C Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health of England, Didcot, United Kingdom
| | - G O'Brien
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health of England, Didcot, United Kingdom
| | - H Christiansen
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - J Wichmann
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - G Beutel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - M Davidkova
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Řež, Czech Republic
| | - S Doucha-Senf
- Bundeswehr Institute of Radiobiology, Munich Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich Germany
| |
Collapse
|
17
|
Li A, Wang WC, McAlister V, Zhou Q, Zheng X. Circular RNA in colorectal cancer. J Cell Mol Med 2021; 25:3667-3679. [PMID: 33687140 PMCID: PMC8051750 DOI: 10.1111/jcmm.16380] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNA (circRNA) is a highly abundant type of single-stranded non-coding RNA. Novel research has discovered many roles of circRNA in colorectal cancer (CRC) including proliferation, metastasis and apoptosis. Furthermore, circRNAs also play a role in the development of drug resistance and have unique associations with tumour size, staging and overall survival in CRC that lend circRNAs the potential to serve as diagnostic and prognostic biomarkers. Among cancers worldwide, CRC ranks second in mortality and third in incidence. In order to have a better understanding of the influence of circRNA on CRC development and progression, this review summarizes the role of specific circRNAs in CRC and evaluates their potential value as therapeutic targets and biomarkers for CRC. We aim to provide insight in the development of therapy and clinical decision-making.
Collapse
Affiliation(s)
- Anthony Li
- Department of Pathology and Laboratory MedicineWestern UniversityLondonCanada
- School of MedicineQueen’s UniversityKingstonCanada
| | - Wei Cen Wang
- Department of Microbiology & ImmunologyWestern UniversityLondonCanada
| | - Vivian McAlister
- Department of SurgeryWestern UniversityLondonCanada
- London Health Sciences CentreLondonCanada
| | - Qinfeng Zhou
- Department of Pathology and Laboratory MedicineWestern UniversityLondonCanada
- Department of Laboratory MedicineZhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhouChina
| | - Xiufen Zheng
- Department of Pathology and Laboratory MedicineWestern UniversityLondonCanada
- Department of SurgeryWestern UniversityLondonCanada
- Department of OncologyWestern UniversityLondonCanada
- Lawson Health Research InstituteLondonCanada
| |
Collapse
|
18
|
Guo HM, Liu ZP. Up-regulation of circRNA_0068481 promotes right ventricular hypertrophy in PAH patients via regulating miR-646/miR-570/miR-885. J Cell Mol Med 2021; 25:3735-3743. [PMID: 33710774 PMCID: PMC8051745 DOI: 10.1111/jcmm.16164] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
CircRNA‐0068481 and several miRNAs are important in the pathogenesis of right ventricular hypertrophy (VH), while the inhibition of eye absent transcriptional coactivator and phosphatase 3 (EYA3) was proved to reverse vascular remodelling in rats. In this study, we tried to study the diagnostic value and mechanistic role of circRNA_0068481 in the diagnosis of RVH in PAH patients. qPCR was done to measure circRNA‐0068481, miR‐646, miR‐750, miR‐885 and EYA3 mRNA expression. Luciferase assay was done to explore the regulatory relationship between circRNA‐0068481/EYA3 and the miRNAs. Western blot was done to measure EYA3 expression in AC16 cells. The expression of circRNA‐0068481, miR‐646 and miR‐570 showed a considerable capability to diagnose RVH in PAH patients. The luciferase activity of circRNA‐0068481 was remarkably suppressed by miR‐646, miR‐570 or miR‐885. The luciferase signal of EYA3 was also inhibited by miR‐646, miR‐570 and miR‐885. Up‐regulation of circRNA‐0068481 expression in AC16 significantly decreased miR‐646, miR‐570 and miR‐885 expression, and up‐regulated EYA3 expression, whereas circRNA‐0068481 down‐regulation significantly increased miR‐646, miR‐570 and miR‐885 expression, and repressed EYA3 expression. CircRNA_0068481 sponged several miRNAs including miR‐646, miR‐570 and miR‐885. These miRNAs were all found to target the expression of EYA3 mRNA, which is involved in the onset of right ventricular hypertrophy. Therefore, it can be concluded that the up‐regulation of circRNA_0068481 can predict the diagnosis of right ventricular hypertrophy in pulmonary arterial hypertension patients.
Collapse
Affiliation(s)
- Hong-Mei Guo
- Ultrasonography Department, Weinan Maternal and Child Health Hospital, Weinan, China
| | - Zi-Peng Liu
- UItrasonic Diagnosis Department, Hanzhong Central Hospital, Hanzhong, China
| |
Collapse
|
19
|
Nutritional Deficiencies in Radiotherapy-Treated Head and Neck Cancer Patients. J Clin Med 2021; 10:jcm10040574. [PMID: 33546506 PMCID: PMC7913750 DOI: 10.3390/jcm10040574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
Nutritional deficiencies (malnutrition, cachexia, sarcopenia, and unfavorable changes in the body composition) developing as a side effect of radiotherapy (RT) currently represents a significant but still inaccurately studied clinical problem in cancer patients. The incidence of malnutrition observed in head and neck cancer (HNC) patients in oncological radiology departments can reach 80%. The presence of malnutrition, sarcopenia, and cachexia is associated with an unfavorable prognosis of the disease, higher mortality, and deterioration of the quality of life. Therefore, it is necessary to identify patients with a high risk of both metabolic syndromes. However, the number of studies investigating potential predictive markers for the mentioned purposes is still significantly limited. This literature review summarizes the incidence of nutritional deficiencies in HNC patients prior to therapy and after the commencement of RT, and presents recent perspectives for the prediction of unfavorable nutritional changes developing as a result of applied RT.
Collapse
|
20
|
Xu T, Wang M, Jiang L, Ma L, Wan L, Chen Q, Wei C, Wang Z. CircRNAs in anticancer drug resistance: recent advances and future potential. Mol Cancer 2020; 19:127. [PMID: 32799866 PMCID: PMC7429705 DOI: 10.1186/s12943-020-01240-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
CircRNAs are a novel class of RNA molecules with a unique closed continuous loop structure. CircRNAs are abundant in eukaryotic cells, have unique stability and tissue specificity, and can play a biological regulatory role at various levels, such as transcriptional and posttranscriptional levels. Numerous studies have indicated that circRNAs serve a crucial purpose in cancer biology. CircRNAs regulate tumor behavioral phenotypes such as proliferation and migration through various molecular mechanisms, such as miRNA sponging, transcriptional regulation, and protein interaction. Recently, several reports have demonstrated that they are also deeply involved in resistance to anticancer drugs, from traditional chemotherapeutic drugs to targeted and immunotherapeutic drugs. This review is the first to summarize the latest research on circRNAs in anticancer drug resistance based on drug classification and to discuss their potential clinical applications.
Collapse
Affiliation(s)
- Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Mengwei Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Lihua Jiang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Li Wan
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Qinnan Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Chenchen Wei
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China.
| |
Collapse
|
21
|
Ashrafizadeh M, Najafi M, Mohammadinejad R, Farkhondeh T, Samarghandian S. Flaming the fight against cancer cells: the role of microRNA-93. Cancer Cell Int 2020; 20:277. [PMID: 32612456 PMCID: PMC7325196 DOI: 10.1186/s12935-020-01349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
There have been attempts to develop novel anti-tumor drugs in cancer therapy. Although satisfying results have been observed at a consequence of application of chemotherapeutic agents, the cancer cells are capable of making resistance into these agents. This has forced scientists into genetic manipulation as genetic alterations are responsible for generation of a high number of cancer cells. MicroRNAs (miRs) are endogenous, short non-coding RNAs that affect target genes at the post-transcriptional level. Increasing evidence reveals the potential role of miRs in regulation of biological processes including angiogenesis, metabolism, cell proliferation, cell division, and cell differentiation. Abnormal expression of miRs is associated with development of a number of pathologic events, particularly cancer. MiR-93 plays a significant role in both physiological and pathological mechanisms. At the present review, we show how this miR dually affects the proliferation and invasion of cancer cells. Besides, we elucidate the oncogenesis or oncosuppressor function of miR-93.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
22
|
Zhu JH, De Mello RA, Yan QL, Wang JW, Chen Y, Ye QH, Wang ZJ, Tang HJ, Huang T. MiR-139-5p/SLC7A11 inhibits the proliferation, invasion and metastasis of pancreatic carcinoma via PI3K/Akt signaling pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165747. [PMID: 32109492 DOI: 10.1016/j.bbadis.2020.165747] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/14/2020] [Accepted: 02/23/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Pancreatic carcinoma (PANC) is one of the important aggressive cancers, with deficiency in effective therapeutics. The study aimed to investigate the effects and molecular mechanism of miR-139-5p/SLC7A11 on the proliferation and metastasis of PANC. METHODS Bioinformatics was used to analyze the differentially expressed genes in the TCGA database. PANC cell lines with overexpressed miR-139-5p and Solute Carrier Family 7, Member 11 (SLC7A11) was established, and have been used to detect cell proliferation, invasion and metastasis of PANC Subsequently, bioinformatic analysis and dual luciferase reporter assay were performed to confirm that SLC7A11 was a target gene of miR-139-5p. Xenograft mice model was used to explore the functions of miR-139-5p in PANC tumorigenicity. RESULTS MiR-139-5p could regulate and affect the protein expression of P13K and Akt associated with phosphatidylinositol signaling pathway by inhibiting SLC7A11. MiR-139-5p was found to be lowly expressed in PANC tissues, while SLC7A11 was highly expressed. Low expression of miR-139-5p and high expression of SLC7A11 were positively associated with poor clinical outcomes. PANC cell proliferation, invasion and metastasis could be inhibited by miR-139-5p overexpression and be promoted by SLC7A11 overexpression. MiR-139-5p overexpression could suppress PANC tumor growth and the expressions of SLC7A11, p-PI3K, p-Akt in tumor tissues. Therefore, the inhibitory of miR-139-5p to PANC cell proliferation, invasion and metastasis was partly due to its inhibiting effect on SLC7A11 expression. CONCLUSION Our study proves that miR-139-5p/SLC7A11 has important functions on PANC, suggesting that miR-139-5p can be used as a biomarker for PANC patients.
Collapse
Affiliation(s)
- Jin-Hui Zhu
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | | | - Qiu-Liang Yan
- Department of General Surgery, Jinhua People's Hospital, Jinhua 321000, China
| | - Jian-Wei Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yan Chen
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qing-Huang Ye
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhi-Jiang Wang
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hai-Jun Tang
- Department of General Surgery, Shaoxing People's Hospital, Shaoxing 312000, China.
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
23
|
Kang J, Coates JT, Strawderman RL, Rosenstein BS, Kerns SL. Genomics models in radiotherapy: From mechanistic to machine learning. Med Phys 2020; 47:e203-e217. [PMID: 32418335 PMCID: PMC8725063 DOI: 10.1002/mp.13751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022] Open
Abstract
Machine learning (ML) provides a broad framework for addressing high-dimensional prediction problems in classification and regression. While ML is often applied for imaging problems in medical physics, there are many efforts to apply these principles to biological data toward questions of radiation biology. Here, we provide a review of radiogenomics modeling frameworks and efforts toward genomically guided radiotherapy. We first discuss medical oncology efforts to develop precision biomarkers. We next discuss similar efforts to create clinical assays for normal tissue or tumor radiosensitivity. We then discuss modeling frameworks for radiosensitivity and the evolution of ML to create predictive models for radiogenomics.
Collapse
Affiliation(s)
- John Kang
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - James T. Coates
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Robert L. Strawderman
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA
| | - Barry S. Rosenstein
- Department of Radiation Oncology and the Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah L. Kerns
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
24
|
Samaga D, Hornung R, Braselmann H, Hess J, Zitzelsberger H, Belka C, Boulesteix AL, Unger K. Single-center versus multi-center data sets for molecular prognostic modeling: a simulation study. Radiat Oncol 2020; 15:109. [PMID: 32410693 PMCID: PMC7227093 DOI: 10.1186/s13014-020-01543-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Prognostic models based on high-dimensional omics data generated from clinical patient samples, such as tumor tissues or biopsies, are increasingly used for prognosis of radio-therapeutic success. The model development process requires two independent discovery and validation data sets. Each of them may contain samples collected in a single center or a collection of samples from multiple centers. Multi-center data tend to be more heterogeneous than single-center data but are less affected by potential site-specific biases. Optimal use of limited data resources for discovery and validation with respect to the expected success of a study requires dispassionate, objective decision-making. In this work, we addressed the impact of the choice of single-center and multi-center data as discovery and validation data sets, and assessed how this impact depends on the three data characteristics signal strength, number of informative features and sample size. Methods We set up a simulation study to quantify the predictive performance of a model trained and validated on different combinations of in silico single-center and multi-center data. The standard bioinformatical analysis workflow of batch correction, feature selection and parameter estimation was emulated. For the determination of model quality, four measures were used: false discovery rate, prediction error, chance of successful validation (significant correlation of predicted and true validation data outcome) and model calibration. Results In agreement with literature about generalizability of signatures, prognostic models fitted to multi-center data consistently outperformed their single-center counterparts when the prediction error was the quality criterion of interest. However, for low signal strengths and small sample sizes, single-center discovery sets showed superior performance with respect to false discovery rate and chance of successful validation. Conclusions With regard to decision making, this simulation study underlines the importance of study aims being defined precisely a priori. Minimization of the prediction error requires multi-center discovery data, whereas single-center data are preferable with respect to false discovery rate and chance of successful validation when the expected signal or sample size is low. In contrast, the choice of validation data solely affects the quality of the estimator of the prediction error, which was more precise on multi-center validation data.
Collapse
Affiliation(s)
- Daniel Samaga
- Helmholtz Zentrum, München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany.
| | - Roman Hornung
- Department of Medical Information Processing, Biometry and Epidemiology, University of Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Herbert Braselmann
- Helmholtz Zentrum, München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Julia Hess
- Helmholtz Zentrum, München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany.,Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Ingolstädter Landstr. 1, Munich, 85764, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum, München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany.,Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Ingolstädter Landstr. 1, Munich, 85764, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Claus Belka
- Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Ingolstädter Landstr. 1, Munich, 85764, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Anne-Laure Boulesteix
- Department of Medical Information Processing, Biometry and Epidemiology, University of Munich, Marchioninistr. 15, Munich, 81377, Germany
| | - Kristian Unger
- Helmholtz Zentrum, München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany.,Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Ingolstädter Landstr. 1, Munich, 85764, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, Munich, 81377, Germany
| |
Collapse
|
25
|
Yang C, Dou R, Yin T, Ding J. MiRNA-106b-5p in human cancers: diverse functions and promising biomarker. Biomed Pharmacother 2020; 127:110211. [PMID: 32422566 DOI: 10.1016/j.biopha.2020.110211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs), as a class of small, well-conserved, non-coding RNA molecules, hold the capacity to post-transcriptionally suppress the expression of over 50% protein-coding genes. Emerging and accumulating evidence suggests that miRNAs function as the master regulators of multiple pathophysiological processes, and play important roles in diverse human diseases, especially in tumorigenesis and progression. MiR-106b-5p, a member of miR-106b seed family, has been demonstrated to be aberrantly expressed in human solid malignancies, and to play paradoxically opposing functions as an oncomiR or a tumor suppressor in tumor development. In addition, it has been recently reported to be a promising biomarker for prognostic evaluation for cancer patients. In the present review, we provided an overview to summarize the present findings of miR-106b-5p in cancer research fields, thereby establishing comprehensive understanding of its diverse functions and clinical implications in human cancers.
Collapse
Affiliation(s)
- Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Rongzhang Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China.
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China.
| |
Collapse
|
26
|
Zhang X, Xu Y, Wang J, Zhao S, Li J, Huang X, Xu H, Zhang X, Suo S, Lv Y, Zhang Y, Yu W. miR-221-3p Delivered by BMMSC-Derived Microvesicles Promotes the Development of Acute Myelocytic Leukemia. Front Bioeng Biotechnol 2020; 8:81. [PMID: 32117949 PMCID: PMC7033425 DOI: 10.3389/fbioe.2020.00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The study aims to investigate the effects of miR-221-3p in bone marrow mesenchymal stem cell (BMMSC)-derived microvesicles (MVs) on cell cycle, proliferation and invasion of acute myelocytic leukemia (AML). Methods: Bioinformatics was used to predict differentially expressed miRNAs (DEmiRNAs) in AML. The morphology of BMMSC-derived MVs was observed under an electron microscope, and the positional relation of MVs and OCI-AML2 cells was observed by a fluorescence microscope. MTT, Transwell, and flow cytometry assays were used to analyze the effects of MVs on OCI-AML2 cells. The targeted relationship between miR-221-3p and CDKN1C was detected by dual luciferase assay. Results: It was verified that miR-221-3p promoted the proliferation, invasion and migration of OCI-AML2 cells, and induced the cell cycle arrest in G1/S phase as well as inhibited cell apoptosis. Further studies showed that MVs promoted the proliferation, migration and invasion of AML, and induced the cell cycle arrest in G1/S phase through miR-221-3p. It was confirmed that miR-221-3p can directly target CDKN1C to regulate cell cycle, proliferation and invasion of AML. Conclusion: miR-221-3p in BMMSC-derived MVs regulated AML cell cycle, cell proliferation and invasion through targeting CDKN1C. miR-221-3p and CDKN1C were considered to be potential targets and biomarkers for the treatment of AML in clinic.
Collapse
Affiliation(s)
- Xuewu Zhang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yu Xu
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jinghan Wang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Shuqi Zhao
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jianhu Li
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Xin Huang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Huan Xu
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Xiang Zhang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Shanshan Suo
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yunfei Lv
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yi Zhang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Wenjuan Yu
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| |
Collapse
|
27
|
Griñán-Lisón C, Olivares-Urbano MA, Jiménez G, López-Ruiz E, Del Val C, Morata-Tarifa C, Entrena JM, González-Ramírez AR, Boulaiz H, Zurita Herrera M, Núñez MI, Marchal JA. miRNAs as radio-response biomarkers for breast cancer stem cells. Mol Oncol 2020; 14:556-570. [PMID: 31930680 PMCID: PMC7053246 DOI: 10.1002/1878-0261.12635] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 01/08/2023] Open
Abstract
In breast cancer (BC), the presence of cancer stem cells (CSCs) has been related to relapse, metastasis, and radioresistance. Radiotherapy (RT) is an extended BC treatment, but is not always effective. CSCs have several mechanisms of radioresistance in place, and some miRNAs are involved in the cellular response to ionizing radiation (IR). Here, we studied how IR affects the expression of miRNAs related to stemness in different molecular BC subtypes. Exposition of BC cells to radiation doses of 2, 4, or 6 Gy affected their phenotype, functional characteristics, pluripotency gene expression, and in vivo tumorigenic capacity. This held true for various molecular subtypes of BC cells (classified by ER, PR and HER‐2 status), and for BC cells either plated in monolayer, or being in suspension as mammospheres. However, the effect of IR on the expression of eight stemness‐ and radioresistance‐related miRNAs (miR‐210, miR‐10b, miR‐182, miR‐142, miR‐221, miR‐21, miR‐93, miR‐15b) varied, depending on cell line subpopulation and clinicopathological features of BC patients. Therefore, clinicopathological features and, potentially also, chemotherapy regimen should be both taken into consideration, for determining a potential miRNA signature by liquid biopsy in BC patients treated with RT. Personalized and precision RT dosage regimes could improve the prognosis, treatment, and survival of BC patients.
Collapse
Affiliation(s)
- Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | | | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.,Bio-Health Research Foundation of Eastern Andalusia - Alejandro Otero (FIBAO), Granada, Spain
| | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.,Department of Health Sciences, University of Jaén, Spain
| | - Coral Del Val
- Department of Artificial Intelligence, University of Granada, Spain
| | - Cynthia Morata-Tarifa
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.,Andalusian Network for Design and Translation of Advanced Therapies, Sevilla, Spain
| | - José Manuel Entrena
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Amanda Rocío González-Ramírez
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.,Bio-Health Research Foundation of Eastern Andalusia - Alejandro Otero (FIBAO), Granada, Spain
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Spain
| | | | - María Isabel Núñez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.,Department of Radiology and Physical Medicine, University of Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Spain
| |
Collapse
|
28
|
Małachowska B, Tomasik B, Stawiski K, Kulkarni S, Guha C, Chowdhury D, Fendler W. Circulating microRNAs as Biomarkers of Radiation Exposure: A Systematic Review and Meta-Analysis. Int J Radiat Oncol Biol Phys 2020; 106:390-402. [PMID: 31655196 DOI: 10.1016/j.ijrobp.2019.10.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE MicroRNAs (miRNAs) were hypothesized to be robust and easily measured biomarkers of radiation exposure, which has led to multiple studies in various clinical and experimental scenarios. We sought to identify evolutionary conserved, radiation-induced circulating miRNAs through a multispecies, integrative systematic review and meta-analysis of miRNAs in radiation. METHODS AND MATERIALS The systematic review was registered in the PROSPERO database (ID: 81701). We downloaded a list of studies with the query: (circulating OR plasma OR serum) AND (miRNA or microRNA) AND (radiat* OR radiotherapy OR irradiati*) from MEDLINE (103 studies), EMBASE (364 studies), and Cochrane Database of Systematic Reviews (0 studies). After deleting 116 duplicates, the remaining 351 abstracts were reviewed. Inclusion criteria were experimental study; human, mice, rat or nonhuman primate study; and serum or plasma miRNA expression measured before and after radiation exposure. RESULTS The screening procedure yielded 62 research studies. After verification, 30 articles contained data on miRNA expression change after irradiation. Thus, we obtained a database of 131 miRNAs from 96 pairwise post-/preirradiation comparisons reporting 2508 fold changes (FCs) of circulating miRNAs. The meta-analysis showed 28 miRNAs with significant radiation-induced change of their expression in the serum. In metaregression analysis, 7 miRNAs-miR-150 (FC = 0.40; 95% confidence interval [CI], 0.35-0.45), miR-29a (FC = 0.87; 95% CI, 0.79-0.96), miR-29b (FC = 0.85; 95% CI, 0.76-0.96), miR-30c (FC = 1.19; 95% CI, 1.09-1.30), miR-200b (FC = 1.34; 95% CI, 1.21-1.48), miR-320a (FC = 1.13; 95% CI, 1.05-1.23), and miR-30a (FC = 1.18; 95% CI, 1.07-1.30)-significantly correlated with either total or fraction dose of radiation. Additionally, miR-150, miR-320a, miR-200b, and miR-30c correlated significantly with time elapsed since irradiation. CONCLUSIONS Circulating miRNAs reflect the impact of ionizing radiation irrespective of the studied species, often in a dose-dependent manner. This makes circulating miRNAs promising biomarkers of radiation exposure.
Collapse
Affiliation(s)
- Beata Małachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Bartłomiej Tomasik
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Shilpa Kulkarni
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland; Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
29
|
Wang J, Xu Y, Wang J, Ying H. Circulating miR-214-3p predicts nasopharyngeal carcinoma recurrence or metastasis. Clin Chim Acta 2020; 503:54-60. [PMID: 31926154 DOI: 10.1016/j.cca.2020.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Due to the remarkably stable form in the bloodstream, circulating microRNAs (miRNAs) are indicated as promising novel minimally invasive biomarkers in many cancers. However, available data of miRNAs in nasopharyngeal carcinoma (NPC) are relatively limited. METHODS Based on the GEO database and previous published reports, 21 dysregulated miRNAs were selected for screening via microarray analysis (20 NPC samples vs 10 controls). Dysregulated miRNAs were then detected and verified by the method of quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in the training and validation sets. The candidate miR-214-3p was then evaluated in the evaluation set, including the association between miR-214-3p and clinicopathological characteristics, dynamic changes in NPC patients and the predictive value for NPC recurrence or metastasis. RESULTS Seven miRNAs were significantly altered in comparison with healthy controls by microarray analysis. MiR-214-3p was the most significantly expressed in training and validation sets by qRT-PCR. Plasma miR-214-3p expressions were significantly associated with UICC stages and NPC recurrence or metastasis. Plasma miR-214-3p expressions showed a gradual decrease during the follow-up after treatment in NPC patients. Patients with recurrence or metastasis were always accompanied with higher levels of plasma miR-214-3p at the same time point. High pretreatment miR-214-3p expression (≥3.12) was significantly associated with NPC recurrence or metastasis by log-rank test using Kaplan-Meier survival curve analysis (P = 0.006). CONCLUSIONS Circulating miR-214-3p can serve as a noninvasive biomarker for the prediction of recurrence or metastasis in NPC patients.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department and Institution: Department of Otolaryngology, HwaMei Hospital, University of Chinese Academy of Sciences, China
| | - Yi Xu
- Department and Institution: Department of Otolaryngology, HwaMei Hospital, University of Chinese Academy of Sciences, China.
| | - Jiyun Wang
- Department and Institution: Department of Otolaryngology, HwaMei Hospital, University of Chinese Academy of Sciences, China
| | - Haiyue Ying
- Department and Institution: Department of Otolaryngology, HwaMei Hospital, University of Chinese Academy of Sciences, China.
| |
Collapse
|
30
|
Carofino BL, Dinshaw KM, Ho PY, Cataisson C, Michalowski AM, Ryscavage A, Alkhas A, Wong NW, Koparde V, Yuspa SH. Head and neck squamous cancer progression is marked by CLIC4 attenuation in tumor epithelium and reciprocal stromal upregulation of miR-142-3p, a novel post-transcriptional regulator of CLIC4. Oncotarget 2019; 10:7251-7275. [PMID: 31921386 PMCID: PMC6944452 DOI: 10.18632/oncotarget.27387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Chloride intracellular channel 4 (CLIC4) is a tumor suppressor implicated in processes including growth arrest, differentiation, and apoptosis. CLIC4 protein expression is diminished in the tumor parenchyma during progression in squamous cell carcinoma (SCC) and other neoplasms, but the underlying mechanisms have not been identified. Data from The Cancer Genome Atlas suggest this is not driven by genomic alterations. However, screening and functional assays identified miR-142-3p as a regulator of CLIC4. CLIC4 and miR-142-3p expression are inversely correlated in head and neck (HN) SCC and cervical SCC, particularly in advanced stage cancers. In situ localization revealed that stromal immune cells, not tumor cells, are the predominant source of miR-142-3p in HNSCC. Furthermore, HNSCC single-cell expression data demonstrated that CLIC4 is lower in tumor epithelial cells than in stromal fibroblasts and endothelial cells. Tumor-specific downregulation of CLIC4 was confirmed in an SCC xenograft model concurrent with immune cell infiltration and miR-142-3p upregulation. These findings provide the first evidence of CLIC4 regulation by miRNA. Furthermore, the distinct localization of CLIC4 and miR-142-3p within the HNSCC tumor milieu highlight the limitations of bulk tumor analysis and provide critical considerations for both future mechanistic studies and use of miR-142-3p as a HNSCC biomarker.
Collapse
Affiliation(s)
- Brandi L. Carofino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kayla M. Dinshaw
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Pui Yan Ho
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aleksandra M. Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrew Ryscavage
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Nathan W. Wong
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vishal Koparde
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
31
|
Powrózek T, Porgador A, Małecka-Massalska T. Detection, prediction, and prognosis: blood circulating microRNA as novel molecular markers of head and neck cancer patients. Expert Rev Mol Diagn 2019; 20:31-39. [DOI: 10.1080/14737159.2020.1699062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|
32
|
Nowicka Z, Stawiski K, Tomasik B, Fendler W. Extracellular miRNAs as Biomarkers of Head and Neck Cancer Progression and Metastasis. Int J Mol Sci 2019; 20:E4799. [PMID: 31569614 PMCID: PMC6801477 DOI: 10.3390/ijms20194799] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) contribute to over 300,000 deaths every year worldwide. Although the survival rates have improved in some groups of patients, mostly due to new treatment options and the increasing percentage of human papillomavirus (HPV)-related cancers, local recurrences and second primary tumors remain a great challenge for the clinicians. Presently, there is no biomarker for patient surveillance that could help identify patients with HNSCC that are more likely to experience a relapse or early progression, potentially requiring closer follow-up or salvage treatment. MicoRNAs (miRNAs) are non-coding RNA molecules that posttranscriptionally modulate gene expression. They are highly stable and their level can be measured in biofluids including serum, plasma, and saliva, enabling quick results and allowing for repeated analysis during and after the completion of therapy. This has cemented the role of miRNAs as biomarkers with a huge potential in oncology. Since altered miRNA expression was described in HNSCC and many miRNAs play a role in radio- and chemotherapy resistance, cancer progression, and metastasis, they can be utilized as biomarkers of these phenomena. This review outlines recent discoveries in the field of extracellular miRNA-based biomarkers of HNSCC progression and metastasis, with a special focus on HPV-related cancers and radioresistance.
Collapse
Affiliation(s)
- Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Bartłomiej Tomasik
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland.
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Kumarasamy C, Madhav MR, Sabarimurugan S, Krishnan S, Baxi S, Gupta A, Gothandam KM, Jayaraj R. Prognostic Value of miRNAs in Head and Neck Cancers: A Comprehensive Systematic and Meta-Analysis. Cells 2019; 8:cells8080772. [PMID: 31349668 PMCID: PMC6721479 DOI: 10.3390/cells8080772] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Head and Neck Cancer (HNC) is the sixth most common type of cancer across the globe, with more than 300,000 deaths each year, globally. However, there are currently no standardised molecular markers that assist in determining HNC prognosis. The literature for this systematic review and meta-analysis were sourced from multiple bibliographic databases. This review followed PRISMA guidelines. The Hazard Ratio (HR) was selected as the effect size metric to independently assess overall survival (OS), disease-free survival (DFS), and prognosis. Subgroup analysis was performed for individual highly represented miRNA. A total of 6843 patients across 50 studies were included in the systematic review and 34 studies were included in the meta-analysis. Studies across 12 countries were assessed, with China representing 36.7% of all included studies. The analysis of the survival endpoints of OS and DFS were conducted separately, with the overall pooled effect size (HR) for each being 1.825 (95% CI 1.527–2.181; p < 0.05) and 2.596 (95% CI 1.917–3.515; p < 0.05), respectively. Subgroup analysis was conducted for impact of miR-21, 200b, 155, 18a, 34c-5p, 125b, 20a and 375 on OS, and miR-21 and 34a on DFS. The pooled results were found to be statistically significant for both OS and DFS. The meta-analysis indicated that miRNA alterations can account for an 82.5% decrease in OS probability and a 159.6% decrease in DFS probability. These results indicate that miRNAs have potential clinical value as prognostic biomarkers in HNC, with miR-21, 125b, 34c-5p and 18a, in particular, showing great potential as prognostic molecular markers. Further large scale cohort studies focusing on these miRNAs are recommended to verify the clinical utility of these markers individually and/or in combination.
Collapse
Affiliation(s)
- Chellan Kumarasamy
- North Terrace Campus, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Shanthi Sabarimurugan
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Sunil Krishnan
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Siddhartha Baxi
- John Flynn Private Hospital, Genesis Cancer Care, 42 Inland Drive, Tugun, Queensland 4224, Australia
| | - Ajay Gupta
- Medical Oncology P-41, South Extension Part 2, New Delhi 110049, India
| | - K M Gothandam
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Rama Jayaraj
- College of Health and Human Sciences, Yellow 1.1.05, Ellengowan Drive, Casuarina, Darwin, Northern Territory 0909, Charles Darwin University, Australia.
| |
Collapse
|
34
|
Cui M, Wang H, Yao X, Zhang D, Xie Y, Cui R, Zhang X. Circulating MicroRNAs in Cancer: Potential and Challenge. Front Genet 2019; 10:626. [PMID: 31379918 PMCID: PMC6656856 DOI: 10.3389/fgene.2019.00626] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNA molecules that can be secreted into the circulation and exist in remarkably stable forms. Like intercellular miRNAs, circulating miRNAs participate in numerous regulations of biological process and expressed aberrantly under abnormal or pathological status. The quality and quantity changes of circulating miRNAs are associated with the initiation and progression of cancer and can be easily detected by basic molecular biology techniques. Consequently, considerable effort has been devoted to identify suitable extracellular miRNAs for noninvasive biomarkers in cancer. However, several challenges need to be overcome before the practical application. In this review, we discuss several issues of circulating miRNAs: biological function and basic transport carriers; extracellular cell communication process; roles as reliable cancer biomarkers and usage in targeted cancer therapy; and challenges for clinical application.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongdan Wang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yingjun Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Zhuo X, Zhou W, Li D, Chang A, Wang Y, Wu Y, Zhou Q. Plasma microRNA expression signature involving miR-548q, miR-630 and miR-940 as biomarkers for nasopharyngeal carcinoma detection. Cancer Biomark 2019; 23:579-587. [PMID: 30475754 DOI: 10.3233/cbm-181852] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Increasing studies have identified a series of circulating mircoRNAs (miRNAs) as biomarkers for disease detection due to their stability in the blood. The aim of the present study was to identify specific plasma miRNAs as potential biomarkers for nasopharyngeal carcinoma (NPC) detection. MATERIALS AND METHODS Relative public microarray data were obtained and analyzed for screening of the plasma differentially expressed miRNAs (DEMs) between NPC patients and controls. This study contained two phases: a screening phase and a validation one. Logistic regression and receiver operating characteristics curve (ROC) analyses were used to identify DEM signatures. Moreover, targeted genes of the selected DEMs were predicted and their functions were annotated by using bioinformatic analysis. RESULTS Both the screening and the validation phases showed that three miRNAs (miR-548q, miR-630 and miR-940) in the plasma of NPC patients were up-regulated compared to those of controls. They can be used as biomarkers for discriminating NPC patients from non-cancerous controls. Moreover, we found a classifier including only two miRNAs (miR-548q and miR-940) that can be used as a diagnostic signature for NPC, achieving an area under curve (AUC) of 0.972, a sensitivity of 0.94, and a specificity of 0.925. CONCLUSIONS The present study demonstrated that three miRNAs (miR-548q, miR-630 and miR940) might be novel and useful biomarkers for NPC detection. A two-miRNA signature (miR-548q and miR940) may be considered as a better biomarker for NPC detection with relatively high sensitivity and specificity. Future studies with large sample sizes are needed for further validation.
Collapse
Affiliation(s)
- Xianlu Zhuo
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing 400030, China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing 400030, China
| | - Dairong Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing 400030, China
| | - Aoshuang Chang
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Ying Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing 400030, China
| | - Yongzhong Wu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing 400030, China
| | - Qi Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
36
|
Dharmawardana N, Ooi EH, Woods C, Hussey D. Circulating microRNAs in head and neck cancer: a scoping review of methods. Clin Exp Metastasis 2019; 36:291-302. [PMID: 30877500 DOI: 10.1007/s10585-019-09961-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/06/2019] [Indexed: 12/15/2022]
Abstract
Circulating microRNAs have been described as head and neck cancer biomarkers in multiple anatomical subsites including the oral cavity, nasopharynx, larynx, salivary glands and the skin. While there is an expanding volume of published literature showing the significance of individual or panels of microRNAs, the clinical validation of candidate biomarkers is lacking. The various methods used to collect, store, process and interpret these microRNAs are likely introducing bias and contributing to the inconsistent results. A systematic scoping review was conducted using PRISMA standards to identify published English literature between 2007 and 2018. Pubmed and EMBASE databases were searched using specific keyword combinations related to head and neck cancer, circulating samples (whole blood, plasma or serum) and microRNA. Following the title and abstract review, two primary authors appraised the articles for their suitability to include in the review based on the detail of methodological descriptions. Thirty suitable articles were identified relating to nasopharyngeal carcinoma, oral cavity, oropharyngeal and laryngeal squamous cell carcinoma as well as primary salivary gland malignancies. Comprehensive methodological analysis identified poor reporting of detailed methodology, variations in collection, storage, pre-processing, RNA isolation and relative quantification including normalisation method. We recommend standardising the pre-processing, RNA isolation, normalisation and relative quantitation steps at biomarker discovery phase. Such standardisation would allow for bias minimisation and effective progression into clinical validation phases.
Collapse
Affiliation(s)
- Nuwan Dharmawardana
- Department of Otorhinolaryngology-Head and Neck Surgery, Flinders Medical Centre, Bedford Park, Australia.
- Discipline of Surgery, College of Medicine and Public Health, Flinders University, Bedford Park, Australia.
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, Australia.
| | - Eng Hooi Ooi
- Department of Otorhinolaryngology-Head and Neck Surgery, Flinders Medical Centre, Bedford Park, Australia
- Discipline of Surgery, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Charmaine Woods
- Department of Otorhinolaryngology-Head and Neck Surgery, Flinders Medical Centre, Bedford Park, Australia
- Discipline of Surgery, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Damian Hussey
- Discipline of Surgery, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| |
Collapse
|
37
|
Jiang X, Ye J, Dong Z, Hu S, Xiao M. Novel genetic alterations and their impact on target therapy response in head and neck squamous cell carcinoma. Cancer Manag Res 2019; 11:1321-1336. [PMID: 30799957 PMCID: PMC6371928 DOI: 10.2147/cmar.s187780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is highly variable by tumor site, histologic type, molecular characteristics, and clinical outcome. During recent years, emerging targeted therapies have been focused on driver genes. HNSCC involves several genetic alterations, such as co-occurrence, multiple feedback loops, and cross-talk communications. These different kinds of genetic alterations interact with each other and mediate targeted therapy response. In the current review, it is emphasized that future treatment strategy in HNSCC will not solely be based on "synthetic lethality" approaches directed against overactivated genes. More importantly, biologic, genetic, and epigenetic alterations of HNSCC will be taken into consideration to guide the therapy. The emerging genetic alterations in HNSCC and its effect on targeted therapy response are discussed in detail. Hopefully, novel combination regimens for the treatment of HNSCC can be developed.
Collapse
Affiliation(s)
- Xiaohua Jiang
- Department of Otolaryngology Head and Neck Surgery, Sir Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,
| | - Jing Ye
- Department of Otolaryngology Head and Neck Surgery, Sir Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,
| | - Zhihuai Dong
- Department of Otolaryngology Head and Neck Surgery, Sir Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,
| | - Sunhong Hu
- Department of Otolaryngology Head and Neck Surgery, Sir Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,
| | - Mang Xiao
- Department of Otolaryngology Head and Neck Surgery, Sir Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,
| |
Collapse
|
38
|
Story MD, Durante M. Radiogenomics. Med Phys 2018; 45:e1111-e1122. [DOI: 10.1002/mp.13064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Michael D. Story
- Department of Radiation Oncology University of Texas, Southwestern Medical Center Dallas TX USA
- Simmons Comprehensive Cancer Center University of Texas, Southwestern Medical Center Dallas TX USA
| | - Marco Durante
- Trento Institute for Fundamental Physics Applications National Institute for Nuclear Physics Trento Italy
- Department of Physics University of Trento Trento Italy
| |
Collapse
|
39
|
Liu JJ, Zhang X, Wu XH. miR-93 Promotes the Growth and Invasion of Prostate Cancer by Upregulating Its Target Genes TGFBR2, ITGB8, and LATS2. MOLECULAR THERAPY-ONCOLYTICS 2018; 11:14-19. [PMID: 30294667 PMCID: PMC6169426 DOI: 10.1016/j.omto.2018.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 08/10/2018] [Indexed: 01/07/2023]
Abstract
This study aimed to evaluate the effects of miR-93 on the growth and invasiveness of prostate cancer (PC) cells (PCCs). Real-time PCR was carried out to detect the expression of miR-93 in the PC tissues and cell lines. The adjacent normal tissues served as controls. For in vitro experiments, methyl thiazolyl tetrazolium, clone formation, tumor cell invasion assays, and western blot analysis (WBA) were performed to confirm the variations in the proliferation and invasiveness of PCCs, prior and subsequent to transfection with an miR-93 antisense oligonucleotide (ASO), which blocks miR-93 binding to its target. Furthermore, the effect of miR-93 on the proliferation of PCCs was examined. Finally, the expression levels of the target genes of miR-93 were determined by WBA. miR-93 expression was higher in PC tissues than in the adjacent normal tissues, and a reduction in the miR-93 level remarkably inhibited the proliferation and invasiveness of PCCs. Moreover, miR-93 enhanced the expression of its target genes TGFΒR2, ITGB8, and LATS2. The results of this study suggest that miR-93 may promote the proliferation and invasion of PCCs by upregulating its target genes TGFBR2, ITGB8, and LATS2.
Collapse
Affiliation(s)
- Jia-Ji Liu
- Department of Urology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Xuan Zhang
- Department of Urology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Xiao-Hou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400015, China
| |
Collapse
|
40
|
Chen M, Wu L, Tu J, Zhao Z, Fan X, Mao J, Weng Q, Wu X, Huang L, Xu M, Ji J. miR-590-5p suppresses hepatocellular carcinoma chemoresistance by targeting YAP1 expression. EBioMedicine 2018; 35:142-154. [PMID: 30111512 PMCID: PMC6154877 DOI: 10.1016/j.ebiom.2018.08.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Background Resistance to chemotherapeutic treatment is a common phenomenon in cancers, especially in hepatocellular carcinoma (HCC). The Hippo signaling pathway has been demonstrated to play a role in tumor initiation, development, and progression. However, little is known about its roles in the HCC chemoresistance. Methods In this study, real-time PCR and western blotting were used to identify the expression profile of key components of Hippo signaling pathway between chemoresistant and chemosensitive HCC cell lines. In vitro and in vivo loss- and gain-of-function studies were performed to reveal the effects and related mechanism of microRNA-590-5p/YAP1 axis in the chemoresistant phenotype of HCC cells. Findings We identified yes-associated protein 1 (YAP1) as the major dysregulated molecules in adriamycin (ADR)-resistant HCC cells. YAP1 was profoundly implicated in the chemoresistant phenotype of HCC cells. Furthermore, microRNA-590-5p was revealed as a functional modulator of YAP1. Importantly, YAP1-mediated chemoresistant phenotype was closely related to increased expression of stemness markers and ATP-binding cassette transporters. HCC patients with poor response to transarterial chemoembolization (TACE) treatment had higher protein level of YAP1 than that in the responsive patients. Interpretation The microRNA-590-5p/YAP axis plays an important role in the chemotherapeutic resistance of HCC cells, suggesting new adjuvant chemotherapeutic directions in HCC. Fund National Natural Science Foundation of China, Zhejiang Province Medical and Health Care Key Project, Experimental Animal Science and Technology Projects of Zhejiang Province, Public Welfare Technology Application Research Project of Lishui, Chinese Medicine Science and Technology Projects of Zhejiang Province.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Base Sequence
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Phenotype
- Phosphoproteins/metabolism
- Transcription Factors
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China
| | - Liming Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; First Affiliated Hospital of Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang, PR China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China
| | - Xiaoxi Fan
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China
| | - Jianting Mao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China
| | - Xulu Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China
| | - Li Huang
- School of Materials Science and Engineering, Shanghai Key Laboratory of D&A for Metal-Functional Materials, Tongji University, Shanghai 201804, PR China.
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China.
| |
Collapse
|
41
|
Unique MicroRNAs Signature of Lymphocyte of Yang and Yin Syndromes in Acute Ischemic Stroke Patients. Chin J Integr Med 2018; 25:590-597. [PMID: 29926387 DOI: 10.1007/s11655-018-2843-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To identify the differentially expressed microRNAs (miRNAs) profiles of yang and yin syndromes in patients with acute ischemic stroke, and to provide the molecular basis of the classification of these two syndrome types in acute ischemic stroke patients. METHODS A microarray assay was performed to assess the expression pattern of miRNAs in the lymphocyte of acute ischemic stroke patients. Target genes for the deregulated miRNAs were predicated using the online bioinformatic algorithms and functional annotation via Kyoto encyclopedia of genes and genomes pathway analysis for miRNAs predicted targets was carried out. Based on the predicted target genes of differentially expressed miRNAs, the miRNA-gene-network and miRNA-pathway-network were constructed. RESULTS Yang score based on tongue texture, urine, dejecta, and appearance, etc. showed that clinical symptoms were distinct between yang and yin syndromes. There were significantly higher total leukocyte number and lower total protein level in patients with yang syndrome compared with those in patients with yin syndrome (P<0.05). Comprehensive miRNA analysis identified 36 unique down-regulated miRNAs in yang syndrome group, and 20 unique down-regulated and 2 unique up-regulated miRNAs in yin syndrome group. The key regulatory miRNAs, gene, and pathways in the yang syndrome were hsa-miR-93-5p and -320b, enabled homolog, the metabolic pathways and mitogen-activated protein kinase signaling pathways, respectively, while those in the yin syndrome were hsa-miR-424-5p and -106b-5p, CNOT4, hepatitis B and pathways in cancer, respectively. CONCLUSION These results offered insight into the molecular basis underlying the different pathogenesis of yang or yin syndrome, providing clues for the individualized therapeutic strategies of acute ischemic stroke.
Collapse
|
42
|
Lacombe J, Sima C, Amundson SA, Zenhausern F. Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review. PLoS One 2018; 13:e0198851. [PMID: 29879226 PMCID: PMC5991767 DOI: 10.1371/journal.pone.0198851] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose To compile a list of genes that have been reported to be affected by external ionizing radiation (IR) and to assess their performance as candidate biomarkers for individual human radiation dosimetry. Methods Eligible studies were identified through extensive searches of the online databases from 1978 to 2017. Original English-language publications of microarray studies assessing radiation-induced changes in gene expression levels in human blood after external IR were included. Genes identified in at least half of the selected studies were retained for bio-statistical analysis in order to evaluate their diagnostic ability. Results 24 studies met the criteria and were included in this study. Radiation-induced expression of 10,170 unique genes was identified and the 31 genes that have been identified in at least 50% of studies (12/24 studies) were selected for diagnostic power analysis. Twenty-seven genes showed a significant Spearman’s correlation with radiation dose. Individually, TNFSF4, FDXR, MYC, ZMAT3 and GADD45A provided the best discrimination of radiation dose < 2 Gy and dose ≥ 2 Gy according to according to their maximized Youden’s index (0.67, 0.55, 0.55, 0.55 and 0.53 respectively). Moreover, 12 combinations of three genes display an area under the Receiver Operating Curve (ROC) curve (AUC) = 1 reinforcing the concept of biomarker combinations instead of looking for an ideal and unique biomarker. Conclusion Gene expression is a promising approach for radiation dosimetry assessment. A list of robust candidate biomarkers has been identified from analysis of the studies published to date, confirming for example the potential of well-known genes such as FDXR and TNFSF4 or highlighting other promising gene such as ZMAT3. However, heterogeneity in protocols and analysis methods will require additional studies to confirm these results.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, United States of America
- * E-mail:
| | - Chao Sima
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, College Station, TX, United States of America
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Medical Center, New York, NY, United States of America
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, United States of America
- Honor Health Research Institute, Scottsdale, Arizona, United States of America
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
43
|
Farina NH, Zingiryan A, Vrolijk MA, Perrapato SD, Ades S, Stein GS, Lian JB, Landry CC. Nanoparticle-based targeted cancer strategies for non-invasive prostate cancer intervention. J Cell Physiol 2018; 233:6408-6417. [PMID: 29663383 DOI: 10.1002/jcp.26593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 01/07/2023]
Abstract
Prostate cancer is screened by testing circulating levels of the prostate-specific antigen (PSA) biomarker, monitoring changes over time, or a digital rectal exam. Abnormal results often lead to prostate biopsy. Prostate cancer positive patients are stratified into very low-risk, low-risk, intermediate-risk, and high-risk, based on clinical classification parameters, to assess therapy options. However, there remains a gap in our knowledge and a compelling need for improved risk stratification to inform clinical decisions and reduce both over-diagnosis and over-treatment. Further, current strategies for clinical intervention do not distinguish clinically aggressive prostate cancer from indolent disease. This mini-review takes advantage of a large number of functionally characterized microRNAs (miRNA), epigenetic regulators of prostate cancer, that define prostate cancer cell activity, tumor stage, and circulate as biomarkers to monitor disease progression. Nanoparticles provide an effective platform for targeted delivery of miRNA inhibitors or mimics specifically to prostate tumor cells to inhibit cancer progression. Several prostate-specific transmembrane proteins expressed at elevated levels in prostate tumors are under investigation for targeting therapeutic agents to prostate cancer cells. Given that prostate cancer progresses slowly, circulating miRNAs can be monitored to identify tumor progression in indolent disease, allowing identification of miRNAs for nanoparticle intervention before the crucial point of transition to aggressive disease. Here, we describe clinically significant and non-invasive intervention nanoparticle strategies being used in clinical trials for drug and nucleic acid delivery. The advantages of mesoporous silica-based nanoparticles and a number of candidate miRNAs for inhibition of prostate cancer are discussed.
Collapse
Affiliation(s)
- Nicholas H Farina
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Areg Zingiryan
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Michael A Vrolijk
- Department of Chemistry, College of Arts and Sciences, University of Vermont, Burlington, Vermont
| | - Scott D Perrapato
- UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Surgery, Division of Urology, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont
| | - Steven Ades
- UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Medicine, Division of Hematology and Oncology, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jane B Lian
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Christopher C Landry
- Department of Chemistry, College of Arts and Sciences, University of Vermont, Burlington, Vermont
| |
Collapse
|
44
|
Affiliation(s)
- Scott Bright
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Munira Kadhim
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
45
|
Yi Z, Gao K, Li R, Fu Y. Changed immune and miRNA response in RAW264.7 cells infected with cell wall deficient mycobacterium tuberculosis. Int J Mol Med 2018; 41:2885-2892. [PMID: 29436601 DOI: 10.3892/ijmm.2018.3471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/31/2018] [Indexed: 11/06/2022] Open
Abstract
Cell wall deficient (CWD) forms of Mycobacterium tuberculosis (Mtb) confers a marked resistance to immune system of the host. However, there is limit data on the effect of intracellular CWD-Mtb infection on macrophages. In the study, effects of CWD-Mtb on cell viability, cytokine response and miRNA expression of macrophages were analyzed. Cell viability was reduced, levels of interleukin-1α (IL-1α), IL-1β, IL-6, IL-10 and interferon-γ (IFN-γ) were also significantly changed after infection of RAW264.7 cells with CWD-Mtb. A total of 105 miRNAs were deregulated between CWD-Mtb and wild Mtb group, and among them, miR-29b was upregulated in CWD-Mtb group. Downregulation of miR-29b resulted in significant elevation level of IFN-γ mRNA. Involved signaling pathways of potential target genes of differentially expressed miRNAs mainly focused on T cell receptor signaling pathway, MAPK signaling pathway, neurotrophin signaling pathway, and regulation of actin cytoskeleton. Taken together, the results showed that cytokine production of CWD-Mtb infected macrophages was altered and many miRNAs were involved in regulation of macrophage response to CWD-Mtb infection, which probably determined the differential outcome following different phenotype Mtb infection. These findings open up a new and interesting avenue for an improved understanding of pathogenesis of CWD-Mtb.
Collapse
Affiliation(s)
- Zhengjun Yi
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Kunshan Gao
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Ruifang Li
- Department of Medical Microbiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yurong Fu
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
46
|
Dynamic Changes in Plasma MicroRNAs Have Potential Predictive Values in Monitoring Recurrence and Metastasis of Nasopharyngeal Carcinoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7329195. [PMID: 29581984 PMCID: PMC5822900 DOI: 10.1155/2018/7329195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/03/2017] [Accepted: 10/15/2017] [Indexed: 12/14/2022]
Abstract
Although circulating microRNAs (miRNAs) have already proven to be useful as diagnostic and prognostic biomarkers in nasopharyngeal carcinoma (NPC), the potential of these molecules to monitor patients over time has been less explored. This study aimed to analyze dynamic changes in plasma miRNAs before and after treatment and explore their clinical significance in monitoring recurrence and metastasis of NPC. Candidate miRNAs were screened by microarray analysis and validated by real-time quantitative polymerase chain reaction (RT-qPCR). In the follow-up cohort including 102 patients, blood samples (plasma) were collected before the treatment initiation, 3 months, 6 months, and 12 months after treatments, and at the time of any recurrence or metastasis. Among these plasma miRNAs, miR-9-3p, miR-124-3p, miR-892b, and miR-3676-3p were significantly upregulated (P = 0.018, P = 0.039, P = 0.001, and P = 0.01, resp.) after treatment compared with pretreatment, and the four plasma miRNAs were downregulated again at recurrence or metastasis (P < 0.001, P = 0.015, P = 0.003, and P = 0.026, resp.). The dynamic changes in plasma miRNAs after treatment reflect the outcome of the disease and have the potential to monitor recurrence and metastasis in patients with NPC.
Collapse
|
47
|
Rapado-González Ó, Majem B, Muinelo-Romay L, Álvarez-Castro A, Santamaría A, Gil-Moreno A, López-López R, Suárez-Cunqueiro MM. Human salivary microRNAs in Cancer. J Cancer 2018; 9:638-649. [PMID: 29556321 PMCID: PMC5858485 DOI: 10.7150/jca.21180] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/11/2017] [Indexed: 12/25/2022] Open
Abstract
Circulating microRNAs (miRNAs) have emerged as excellent candidates for cancer biomarkers. Several recent studies have highlighted the potential use of saliva for the identification of miRNAs as novel biomarkers, which represents a great opportunity to improve diagnosis and monitor general health and disease. This review summarises the mechanisms of miRNAs deregulation in cancer, the value of targeting them with a therapeutic intention and the evidence of the potential clinical use of miRNAs expressed in saliva for the detection of different cancer types. We also provide a comprehensive review of the different methods for normalising the levels of specific miRNAs present in saliva, as this is a critical step in their analysis, and the challenge to validate salivary miRNAs as a reality to manage cancer patients.
Collapse
Affiliation(s)
- Óscar Rapado-González
- Department of Surgery and Medical Surgical Specialties, Medicine and Dentistry School, University of Santiago de Compostela, Spain. Health Research Institute of Santiago (IDIS); Santiago de Compostela, Spain.,Liquid Biopsy Analysis Unit, Translational Medical Oncology, Health Research Institute of Santiago (IDIS), CIBERONC, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Blanca Majem
- Cell Cycle and Cancer Lab, Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Translational Medical Oncology, Health Research Institute of Santiago (IDIS), CIBERONC, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Ana Álvarez-Castro
- Medical Digestive Service, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS); Santiago de Compostela, Spain
| | - Anna Santamaría
- Cell Cycle and Cancer Lab, Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Antonio Gil-Moreno
- Cell Cycle and Cancer Lab, Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Department of Gynecology Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Rafael López-López
- Liquid Biopsy Analysis Unit, Translational Medical Oncology, Health Research Institute of Santiago (IDIS), CIBERONC, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - María Mercedes Suárez-Cunqueiro
- Department of Surgery and Medical Surgical Specialties, Medicine and Dentistry School, University of Santiago de Compostela, Spain. Health Research Institute of Santiago (IDIS); Santiago de Compostela, Spain
| |
Collapse
|
48
|
Arantes LMRB, De Carvalho AC, Melendez ME, Lopes Carvalho A. Serum, plasma and saliva biomarkers for head and neck cancer. Expert Rev Mol Diagn 2017; 18:85-112. [PMID: 29134827 DOI: 10.1080/14737159.2017.1404906] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Head and neck squamous cell carcinoma (HNSCC) encompasses tumors arising from several locations (oral and nasal cavities, paranasal sinuses, salivary glands, pharynx, and larynx) and currently stands as the sixth most common cancer worldwide. The most important risk factors identified so far are tobacco and alcohol consumption, and, for a subgroup of HNSCCs, infection with high-risk types of human papillomavirus (HPV). Despite several improvements in the treatment of these tumors in the last decades, overall survival rates have only improved marginally, mainly due to the advanced clinical stage at diagnosis and the high rates of treatment failure associated with this late diagnosis. Areas covered: This review will focus on the feasibility of evaluating molecular-based biomarkers (mRNA, microRNA, lncRNA, DNA methylation and protein expression) in body fluids (serum, plasma, and saliva) as markers for diagnosis, prognosis, and surveillance. Expert commentary: The potential use of those markers in the clinical setting would allow for early diagnosis, prediction of treatment response, improvement in treatment selection and provide disease monitoring for early detection of tumor recurrence. It can ultimately be translated into better survival rates and improved quality of life for HNSCC patients.
Collapse
Affiliation(s)
| | | | - Matias Eliseo Melendez
- a Molecular Oncology Research Center , Barretos Cancer Hospital , Barretos - SP , Brazil
| | - André Lopes Carvalho
- a Molecular Oncology Research Center , Barretos Cancer Hospital , Barretos - SP , Brazil
| |
Collapse
|
49
|
Circulating MicroRNA-92b-3p as a Novel Biomarker for Monitoring of Synovial Sarcoma. Sci Rep 2017; 7:14634. [PMID: 29116117 PMCID: PMC5676745 DOI: 10.1038/s41598-017-12660-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
The lack of useful biomarkers is a crucial problem for patients with soft tissue sarcomas (STSs). Emerging evidence has suggested that circulating microRNAs (miRNAs) in body fluids have novel impact as biomarkers for patients with malignant diseases, but their significance in synovial sarcoma (SS) patients remains unknown. Initial global miRNA screening using SS patient serum and SS cell culture media identified a signature of four upregulated miRNAs. Among these candidates, miR-92b-3p secretion from SS cells was confirmed, which was embedded within tumour-derived exosomes rather than argonaute-2. Animal experiments revealed a close correlation between serum miR-92b-3p levels and tumour dynamics. Clinical relevance was validated in two independent clinical cohorts, and we subsequently identified that serum miR-92b-3p levels were significantly higher in SS patients in comparison to that in healthy individuals. Moreover, serum miR-92b-3p was robust in discriminating patients with SS from the other STS patients and reflected tumour burden in SS patients. Overall, liquid biopsy using serum miR-92b-3p expression levels may represent a novel approach for monitoring tumour dynamics of SS.
Collapse
|
50
|
miRNAs: Important Targets for Oral Cancer Pain Research. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4043516. [PMID: 29214166 PMCID: PMC5682905 DOI: 10.1155/2017/4043516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Pain is a symptom shared by an incredible number of diseases. It is also one of the primary conditions that prompt individuals to seek medical treatment. Head and neck squamous cell carcinoma (HNSCC) corresponds to a heterogeneous disease that may arise from many distinct structures of a large, highly complex, and intricate region. HNSCC affects a great number of patients worldwide and is directly associated with chronic pain, which is especially prominent during the advanced stages of oral squamous cell carcinoma (OSCC), an anatomical and clinical subtype that corresponds to the great majority oral cancers. Although the cellular and molecular bases of oral cancer pain have not been fully established yet, the results of recent studies suggest that different epigenetic mechanisms may contribute to this process. For instance, there is strong scientific evidence that microRNAs (miRNAs), small RNA molecules that do not encode proteins, might act by regulating the mechanisms underlying cancer-related pain. Among the miRNAs that could possibly interfere in pain-signaling pathways, miR-125b, miR-181, and miR-339 emerge as some of the most promising candidates. In fact, such molecules apparently contribute to inflammatory pain. Moreover, these molecules possibly influence the activity of endogenous pain control systems (e.g., opioidergic and serotonergic systems), which could ultimately result in peripheral and central sensitization, central nervous system (CNS) phenomena innately associated with chronic pain. This review paper focuses on the current scientific knowledge regarding the involvement of miRNAs in cancer pain, with special attention dedicated to OSCC-related pain.
Collapse
|