1
|
Shao Q, Sun L. Clinical Significance of Serum CTRP3 Level in the Prediction of Cardiac and Intestinal Mucosal Barrier Dysfunction in Patients with Severe Acute Pancreatitis. Crit Rev Immunol 2024; 44:99-111. [PMID: 38618732 DOI: 10.1615/critrevimmunol.2024051292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
C1q/tumor necrosis factor-related protein 3 (CTRP3) has been demonstrated to play a protective role in mice with severe acute pancreatitis (SAP). However, its clinical significance in SAP remains unknown. This study was conducted to explore the clinical values of serum C1q/tumor necrosis factor-related protein 3 (CTRP3) level in the diagnosis of cardiac dysfunction (CD) and intestinal mucosal barrier dysfunction (IMBD) in SAP. Through RT-qPCR, we observed decreased CTRP3 level in the serum of SAP patients. Serum CTRP3 level was correlated with C-reactive protein, procalcitonin, creatine, modified computed tomography severity index score, and Acute Physiology and Chronic Health Evaluation II score. The receiver-operating characteristic curve revealed that CTRP3 serum level < 1.005 was conducive to SAP diagnosis with 72.55% sensitivity and 60.00% specificity, CTRP3 < 0.8400 was conducive to CD diagnosis with 80.49% sensitivity and specificity 65.57%, CTRP3 < 0.8900 was conducive to IMBD diagnosis with 94.87% sensitivity and 63.49% specificity, and CTRP3 < 0.6250 was conducive to the diagnosis of CD and IMBD co-existence with 65.22% sensitivity and 89.87% specificity. Generally, CTRP3 was downregulated in the serum of SAP patients and served as a candidate biomarker for the diagnosis of SAP and SAP-induced CD and IMBD.
Collapse
Affiliation(s)
- Qiang Shao
- Department of Emergency, Yantai Yuhuangding Hospital, Yaitai 264000, Shandong Province, China
| | | |
Collapse
|
2
|
Oikonomou P, Nikolaou C, Papachristou F, Sovatzidis A, Lambropoulou M, Giouleka C, Kontaxis V, Linardoutsos D, Papalois A, Pitiakoudis M, Tsaroucha A. Eugenol Reduced ΜPO, CD45 and HMGB1 Expression and Attenuated the Expression of Leukocyte Infiltration Markers in the Intestinal Tissue in Biliopancreatic Duct Ligation-Induced Pancreatitis in Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:74. [PMID: 38256335 PMCID: PMC10820626 DOI: 10.3390/medicina60010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Inflammation and dysregulation in the intestinal barrier function in acute pancreatitis (AP) trigger pancreatic lesions, systemic inflammatory response, and multiple organ dysfunction. Eugenol, as the main component of clove (Syzygium aromaticum), is known for its antioxidant and anti-inflammatory properties. We studied the potentially beneficial effect of eugenol in a rodent model of biliopancreatic duct ligation-induced AP. Materials and Methods: Rats were randomly divided into three groups: Sham, AP, and AP + eugenol (15 mg/kg/day). Serum TNFα, IL-6, IL-18, and resistin levels, as well as IL-6, TNFα, MPO, HMGB1, and CD45 tissue expression, were determined at various timepoints after the induction of AP. Results: Eugenol attenuated hyperemia and inflammatory cell infiltration in the intestinal mucosal, submucosal, and muscular layers. IL-6 and resistin serum levels were significantly reduced in the AP + eugenol group, while serum TNFα and IL-18 levels remained unaffected overall. TNFα pancreatic and intestinal expression was attenuated by eugenol at 72 h, while IL-6 expression was affected only in the pancreas. MPO, CD45, and HMGB1 intestinal expression was significantly reduced in eugenol-treated rats. Conclusions: Eugenol managed to attenuate the inflammatory response in the intestine in duct ligation-induced AP in rats.
Collapse
Affiliation(s)
- Panagoula Oikonomou
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| | - Christina Nikolaou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| | - Fotini Papachristou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| | - Apostolos Sovatzidis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Charikleia Giouleka
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Vasileios Kontaxis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Dimitrios Linardoutsos
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Apostolos Papalois
- Experimental Research Center, ELPEN Pharmaceuticals, Pikermi, 19009 Athens, Greece;
| | - Michael Pitiakoudis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Alexandra Tsaroucha
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| |
Collapse
|
3
|
Yang Q, Luo Y, Lan B, Dong X, Wang Z, Ge P, Zhang G, Chen H. Fighting Fire with Fire: Exosomes and Acute Pancreatitis-Associated Acute Lung Injury. Bioengineering (Basel) 2022; 9:615. [PMID: 36354526 PMCID: PMC9687423 DOI: 10.3390/bioengineering9110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a prevalent clinical condition of the digestive system, with a growing frequency each year. Approximately 20% of patients suffer from severe acute pancreatitis (SAP) with local consequences and multi-organ failure, putting a significant strain on patients' health insurance. According to reports, the lungs are particularly susceptible to SAP. Acute respiratory distress syndrome, a severe type of acute lung injury (ALI), is the primary cause of mortality among AP patients. Controlling the mortality associated with SAP requires an understanding of the etiology of AP-associated ALI, the discovery of biomarkers for the early detection of ALI, and the identification of potentially effective drug treatments. Exosomes are a class of extracellular vesicles with a diameter of 30-150 nm that are actively released into tissue fluids to mediate biological functions. Exosomes are laden with bioactive cargo, such as lipids, proteins, DNA, and RNA. During the initial stages of AP, acinar cell-derived exosomes suppress forkhead box protein O1 expression, resulting in M1 macrophage polarization. Similarly, macrophage-derived exosomes activate inflammatory pathways within endothelium or epithelial cells, promoting an inflammatory cascade response. On the other hand, a part of exosome cargo performs tissue repair and anti-inflammatory actions and inhibits the cytokine storm during AP. Other reviews have detailed the function of exosomes in the development of AP, chronic pancreatitis, and autoimmune pancreatitis. The discoveries involving exosomes at the intersection of AP and acute lung injury (ALI) are reviewed here. Furthermore, we discuss the therapeutic potential of exosomes in AP and associated ALI. With the continuous improvement of technological tools, the research on exosomes has gradually shifted from basic to clinical applications. Several exosome-specific non-coding RNAs and proteins can be used as novel molecular markers to assist in the diagnosis and prognosis of AP and associated ALI.
Collapse
Affiliation(s)
- Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bowen Lan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xuanchi Dong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
4
|
Liu D, Wen L, Wang Z, Hai Y, Yang D, Zhang Y, Bai M, Song B, Wang Y. The Mechanism of Lung and Intestinal Injury in Acute Pancreatitis: A Review. Front Med (Lausanne) 2022; 9:904078. [PMID: 35872761 PMCID: PMC9301017 DOI: 10.3389/fmed.2022.904078] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP), as a common cause of clinical acute abdomen, often leads to multi-organ damage. In the process of severe AP, the lungs and intestines are the most easily affected organs aside the pancreas. These organ damages occur in succession. Notably, lung and intestinal injuries are closely linked. Damage to ML, which transports immune cells, intestinal fluid, chyle, and toxic components (including toxins, trypsin, and activated cytokines to the systemic circulation in AP) may be connected to AP. This process can lead to the pathological changes of hyperosmotic edema of the lung, an increase in alveolar fluid level, destruction of the intestinal mucosal structure, and impairment of intestinal mucosal permeability. The underlying mechanisms of the correlation between lung and intestinal injuries are inflammatory response, oxidative stress, and endocrine hormone secretion disorders. The main signaling pathways of lung and intestinal injuries are TNF-α, HMGB1-mediated inflammation amplification effect of NF-κB signal pathway, Nrf2/ARE oxidative stress response signaling pathway, and IL-6-mediated JAK2/STAT3 signaling pathway. These pathways exert anti-inflammatory response and anti-oxidative stress, inhibit cell proliferation, and promote apoptosis. The interaction is consistent with the traditional Chinese medicine theory of the lung being connected with the large intestine (fei yu da chang xiang biao li in Chinese). This review sought to explore intersecting mechanisms of lung and intestinal injuries in AP to develop new treatment strategies.
Collapse
Affiliation(s)
- Dongling Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Linlin Wen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- County People’s Hospital, Pingliang, China
| | - Zhandong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yang Hai
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
| | - Dan Yang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanying Zhang
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Min Bai
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Bing Song
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Yongfeng Wang
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| |
Collapse
|
5
|
Gao Y, Wang L, Niu Z, Feng H, Liu J, Sun J, Gao Y, Pan L. miR-340-5p inhibits pancreatic acinar cell inflammation and apoptosis via targeted inhibition of HMGB1. Exp Ther Med 2021; 23:140. [PMID: 35069821 DOI: 10.3892/etm.2021.11063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis (AP) is a common gastrointestinal disease that affects 1 million individuals worldwide. Inflammation and apoptosis are considered to be important pathogenic mechanisms of AP, and high mobility group box 1 (HMGB1) has been shown to play a particularly important role in the etiology of this disease. MicroRNAs (miRs) are emerging as critical regulators of gene expression and, as such, they represent a promising area of therapeutic target identification and development for a variety of diseases, including AP. Using the online database query (microRNA.org), the current study identified a site in the 3' untranslated region of HMGB1 mRNA that was a viable target for miR-340-5p. The present study aimed to investigate the association between miR-340-5p and HMGB1 expression in pancreatic acinar cells following lipopolysaccharide (LPS) treatment by performing luciferase, western blotting and reverse transcription-quantitative PCR assays. The results suggest that miR-340-5p attenuates the induction of HMGB1 by LPS, thereby inhibiting inflammation and apoptosis via blunted activation of Toll-like receptor 4 and enhanced AKT signaling. Thus, the therapeutic application of miR-340-5p may be a useful strategy in AP via upregulation of HMGB1 and subsequent promotion of inflammation and apoptosis.
Collapse
Affiliation(s)
- Yazhou Gao
- Department of Emergency Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liming Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zequn Niu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jie Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiangli Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yanxia Gao
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
6
|
Luo Y, Li Z, Ge P, Guo H, Li L, Zhang G, Xu C, Chen H. Comprehensive Mechanism, Novel Markers and Multidisciplinary Treatment of Severe Acute Pancreatitis-Associated Cardiac Injury - A Narrative Review. J Inflamm Res 2021; 14:3145-3169. [PMID: 34285540 PMCID: PMC8286248 DOI: 10.2147/jir.s310990] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is one of the common acute abdominal inflammatory diseases in clinic with acute onset and rapid progress. About 20% of the patients will eventually develop into severe acute pancreatitis (SAP) characterized by a large number of inflammatory cells infiltration, gland flocculus flaky necrosis and hemorrhage, finally inducing systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS). Pancreatic enzyme activation, intestinal endotoxemia (IETM), cytokine activation, microcirculation disturbance, autonomic nerve dysfunction and autophagy dysregulation all play an essential role in the occurrence and progression of SAP. Organ dysfunction is the main cause of early death in SAP. Acute kidney injury (AKI) and acute lung injury (ALI) are common, while cardiac injury (CI) is not, but the case fatality risk is high. Many basic studies have observed obvious ultrastructure change of heart in SAP, including myocardial edema, cardiac hypertrophy, myocardial interstitial collagen deposition. Moreover, in clinical practice, patients with SAP often presented various abnormal electrocardiogram (ECG) and cardiac function. Cases complicated with acute myocardial infarction and pericardial tamponade have also been reported and even result in stress cardiomyopathy. Due to the molecular mechanisms underlying SAP-associated cardiac injury (SACI) remain poorly understood, and there is no complete, unified treatment and sovereign remedy at present, this article reviews reports referring to the pathogenesis, potential markers and treatment methods of SACI in recent years, in order to improve the understanding of cardiac injury in severe pancreatitis.
Collapse
Affiliation(s)
- YaLan Luo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - ZhaoXia Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Peng Ge
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - HaoYa Guo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - GuiXin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - CaiMing Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - HaiLong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
7
|
Ge P, Luo Y, Okoye CS, Chen H, Liu J, Zhang G, Xu C, Chen H. Intestinal barrier damage, systemic inflammatory response syndrome, and acute lung injury: A troublesome trio for acute pancreatitis. Biomed Pharmacother 2020; 132:110770. [PMID: 33011613 DOI: 10.1016/j.biopha.2020.110770] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Severe acute pancreatitis (SAP), a serious inflammatory disease of the pancreas, can easily lead to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndromes (MODS). Acute lung injury (ALI) is one of the most serious complications of SAP. However, the specific pathogenesis of SAP-associated ALI is not fully understood. Crosstalk and multi-mechanisms involving pancreatic necrosis, bacteremia, intestinal barrier failure, activation of inflammatory cascades and diffuse alveolar damage is the main reason for the unclear pathological mechanism of SAP-associated ALI. According to previous research on SAP-associated ALI in our laboratory and theories put forward by other scholars, we propose that the complex pattern of SAP-associated ALI is based on the "pancreas-intestine-inflammation/endotoxin-lung (P-I-I/E-L) pathway". In this review, we mainly concentrated on the specific details of the "P-I-I/E-L pathway" and the potential treatments or preventive measures for SAP-associated ALI.
Collapse
Affiliation(s)
- Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Chukwuemeka Samuel Okoye
- Orthopedic Research Center, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, PR China
| | - Haiyang Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Jiayue Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China.
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, PR China.
| |
Collapse
|
8
|
Naseer QA, Liu L, Xue X, Chen S, Chen J, Qu J, Cui L, Wang X, Dang S. Expression profile of lncRNAs and mRNAs in intestinal macrophages. Mol Med Rep 2020; 22:3735-3746. [PMID: 32901859 PMCID: PMC7533500 DOI: 10.3892/mmr.2020.11470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 07/14/2020] [Indexed: 11/06/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been previously reported to serve an important role in transcription. In addition, several studies have revealed that long ncRNAs (lncRNAs) have a crucial role in human diseases. However, the association between lncRNAs and inflammation‑induced intestinal macrophages in the intestinal mucosal barrier has remained elusive. In the present study, intestinal macrophages from healthy Sprague Dawley rats were divided into two groups: The experimental group, consisting of intestinal macrophages treated with 1 mg/l lipopolysaccharide (LPS) and the control group, composed of untreated cells. Differentially expressed (DE) lncRNAs and mRNAs between the control and experimental groups were identified using microarray profiling. The levels of DE mRNAs and lncRNAs were measured by reverse transcription‑quantitative PCR (RT‑qPCR). Furthermore, Gene Ontology (GO) and pathway enrichment analyses of DE mRNAs and lncRNAs were performed. To identify core regulatory factors among DE lncRNAs and mRNAs, a lncRNA‑mRNA network was constructed. A total of 357 DE lncRNAs and 542 DE mRNAs between the LPS‑treated and untreated groups were identified (fold-change >1.5; P<0.05). In addition, selected microarray data were confirmed by RT‑qPCR. GO analysis of the DE mRNAs indicated that the biological functions of the upregulated mRNAs included inflammatory response, immune response, metabolic process and signal transduction, whereas those of the downregulated mRNAs were metabolic process, cell cycle, apoptosis and inflammatory response. In addition, pathway enrichment analysis of the upregulated mRNAs revealed that the most enriched pathways were the NF‑κB signaling pathway, B‑cell receptor signaling pathway and apoptosis, while the downregulated mRNAs were significantly involved in metabolic pathways, the phosphatidylinositol signaling system, cytokine‑cytokine receptor interaction and the Toll‑like receptor signaling pathway. The lncRNA‑mRNA co‑expression network suggested that lncRNAs NONMMUT024673 and NONMMUT062258 may have an important role in LPS‑induced intestinal macrophages. The present study identified the DE profiles between LPS‑ and non‑LPS‑treated intestinal macrophages. These DE lncRNAs and mRNAs may be used as potential targets for attenuating excessive inflammatory response in intestinal mucosal barrier dysfunction.
Collapse
Affiliation(s)
- Qais Ahmad Naseer
- Department of General Surgery, The Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Lulu Liu
- Department of General Surgery, The Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xiaofei Xue
- Department of General Surgery, Pucheng Hospital, Weinan, Shaanxi 715500, P.R. China
| | - Siche Chen
- Department of General Surgery, The Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jixiang Chen
- Department of General Surgery, The Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jianguo Qu
- Department of General Surgery, The Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Lei Cui
- Department of General Surgery, The Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xiaogang Wang
- Department of General Surgery, Pucheng Hospital, Weinan, Shaanxi 715500, P.R. China
| | - Shengchun Dang
- Department of General Surgery, The Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
9
|
Gut Barrier Dysfunction Induced by Aggressive Fluid Resuscitation in Severe Acute Pancreatitis is Alleviated by Necroptosis Inhibition in Rats. Shock 2020; 52:e107-e116. [PMID: 30562238 DOI: 10.1097/shk.0000000000001304] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fluid resuscitation is the first-line antishock treatment in severe acute pancreatitis (SAP). Currently, although mentions of complications related to aggressive fluid resuscitation are very frequent, a lack of proper handling of complications remains. One of the most important complications is intestinal barrier injury, including intestinal ischemia-reperfusion injury following aggressive fluid resuscitation. Once injured, the intestinal barrier may serve as the source of additional diseases, including systemic inflammatory response syndrome and multiple organ dysfunction syndrome, which aggravate SAP. This study focused on the underlying mechanisms of gut barrier dysfunction in rats induced by aggressive fluid resuscitation in SAP. This study further indicated the important role of necroptosis in intestinal barrier injury which could be relieved by using necroptosis-specific inhibitor Nec-1 before aggressive fluid resuscitation, thus reducing intestinal barrier damage. We also found pancreas damage after intestinal ischemia/reperfusion challenge and indicated the effects of high mobility group protein B1 in the vicious cycle between SAP and intestinal barrier damage.
Collapse
|
10
|
Li Y, Guo R, Zhang M, Chen P, Li J, Sun Y. Protective effect of emodin on intestinal epithelial tight junction barrier integrity in rats with sepsis induced by cecal ligation and puncture. Exp Ther Med 2020; 19:3521-3530. [PMID: 32346413 PMCID: PMC7185184 DOI: 10.3892/etm.2020.8625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
The present study investigated the protective effects of emodin on intestinal epithelial tight junction (TJ) barrier integrity in cecal ligation and puncture (CLP)-induced septic rats and its possible mechanisms of action. Healthy male Sprague-Dawley rats were randomly divided into three groups (n=20 per group): Sham group, CLP group and CLP + emodin group. Animals were sacrificed at 12 and 24 h after the model was established. Abdominal aortic blood and specimens of the ileum were harvested for analysis. The histopathological changes in intestinal mucosa and the ultrastructures of intestinal epithelial cells were investigated using light microscopy and transmission electron microscopy. The integrity of the intestinal barrier was assessed by examining plasma diamine oxidase (DAO) levels and the ratio of urine lactulose to mannitol (L/M). The levels of the intestinal TJ proteins claudin-3, zonula occludens (ZO)-1 and occludin were detected using immunohistochemistry, western blotting and reverse transcription-quantitative PCR. The results showed that the pathological damage to intestinal mucosa and the intestinal tissue injury score in the CLP + emodin group were significantly reduced compared to those of the CLP group, and the differences were more obvious at 24 h compared with 12 h. DAO activity and the L/M ratio in the emodin pre-treatment group decreased significantly at 24 h compared with the CLP groups. The protein and mRNA levels of the TJ proteins claudin-3, ZO-1 and occludin in the emodin pre-treatment groups at 12 and 24 h were increased, while occludin mRNA level was found to be decreased compared with the CLP groups. The present study suggested that emodin may significantly reduce the damage to the intestinal epithelial barrier in sepsis, inhibit intestinal barrier permeability and protect intestinal barrier integrity. Emodin may protect intestinal barrier integrity by elevating expression levels of the TJ proteins claudin-3, ZO-1 and occludin in CLP rats.
Collapse
Affiliation(s)
- Yanjun Li
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Ruimin Guo
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Mengying Zhang
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Peng Chen
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Jingxin Li
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yanni Sun
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China.,Department of Emergency, Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai 200062, P.R. China
| |
Collapse
|
11
|
Zhang Z, Liu Q, Zang H, Shao Q, Sun T. Oxymatrine protects against l-arginine-induced acute pancreatitis and intestine injury involving Th1/Th17 cytokines and MAPK/NF-κB signalling. PHARMACEUTICAL BIOLOGY 2019; 57:595-603. [PMID: 31496325 PMCID: PMC6746280 DOI: 10.1080/13880209.2019.1657906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Context: Oxymatrine (OMT) has various pharmacological effects, including immune reaction regulation, anti-inflammation and anti-hypersensitive reaction. Objective: This is the first report to investigate the molecular mechanism of OMT function in l-arginine (Arg)-induced acute pancreatitis (AP) involving intestinal injury. Materials and methods: Rat pancreatic AR42J and small intestinal IEC-6 cells were treated with Arg (200-800 µM) for 48 h plus OMT (4 mg/mL) treatment. Thirty adult Wistar rats were randomly assigned to control (saline), AP (i.p. of 250 mg/100 g body weight Arg) and OMT (i.p. injection of 50 mg/kg b.w. OMT every 6 h following Arg). Both cells and rats were harvested at 48 h. Results: Arg-induced cell proliferation in both rats AR42J (EC50 633.9 ± 31.4 µM) and IEC-6 cells (EC50 571.3 ± 40.4 µM) in a dose-dependent manner, which was significantly inhibited by OMT (4 mg/mL). Meanwhile, Arg (600 µM) induced expression of proinflammatory cytokines (TNF-α, IL-6, IL-1β, NF-κB, IL-17A/IL-17F and IFN-γ) and activation of p-p38/p-ERK in vitro, which was reversed by OMT. In vivo, OMT (50 mg/kg) inhibited 250 mg/100 g of Arg-induced AP involving intestinal injury, including inhibiting Arg-induced inflammatory in pancreas and intestine, inhibiting Arg-induced increase of TNF-α, IL-6, IL-1β, NF-κB and p-p38/p-ERK-MAPK signalling, and inhibiting Arg-induced increase of IL-17A/IL-17F, IFN-γ, ROR-γt and T-bet. Meanwhile, OMT inhibited Arg-induced expression of CD44 and CD55 in intestinal injury. Discussion and conclusions: OMT protects against Arg-induced AP involving intestinal injury via regulating Th1/Th17 cytokines and MAPK/NF-κB signalling, which is a promising therapeutic agent in clinics.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of General Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Qingfeng Liu
- Department of General Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Hui Zang
- Department of General Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Qingliang Shao
- Department of General Surgery, The People's Hospital of Liaoning Province, Shenyang, China
- CONTACT Qingliang Shao Department of General Surgery, The Peoples’ Hospital of Liaoning Province, Shenyang 110016, China
| | - Tian Sun
- Department of General Surgery, The People's Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
High-mobility group box-1 inhibition stabilizes intestinal permeability through tight junctions in experimental acute necrotizing pancreatitis. Inflamm Res 2019; 68:677-689. [DOI: 10.1007/s00011-019-01251-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
|
13
|
Zhao S, Yang J, Liu T, Zeng J, Mi L, Xiang K. Dexamethasone inhibits NF‑кBp65 and HMGB1 expression in the pancreas of rats with severe acute pancreatitis. Mol Med Rep 2018; 18:5345-5352. [PMID: 30365121 PMCID: PMC6236277 DOI: 10.3892/mmr.2018.9595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Severe acute pancreatitis (SAP) starts as a local inflammation of pancreatic tissue that induces the development of multiple extra-pancreatic organ dysfunction; however, the underlying mechanisms remain unclear. The present study was designed to evaluate the effect of dexamethasone (DXM) on pancreatic damage and to investigate the role of high-mobility group box-1 (HMGB1) and nuclear factor-κB (NF-κBp65) in the development of SAP in animal and cell models. For the in vivo experiment, 35 Sprague-Dawley rats were randomly assigned to three groups: The sham-operation control group, the SAP group and the DXM treatment group. Histological analysis revealed that, when DXM was infused into SAP rats, edema formation and structural alterations with necrosis were reduced, and the number of apoptotic cells was markedly reduced. In addition, compared with the SAP group, the expression level of HMGB1 was significantly decreased in the nucleus and the expression level of NF-κBp65 was significantly decreased in the cytoplasm from rats treated with DXM. In vitro, DXM was able to suppress the apoptosis and cell death induced by caerulein (CAE), and DXM could suppress the expression of NF-κBp65 and HMGB1 induced by CAE, as demonstrated by western blotting and immunofluorescence analysis. Therefore, these results provide an experimental basis for investigating the underlying therapeutic mechanisms of DXM treatment for SAP.
Collapse
Affiliation(s)
- Shangping Zhao
- ICU, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jinming Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ting Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Juanxian Zeng
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Liangliang Mi
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Kaimin Xiang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
14
|
VanPatten S, Al-Abed Y. High Mobility Group Box-1 (HMGb1): Current Wisdom and Advancement as a Potential Drug Target. J Med Chem 2018; 61:5093-5107. [PMID: 29268019 DOI: 10.1021/acs.jmedchem.7b01136] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High mobility group box-1 (HMGb1) protein, a nuclear non-histone protein that is released or secreted from the cell in response to damage or stress, is a sentinel for the immune system that plays a critical role in cell survival/death pathways. This review highlights key features of the endogenous danger-associated molecular pattern (DAMP) protein, HMGb1 in the innate inflammatory response along with various cofactors and receptors that regulate its downstream effects. The evidence demonstrating increased levels of HMGb1 in human inflammatory diseases and conditions is presented, along with a summary of current small molecule or peptide-like antagonists proven to specifically target HMGb1. Additionally, we delineate the measures needed toward validating this protein as a clinically relevant biomarker or bioindicator and as a relevant drug target.
Collapse
Affiliation(s)
- Sonya VanPatten
- Center for Molecular Innovation , The Feinstein Institute for Medical Research , 350 Community Drive , Manhasset , New York 11030 , United States
| | - Yousef Al-Abed
- Center for Molecular Innovation , The Feinstein Institute for Medical Research , 350 Community Drive , Manhasset , New York 11030 , United States
| |
Collapse
|
15
|
Li N, Wang B, Cai S, Liu P. The Role of Serum High Mobility Group Box 1 and Interleukin‐6 Levels in Acute Pancreatitis: A Meta‐Analysis. J Cell Biochem 2017; 119:616-624. [PMID: 28618057 DOI: 10.1002/jcb.26222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/14/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Nuo Li
- Department of GastroenterologyThe Fourth Affiliated Hospital of China Medical UniversityShenyang110032P.R. China
| | - Bao‐Ming Wang
- Department of InterventionThe Fourth Affiliated Hospital of China Medical UniversityShenyang110032P.R. China
| | - Shuang Cai
- Department of GastroenterologyThe Fourth Affiliated Hospital of China Medical UniversityShenyang110032P.R. China
| | - Peng‐Liang Liu
- Department of GastroenterologyThe Fourth Affiliated Hospital of China Medical UniversityShenyang110032P.R. China
| |
Collapse
|
16
|
Liu T, Huang W, Szatmary P, Abrams ST, Alhamdi Y, Lin Z, Greenhalf W, Wang G, Sutton R, Toh CH. Accuracy of circulating histones in predicting persistent organ failure and mortality in patients with acute pancreatitis. Br J Surg 2017; 104:1215-1225. [PMID: 28436602 PMCID: PMC7938821 DOI: 10.1002/bjs.10538] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/10/2016] [Accepted: 02/14/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Early prediction of acute pancreatitis severity remains a challenge. Circulating levels of histones are raised early in mouse models and correlate with disease severity. It was hypothesized that circulating histones predict persistent organ failure in patients with acute pancreatitis. METHODS Consecutive patients with acute pancreatitis fulfilling inclusion criteria admitted to Royal Liverpool University Hospital were enrolled prospectively between June 2010 and March 2014. Blood samples were obtained within 48 h of abdominal pain onset and relevant clinical data during the hospital stay were collected. Healthy volunteers were enrolled as controls. The primary endpoint was occurrence of persistent organ failure. The predictive values of circulating histones, clinical scores and other biomarkers were determined. RESULTS Among 236 patients with acute pancreatitis, there were 156 (66·1 per cent), 57 (24·2 per cent) and 23 (9·7 per cent) with mild, moderate and severe disease respectively, according to the revised Atlanta classification. Forty-seven healthy volunteers were included. The area under the receiver operating characteristic (ROC) curve (AUC) for circulating histones in predicting persistent organ failure and mortality was 0·92 (95 per cent c.i. 0·85 to 0·99) and 0·96 (0·92 to 1·00) respectively; histones were at least as accurate as clinical scores or biochemical markers. For infected pancreatic necrosis and/or sepsis, the AUC was 0·78 (0·62 to 0·94). Histones did not predict or correlate with local pancreatic complications, but correlated negatively with leucocyte cell viability (r = -0·511, P = 0·001). CONCLUSION Quantitative assessment of circulating histones in plasma within 48 h of abdominal pain onset can predict persistent organ failure and mortality in patients with acute pancreatitis. Early death of immune cells may contribute to raised circulating histone levels in acute pancreatitis.
Collapse
Affiliation(s)
- T Liu
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - W Huang
- National Institute for Health Research (NIHR) Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Liverpool, UK
| | - P Szatmary
- National Institute for Health Research (NIHR) Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Liverpool, UK
| | - S T Abrams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Y Alhamdi
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Z Lin
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, China
| | - W Greenhalf
- National Institute for Health Research (NIHR) Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Liverpool, UK
| | - G Wang
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - R Sutton
- National Institute for Health Research (NIHR) Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Liverpool, UK
| | - C H Toh
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Roald Dahl Haemostasis and Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, UK
| |
Collapse
|
17
|
Dysbiosis of intestinal microbiota and decrease in paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats. PLoS One 2017; 12:e0176583. [PMID: 28441432 PMCID: PMC5404871 DOI: 10.1371/journal.pone.0176583] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Intestinal barrier dysfunction plays an important role in acute necrotizing pancreatitis (ANP) and intestinal microbiota dysbiosis was involved in intestinal barrier failure. Paneth cells protect intestinal barrier and are associated with intestinal microbiota. Here, we investigated changes in intestinal microbiota and antimicrobial peptides of Paneth cells in ileum during ANP. METHODS Rats with ANP were established by retrograde injection of 3.5% sodium taurocholate into biliopancreatic duct and sacrificed at 24h and 48h, respectively. Injuries of pancreas and distal ileum were evaluated by histopathological score. Intestinal barrier function was assessed by plasma diamine oxidase activity (DAO) and D-lactate. Systemic and intestinal inflammation was evaluated by TNFα, IL-1β and IL-17A concentration by ELISA, respectively. 16S rRNA high throughput sequencing on fecal samples was used to investigate the changes in intestinal microbiota in the ANP group at 48h. Lysozyme and α-defensin5 were measured by real-time PCR, western blot and immunofluoresence. RESULTS ANP rats had more severe histopathological injuries in pancreas and distal ileum, injured intestinal barrier and increased expression of TNFα, IL-1β and IL-17A in plasma and distal ileum compared with those of the sham-operated (SO) group. Principal component analysis (PCA) showed structural segregation between the SO and ANP groups. Operational taxonomic unit (OTU) number and ACE index revealed decreased microbiota diversity in the ANP group. Taxonomic analysis showed dysbiosis of intestinal microbiota structure. At phyla level, Saccharibacteria and Tenericutes decreased significantly. At genus level, Escherichia-Shigella and Phascolarctobacterium increased significantly, while Candidatus_Saccharimonas, Prevotellaceae_UCG-001, Lachnospiraceae_UCG-001, Ruminiclostridium_5 and Ruminococcaceae_UCG-008 decreased significantly. Lysozyme and α-defensin5 mRNA expression levels decreased significantly in ANP group at 48h. Protein expression of lysozyme decreased in ANP groups at 24h and 48h. Meanwhile, the relative abundance of Escherichia-Shigella correlated inversely with the decrease in lysozyme. CONCLUSION The disorder in intestinal microbiota and decreases of Paneth cell antimicrobial peptides might participate in the pathogenesis of intestinal barrier dysfunction during ANP.
Collapse
|
18
|
HMGB1 and Histones Play a Significant Role in Inducing Systemic Inflammation and Multiple Organ Dysfunctions in Severe Acute Pancreatitis. Int J Inflam 2017; 2017:1817564. [PMID: 28316860 PMCID: PMC5339498 DOI: 10.1155/2017/1817564] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/13/2016] [Indexed: 01/01/2023] Open
Abstract
Severe acute pancreatitis (SAP) starts as a local inflammation of pancreatic tissue that induces the development of multiple extrapancreatic organs dysfunction; however, the underlying mechanisms are still not clear. Ischemia-reperfusion, circulating inflammatory cytokines, and possible bile cytokines significantly contribute to gut mucosal injury and intestinal bacterial translocation (BT) during SAP. Circulating HMGB1 level is significantly increased in SAP patients and HMGB1 is an important factor that mediates (at least partly) gut BT during SAP. Gut BT plays a critical role in triggering/inducing systemic inflammation/sepsis in critical illness, and profound systemic inflammatory response syndrome (SIRS) can lead to multiple organ dysfunction syndrome (MODS) during SAP, and systemic inflammation with multiorgan dysfunction is the cause of death in experimental SAP. Therefore, HMGB1 is an important factor that links gut BT and systemic inflammation. Furthermore, HMGB1 significantly contributes to multiple organ injuries. The SAP patients also have significantly increased circulating histones and cell-free DNAs levels, which can reflect the disease severity and contribute to multiple organ injuries in SAP. Hepatic Kupffer cells (KCs) are the predominant source of circulating inflammatory cytokines in SAP, and new evidence indicates that hepatocyte is another important source of circulating HMGB1 in SAP; therefore, treating the liver injury is important in SAP.
Collapse
|
19
|
Alizadeh S, Ghazavi A, Ganji A, Mosayebi G. Diagnostic Value of High-Mobility Group Box 1 (HMGB1) Protein in Acute and Perforated Appendicitis. J INVEST SURG 2016; 31:9-13. [PMID: 27922766 DOI: 10.1080/08941939.2016.1257667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM Acute appendicitis is the most common cause of abdominal surgical emergencies. Early diagnosis of appendicitis can reduce perforation and mortality rate. High-mobility group box 1 (HMGB1) protein has been identified as a pro-inflammatory factor and its elevated serum levels have been noted in different diseases. So, the aim of this study was to determine the serum levels of HMGB1 in patients with acute and perforated appendicitis in compare to normal appendix. MATERIAL AND METHODS For this purpose, serum samples were obtained from 81 patients with primary criteria-based appendicitis 6 hr before and 72 hr after appendectomy, in which serum levels of HMGB1 were analyzed by enzyme-linked immunosorbent assay. RESULTS The levels of HMGB1 in patients with perforated appendicitis were significantly (p =.045) higher than in patients with acute appendicitis and normal appendix (p =.001) before appendectomy. Serum levels of HMGB1 were increased 72 hr after appendectomy in all the groups (p =.03) compared with the serum levels before appendectomy. CONCLUSIONS Since the serum levels of HMGB1 in patients with acute and perforated appendicitis were higher than in patients with normal appendix, these findings could be useful to develop a new biomarker along with other laboratory tests for accurate diagnosis of patients with appendicitis.
Collapse
Affiliation(s)
- Shabanali Alizadeh
- a Department of Surgery , School of Medicine, Arak University of Medical Sciences , Arak , Iran
| | - Ali Ghazavi
- b Department of Immunology , Molecular and Medicine Research Center, School of Medicine, Arak University of Medical Sciences , Arak , Iran
| | - Ali Ganji
- b Department of Immunology , Molecular and Medicine Research Center, School of Medicine, Arak University of Medical Sciences , Arak , Iran
| | - Ghasem Mosayebi
- b Department of Immunology , Molecular and Medicine Research Center, School of Medicine, Arak University of Medical Sciences , Arak , Iran
| |
Collapse
|
20
|
Abstract
Gut barrier failure is often present in severe acute pancreatitis (SAP), and it increases the gut permeability, leads to translocation of bacteria or endotoxin, causes severe infection and multiple organ dysfunction syndrome, and worsens the course of the disease. The injury of gut barrier may result from the interactions among microcirculation disturbance, ischemia-reperfusion injury, excessive release of inflammatory mediators, apoptosis, flora imbalance and so on. The research on the mechanism of gut barrier failure caused by SAP is of important significance for the treatment of SAP.
Collapse
|