1
|
Kikuta H, Tanaka H, Ozaki T, Ito J, Ma J, Moribe S, Hirano M. Spontaneous differentiation of human induced pluripotent stem cells to odorant-responsive olfactory sensory neurons. Biochem Biophys Res Commun 2024; 719:150062. [PMID: 38740002 DOI: 10.1016/j.bbrc.2024.150062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells (iPSCs), can differentiate into almost all cell types and are anticipated to have significant applications in the field of regenerative medicine. However, there are no reports of successfully directing iPSCs to become functional olfactory sensory neurons (OSNs) capable of selectively receiving odorant compounds. In this study, we employed dual SMAD inhibition and fibroblast growth factor 8 (FGF-8, reported to dictate olfactory fates) along with N-2 and B-27 supplements in the culture medium to efficiently induce the differentiation of iPSCs into neuronal cells with olfactory function through olfactory placode. Temporal gene expression and expression of OSN-specific markers during differentiation indicated that the expression of olfactory marker proteins and various olfactory receptors (ORs), which are markers of mature OSNs, was observed after approximately one month of differentiation culture, irrespective of the differentiation cues, suggesting differentiation into OSNs. Cells that exhibited specific responses to odorant compounds were identified after administering odorant compounds to differentiated iPSC-derived OSNs. This suggests the spontaneous generation of functional OSNs expressing diverse ORs that respond to odorant compounds from iPSCs.
Collapse
Affiliation(s)
- Hirokazu Kikuta
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Hidenori Tanaka
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Takashi Ozaki
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Junji Ito
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Jiaju Ma
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Shinya Moribe
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Minoru Hirano
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| |
Collapse
|
2
|
Raja R, Dumontier E, Phen A, Cloutier JF. Insertion of a neomycin selection cassette in the Amigo1 locus alters gene expression in the olfactory epithelium leading to region-specific defects in olfactory receptor neuron development. Genesis 2024; 62:e23594. [PMID: 38590146 DOI: 10.1002/dvg.23594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
During development of the nervous system, neurons connect to one another in a precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation can lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviors essential for survival. The formation of the olfactory glomerular map is dependent on molecular cues that guide olfactory receptor neuron axons to broad regions of the olfactory bulb and on cell adhesion molecules that promote axonal sorting into specific synaptic units in this structure. Here, we demonstrate that the cell adhesion molecule Amigo1 is expressed in a subpopulation of olfactory receptor neurons, and we investigate its role in the precise targeting of olfactory receptor neuron axons to the olfactory bulb using a genetic loss-of-function approach in mice. While ablation of Amigo1 did not lead to alterations in olfactory sensory neuron axonal targeting, our experiments revealed that the presence of a neomycin resistance selection cassette in the Amigo1 locus can lead to off-target effects that are not due to loss of Amigo1 expression, including unexpected altered gene expression in olfactory receptor neurons and reduced glomerular size in the ventral region of the olfactory bulb. Our results demonstrate that insertion of a neomycin selection cassette into the mouse genome can have specific deleterious effects on the development of the olfactory system and highlight the importance of removing antibiotic resistance cassettes from genetic loss-of-function mouse models when studying olfactory system development.
Collapse
Affiliation(s)
- Reesha Raja
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Emilie Dumontier
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
| | - Alina Phen
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
| | - Jean-François Cloutier
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Kumaresan K, Bengtsson S, Sami S, Clark A, Hummel T, Boardman J, High J, Sobhan R, Philpott C. A double-blinded randomised controlled trial of vitamin A drops to treat post-viral olfactory loss: study protocol for a proof-of-concept study for vitamin A nasal drops in post-viral olfactory loss (APOLLO). Pilot Feasibility Stud 2023; 9:174. [PMID: 37828592 PMCID: PMC10568902 DOI: 10.1186/s40814-023-01402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Smell loss is a common problem with an estimated 5% of the population having no functioning sense of smell. Viral causes of smell loss are the second most common cause and the coronavirus (COVID-19) pandemic is estimated to have caused 20,000 more people this year to have a lasting loss of smell. Isolation, depression, anxiety, and risk of danger from hazards such as toxic gas and spoiled food are all negative impacts. It also affects appetite with weight loss/gain in two-thirds of those affected. Phantosmia or smell distortion can also occur making most foods seem unpalatable. Smell training has been tried with good results in the immediate post-viral phase. Evidence behind treatment with steroids has not shown to have proven effectiveness. With this, a key problem for patients and their clinicians is the lack of proven effective therapeutic treatment options. Based on previous studies, there is some evidence supporting the regenerative potential of retinoic acid, the metabolically active form of vitamin A in the regeneration of olfactory receptor neurons. It is based on this concept that we have chosen vitamin A as our study comparator. AIM To undertake a two-arm randomised trial of intranasally delivered vitamin A vs no intervention to determine proof of concept. METHODS/DESIGN The study will compare 10,000 IU once daily Vitamin A self-administered intranasal drops versus peanut oil drops (placebo) delivered over 12 weeks in patients with post-viral olfactory loss. Potentially eligible patients will be recruited from the Smell & Taste Clinic and via the charity Fifth Sense. They will be invited to attend the Brain Imaging Centre at the University of East Anglia on two occasions, 3 months apart. If they meet the eligibility criteria, they will be consented to enter the study and randomised to receive vitamin A drops or no treatment in a 2:1 ratio. MRI scanning will enable volumetric measurement of the OB and ROS; fMRI will then be conducted using an olfactometer to deliver pulsed odours-phenethylalcohol (rose-like) and hydrogen sulphide (rotten eggs). Participants will also perform a standard smell test at both visits as well as complete a quality-of-life questionnaire. Change in OB volume will be the primary outcome measure. DISCUSSION We expect the outputs of this study to enable a subsequent randomised controlled trial of Vitamin A versus placebo. With PPI input we will make the outputs publicly available using journals, conferences, and social media via Fifth Sense. We have already prepared a draft RCT proposal in partnership with the Norwich Clinical Trials Unit and plan to develop this further in light of the findings. TRIAL REGISTRATION ISRCTN registry 39523. Date of registration in the primary registry: 23rd February 2021.
Collapse
Affiliation(s)
- Kala Kumaresan
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk & Waveney ENT Service, James Paget University Hospital NHS Foundation Trust, Great Yarmouth, UK
| | - Sara Bengtsson
- School of Psychology, University of East Anglia, Norwich, UK
| | - Saber Sami
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Allan Clark
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | - Juliet High
- Norwich Clinical Trials Unit, University of East Anglia, Norwich, UK
| | - Rashed Sobhan
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Carl Philpott
- Norwich Medical School, University of East Anglia, Norwich, UK.
- Norfolk & Waveney ENT Service, James Paget University Hospital NHS Foundation Trust, Great Yarmouth, UK.
| |
Collapse
|
4
|
Jegatheeswaran L, Gokani SA, Luke L, Klyvyte G, Espehana A, Garden EM, Tarantino A, Al Omari B, Philpott CM. Assessment of COVID-19-related olfactory dysfunction and its association with psychological, neuropsychiatric, and cognitive symptoms. Front Neurosci 2023; 17:1165329. [PMID: 37599993 PMCID: PMC10436231 DOI: 10.3389/fnins.2023.1165329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose of review To provide a detailed overview of the assessment of COVID-19-related olfactory dysfunction and its association with psychological, neuropsychiatric, and cognitive symptoms. Recent findings COVID-19-related olfactory dysfunction can have a detrimental impact to the quality of life of patients. Prior to the COVID-19 pandemic, olfactory and taste disorders were a common but under-rated, under-researched and under-treated sensory loss. The pandemic has exacerbated the current unmet need for accessing good healthcare for patients living with olfactory disorders and other symptoms secondary to COVID-19. This review thus explores the associations that COVID-19 has with psychological, neuropsychiatric, and cognitive symptoms, and provide a framework and rationale for the assessment of patients presenting with COVID-19 olfactory dysfunction. Summary Acute COVID-19 infection and long COVID is not solely a disease of the respiratory and vascular systems. These two conditions have strong associations with psychological, neuropsychiatric, and cognitive symptoms. A systematic approach with history taking and examination particularly with nasal endoscopy can determine the impact that this has on the patient. Specific olfactory disorder questionnaires can demonstrate the impact on quality of life, while psychophysical testing can objectively assess and monitor olfaction over time. The role of cross-sectional imaging is not yet described for COVID-19-related olfactory dysfunction. Management options are limited to conservative adjunctive measures, with some medical therapies described.
Collapse
Affiliation(s)
- Lavandan Jegatheeswaran
- Department of Ear, Nose and Throat Surgery, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, United Kingdom
| | - Shyam Ajay Gokani
- Rhinology and ENT Research Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Louis Luke
- Department of Ear, Nose and Throat Surgery, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, United Kingdom
- Rhinology and ENT Research Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Gabija Klyvyte
- Rhinology and ENT Research Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Andreas Espehana
- Rhinology and ENT Research Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Elizabeth Mairenn Garden
- Rhinology and ENT Research Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Alessia Tarantino
- Department of Ear, Nose and Throat Surgery, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, United Kingdom
| | - Basil Al Omari
- Department of Ear, Nose and Throat Surgery, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, United Kingdom
| | - Carl Martin Philpott
- Department of Ear, Nose and Throat Surgery, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, United Kingdom
- Rhinology and ENT Research Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
5
|
Chung TWH, Zhang H, Wong FKC, Sridhar S, Lee TMC, Leung GKK, Chan KH, Lau KK, Tam AR, Ho DTY, Cheng VCC, Yuen KY, Hung IFN, Mak HKF. A Pilot Study of Short-Course Oral Vitamin A and Aerosolised Diffuser Olfactory Training for the Treatment of Smell Loss in Long COVID. Brain Sci 2023; 13:1014. [PMID: 37508945 PMCID: PMC10377650 DOI: 10.3390/brainsci13071014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Background: Olfactory dysfunction (OD) is a common neurosensory manifestation in long COVID. An effective and safe treatment against COVID-19-related OD is needed. Methods: This pilot trial recruited long COVID patients with persistent OD. Participants were randomly assigned to receive short-course (14 days) oral vitamin A (VitA; 25,000 IU per day) and aerosolised diffuser olfactory training (OT) thrice daily (combination), OT alone (standard care), or observation (control) for 4 weeks. The primary outcome was differences in olfactory function by butanol threshold tests (BTT) between baseline and end-of-treatment. Secondary outcomes included smell identification tests (SIT), structural MRI brain, and serial seed-based functional connectivity (FC) analyses in the olfactory cortical network by resting-state functional MRI (rs-fMRI). Results: A total of 24 participants were randomly assigned to receive either combination treatment (n = 10), standard care (n = 9), or control (n = 5). Median OD duration was 157 days (IQR 127-175). Mean baseline BTT score was 2.3 (SD 1.1). At end-of-treatment, mean BTT scores were significantly higher for the combination group than control (p < 0.001, MD = 4.4, 95% CI 1.7 to 7.2) and standard care (p = 0.009) groups. Interval SIT scores increased significantly (p = 0.009) in the combination group. rs-fMRI showed significantly higher FC in the combination group when compared to other groups. At end-of-treatment, positive correlations were found in the increased FC at left inferior frontal gyrus and clinically significant improvements in measured BTT (r = 0.858, p < 0.001) and SIT (r = 0.548, p = 0.042) scores for the combination group. Conclusions: Short-course oral VitA and aerosolised diffuser OT was effective as a combination treatment for persistent OD in long COVID.
Collapse
Affiliation(s)
- Tom Wai-Hin Chung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hui Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, China
| | - Fergus Kai-Chuen Wong
- Department of Ear, Nose and Throat, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Siddharth Sridhar
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Tatia Mei-Chun Lee
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Gilberto Ka-Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Koon-Ho Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kui-Kai Lau
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anthony Raymond Tam
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Deborah Tip-Yin Ho
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Chi-Chung Cheng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Ivan Fan-Ngai Hung
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Henry Ka-Fung Mak
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Hummel T, Power Guerra N, Gunder N, Hähner A, Menzel S. Olfactory Function and Olfactory Disorders. Laryngorhinootologie 2023; 102:S67-S92. [PMID: 37130532 PMCID: PMC10184680 DOI: 10.1055/a-1957-3267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The sense of smell is important. This became especially clear to patients with infection-related olfactory loss during the SARS-CoV-2 pandemic. We react, for example, to the body odors of other humans. The sense of smell warns us of danger, and it allows us to perceive flavors when eating and drinking. In essence, this means quality of life. Therefore, anosmia must be taken seriously. Although olfactory receptor neurons are characterized by regenerative capacity, anosmia is relatively common with about 5 % of anosmic people in the general population. Olfactory disorders are classified according to their causes (e. g., infections of the upper respiratory tract, traumatic brain injury, chronic rhinosinusitis, age) with the resulting different therapeutic options and prognoses. Thorough history taking is therefore important. A wide variety of tools are available for diagnosis, ranging from short screening tests and detailed multidimensional test procedures to electrophysiological and imaging methods. Thus, quantitative olfactory disorders are easily assessable and traceable. For qualitative olfactory disorders such as parosmia, however, no objectifying diagnostic procedures are currently available. Therapeutic options for olfactory disorders are limited. Nevertheless, there are effective options consisting of olfactory training as well as various additive drug therapies. The consultation and the competent discussion with the patients are of major importance.
Collapse
Affiliation(s)
- T Hummel
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| | - N Power Guerra
- Rudolf-Zenker-Institut für Experimentelle Chirurgie, Medizinische Universität Rostock, Rostock
| | - N Gunder
- Universitäts-HNO Klinik Dresden, Dresden
| | - A Hähner
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| | - S Menzel
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| |
Collapse
|
7
|
Helman SN, Adler J, Jafari A, Bennett S, Vuncannon JR, Cozart AC, Wise SK, Kuruvilla ME, Levy JM. Treatment strategies for postviral olfactory dysfunction: A systematic review. Allergy Asthma Proc 2022; 43:96-105. [PMID: 35317886 DOI: 10.2500/aap.2022.43.210107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: The coronavirus disease 2019 (COVID-19) pandemic has been associated with a dramatic increase in postviral olfactory dysfunction (PVOD) among patients who are infected. A contemporary evidence-based review of current treatment options for PVOD is both timely and relevant to improve patient care. Objective: This review seeks to impact patient care by qualitatively reviewing available evidence in support of medical and procedural treatment options for PVOD. Systematic evaluation of data quality and of the level of evidence was completed to generate current treatment recommendations. Methods: A systematic review was conducted to identify primary studies that evaluated treatment outcomes for PVOD. A number of medical literature data bases were queried from January 1998 to May 2020, with completion of subsequent reference searches of retrieved articles to identify all relevant studies. Validated tools for the assessment of bias among both interventional and observational studies were used to complete quality assessment. The summary level of evidence and associated outcomes were used to generate treatment recommendations. Results: Twenty-two publications were identified for qualitative review. Outcomes of alpha-lipoic acid, intranasal and systemic corticosteroids, minocycline, zinc sulfate, vitamin A, sodium citrate, caroverine, intranasal insulin, theophylline, and Gingko biloba are reported. In addition, outcomes of traditional Chinese acupuncture and olfactory training are reviewed. Conclusion: Several medical and procedural treatments may expedite the return of olfactory function after PVOD. Current evidence supports olfactory training as a first-line intervention. Additional study is required to define specific treatment recommendations and expected outcomes for PVOD in the setting of COVID-19.
Collapse
Affiliation(s)
- Samuel N. Helman
- From the Department of Otolaryngology - Head and Neck Surgery, Weill Cornell Medical College, New York, New York
| | - Jonah Adler
- School of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Aria Jafari
- Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, Washington
| | - Sasha Bennett
- School of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jackson R. Vuncannon
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Ashley C. Cozart
- College of Medicine, University of Central Florida College of Medicine, Orlando, Florida; and
| | - Sarah K. Wise
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Merin E. Kuruvilla
- Division of Pulmonary, Allergy, Critical Care, and Sleep, Emory University School of Medicine, Atlanta, Georgia
| | - Joshua M. Levy
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
8
|
Sarohan AR, Kızıl M, İnkaya AÇ, Mahmud S, Akram M, Cen O. A novel hypothesis for COVID-19 pathogenesis: Retinol depletion and retinoid signaling disorder. Cell Signal 2021; 87:110121. [PMID: 34438017 PMCID: PMC8380544 DOI: 10.1016/j.cellsig.2021.110121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
The SARS-CoV-2 virus has caused a worldwide COVID-19 pandemic. In less than a year and a half, more than 200 million people have been infected and more than four million have died. Despite some improvement in the treatment strategies, no definitive treatment protocol has been developed. The pathogenesis of the disease has not been clearly elucidated yet. A clear understanding of its pathogenesis will help develop effective vaccines and drugs. The immunopathogenesis of COVID-19 is characteristic with acute respiratory distress syndrome and multiorgan involvement with impaired Type I interferon response and hyperinflammation. The destructive systemic effects of COVID-19 cannot be explained simply by the viral tropism through the ACE2 and TMPRSS2 receptors. In addition, the recently identified mutations cannot fully explain the defect in all cases of Type I interferon synthesis. We hypothesize that retinol depletion and resulting impaired retinoid signaling play a central role in the COVID-19 pathogenesis that is characteristic for dysregulated immune system, defect in Type I interferon synthesis, severe inflammatory process, and destructive systemic multiorgan involvement. Viral RNA recognition mechanism through RIG-I receptors can quickly consume a large amount of the body's retinoid reserve, which causes the retinol levels to fall below the normal serum levels. This causes retinoid insufficiency and impaired retinoid signaling, which leads to interruption in Type I interferon synthesis and an excessive inflammation. Therefore, reconstitution of the retinoid signaling may prove to be a valid strategy for management of COVID-19 as well for some other chronic, degenerative, inflammatory, and autoimmune diseases.
Collapse
Affiliation(s)
- Aziz Rodan Sarohan
- Department of Obstetrics and Gynecology, Medicina Plus Medical Center, 75. Yıl Mah., İstiklal Cad. 1305 Sk., No: 16 Sultangazi, İstanbul, Turkey.
| | - Murat Kızıl
- Department of Chemistry, Faculty of Science, Dicle University. Diyarbakır, Turkey
| | - Ahmet Çağkan İnkaya
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey
| | - Shokhan Mahmud
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Muhammad Akram
- Department of Eastern Medicine Government College, University Faisalabad, Pakistan
| | - Osman Cen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America; Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, United States of America
| |
Collapse
|
9
|
Neurosensory Rehabilitation and Olfactory Network Recovery in Covid-19-related Olfactory Dysfunction. Brain Sci 2021; 11:brainsci11060686. [PMID: 34071007 PMCID: PMC8224593 DOI: 10.3390/brainsci11060686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Non-conductive olfactory dysfunction (OD) is an important extra-pulmonary manifestation of coronavirus disease 2019 (COVID-19). Olfactory bulb (OB) volume loss and olfactory network functional connectivity (FC) defects were identified in two patients suffering from prolonged COVID-19-related OD. One patient received olfactory treatment (OT) by the combination of oral vitamin A and smell training via the novel electronic portable aromatic rehabilitation (EPAR) diffusers. After four-weeks of OT, clinical recuperation of smell was correlated with interval increase of bilateral OB volumes [right: 22.5 mm3 to 49.5 mm3 (120%), left: 37.5 mm3 to 42 mm3 (12%)] and improvement of mean olfactory FC [0.09 to 0.15 (66.6%)].
Collapse
|
10
|
Dubey A, Yu J, Liu T, Kane MA, Saint-Jeannet JP. Retinoic acid production, regulation and containment through Zic1, Pitx2c and Cyp26c1 control cranial placode specification. Development 2021; 148:dev193227. [PMID: 33531433 PMCID: PMC7903997 DOI: 10.1242/dev.193227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022]
Abstract
All paired sensory organs arise from a common precursor domain called the pre-placodal region (PPR). In Xenopus, Zic1 non-cell autonomously regulates PPR formation by activating retinoic acid (RA) production. Here, we have identified two Zic1 targets, the RA catabolizing enzyme Cyp26c1 and the transcription factor Pitx2c, expressed in the vicinity of the PPR as being crucially required for maintaining low RA levels in a spatially restricted, PPR-adjacent domain. Morpholino- or CRISPR/Cas9-mediated Cyp26c1 knockdown abrogated PPR gene expression, yielding defective cranial placodes. Direct measurement of RA levels revealed that this is mediated by a mechanism involving excess RA accumulation. Furthermore, we show that pitx2c is activated by RA and required for Cyp26c1 expression in a domain-specific manner through induction of FGF8. We propose that Zic1 anteriorly establishes a program of RA containment and regulation through activation of Cyp26c1 and Pitx2c that cooperates to promote PPR specification in a spatially restricted domain.
Collapse
Affiliation(s)
- Aditi Dubey
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Tian Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
11
|
LaMantia AS. Why Does the Face Predict the Brain? Neural Crest Induction, Craniofacial Morphogenesis, and Neural Circuit Development. Front Physiol 2020; 11:610970. [PMID: 33362582 PMCID: PMC7759552 DOI: 10.3389/fphys.2020.610970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchephalic and rhombencephalic neural crest cells generate the craniofacial skeleton, special sensory organs, and subsets of cranial sensory receptor neurons. They do so while preserving the anterior-posterior (A-P) identity of their neural tube origins. This organizational principle is paralleled by central nervous system circuits that receive and process information from facial structures whose A-P identity is in register with that in the brain. Prior to morphogenesis of the face and its circuits, however, neural crest cells act as "inductive ambassadors" from distinct regions of the neural tube to induce differentiation of target craniofacial domains and establish an initial interface between the brain and face. At every site of bilateral, non-axial secondary induction, neural crest constitutes all or some of the mesenchymal compartment for non-axial mesenchymal/epithelial (M/E) interactions. Thus, for epithelial domains in the craniofacial primordia, aortic arches, limbs, the spinal cord, and the forebrain (Fb), neural crest-derived mesenchymal cells establish local sources of inductive signaling molecules that drive morphogenesis and cellular differentiation. This common mechanism for building brains, faces, limbs, and hearts, A-P axis specified, neural crest-mediated M/E induction, coordinates differentiation of distal structures, peripheral neurons that provide their sensory or autonomic innervation in some cases, and central neural circuits that regulate their behavioral functions. The essential role of this neural crest-mediated mechanism identifies it as a prime target for pathogenesis in a broad range of neurodevelopmental disorders. Thus, the face and the brain "predict" one another, and this mutual developmental relationship provides a key target for disruption by developmental pathology.
Collapse
Affiliation(s)
- Anthony-Samuel LaMantia
- Laboratory of Developmental Disorders and Genetics and Center for Neurobiology Research, Fralin Biomedical Research Institute, Department of Pediatrics, Virginia Tech-Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
12
|
Genomic approach to explore altered signaling networks of olfaction in response to diesel exhaust particles in mice. Sci Rep 2020; 10:16972. [PMID: 33046809 PMCID: PMC7550584 DOI: 10.1038/s41598-020-74109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/10/2020] [Indexed: 11/28/2022] Open
Abstract
Airborne pollutants have detrimental effect on the human body and the environment. Diesel exhaust particles (DEPs) are known to be major component of particulate matter (PM) and cause respiratory diseases and neurotoxicity. However, the effects of air pollutants on the sensory nervous system, especially on the olfactory sense, have not been well studied. Herein, we aimed to explore DEP-induced changes in the olfactory perception process. Olfactory sensitivity test was performed after DEP inhalation in mice. Microarray was conducted to determine the differentially expressed genes, which were then utilized to build a network focused on neurotoxicity. Exposure to DEPs significantly reduced sniffing in mice, indicating a disturbance in the olfactory perception process. Through network analysis, we proposed five genes (Cfap69, Cyp26b1, Il1b, Il6, and Synpr) as biomarker candidates for DEP-mediated olfactory dysfunction. Changes in their expression might provoke malfunction of sensory transduction by inhibiting olfactory receptors, neurite outgrowth, and axonal guidance as well as lead to failure of recovery from neuroinflammatory damage through inhibition of nerve regeneration. Thus, we suggest the potential mechanism underlying DEPs-mediated olfactory disorders using genomic approach. Our study will be helpful to future researchers to assess an individual’s olfactory vulnerability following exposure to inhalational environmental hazards.
Collapse
|
13
|
Increased Retinoic Acid Catabolism in Olfactory Sensory Neurons Activates Dormant Tissue-Specific Stem Cells and Accelerates Age-Related Metaplasia. J Neurosci 2020; 40:4116-4129. [PMID: 32385093 DOI: 10.1523/jneurosci.2468-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/03/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022] Open
Abstract
The cellular and molecular basis of metaplasia and declining neurogenesis in the aging olfactory epithelium (OE) remains unknown. The horizontal basal cell (HBC) is a dormant tissue-specific stem cell presumed to only be forced into self-renewal and differentiation by injury. Here we analyze male and female mice and show that HBCs also are activated with increasing age as well as non-cell-autonomously by increased expression of the retinoic acid-degrading enzyme CYP26B1. Activating stimuli induce HBCs throughout OE to acquire a rounded morphology and express IP3R3, which is an inositol-1,4,5-trisphosphate receptor constitutively expressed in stem cells of the adjacent respiratory epithelium. Odor/air stimulates CYP26B1 expression in olfactory sensory neurons mainly located in the dorsomedial OE, which is spatially inverse to ventrolateral constitutive expression of the retinoic acid-synthesizing enzyme (RALDH1) in supporting cells. In ventrolateral OE, HBCs express low p63 levels and preferentially differentiate instead of self-renewing when activated. When activated by chronic CYP26B1 expression, repeated injury, or old age, ventrolateral HBCs diminish in number and generate a novel type of metaplastic respiratory cell that is RALDH- and secretes a mucin-like mucus barrier protein (FcγBP). Conversely, in the dorsomedial OE, CYP26B1 inhibits injury-induced and age-related replacement of RALDH- supporting cells with RALDH1+ ciliated respiratory cells. Collectively, these results support the concept that inositol-1,4,5-trisphosphate type 3 receptor signaling in HBCs, together with altered retinoic acid metabolism within the niche, promote HBC lineage commitment toward two types of respiratory cells that will maintain epithelial barrier function once the capacity to regenerate OE cells ceases.SIGNIFICANCE STATEMENT Little is known about signals that activate dormant stem cells to self-renew and regenerate odor-detecting neurons and other olfactory cell types after loss due to injury, infection, or toxin exposure in the nose. It is also unknown why the stem cells do not prevent age-dependent decline of odor-detecting neurons. We show that (1) stem cells are kept inactive by the vitamin A derivative retinoic acid, which is synthesized and degraded locally by olfactory cells; (2) old age as well as repeated injuries activate the stem cells and exhaust their potential to produce olfactory cells; and (3) exhausted stem cells alter the local retinoic acid metabolism and maintain the epithelial tissue barrier by generating airway cells instead of olfactory cells.
Collapse
|
14
|
How Dietary Deficiency Studies Have Illuminated the Many Roles of Vitamin A During Development and Postnatal Life. Subcell Biochem 2020; 95:1-26. [PMID: 32297294 DOI: 10.1007/978-3-030-42282-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vitamin A deficiency studies have been carried out since the early 1900s. Initially, these studies led to the identification of fat soluble A as a unique and essential component of the diet of rodents, birds, and humans. Continuing work established that vitamin A deficiency produces biochemical and physiological dysfunction in almost every vertebrate organ system from conception to death. This chapter begins with a review of representative historical and current studies that used the nutritional vitamin A deficiency research model to gain an understanding of the many roles vitamin A plays in prenatal and postnatal development and well-being. This is followed by a discussion of recent studies that show specific effects of vitamin A deficiency on prenatal development and postnatal maintenance of the olfactory epithelium, brain, and heart. Vitamin A deficiency studies have helped define the necessity of vitamin A for the health of all vertebrates, including farm animals, but the breadth of deficient states and their individual effects on health have not been fully determined. Future work is needed to develop tools to assess the complete vitamin A status of an organism and to define the levels of vitamin A that optimally support molecular and systems level processes during all ages and stages of life.
Collapse
|
15
|
Ma Z, Liu J. Retinoid X receptor modulates olfactory attraction through Gα signaling in the migratory locusts. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103265. [PMID: 31704156 DOI: 10.1016/j.ibmb.2019.103265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/17/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Animals communicate with each other in aggregating for survival and adaptation. Solitary locusts show an olfactory transition from repulsion to attraction in aggregation. However, the molecular mechanism underlying this transition is less well known. In this study, we explored differentially expressed transcripts (DETs) during locust aggregation and identified that a functional class of general metabolism encompassed the largest number of DETs among all analyzed gene classes. Within this functional class of general metabolism, oxidoreductase mediates synthesis of retinoic acid (RA) from vitamin A and other metabolites derived from carbohydrates. The expression levels of retinaldehyde hydroxylase 1 (raldh1) and retinoid X receptor (rxr), which are two crucial genes for RA synthesis and signaling, were upregulated during 4 h of crowding. Knockdown of raldh1 and rxr by RNA interference (RNAi) in the brains resulted in the loss of olfactory attraction. Moreover, inhibition of RXR by RNAi resulted in downregulated expression of Gna14, a member of the Gα subfamily that transduces signals in G protein-coupled receptor (GPCR) pathways. Abrogating RXR signaling and Gna14 by RNAi knockdown inhibited the function of dopamine receptor 1 (DopR1) and octopamine receptor α1 (OctαR1) in modulating olfactory attraction. RXR signaling is essential for DopR1 and OctαR1 to mediate olfactory attraction. This study showed that RXR signaling mediates attraction by Gα signaling and confirmed a novel link between nuclear receptor RXR and the membrane receptor GPCRs in modulating olfactory attraction.
Collapse
Affiliation(s)
- Zongyuan Ma
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jipeng Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
16
|
Wang S, Yu J, Kane MA, Moise AR. Modulation of retinoid signaling: therapeutic opportunities in organ fibrosis and repair. Pharmacol Ther 2019; 205:107415. [PMID: 31629008 DOI: 10.1016/j.pharmthera.2019.107415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
The vitamin A metabolite, retinoic acid, is an important signaling molecule during embryonic development serving critical roles in morphogenesis, organ patterning and skeletal and neural development. Retinoic acid is also important in postnatal life in the maintenance of tissue homeostasis, while retinoid-based therapies have long been used in the treatment of a variety of cancers and skin disorders. As the number of people living with chronic disorders continues to increase, there is great interest in extending the use of retinoid therapies in promoting the maintenance and repair of adult tissues. However, there are still many conflicting results as we struggle to understand the role of retinoic acid in the multitude of processes that contribute to tissue injury and repair. This review will assess our current knowledge of the role retinoic acid signaling in the development of fibroblasts, and their transformation to myofibroblasts, and of the potential use of retinoid therapies in the treatment of organ fibrosis.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
17
|
Peterson J, Lin B, Barrios-Camacho CM, Herrick DB, Holbrook EH, Jang W, Coleman JH, Schwob JE. Activating a Reserve Neural Stem Cell Population In Vitro Enables Engraftment and Multipotency after Transplantation. Stem Cell Reports 2019; 12:680-695. [PMID: 30930245 PMCID: PMC6450498 DOI: 10.1016/j.stemcr.2019.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022] Open
Abstract
The olfactory epithelium (OE) regenerates after injury via two types of tissue stem cells: active globose cells (GBCs) and dormant horizontal basal cells (HBCs). HBCs are roused to activated status by OE injury when P63 levels fall. However, an in-depth understanding of activation requires a system for culturing them that maintains both their self-renewal and multipotency while preventing spontaneous differentiation. Here, we demonstrate that mouse, rat, and human HBCs can be cultured and passaged as P63+ multipotent cells. HBCs in vitro closely resemble HBCs in vivo based on immunocytochemical and transcriptomic comparisons. Genetic lineage analysis demonstrates that HBCs in culture arise from both tissue-derived HBCs and multipotent GBCs. Treatment with retinoic acid induces neuronal and non-neuronal differentiation and primes cultured HBCs for transplantation into the lesioned OE. Engrafted HBCs generate all OE cell types, including olfactory sensory neurons, confirming that HBC multipotency and neurocompetency are maintained in culture.
Collapse
Affiliation(s)
- Jesse Peterson
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Brian Lin
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Camila M Barrios-Camacho
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Daniel B Herrick
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Eric H Holbrook
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Woochan Jang
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Julie H Coleman
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - James E Schwob
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
18
|
Grifone R, Saquet A, Xu Z, Shi DL. Expression patterns of Rbm24 in lens, nasal epithelium, and inner ear during mouse embryonic development. Dev Dyn 2018; 247:1160-1169. [PMID: 30133047 DOI: 10.1002/dvdy.24666] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/13/2018] [Accepted: 08/17/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND RNA-binding proteins plays critical roles in several post-transcriptional regulatory processes. The RNA-binding protein, Rbm24, has been shown to be involved in the development of the heart and skeletal muscles by regulating different post-transcriptional processes such as splicing and stabilization of specific target mRNAs. Here, by performing a detailed expression and localization analysis in mice embryos, we show that Rbm24 protein is not only expressed in heart and skeletal muscles as previously reported, but it is also strongly and specifically detected in specific regions of all the head sensory organs during mouse development. RESULTS Rbm24 expression is indeed found to be activated in the lens, in the sensory olfactory epithelium and in mechanosensory cells of the auditory and vestibular systems. Within these territories, Rbm24 is shown to be restricted to distinct subdomains, potentially regulating cell specificity and proliferation. Moreover, Rbm24 protein is found to be restricted to the cytoplasmic compartment in all these organs, thus providing clues to the posttranscriptional activity that it may exert in these cells. CONCLUSIONS Altogether, these results highlight that Rbm24 may potentially function as a novel key regulator for the development of the eye, nasal epithelium, and inner ear in vertebrates. Developmental Dynamics 247:1160-1169, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Raphaëlle Grifone
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, IBPS-Developmental Biology Laboratory, Paris, France
| | - Audrey Saquet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, IBPS-Developmental Biology Laboratory, Paris, France
| | - Zhigang Xu
- School of Life Sciences, Shandong University, Jinan, China
| | - De-Li Shi
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, IBPS-Developmental Biology Laboratory, Paris, France
| |
Collapse
|
19
|
Zieger E, Garbarino G, Robert NSM, Yu JK, Croce JC, Candiani S, Schubert M. Retinoic acid signaling and neurogenic niche regulation in the developing peripheral nervous system of the cephalochordate amphioxus. Cell Mol Life Sci 2018; 75:2407-2429. [PMID: 29387904 PMCID: PMC11105557 DOI: 10.1007/s00018-017-2734-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
The retinoic acid (RA) signaling pathway regulates axial patterning and neurogenesis in the developing central nervous system (CNS) of chordates, but little is known about its roles during peripheral nervous system (PNS) formation and about how these roles might have evolved. This study assesses the requirement of RA signaling for establishing a functional PNS in the cephalochordate amphioxus, the best available stand-in for the ancestral chordate condition. Pharmacological manipulation of RA signaling levels during embryogenesis reduces the ability of amphioxus larvae to respond to sensory stimulation and alters the number and distribution of ectodermal sensory neurons (ESNs) in a stage- and context-dependent manner. Using gene expression assays combined with immunohistochemistry, we show that this is because RA signaling specifically acts on a small population of soxb1c-expressing ESN progenitors, which form a neurogenic niche in the trunk ectoderm, to modulate ESN production during elongation of the larval body. Our findings reveal an important role for RA signaling in regulating neurogenic niche activity in the larval amphioxus PNS. Although only few studies have addressed this issue so far, comparable RA signaling functions have been reported for neurogenic niches in the CNS and in certain neurogenic placode derivatives of vertebrates. Accordingly, the here-described mechanism is likely a conserved feature of chordate embryonic and adult neural development.
Collapse
Affiliation(s)
- Elisabeth Zieger
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, Sorbonne Universités, UPMC Université Paris 06, CNRS, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Greta Garbarino
- Department of Earth, Environment and Life Sciences (Dipartimento di Scienze della Terra dell'Ambiente e della Vita, DISTAV), University of Genoa, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Nicolas S M Robert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, Sorbonne Universités, UPMC Université Paris 06, CNRS, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jenifer C Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, Sorbonne Universités, UPMC Université Paris 06, CNRS, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences (Dipartimento di Scienze della Terra dell'Ambiente e della Vita, DISTAV), University of Genoa, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, Sorbonne Universités, UPMC Université Paris 06, CNRS, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France.
| |
Collapse
|
20
|
Dubey A, Rose RE, Jones DR, Saint-Jeannet JP. Generating retinoic acid gradients by local degradation during craniofacial development: One cell's cue is another cell's poison. Genesis 2018; 56:10.1002/dvg.23091. [PMID: 29330906 PMCID: PMC5818312 DOI: 10.1002/dvg.23091] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/02/2023]
Abstract
Retinoic acid (RA) is a vital morphogen for early patterning and organogenesis in the developing embryo. RA is a diffusible, lipophilic molecule that signals via nuclear RA receptor heterodimeric units that regulate gene expression by interacting with RA response elements in promoters of a significant number of genes. For precise RA signaling, a robust gradient of the morphogen is required. The developing embryo contains regions that produce RA, and specific intracellular concentrations of RA are created through local degradation mediated by Cyp26 enzymes. In order to elucidate the mechanisms by which RA executes precise developmental programs, the kinetics of RA metabolism must be clearly understood. Recent advances in techniques for endogenous RA detection and quantification have paved the way for mechanistic studies to shed light on downstream gene expression regulation coordinated by RA. It is increasingly coming to light that RA signaling operates not only at precise concentrations but also employs mechanisms of degradation and feedback inhibition to self-regulate its levels. A global gradient of RA throughout the embryo is often found concurrently with several local gradients, created by juxtaposed domains of RA synthesis and degradation. The existence of such local gradients has been found especially critical for the proper development of craniofacial structures that arise from the neural crest and the cranial placode populations. In this review, we summarize the current understanding of how local gradients of RA are established in the embryo and their impact on craniofacial development.
Collapse
Affiliation(s)
- Aditi Dubey
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry
| | - Rebecca E. Rose
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY, USA
| | - Drew R. Jones
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY, USA
| | | |
Collapse
|
21
|
Gkikas D, Tsampoula M, Politis PK. Nuclear receptors in neural stem/progenitor cell homeostasis. Cell Mol Life Sci 2017; 74:4097-4120. [PMID: 28638936 PMCID: PMC11107725 DOI: 10.1007/s00018-017-2571-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
In the central nervous system, embryonic and adult neural stem/progenitor cells (NSCs) generate the enormous variety and huge numbers of neuronal and glial cells that provide structural and functional support in the brain and spinal cord. Over the last decades, nuclear receptors and their natural ligands have emerged as critical regulators of NSC homeostasis during embryonic development and adult life. Furthermore, substantial progress has been achieved towards elucidating the molecular mechanisms of nuclear receptors action in proliferative and differentiation capacities of NSCs. Aberrant expression or function of nuclear receptors in NSCs also contributes to the pathogenesis of various nervous system diseases. Here, we review recent advances in our understanding of the regulatory roles of steroid, non-steroid, and orphan nuclear receptors in NSC fate decisions. These studies establish nuclear receptors as key therapeutic targets in brain diseases.
Collapse
Affiliation(s)
- Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece.
| |
Collapse
|
22
|
Kim DH, Kim SW, Hwang SH, Kim BG, Kang JM, Cho JH, Park YJ, Kim SW. Prognosis of Olfactory Dysfunction according to Etiology and Timing of Treatment. Otolaryngol Head Neck Surg 2016; 156:371-377. [PMID: 28145844 DOI: 10.1177/0194599816679952] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective We evaluated the severity of olfactory impairment according to risk factors, compared responses with risk factors and treatment timing, and investigated prognosis according to treatments. Study design Case series with chart review. Setting Tertiary referral center. Subjects and Methods We retrospectively reviewed medical records of patients complaining of loss of their sense of smell between January 2006 and May 2016. In total, 491 patients were included. We evaluated olfactory function using the Connecticut Chemosensory Clinical Research Center test (threshold test) and Cross-cultural Smell Identification Test. Results Post-upper respiratory infection patients showed better results than those with other risk factors (59.6% recovered). Patients with head trauma (12.5% recovered) and congenital olfactory dysfunction (0% recovered) showed poorer results. Earlier treatment showed better olfactory recovery outcomes for post-upper respiratory infection ( P = .001), head trauma ( P = .022), and nasal/sinus surgery ( P = .009). Xerostomia ( P = .73) and idiopathy ( P = .365) showed no significant difference in terms of treatment timing. The threshold test better reflected subjective recovery than the identification test. The systemic + topical steroid group and the systemic steroid treatment group both showed better smell recovery outcomes than the group with topical treatment alone (both, P < .001). However, there was no significant difference between the systemic treatment group and the systemic + topical treatment group ( P = .978). Conclusions Our findings suggest that the duration of smell loss is important for better olfactory outcomes with most etiologies. Also, the effects of systemic steroids were better than those of topical steroids, regardless of combined treatment.
Collapse
Affiliation(s)
- Do Hyun Kim
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Won Kim
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Se Hwan Hwang
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Guk Kim
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jun Myung Kang
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Hee Cho
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong Jin Park
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soo Whan Kim
- 1 Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
23
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
24
|
The Stimulus-Dependent Gradient of Cyp26B1+ Olfactory Sensory Neurons Is Necessary for the Functional Integrity of the Olfactory Sensory Map. J Neurosci 2016; 35:13807-18. [PMID: 26446231 DOI: 10.1523/jneurosci.2247-15.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Stimulus-dependent expression of the retinoic acid-inactivating enzyme Cyp26B1 in olfactory sensory neurons (OSNs) forms a dorsomedial (DM)-ventrolateral (VL) gradient in the mouse olfactory epithelium. The gradient correlates spatially with different rates of OSN turnover, as well as the functional organization of the olfactory sensory map, into overlapping zones of OSNs that express different odorant receptors (ORs). Here, we analyze transgenic mice that, instead of a stimulus-dependent Cyp26B1 gradient, have constitutive Cyp26B1 levels in all OSNs. Starting postnatally, OSN differentiation is decreased and progenitor proliferation is increased. Initially, these effects are selective to the VL-most zone and correlate with reduced ATF5 expression and accumulation of OSNs that do not express ORs. Transcription factor ATF5 is known to stabilize OR gene choice via onset of the stimulus-transducing enzyme adenylyl cyclase type 3. During further postnatal development of Cyp26B1 mice, an anomalous DM(high)-VL(low) expression gradient of adenylyl cyclase type 3 appears, which coincides with altered OR frequencies and OR zones. All OR zones expand ventrolaterally except for the VL-most zone, which contracts. The expansion results in an increased zonal overlap that is also evident in the innervation pattern of OSN axon terminals in olfactory bulbs. These findings together identify a mechanism by which postnatal sensory-stimulated vitamin A metabolism modifies the generation of spatially specified neurons and their precise topographic connectivity. The distributed patterns of vitamin A-metabolizing enzymes in the nervous system suggest the possibility that the mechanism may also regulate neuroplasticity in circuits other than the olfactory sensory map. SIGNIFICANCE STATEMENT The mouse olfactory sensory map is functionally wired according to precise axonal projections of spatially organized classes of olfactory sensory neurons in the nose. The genetically controlled mechanisms that regulate the development of the olfactory sensory map are beginning to be elucidated. Little is known about mechanisms by which sensory stimuli shape the organization of the map after birth. We show that a stimulus-dependent gradient of a retinoic acid-inactivating enzyme Cyp26B1 modifies the composition, localization, and axonal projections of olfactory sensory neuron classes. The mechanism is novel and suggests the interesting possibility that local vitamin A metabolism could also be a mediator of stimulus-dependent modifications of precise spatial connectivity in other parts of the nervous system.
Collapse
|
25
|
Current Neurogenic and Neuroprotective Strategies to Prevent and Treat Neurodegenerative and Neuropsychiatric Disorders. Neuromolecular Med 2015; 17:404-22. [PMID: 26374113 DOI: 10.1007/s12017-015-8369-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/22/2015] [Indexed: 12/31/2022]
Abstract
The adult central nervous system is commonly known to have a very limited regenerative capacity. The presence of functional stem cells in the brain can therefore be seen as a paradox, since in other organs these are known to counterbalance cell loss derived from pathological conditions. This fact has therefore raised the possibility to stimulate neural stem cell differentiation and proliferation or survival by either stem cell replacement therapy or direct administration of neurotrophic factors or other proneurogenic molecules, which in turn has also originated regenerative medicine for the treatment of otherwise incurable neurodegenerative and neuropsychiatric disorders that take a huge toll on society. This may be facilitated by the fact that many of these disorders converge on similar pathophysiological pathways: excitotoxicity, oxidative stress, neuroinflammation, mitochondrial failure, excessive intracellular calcium and apoptosis. This review will therefore focus on the most promising achievements in promoting neuroprotection and neuroregeneration reported to date.
Collapse
|
26
|
Sato S, Yajima H, Furuta Y, Ikeda K, Kawakami K. Activation of Six1 Expression in Vertebrate Sensory Neurons. PLoS One 2015; 10:e0136666. [PMID: 26313368 PMCID: PMC4551851 DOI: 10.1371/journal.pone.0136666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022] Open
Abstract
SIX1 homeodomain protein is one of the essential key regulators of sensory organ development. Six1-deficient mice lack the olfactory epithelium, vomeronasal organs, cochlea, vestibule and vestibuloacoustic ganglion, and also show poor neural differentiation in the distal part of the cranial ganglia. Simultaneous loss of both Six1 and Six4 leads to additional abnormalities such as small trigeminal ganglion and abnormal dorsal root ganglia (DRG). The aim of this study was to understand the molecular mechanism that controls Six1 expression in sensory organs, particularly in the trigeminal ganglion and DRG. To this end, we focused on the sensory ganglia-specific Six1 enhancer (Six1-8) conserved between chick and mouse. In vivo reporter assays using both animals identified an important core region comprising binding consensus sequences for several transcription factors including nuclear hormone receptors, TCF/LEF, SMAD, POU homeodomain and basic-helix-loop-helix proteins. The results provided information on upstream factors and signals potentially relevant to Six1 regulation in sensory neurons. We also report the establishment of a new transgenic mouse line (mSix1-8-NLSCre) that expresses Cre recombinase under the control of mouse Six1-8. Cre-mediated recombination was detected specifically in ISL1/2-positive sensory neurons of Six1-positive cranial sensory ganglia and DRG. The unique features of the mSix1-8-NLSCre line are the absence of Cre-mediated recombination in SOX10-positive glial cells and central nervous system and ability to induce recombination in a subset of neurons derived from the olfactory placode/epithelium. This mouse model can be potentially used to advance research on sensory development.
Collapse
Affiliation(s)
- Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- * E-mail:
| | - Hiroshi Yajima
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit and Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), Kobe, Hyogo, Japan
| | - Keiko Ikeda
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
27
|
Cellular and molecular mechanisms regulating embryonic neurogenesis in the rodent olfactory epithelium. Int J Dev Neurosci 2014; 37:76-86. [PMID: 25003986 DOI: 10.1016/j.ijdevneu.2014.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 02/08/2023] Open
Abstract
Mechanisms that regulate cellular differentiation in developing embryos are maintained across multiple physiological systems, including the nervous system where neurons and glia are generated. The olfactory epithelium, which arises from the olfactory pit, is a stratified tissue in which the stepwise generation of neurons and support cells can easily be assessed and followed during embryogenesis and throughout adulthood. During olfactory epithelium morphogenesis, progenitor cells respond to factors that control their proliferation, survival, and differentiation in order to generate olfactory receptor neurons that detect odorants in the environment and glia-like sustentacular cells. The tight temporal regulation of expression of proneural genes in dividing progenitor cells, including Mash-1, Neurogenin-1, and NeuroD1, plays a central role in the production of olfactory receptor neurons. Multiple factors that either positively or negatively affect the generation of olfactory receptor neurons have been identified and shown to impinge on the transcriptional regulatory network in dividing progenitor cells. Several growth factors, such as FGF-8, act to promote neurogenesis by ensuring survival of progenitor cells that will give rise to olfactory receptor neurons. In contrast, other molecules, including members of the large TGF-β family of proteins, have negative impacts on neurogenesis by restricting progenitor cell proliferation and stalling their differentiation. Since recent reviews have focused on neurogenesis in the regenerating adult olfactory epithelium, this review describes neurogenesis at embryonic stages of olfactory epithelium development and summarizes our current understanding of how both cell intrinsic and extrinsic factors control this process.
Collapse
|
28
|
Brann JH, Firestein SJ. A lifetime of neurogenesis in the olfactory system. Front Neurosci 2014; 8:182. [PMID: 25018692 PMCID: PMC4071289 DOI: 10.3389/fnins.2014.00182] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022] Open
Abstract
Neurogenesis continues well beyond embryonic and early postnatal ages in three areas of the nervous system. The subgranular zone supplies new neurons to the dentate gyrus of the hippocampus. The subventricular zone supplies new interneurons to the olfactory bulb, and the olfactory neuroepithelia generate new excitatory sensory neurons that send their axons to the olfactory bulb. The latter two areas are of particular interest as they contribute new neurons to both ends of a first-level circuit governing olfactory perception. The vomeronasal organ and the main olfactory epithelium comprise the primary peripheral olfactory epithelia. These anatomically distinct areas share common features, as each exhibits extensive neurogenesis well beyond the juvenile phase of development. Here we will discuss the effect of age on the structural and functional significance of neurogenesis in the vomeronasal and olfactory epithelia, from juvenile to advanced adult ages, in several common model systems. We will next discuss how age affects the regenerative capacity of these neural stem cells in response to injury. Finally, we will consider the integration of newborn neurons into an existing circuit as it is modified by the age of the animal.
Collapse
Affiliation(s)
- Jessica H Brann
- Department of Biology, Loyola University Chicago Chicago, IL, USA
| | - Stuart J Firestein
- Department of Biological Sciences, Columbia University New York, NY, USA ; Department of Neuroscience, Columbia University New York, NY, USA
| |
Collapse
|
29
|
Saint-Jeannet JP, Moody SA. Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev Biol 2014; 389:13-27. [PMID: 24576539 DOI: 10.1016/j.ydbio.2014.02.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/17/2022]
Abstract
Specialized sensory organs in the vertebrate head originate from thickenings in the embryonic ectoderm called cranial sensory placodes. These placodes, as well as the neural crest, arise from a zone of ectoderm that borders the neural plate. This zone separates into a precursor field for the neural crest that lies adjacent to the neural plate, and a precursor field for the placodes, called the pre-placodal region (PPR), that lies lateral to the neural crest. The neural crest domain and the PPR are established in response to signaling events mediated by BMPs, FGFs and Wnts, which differentially activate transcription factors in these territories. In the PPR, members of the Six and Eya families, act in part to repress neural crest specific transcription factors, thus solidifying a placode developmental program. Subsequently, in response to environmental cues the PPR is further subdivided into placodal territories with distinct characteristics, each expressing a specific repertoire of transcription factors that provide the necessary information for their progression to mature sensory organs. In this review we summarize recent advances in the characterization of the signaling molecules and transcriptional effectors that regulate PPR specification and its subdivision into placodal domains with distinct identities.
Collapse
Affiliation(s)
- Jean-Pierre Saint-Jeannet
- Department of Basic Science and Craniofacial Biology, New York University, College of Dentistry, 345 East 24th Street, New York City, NY 10010, USA.
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC 20037, USA.
| |
Collapse
|
30
|
Sensational placodes: neurogenesis in the otic and olfactory systems. Dev Biol 2014; 389:50-67. [PMID: 24508480 PMCID: PMC3988839 DOI: 10.1016/j.ydbio.2014.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/22/2022]
Abstract
For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.
Collapse
|
31
|
Lassiter RNT, Stark MR, Zhao T, Zhou CJ. Signaling mechanisms controlling cranial placode neurogenesis and delamination. Dev Biol 2013; 389:39-49. [PMID: 24315854 DOI: 10.1016/j.ydbio.2013.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 01/17/2023]
Abstract
The neurogenic cranial placodes are a unique transient epithelial niche of neural progenitor cells that give rise to multiple derivatives of the peripheral nervous system, particularly, the sensory neurons. Placode neurogenesis occurs throughout an extended period of time with epithelial cells continually recruited as neural progenitor cells. Sensory neuron development in the trigeminal, epibranchial, otic, and olfactory placodes coincides with detachment of these neuroblasts from the encompassing epithelial sheet, leading to delamination and ingression into the mesenchyme where they continue to differentiate as neurons. Multiple signaling pathways are known to direct placodal development. This review defines the signaling pathways working at the finite spatiotemporal period when neuronal selection within the placodes occurs, and neuroblasts concomitantly delaminate from the epithelium. Examining neurogenesis and delamination after initial placodal patterning and specification has revealed a common trend throughout the neurogenic placodes, which suggests that both activated FGF and attenuated Notch signaling activities are required for neurogenesis and changes in epithelial cell adhesion leading to delamination. We also address the varying roles of other pathways such as the Wnt and BMP signaling families during sensory neurogenesis and neuroblast delamination in the differing placodes.
Collapse
Affiliation(s)
- Rhonda N T Lassiter
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, CA 95817, USA; Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Sacramento, CA 95817, USA.
| | - Michael R Stark
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Tianyu Zhao
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, CA 95817, USA; Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, CA 95817, USA; Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Sacramento, CA 95817, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|