1
|
Zhu Y, Zhang Y, He S, Yi S, Feng H, Xia X, Fang X, Gong X, Zhao P. Integrating single-nucleus RNA sequencing and spatial transcriptomics to elucidate a specialized subpopulation of astrocytes, microglia and vascular cells in brains of mouse model of lipopolysaccharide-induced sepsis-associated encephalopathy. J Neuroinflammation 2024; 21:169. [PMID: 38961424 PMCID: PMC11223438 DOI: 10.1186/s12974-024-03161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Understanding the mechanism behind sepsis-associated encephalopathy (SAE) remains a formidable task. This study endeavors to shed light on the complex cellular and molecular alterations that occur in the brains of a mouse model with SAE, ultimately unraveling the underlying mechanisms of this condition. METHODS We established a murine model using intraperitoneal injection of lipopolysaccharide (LPS) in wild type and Anxa1-/- mice and collected brain tissues for analysis at 0-hour, 12-hour, 24-hour, and 72-hour post-injection. Utilizing advanced techniques such as single-nucleus RNA sequencing (snRNA-seq) and Stereo-seq, we conducted a comprehensive characterization of the cellular responses and molecular patterns within the brain. RESULTS Our study uncovered notable temporal differences in the response to LPS challenge between Anxa1-/- (annexin A1 knockout) and wild type mice, specifically at the 12-hour and 24-hour time points following injection. We observed a significant increase in the proportion of Astro-2 and Micro-2 cells in these mice. These cells exhibited a colocalization pattern with the vascular subtype Vas-1, forming a distinct region known as V1A2M2, where Astro-2 and Micro-2 cells surrounded Vas-1. Moreover, through further analysis, we discovered significant upregulation of ligands and receptors such as Timp1-Cd63, Timp1-Itgb1, Timp1-Lrp1, as well as Ccl2-Ackr1 and Cxcl2-Ackr1 within this region. In addition, we observed a notable increase in the expression of Cd14-Itgb1, Cd14-Tlr2, and Cd14-C3ar1 in regions enriched with Micro-2 cells. Additionally, Cxcl10-Sdc4 showed broad upregulation in brain regions containing both Micro-2 and Astro-2 cells. Notably, upon LPS challenge, there was an observed increase in Anxa1 expression in the mouse brain. Furthermore, our study revealed a noteworthy increase in mortality rates following Anxa1 knockdown. However, we did not observe substantial differences in the types, numbers, or distribution of other brain cells between Anxa1-/- and wildtype mice over time. Nevertheless, when comparing the 24-hour post LPS injection time point, we observed a significant decrease in the proportion and distribution of Micro-2 and Astro-2 cells in the vicinity of blood vessels in Anxa1-/- mice. Additionally, we noted reduced expression levels of several ligand-receptor pairs including Cd14-Tlr2, Cd14-C3ar1, Cd14-Itgb1, Cxcl10-Sdc4, Ccl2-Ackr1, and Cxcl2-Ackr1. CONCLUSIONS By combining snRNA-seq and Stereo-seq techniques, our study successfully identified a distinctive cellular colocalization, referred to as a special pathological niche, comprising Astro-2, Micro-2, and Vas-1 cells. Furthermore, we observed an upregulation of ligand-receptor pairs within this niche. These findings suggest a potential association between this cellular arrangement and the underlying mechanisms contributing to SAE or the increased mortality observed in Anxa1 knockdown mice.
Collapse
Grants
- 2021A1515012429 Natural Science Foundation of Guangdong Province, China
- 211102114530659 Shaoguan Municipal Science and Technology Program, China
- 20221807 Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer Program, China
- KEYANSHEN (2023) 01 Research Fund for Joint Laboratory for Digital and Precise Detection of Clinical Pathogens, Yuebei People's Hospital Affiliated to Shantou University Medical College, China
- RS202001 Research Project for Outstanding Scholar of Yuebei People's Hospital, Shantou University Medical College, China
- Research Fund for Joint Laboratory for Digital and Precise Detection of Clinical Pathogens, Yuebei People’s Hospital Affiliated to Shantou University Medical College, China
- Research Project for Outstanding Scholar of Yuebei People’s Hospital, Shantou University Medical College, China
Collapse
Affiliation(s)
- Yanyan Zhu
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan, 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, 512025, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, 512025, China
| | - Yin Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Sheng He
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan, 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, 512025, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, 512025, China
| | - Sanjun Yi
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan, 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, 512025, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, 512025, China
| | - Hao Feng
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, 314001, China
| | - Xianzhu Xia
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan, 512025, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China
| | | | - Xiaoqian Gong
- Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China.
| | - Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, No 133, Huimin Road South, Wujiang District, Shaoguan, 512025, China.
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China.
- Research Center for Interdisciplinary & High-quality Innovative Development in Laboratory Medicine, Shaoguan, 512025, China.
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China.
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, 512025, China.
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, 512025, China.
| |
Collapse
|
2
|
Shtukmaster S, Huber K. The role of the Notch signalling pathway in regulating the balance between neuronal and nonneuronal cells in sympathetic ganglia and the adrenal gland. PLoS One 2023; 18:e0281486. [PMID: 36795650 PMCID: PMC9934399 DOI: 10.1371/journal.pone.0281486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
Sympathetic neurons and endocrine chromaffin cells of the adrenal medulla are catecholaminergic cells that derive from the neural crest. According to the classic model, they develop from a common sympathoadrenal (SA) progenitor that has the ability to differentiate into both sympathetic neurons and chromaffin cells depending on signals provided by their final environment. Our previous data revealed that a single premigratory neural crest cell can give rise to both sympathetic neurons and chromaffin cells, indicating that the fate decision between these cell types occurs after delamination. A more recent study demonstrated that at least half of chromaffin cells arise from a later contribution by Schwann cell precursors. Since Notch signalling is known to be implicated in the regulation of cell fate decisions, we investigated the early role of Notch signalling in regulating the development of neuronal and non-neuronal SA cells within sympathetic ganglia and the adrenal gland. To this end, we implemented both gain and loss of function approaches. Electroporation of premigratory neural crest cells with plasmids encoding Notch inhibitors revealed an elevation in the number of SA cells expressing the catecholaminergic enzyme tyrosine-hydroxylase, with a concomitant reduction in the number of cells expressing the glial marker P0 in both sympathetic ganglia and adrenal gland. As expected, gain of Notch function had the opposite effect. Numbers of neuronal and non-neuronal SA cells were affected differently by Notch inhibition depending on the time of its onset. Together our data show that Notch signalling can regulate the ratio of glial cells, neuronal SA cells and nonneuronal SA cells in both sympathetic ganglia and the adrenal gland.
Collapse
Affiliation(s)
- Stella Shtukmaster
- Department of Anatomy Institute for Anatomy and Cell Biology, University of Marburg, Marburg, Hessen, Germany
- * E-mail:
| | - Katrin Huber
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Weng D, He L, Chen X, Lin H, Ji D, Lu S, Ao L, Wang S. Integrated analysis of transcription factor-mRNA-miRNA regulatory network related to immune characteristics in medullary thyroid carcinoma. Front Immunol 2023; 13:1055412. [PMID: 36713370 PMCID: PMC9877459 DOI: 10.3389/fimmu.2022.1055412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Background Medullary thyroid carcinoma (MTC), a thyroid C cell-derived malignancy, is poorly differentiated and more aggressive than papillary, follicular and oncocytic types of thyroid cancer. The current therapeutic options are limited, with a third of population suffering resistance. The differential gene expression pattern among thyroid cancer subtypes remains unclear. This study intended to explore the exclusive gene profile of MTC and construct a comprehensive regulatory network via integrated analysis, to uncover the potential key biomarkers. Methods Multiple datasets of thyroid and other neuroendocrine tumors were obtained from GEO and TCGA databases. Differentially expressed genes (DEGs) specific in MTC were identified to construct a transcription factor (TF)-mRNA-miRNA network. The impact of the TF-mRNA-miRNA network on tumor immune characteristics and patient survival was further explored by single-sample GSEA (ssGSEA) and ESTIMATE algorithms, as well as univariate combined with multivariate analyses. RT-qPCR, cell viability and apoptosis assays were performed for in vitro validation. Results We identified 81 genes upregulated and 22 downregulated in MTC but not in other types of thyroid tumor compared to the normal thyroid tissue. According to the L1000CDS2 database, potential targeting drugs were found to reverse the expressions of DEGs, with panobinostat (S1030) validated effective for tumor repression in MTC by in vitro experiments. The 103 DEGs exclusively seen in MTC were involved in signal release, muscle contraction, pathways of neurodegeneration diseases, neurotransmitter activity and related amino acid metabolism, and cAMP pathway. Based on the identified 15 hub genes, a TF-mRNA-miRNA linear network, as well as REST-cored coherent feed-forward loop networks, namely REST-KIF5C-miR-223 and REST-CDK5R2-miR-130a were constructed via online prediction and validation by public datasets and our cohort. Hub-gene, TF and miRNA scores in the TF-mRNA-miRNA network were related to immune score, immune cell infiltration and immunotherapeutic molecules in MTC as well as in neuroendocrine tumor of lung and neuroblastoma. Additionally, a high hub-gene score or a low miRNA score indicated good prognoses of neuroendocrine tumors. Conclusion The present study uncovers underlying molecular mechanisms and potential immunotherapy-related targets for the pathogenesis and drug discovery of MTC.
Collapse
Affiliation(s)
- Danfeng Weng
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Long He
- Department of Pain, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiangna Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Huangfeng Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Daihan Ji
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Shuting Lu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Lu Ao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China,*Correspondence: Shenglin Wang, ; Lu Ao,
| | - Shenglin Wang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China,*Correspondence: Shenglin Wang, ; Lu Ao,
| |
Collapse
|
4
|
Kameneva P, Artemov AV, Kastriti ME, Faure L, Olsen TK, Otte J, Erickson A, Semsch B, Andersson ER, Ratz M, Frisén J, Tischler AS, de Krijger RR, Bouderlique T, Akkuratova N, Vorontsova M, Gusev O, Fried K, Sundström E, Mei S, Kogner P, Baryawno N, Kharchenko PV, Adameyko I. Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nat Genet 2021; 53:694-706. [PMID: 33833454 PMCID: PMC7610777 DOI: 10.1038/s41588-021-00818-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Characterization of the progression of cellular states during human embryogenesis can provide insights into the origin of pediatric diseases. We examined the transcriptional states of neural crest- and mesoderm-derived lineages differentiating into adrenal glands, kidneys, endothelium and hematopoietic tissue between post-conception weeks 6 and 14 of human development. Our results reveal transitions connecting the intermediate mesoderm and progenitors of organ primordia, the hematopoietic system and endothelial subtypes. Unexpectedly, by using a combination of single-cell transcriptomics and lineage tracing, we found that intra-adrenal sympathoblasts at that stage are directly derived from nerve-associated Schwann cell precursors, similarly to local chromaffin cells, whereas the majority of extra-adrenal sympathoblasts arise from the migratory neural crest. In humans, this process persists during several weeks of development within the large intra-adrenal ganglia-like structures, which may also serve as reservoirs of originating cells in neuroblastoma.
Collapse
Affiliation(s)
- Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Artem V Artemov
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Thale K Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jörg Otte
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Alek Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Bettina Semsch
- Department of Comparative Medicine, Karolinska Institutet, Solna, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Michael Ratz
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology CS, Utrecht, the Netherlands
- Deptartment of Pathology, University Medical Center Utrecht CX, Utrecht, the Netherlands
| | - Thibault Bouderlique
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Natalia Akkuratova
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Institute of Translational Biomedicine, St. Petersburg University, St. Petersburg, Russia
| | - Maria Vorontsova
- Endocrinology Research Centre, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russian Federation
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Oleg Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
- RIKEN Innovation Center, RIKEN, Yokohama, Japan
- Center for Life Science Technologies, RIKEN, Yokohama, Japan
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden.
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Chan WH, Komada M, Fukushima T, Southard-Smith EM, Anderson CR, Wakefield MJ. RNA-seq of Isolated Chromaffin Cells Highlights the Role of Sex-Linked and Imprinted Genes in Adrenal Medulla Development. Sci Rep 2019; 9:3929. [PMID: 30850723 PMCID: PMC6408553 DOI: 10.1038/s41598-019-40501-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
Adrenal chromaffin cells and sympathetic neurons synthesize and release catecholamines, and both cell types are derived from neural crest precursors. However, they have different developmental histories, with sympathetic neurons derived directly from neural crest precursors while adrenal chromaffin cells arise from neural crest-derived cells that express Schwann cell markers. We have sought to identify the genes, including imprinted genes, which regulate the development of the two cell types in mice. We developed a method of separating the two cell types as early as E12.5, using differences in expression of enhanced yellow fluorescent protein driven from the tyrosine hydroxylase gene, and then used RNA sequencing to confirm the characteristic molecular signatures of the two cell types. We identified genes differentially expressed by adrenal chromaffin cells and sympathetic neurons. Deletion of a gene highly expressed by adrenal chromaffin cells, NIK-related kinase, a gene on the X-chromosome, results in reduced expression of adrenaline-synthesizing enzyme, phenyl-N-methyl transferase, by adrenal chromaffin cells and changes in cell cycle dynamics. Finally, many imprinted genes are up-regulated in chromaffin cells and may play key roles in their development.
Collapse
Affiliation(s)
- Wing Hei Chan
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia.
| | - Masayuki Komada
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Toshiaki Fukushima
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Colin R Anderson
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Matthew J Wakefield
- Melbourne Bioinformatics, University of Melbourne, Melbourne, Australia. .,Walter and Eliza Hall Institute, Parkville, Australia.
| |
Collapse
|
6
|
Hockman D, Adameyko I, Kaucka M, Barraud P, Otani T, Hunt A, Hartwig AC, Sock E, Waithe D, Franck MCM, Ernfors P, Ehinger S, Howard MJ, Brown N, Reese J, Baker CVH. Striking parallels between carotid body glomus cell and adrenal chromaffin cell development. Dev Biol 2018; 444 Suppl 1:S308-S324. [PMID: 29807017 PMCID: PMC6453021 DOI: 10.1016/j.ydbio.2018.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/20/2018] [Accepted: 05/20/2018] [Indexed: 12/31/2022]
Abstract
Carotid body glomus cells mediate essential reflex responses to arterial blood hypoxia. They are dopaminergic and secrete growth factors that support dopaminergic neurons, making the carotid body a potential source of patient-specific cells for Parkinson's disease therapy. Like adrenal chromaffin cells, which are also hypoxia-sensitive, glomus cells are neural crest-derived and require the transcription factors Ascl1 and Phox2b; otherwise, their development is little understood at the molecular level. Here, analysis in chicken and mouse reveals further striking molecular parallels, though also some differences, between glomus and adrenal chromaffin cell development. Moreover, histology has long suggested that glomus cell precursors are ‘émigrés’ from neighbouring ganglia/nerves, while multipotent nerve-associated glial cells are now known to make a significant contribution to the adrenal chromaffin cell population in the mouse. We present conditional genetic lineage-tracing data from mice supporting the hypothesis that progenitors expressing the glial marker proteolipid protein 1, presumably located in adjacent ganglia/nerves, also contribute to glomus cells. Finally, we resolve a paradox for the ‘émigré’ hypothesis in the chicken - where the nearest ganglion to the carotid body is the nodose, in which the satellite glia are neural crest-derived, but the neurons are almost entirely placode-derived - by fate-mapping putative nodose neuronal 'émigrés' to the neural crest. Glomus cell precursors express the neuron-specific marker Elavl3/4 (HuC/D). Developing glomus cells express multiple ‘sympathoadrenal' genes. Glomus cell development requires Hand2 and Sox4/11, but not Ret or Tfap2b. Multipotent progenitors with a glial phenotype contribute to glomus cells. Fate-mapping resolves a paradox for the ganglionic 'émigré' hypothesis in birds.
Collapse
Affiliation(s)
- Dorit Hockman
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, United Kingdom; Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, United Kingdom; Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institute, S-171 77 Stockholm, Sweden; Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
| | - Marketa Kaucka
- Department of Physiology and Pharmacology, Karolinska Institute, S-171 77 Stockholm, Sweden
| | - Perrine Barraud
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Tomoki Otani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Adam Hunt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Anna C Hartwig
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Marina C M Franck
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77 Stockholm, Sweden
| | - Patrik Ernfors
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77 Stockholm, Sweden
| | - Sean Ehinger
- Department of Neurosciences and Program in Neurosciences and Neurodegenerative Diseases, University of Toledo Health Sciences Campus, Toledo, OH 43614, USA
| | - Marthe J Howard
- Department of Neurosciences and Program in Neurosciences and Neurodegenerative Diseases, University of Toledo Health Sciences Campus, Toledo, OH 43614, USA
| | - Naoko Brown
- Depts. of Pediatrics, Cell and Developmental Biology, Vanderbilt University Medical Center, 2215 B Garland Avenue, Nashville, TN 37232, USA
| | - Jeffrey Reese
- Depts. of Pediatrics, Cell and Developmental Biology, Vanderbilt University Medical Center, 2215 B Garland Avenue, Nashville, TN 37232, USA
| | - Clare V H Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, United Kingdom.
| |
Collapse
|
7
|
Chan WH, Anderson CR, Gonsalvez DG. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res 2017; 372:171-193. [PMID: 28971249 DOI: 10.1007/s00441-017-2693-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The sympathetic division of the autonomic nervous system includes a variety of cells including neurons, endocrine cells and glial cells. A recent study (Furlan et al. 2017) has revised thinking about the developmental origin of these cells. It now appears that sympathetic neurons and chromaffin cells of the adrenal medulla do not have an immediate common ancestor in the form a "sympathoadrenal cell", as has been long believed. Instead, chromaffin cells arise from Schwann cell precursors. This review integrates the new findings with the expanding body of knowledge on the signalling pathways and transcription factors that regulate the origin of cells of the sympathetic division of the autonomic nervous system.
Collapse
Affiliation(s)
- W H Chan
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - C R Anderson
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
8
|
Coordinate expression of pan-neuronal and functional signature genes in sympathetic neurons. Cell Tissue Res 2017; 370:227-241. [PMID: 28936781 DOI: 10.1007/s00441-017-2688-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/27/2017] [Indexed: 12/20/2022]
Abstract
Neuron subtypes of the mature nervous system differ in the expression of characteristic marker genes while they share the expression of generic neuronal genes. The regulatory logic that maintains subtype-specific and pan-neuronal genes is not well understood. To begin to address this issue, we analyze RNA sequencing results from whole sympathetic ganglia and single sympathetic neurons in the mouse. We focus on gene products involved in the neuronal cytoskeleton, neurotransmitter synthesis and storage, transmitter release and reception and electrical information processing. We find a particular high correlation in the expression of stathmin 2 and several members of the tubulin beta family, classical pan-neuronal markers. Noradrenergic transmitter-synthesizing enzymes and transporters are also well correlated in their cellular transcript levels. In addition, noradrenergic marker transcript levels correlate well with selected pan-neuronal markers. Such a correlation in transcript levels is also seen between a number of selected ion channel, receptor and synaptic protein genes. These results provide the foundation for the analyses of the coordinated expression of downstream target genes in nerve cells.
Collapse
|
9
|
MiR-124 is differentially expressed in derivatives of the sympathoadrenal cell lineage and promotes neurite elongation in chromaffin cells. Cell Tissue Res 2016; 365:225-32. [DOI: 10.1007/s00441-016-2395-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/09/2016] [Indexed: 01/02/2023]
|
10
|
Chan WH, Gonsalvez DG, Young HM, Southard-Smith EM, Cane KN, Anderson CR. Differences in CART expression and cell cycle behavior discriminate sympathetic neuroblast from chromaffin cell lineages in mouse sympathoadrenal cells. Dev Neurobiol 2015; 76:137-49. [PMID: 25989220 DOI: 10.1002/dneu.22304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/22/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022]
Abstract
Adrenal medullary chromaffin cells and peripheral sympathetic neurons originate from a common sympathoadrenal (SA) progenitor cell. The timing and phenotypic changes that mark this lineage diversification are not fully understood. The present study investigated the expression patterns of phenotypic markers, and cell cycle dynamics, in the adrenal medulla and the neighboring suprarenal ganglion of embryonic mice. The noradrenergic marker, tyrosine hydroxylase (TH), was detected in both presumptive adrenal medulla and sympathetic ganglion cells, but with significantly stronger immunostaining in the former. There was intense cocaine and amphetamine-regulated transcript (CART) peptide immunostaining in most neuroblasts, whereas very few adrenal chromaffin cells showed detectable CART immunostaining. This phenotypic segregation appeared as early as E12.5, before anatomical segregation of the two cell types. Cell cycle dynamics were also examined. Initially, 88% of Sox10 positive (+) neural crest progenitors were proliferating at E10.5. Many SA progenitor cells withdrew from the cell cycle at E11.5 as they started to express TH. Whereas 70% of neuroblasts (TH+/CART+ cells) were back in the cell cycle at E12.5, only around 20% of chromaffin (CART negative) cells were in the cell cycle at E12.5 and subsequent days. Thus, chromaffin cell and neuroblast lineages showed differences in proliferative behavior from their earliest appearance. We conclude that the intensity of TH immunostaining and the expression of CART permit early discrimination of chromaffin cells and sympathetic neuroblasts, and that developing chromaffin cells exhibit significantly lower proliferative activity relative to sympathetic neuroblasts.
Collapse
Affiliation(s)
- Wing Hei Chan
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, 3010, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, 3010, Australia
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, 3010, Australia
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | - Kylie N Cane
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, 3010, Australia
| | - Colin R Anderson
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
11
|
Stubbusch J, Narasimhan P, Hennchen M, Huber K, Unsicker K, Ernsberger U, Rohrer H. Lineage and stage specific requirement for Dicer1 in sympathetic ganglia and adrenal medulla formation and maintenance. Dev Biol 2015; 400:210-23. [PMID: 25661788 DOI: 10.1016/j.ydbio.2015.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
Abstract
The development of sympathetic neurons and chromaffin cells is differentially controlled at distinct stages by various extrinsic and intrinsic signals. Here we use conditional deletion of Dicer1 in neural crest cells and noradrenergic neuroblasts to identify stage specific functions in sympathoadrenal lineages. Conditional Dicer1 knockout in neural crest cells of Dicer1(Wnt1Cre) mice results in a rapid reduction in the size of developing sympathetic ganglia and adrenal medulla. In contrast, Dicer1 elimination in noradrenergic neuroblasts of Dicer1(DbhiCre) animals affects sympathetic neuron survival starting at late embryonic stages and chromaffin cells persist at least until postnatal week 1. A differential function of Dicer1 signaling for the development of embryonic noradrenergic and cholinergic sympathetic neurons is demonstrated by the selective increase in the expression of Tlx3 and the cholinergic marker genes VAChT and ChAT at E16.5. The number of Dbh, Th and TrkA expressing noradrenergic neurons is strongly decreased in Dicer1-deficient sympathetic ganglia at birth, whereas Tlx3(+)/ Ret(+) cholinergic neurons cells are spared from cell death. The postnatal death of chromaffin cells is preceded by the loss of Ascl1, mir-375 and Pnmt and an increase in the markers Ret and NF-M, which suggests that Dicer1 is required for the maintenance of chromaffin cell differentiation and survival. Taken together, these findings demonstrate distinct stage and lineage specific functions of Dicer1 signaling in differentiation and survival of sympathetic neurons and adrenal chromaffin cells.
Collapse
Affiliation(s)
- Jutta Stubbusch
- Max-Planck-Institute for Brain Research, Research Group Developmental Neurobiology, Max-von-Laue-Street 4, 60438 Frankfurt/Main, Germany
| | - Priyanka Narasimhan
- Albert-Ludwigs-University Freiburg, Institute of Anatomy& Cell Biology, Albert-Street 17, 79104 Freiburg, Germany
| | - Melanie Hennchen
- Max-Planck-Institute for Brain Research, Research Group Developmental Neurobiology, Max-von-Laue-Street 4, 60438 Frankfurt/Main, Germany
| | - Katrin Huber
- Albert-Ludwigs-University Freiburg, Institute of Anatomy& Cell Biology, Albert-Street 17, 79104 Freiburg, Germany
| | - Klaus Unsicker
- Albert-Ludwigs-University Freiburg, Institute of Anatomy& Cell Biology, Albert-Street 17, 79104 Freiburg, Germany
| | - Uwe Ernsberger
- Max-Planck-Institute for Brain Research, Research Group Developmental Neurobiology, Max-von-Laue-Street 4, 60438 Frankfurt/Main, Germany; Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | - Hermann Rohrer
- Max-Planck-Institute for Brain Research, Research Group Developmental Neurobiology, Max-von-Laue-Street 4, 60438 Frankfurt/Main, Germany; Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt/Main, Germany.
| |
Collapse
|
12
|
Lumb R, Schwarz Q. Sympathoadrenal neural crest cells: the known, unknown and forgotten? Dev Growth Differ 2015; 57:146-57. [PMID: 25581786 DOI: 10.1111/dgd.12189] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/30/2014] [Accepted: 11/02/2014] [Indexed: 12/30/2022]
Abstract
Neural crest cells (NCCs) are highly migratory progenitor cells that give rise to a vast array of differentiated cell types. One of their key derivatives is the autonomic nervous system (ANS) that is comprised in part from chromaffin cells of the adrenal medulla and organ of Zuckerkandl, the sympathetic chain and additional prevertebral ganglia such as the celiac ganglia, suprarenal ganglia and mesenteric ganglia. In this review we discuss recent advances toward our understanding of how the NCC precursors of the ANS migrate to their target regions, how they are instructed to differentiate into the correct cell types, and the morphogenetic signals controlling their development. Many of these processes remain enigmatic to developmental biologists worldwide. Taking advantage of lineage tracing mouse models one of our own aims is to address the morphogenetic events underpinning the formation of the ANS and to identify the molecular mechanisms that help to segregate a mixed population of NCCs into pathways specific for the sympathetic ganglia, sensory ganglia or adrenal medulla.
Collapse
Affiliation(s)
- Rachael Lumb
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia; Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | | |
Collapse
|
13
|
Can the ‘neuron theory’ be complemented by a universal mechanism for generic neuronal differentiation. Cell Tissue Res 2014; 359:343-84. [DOI: 10.1007/s00441-014-2049-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
|
14
|
Segregation of neuronal and neuroendocrine differentiation in the sympathoadrenal lineage. Cell Tissue Res 2014; 359:333-41. [PMID: 25038743 DOI: 10.1007/s00441-014-1947-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
Neuronal and neuroendocrine cells possess the capacity for Ca(2+)-regulated discharge of messenger molecules, which they release into synapses or the blood stream, respectively. The neural-crest-derived sympathoadrenal lineage gives rise to the sympathetic neurons of the autonomic nervous system and the neuroendocrine chromaffin cells of the adrenal medulla. These cells provide an excellent model system for studying common and distinct developmental mechanisms underlying the acquisition of neuroendocrine and neuronal properties. As catecholaminergic cells, they possess common markers related to noradrenaline synthesis, storage and release, but they also display diverging gene expression patterns and are morphologically and functionally different. The precise mechanisms that underlie the diversification of sympathoadrenal cells into neurons and neuroendocrine cells are not fully understood. However, in the past we could show that the establishment of a chromaffin phenotype does not depend on signals from the adrenal cortex and that chromaffin cells and sympathetic neurons apparently differ from the onset of their catecholaminergic differentiation. Nevertheless, the cues that specifically induce neuroendocrine features remain elusive. The early development of the progenitors of chromaffin cells and sympathetic neurons depends on a common set of transcription factors with overlapping but distinct influences on their development. In addition to the well-defined role of transcription factors as developmental regulators, our understanding of post-transcriptional gene regulation by microRNAs has substantially increased within the last few decades. This review highlights the major similarities and differences between chromaffin cells and sympathetic neurons, summarizes our current knowledge of the roles of selected transcription factors, microRNAs and environmental signals for the neuroendocrine differentiation of sympathoadrenal cells, and draws comparisons with the development of other endocrine and neuronal cells.
Collapse
|