1
|
Colijn MA. The cooccurrence of psychosis and Marfanoid features: diagnostic considerations. Eur Arch Psychiatry Clin Neurosci 2022; 272:1389-1390. [PMID: 35366713 DOI: 10.1007/s00406-022-01404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Mark Ainsley Colijn
- Department of Psychiatry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada.
| |
Collapse
|
2
|
Munabi NCO, Mikhail S, Toubat O, Webb M, Auslander A, Sanchez-Lara PA, Manojlovic Z, Schmidt RJ, Craig D, Magee WP, Kumar SR. High prevalence of deleterious mutations in concomitant nonsyndromic cleft and outflow tract heart defects. Am J Med Genet A 2022; 188:2082-2095. [PMID: 35385219 PMCID: PMC9197864 DOI: 10.1002/ajmg.a.62748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/26/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Our previous work demonstrating enrichment of outflow tract (OFT) congenital heart disease (CHD) in children with cleft lip and/or palate (CL/P) suggests derangements in common underlying developmental pathways. The current pilot study examines the underlying genetics of concomitant nonsyndromic CL/P and OFT CHD phenotype. Of 575 patients who underwent CL/P surgery at Children's Hospital Los Angeles, seven with OFT CHD, negative chromosomal microarray analysis, and no recognizable syndromic association were recruited with their parents (as available). Whole genome sequencing of blood samples paired with whole‐blood‐based RNA sequencing for probands was performed. A pathogenic or potentially pathogenic variant was identified in 6/7 (85.7%) probands. A total of seven candidate genes were mutated (CHD7, SMARCA4, MED12, APOB, RNF213, SETX, and JAG1). Gene ontology analysis of variants predicted involvement in binding (100%), regulation of transcription (42.9%), and helicase activity (42.9%). Four patients (57.1%) expressed gene variants (CHD7, SMARCA4, MED12, and RNF213) previously involved in the Wnt signaling pathway. Our pilot analysis of a small cohort of patients with combined CL/P and OFT CHD phenotype suggests a potentially significant prevalence of deleterious mutations. In our cohort, an overrepresentation of mutations in molecules associated with Wnt‐signaling was found. These variants may represent an expanded phenotypic heterogeneity within known monogenic disease genes or provide novel evidence of shared developmental pathways. The mechanistic implications of these mutations and subsequent developmental derangements resulting in the CL/P and OFT CHD phenotype require further analysis in a larger cohort of patients.
Collapse
Affiliation(s)
- Naikhoba C O Munabi
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | | | - Omar Toubat
- Division of Cardiac Surgery, Department of Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Michelle Webb
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, California, USA
| | | | - Pedro A Sanchez-Lara
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zarko Manojlovic
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Ryan J Schmidt
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Pathology, Keck School of Medicine of USC, Los Angeles, California, USA
| | - David Craig
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, California, USA
| | - William P Magee
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Plastic Surgery, Shriners Hospital for Children, Los Angeles, California, USA
| | - Subramanyan Ram Kumar
- Division of Cardiac Surgery, Department of Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Heart Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Shah A, Bapna M, Al-Saif H, Li R, Couser NL. Eye and ocular adnexa manifestations of MED12-related disorders. Ophthalmic Genet 2021; 43:126-129. [PMID: 34670449 DOI: 10.1080/13816810.2021.1989601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND MED12-related disorders are a rare group of intellectual disability syndromes with a broad range of phenotypic characteristics. The phenotypic spectrum of MED12-related disorders currently includes X-Linked Ohdo Syndrome, Lujan-Fryns Syndrome (LS), and FG syndrome type 1 (FG), also known as Opitz-Kaveggia Syndrome. The MED12 gene encodes the largest component of the mediator complex of RNA polymerase II, which is critical for recruiting activators and repressors to regulate the transcription of genes critical to growth, development, and differentiation. METHODS We performed a systematic literature review of previously published cases to highlight the key ocular features in individuals with MED12-related disorders. In addition, we present a new case of a female patient with a de novo pathogenic c. 3866A>G, p.Q1289R variant. Ocular manifestations are not uncommon in MED12-related disorders, but have not been characterized in literature reports. Commonly reoccurring reported eye and ocular adnexa features within the spectrum include ptosis, downslanting palpebral fissures, and hypertelorism. Other less common findings include strabismus, astigmatism, and optic nerve hypoplasia. RESULTS Our patient presented with developmental delay, mild hypotonia and dysmorphic features including frontal bossing, high arched palate, and syndactyly of the 2nd and 3rd toes bilaterally. DISCUSSION Ocular manifestations identified in this patient included intermittent esotropia, hyperopic astigmatism, epicanthal folds and ptosis bilaterally.
Collapse
Affiliation(s)
- Arth Shah
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Monika Bapna
- Georgetown University School of Medicine, Washington, DC, USA
| | - Hind Al-Saif
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Rachel Li
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Natario L Couser
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Ophthalmology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Pediatrics, Virginia Commonwealth University School of Medicine, Children's Hospital of Richmond at VCU, Richmond, Virginia, USA
| |
Collapse
|
4
|
Priol AC, Denis L, Boulanger G, Thépaut M, Geoffray MM, Tordjman S. Detection of Morphological Abnormalities in Schizophrenia: An Important Step to Identify Associated Genetic Disorders or Etiologic Subtypes. Int J Mol Sci 2021; 22:ijms22179464. [PMID: 34502372 PMCID: PMC8430486 DOI: 10.3390/ijms22179464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/06/2021] [Indexed: 12/20/2022] Open
Abstract
Current research suggests that alterations in neurodevelopmental processes, involving gene X environment interactions during key stages of brain development (prenatal period and adolescence), are a major risk for schizophrenia. First, epidemiological studies supporting a genetic contribution to schizophrenia are presented in this article, including family, twin, and adoption studies. Then, an extensive literature review on genetic disorders associated with schizophrenia is reviewed. These epidemiological findings and clinical observations led researchers to conduct studies on genetic associations in schizophrenia, and more specifically on genomics (CNV: copy-number variant, and SNP: single nucleotide polymorphism). The main structural (CNV) and sequence (SNP) variants found in individuals with schizophrenia are reported here. Evidence of genetic contributions to schizophrenia and current knowledge on genetic syndromes associated with this psychiatric disorder highlight the importance of a clinical genetic examination to detect minor physical anomalies in individuals with ultra-high risk of schizophrenia. Several dysmorphic features have been described in schizophrenia, especially in early onset schizophrenia, and can be viewed as neurodevelopmental markers of vulnerability. Early detection of individuals with neurodevelopmental abnormalities is a fundamental issue to develop prevention and diagnostic strategies, therapeutic intervention and follow-up, and to ascertain better the underlying mechanisms involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Anne-Clémence Priol
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Régnier, University of Rennes 1, 35000 Rennes, France; (L.D.); (G.B.); (M.T.)
- Correspondence: (A.-C.P.); (S.T.); Tel.: +33-2-99-51-06-04 (A.-C.P. & S.T.); Fax: +33-2-99-32-46-98 (A.-C.P. & S.T.)
| | - Laure Denis
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Régnier, University of Rennes 1, 35000 Rennes, France; (L.D.); (G.B.); (M.T.)
| | - Gaella Boulanger
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Régnier, University of Rennes 1, 35000 Rennes, France; (L.D.); (G.B.); (M.T.)
| | - Mathieu Thépaut
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Régnier, University of Rennes 1, 35000 Rennes, France; (L.D.); (G.B.); (M.T.)
| | - Marie-Maude Geoffray
- Department of Child and Adolescent Psychiatry, Centre Hospitalier Le Vinatier, 69500 Bron, France;
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Régnier, University of Rennes 1, 35000 Rennes, France; (L.D.); (G.B.); (M.T.)
- CIC (Clinical Investigation Center) 1414 Inserm, Centre Hospitalier Universitaire (CHU) de Rennes, University of Rennes 1, 35033 Rennes, France
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, University of Paris, 75006 Paris, France
- Correspondence: (A.-C.P.); (S.T.); Tel.: +33-2-99-51-06-04 (A.-C.P. & S.T.); Fax: +33-2-99-32-46-98 (A.-C.P. & S.T.)
| |
Collapse
|
5
|
Chevarin M, Duffourd Y, A Barnard R, Moutton S, Lecoquierre F, Daoud F, Kuentz P, Cabret C, Thevenon J, Gautier E, Callier P, St-Onge J, Jouan T, Lacombe D, Delrue MA, Goizet C, Morice-Picard F, Van-Gils J, Munnich A, Lyonnet S, Cormier-Daire V, Baujat G, Holder M, Petit F, Leheup B, Odent S, Jouk PS, Lopez G, Geneviève D, Collignon P, Martin-Coignard D, Jacquette A, Perrin L, Putoux A, Sarrazin E, Amarof K, Missotte I, Coubes C, Jagadeesh S, Lapi E, Demurger F, Goldenberg A, Doco-Fenzy M, Mignot C, Héron D, Jean-Marçais N, Masurel A, El Chehadeh S, Marle N, Huet F, Binquet C, Collod-Beroud G, Arnaud P, Hanna N, Boileau C, Jondeau G, Olaso R, Lechner D, Poe C, Assoum M, Carmignac V, Duplomb L, Tran Mau-Them F, Philippe C, Vitobello A, Bruel AL, Boland A, Deleuze JF, Thauvin-Robinet C, Rivière JB, O'Roak BJ, Faivre L. Excess of de novo variants in genes involved in chromatin remodelling in patients with marfanoid habitus and intellectual disability. J Med Genet 2020; 57:466-474. [PMID: 32277047 DOI: 10.1136/jmedgenet-2019-106425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/22/2019] [Accepted: 12/21/2019] [Indexed: 01/10/2023]
Abstract
PURPOSE Marfanoid habitus (MH) combined with intellectual disability (ID) (MHID) is a clinically and genetically heterogeneous presentation. The combination of array CGH and targeted sequencing of genes responsible for Marfan or Lujan-Fryns syndrome explain no more than 20% of subjects. METHODS To further decipher the genetic basis of MHID, we performed exome sequencing on a combination of trio-based (33 subjects) or single probands (31 subjects), of which 61 were sporadic. RESULTS We identified eight genes with de novo variants (DNVs) in at least two unrelated individuals (ARID1B, ATP1A1, DLG4, EHMT1, NFIX, NSD1, NUP205 and ZEB2). Using simulation models, we showed that five genes (DLG4, NFIX, EHMT1, ZEB2 and ATP1A1) met conservative Bonferroni genomewide significance for an excess of the observed de novo point variants. Overall, at least one pathogenic or likely pathogenic variant was identified in 54.7% of subjects (35/64). These variants fell within 27 genes previously associated with Mendelian disorders, including NSD1 and NFIX, which are known to be mutated in overgrowth syndromes. CONCLUSION We demonstrated that DNVs were enriched in chromatin remodelling (p=2×10-4) and genes regulated by the fragile X mental retardation protein (p=3×10-8), highlighting overlapping genetic mechanisms between MHID and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Martin Chevarin
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Yannis Duffourd
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Rebecca A Barnard
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Sébastien Moutton
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France.,Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - François Lecoquierre
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Fatma Daoud
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Paul Kuentz
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Caroline Cabret
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Julien Thevenon
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | | | - Patrick Callier
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Judith St-Onge
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Thibaud Jouan
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Didier Lacombe
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Marie Ange Delrue
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Cyril Goizet
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Fanny Morice-Picard
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Julien Van-Gils
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Arnold Munnich
- IHU Imagine, Département de Génétique, APHP, Hôpital Necker Enfants Malades, Paris, France
| | - Stanislas Lyonnet
- IHU Imagine, Département de Génétique, APHP, Hôpital Necker Enfants Malades, Paris, France
| | - Valérie Cormier-Daire
- IHU Imagine, Département de Génétique, APHP, Hôpital Necker Enfants Malades, Paris, France
| | - Geneviève Baujat
- IHU Imagine, Département de Génétique, APHP, Hôpital Necker Enfants Malades, Paris, France
| | - Muriel Holder
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Nord, Centre Hospitalier Universitaire Lille, Lille, France
| | - Florence Petit
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Nord, Centre Hospitalier Universitaire Lille, Lille, France
| | - Bruno Leheup
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Ouest, Centre Hospitalier Universitaire Nancy, Nancy, France
| | - Sylvie Odent
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, Centre Hospitalier Universitaire Rennes, Rennes, France
| | - Pierre-Simon Jouk
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Centre Est, Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - Gipsy Lopez
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Centre Est, Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - David Geneviève
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Languedoc Roussillon, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Patrick Collignon
- Centre de Compétence Anomalies du Développement et Syndromes Malformatifs Sud-Est, CHI de Toulon - La Seyne-sur-Mer, France
| | - Dominique Martin-Coignard
- Centre de compétence Anomalies du Développement et Syndromes Malformatifs, CH Le Mans, Le Mans, France
| | - Aurélia Jacquette
- Département de Génétique et Centre de Référence Déficiences intellectuelles de causes rares, APHP, La Pitié Salpêtrière, Paris, France
| | - Laurence Perrin
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Ile de France, APHP, Hôpital Robert Debré, Paris, France
| | - Audrey Putoux
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Centre Est, Hospices Civils de Lyon, Lyon, France
| | - Elisabeth Sarrazin
- Centre de Référence Caribéen des Maladies Rares Neurologiques et Neuromusculaires, CHU de Fort de France, Hôpital Pierre Zobda-Quitman, La Martinique, France
| | - Khadija Amarof
- Centre de Référence Caribéen des Maladies Rares Neurologiques et Neuromusculaires, CHU de Fort de France, Hôpital Pierre Zobda-Quitman, La Martinique, France
| | - Isabelle Missotte
- Service de Pédiatrie, Centre Hospitalier Territorial, Nouvelle Calédonie, France
| | - Christine Coubes
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Languedoc Roussillon, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | | | - Elisabetta Lapi
- Genetica Medica, Azienda Ospedaliera Universitaria Anna Meyer, Firenze, Italia
| | | | - Alice Goldenberg
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Rouen, Rouen, France
| | - Martine Doco-Fenzy
- EA3801, Centre de Référence Anomalies du Développement et Syndromes Malformatifs et service de génétique, CHU Reims et UFR de médecine de Reims, Reims, France
| | - Cyril Mignot
- Département de Génétique et Centre de Référence Déficiences intellectuelles de causes rares, APHP, La Pitié Salpêtrière, Paris, France
| | - Delphine Héron
- Département de Génétique et Centre de Référence Déficiences intellectuelles de causes rares, APHP, La Pitié Salpêtrière, Paris, France
| | | | - Alice Masurel
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Salima El Chehadeh
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Nathalie Marle
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Frédéric Huet
- FHU TRANSLAD, CHU Dijon, Dijon, France.,Service de Pédiatrie 1, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Christine Binquet
- Centre d'Investigation Clinique - Epidémiologie Clinique, Centre Hospitalier Universitaire Dijon, Dijon, France
| | | | - Pauline Arnaud
- Centre de référence syndromes de Marfan et syndromes apparentés, APHP, Hôpital Bichat, Paris, France
| | - Nadine Hanna
- Centre de référence syndromes de Marfan et syndromes apparentés, APHP, Hôpital Bichat, Paris, France
| | - Catherine Boileau
- Centre de référence syndromes de Marfan et syndromes apparentés, APHP, Hôpital Bichat, Paris, France
| | - Guillaume Jondeau
- Centre de référence syndromes de Marfan et syndromes apparentés, APHP, Hôpital Bichat, Paris, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Doris Lechner
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Charlotte Poe
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Mirna Assoum
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Virginie Carmignac
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Laurence Duplomb
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Frédéric Tran Mau-Them
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Christophe Philippe
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Antonio Vitobello
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Ange-Line Bruel
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Christel Thauvin-Robinet
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,FHU TRANSLAD, CHU Dijon, Dijon, France.,Centre de Référence Déficience intellectuelle, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Jean-Baptiste Rivière
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Brian J O'Roak
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Laurence Faivre
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France .,FHU TRANSLAD, CHU Dijon, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France.,Centre de Référence Déficience intellectuelle, Centre Hospitalier Universitaire Dijon, Dijon, France
| |
Collapse
|
6
|
Abstract
The Mediator Complex plays key roles in activating gene transcription in eukaryotes. Mediator of RNA polymerase II transcription subunit 12 homolog (MED12) is a subunit of the Mediator Complex and regulates the activity of the complex. MED12 is involved in a variety of cellular activities, and mutations in MED12 gene impair MED12 activities and are associated with several diseases, including Opitz-Kaveggia syndrome, Lujan syndrome, uterine leiomyomas and prostate cancer. This review will discuss the biological function of MED12 and the relationship between MED12 mutations and diseases.
Collapse
|
7
|
Khan A, Humayun M, Haider I, Ayub M. Lujan-Fryns Syndrome (LFS): A Unique Combination of Hypernasality, Marfanoid Body Habitus, and Neuropsychiatric Issues, Presenting as Acute-Onset Dysphagia. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2016; 9:115-118. [PMID: 27980443 PMCID: PMC5138064 DOI: 10.4137/ccrep.s41083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lujan–Fryns syndrome (LFS) is an extremely rare, X-linked disorder, for which the full clinical spectrum is still unknown. Usually, it presents with neuropsychiatric problems such as learning disabilities and behavioral issues in a typical combination with marfanoid features. Often, there is a positive family history for the disorder. However, sporadic cases have also been reported in males. More interestingly, there is no case of LFS presenting with acute-onset dysphagia in the English language medical literature. CASE PRESENTATION A 17-year-old Pakistani mentally normal school boy was admitted for the workup of acute-onset dysphagia, hypernasal speech, and nasal regurgitation of liquids. He had no neuropsychiatric issues, and his family history was unremarkable. An obvious nasal twang, facial dysmorphism, and marfanoid body habitus were found on examination. The genetic tests revealed a pathogenic missense mutation in the MED12 gene on his X-chromosome. CONCLUSION LFS can present as acute-onset dysphagia and in the absence of any neuropsychiatric issues or positive family history of the syndrome.
Collapse
Affiliation(s)
- Abidullah Khan
- PG Resident, Department of Medicine, Khyber Teaching Hospital (KTH), Peshawar, Pakistan
| | - Mohammad Humayun
- Professor of Medicine, Department of Medicine, Khyber Teaching Hospital (KTH), Peshawar, Pakistan
| | - Iqbal Haider
- Consultant Physician, Department of Medicine, Khyber Teaching Hospital (KTH), Peshawar, Pakistan
| | - Maimoona Ayub
- PG Resident, Department of Medicine, Khyber Teaching Hospital (KTH), Peshawar, Pakistan
| |
Collapse
|
8
|
Hackmann K, Rump A, Haas SA, Lemke JR, Fryns JP, Tzschach A, Wieczorek D, Albrecht B, Kuechler A, Ripperger T, Kobelt A, Oexle K, Tinschert S, Schrock E, Kalscheuer VM, Di Donato N. Tentative clinical diagnosis of Lujan-Fryns syndrome-A conglomeration of different genetic entities? Am J Med Genet A 2015; 170A:94-102. [DOI: 10.1002/ajmg.a.37378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 08/24/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Karl Hackmann
- Institut fuer Klinische Genetik; Medizinische Fakultaet Carl Gustav Carus; Technische Universitaet Dresden; Dresden Germany
| | - Andreas Rump
- Institut fuer Klinische Genetik; Medizinische Fakultaet Carl Gustav Carus; Technische Universitaet Dresden; Dresden Germany
| | - Stefan A. Haas
- Department of Computational Molecular Biology; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Johannes R. Lemke
- Division of Human Genetics; University Children's Hospital Inselspital; Bern Switzerland
| | - Jean-Pierre Fryns
- Centre for Human Genetics; KU Leuven/University Hospital Leuven; Leuven Belgium
| | - Andreas Tzschach
- Institut fuer Medizinische Genetik und Angewandte Genomik; Universitaetsklinikum; Tuebingen Germany
| | - Dagmar Wieczorek
- Institut für Humangenetik; Universitätsklinikum Essen; Universitaet Duisburg-Essen; Essen Germany
| | - Beate Albrecht
- Institut für Humangenetik; Universitätsklinikum Essen; Universitaet Duisburg-Essen; Essen Germany
| | - Alma Kuechler
- Institut für Humangenetik; Universitätsklinikum Essen; Universitaet Duisburg-Essen; Essen Germany
| | - Tim Ripperger
- Institute of Cell and Molecular Pathology; Hannover Medical School; Hannover Germany
| | - Albrecht Kobelt
- Zentrum fuer Diagnostik GmbH MVZ; Praxis fuer Humangenetik; Klinikum Chemnitz; Chemnitz Germany
| | - Konrad Oexle
- Institut fuer Klinische Genetik; Medizinische Fakultaet Carl Gustav Carus; Technische Universitaet Dresden; Dresden Germany
| | - Sigrid Tinschert
- Institut fuer Klinische Genetik; Medizinische Fakultaet Carl Gustav Carus; Technische Universitaet Dresden; Dresden Germany
| | - Evelin Schrock
- Institut fuer Klinische Genetik; Medizinische Fakultaet Carl Gustav Carus; Technische Universitaet Dresden; Dresden Germany
| | - Vera M. Kalscheuer
- Department of Human Molecular Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Nataliya Di Donato
- Institut fuer Klinische Genetik; Medizinische Fakultaet Carl Gustav Carus; Technische Universitaet Dresden; Dresden Germany
| |
Collapse
|
9
|
Chen Y, Zhang X, Zhang GQ, Xu R. Comparative analysis of a novel disease phenotype network based on clinical manifestations. J Biomed Inform 2014; 53:113-20. [PMID: 25277758 DOI: 10.1016/j.jbi.2014.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/18/2014] [Accepted: 09/21/2014] [Indexed: 12/21/2022]
Abstract
Systems approaches to analyzing disease phenotype networks in combination with protein functional interaction networks have great potential in illuminating disease pathophysiological mechanisms. While many genetic networks are readily available, disease phenotype networks remain largely incomplete. In this study, we built a large-scale Disease Manifestation Network (DMN) from 50,543 highly accurate disease-manifestation semantic relationships in the United Medical Language System (UMLS). Our new phenotype network contains 2305 nodes and 373,527 weighted edges to represent the disease phenotypic similarities. We first compared DMN with the networks representing genetic relationships among diseases, and demonstrated that the phenotype clustering in DMN reflects common disease genetics. Then we compared DMN with a widely-used disease phenotype network in previous gene discovery studies, called mimMiner, which was extracted from the textual descriptions in Online Mendelian Inheritance in Man (OMIM). We demonstrated that DMN contains different knowledge from the existing phenotype data source. Finally, a case study on Marfan syndrome further proved that DMN contains useful information and can provide leads to discover unknown disease causes. Integrating DMN in systems approaches with mimMiner and other data offers the opportunities to predict novel disease genetics. We made DMN publicly available at nlp/case.edu/public/data/DMN.
Collapse
Affiliation(s)
- Yang Chen
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, United States; Division of Medical Informatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Xiang Zhang
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Guo-Qiang Zhang
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, United States; Division of Medical Informatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Rong Xu
- Division of Medical Informatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
10
|
[Chest pain of 48 hours of evolution in a 41 years-old man]. Med Clin (Barc) 2013; 141:390-6. [PMID: 23937820 DOI: 10.1016/j.medcli.2013.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/11/2013] [Indexed: 11/24/2022]
|
11
|
Benjamin S, Lauterbach MD, Stanislawski AL. Congenital and acquired disorders presenting as psychosis in children and young adults. Child Adolesc Psychiatr Clin N Am 2013; 22:581-608. [PMID: 24012075 DOI: 10.1016/j.chc.2013.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A review of the published literature found 60 congenital and acquired disorders with symptoms that include psychosis in youth. The prevalence, workup, genetics, and associated neuropsychiatric features of each disorder are described. Eighteen disorders (30%) have distinct phenotypes (doorway diagnoses); 18 disorders (30%) are associated with intellectual disability; and 43 disorders (72%) have prominent neurologic signs. Thirty-one disorders (52%) can present without such distinct characteristics, and are thus more easily overlooked. A systematic and cost-effective differential diagnostic approach based on estimated prevalence and most prominent associated signs is recommended.
Collapse
Affiliation(s)
- Sheldon Benjamin
- Departments of Psychiatry and Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
12
|
Callier P, Aral B, Hanna N, Lambert S, Dindy H, Ragon C, Payet M, Collod-Beroud G, Carmignac V, Delrue MA, Goizet C, Philip N, Busa T, Dulac Y, Missotte I, Sznajer Y, Toutain A, Francannet C, Megarbane A, Julia S, Edouard T, Sarda P, Amiel J, Lyonnet S, Cormier-Daire V, Gilbert B, Jacquette A, Heron D, Collignon P, Lacombe D, Morice-Picard F, Jouk PS, Cusin V, Willems M, Sarrazin E, Amarof K, Coubes C, Addor MC, Journel H, Colin E, Khau Van Kien P, Baumann C, Leheup B, Martin-Coignard D, Doco-Fenzy M, Goldenberg A, Plessis G, Thevenon J, Pasquier L, Odent S, Vabres P, Huet F, Marle N, Mosca-Boidron AL, Mugneret F, Gauthier S, Binquet C, Thauvin-Robinet C, Jondeau G, Boileau C, Faivre L. Systematic molecular and cytogenetic screening of 100 patients with marfanoid syndromes and intellectual disability. Clin Genet 2013; 84:507-21. [PMID: 23506379 DOI: 10.1111/cge.12094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 01/13/2023]
Abstract
The association of marfanoid habitus (MH) and intellectual disability (ID) has been reported in the literature, with overlapping presentations and genetic heterogeneity. A hundred patients (71 males and 29 females) with a MH and ID were recruited. Custom-designed 244K array-CGH (Agilent®; Agilent Technologies Inc., Santa Clara, CA) and MED12, ZDHHC9, UPF3B, FBN1, TGFBR1 and TGFBR2 sequencing analyses were performed. Eighty patients could be classified as isolated MH and ID: 12 chromosomal imbalances, 1 FBN1 mutation and 1 possibly pathogenic MED12 mutation were found (17%). Twenty patients could be classified as ID with other extra-skeletal features of the Marfan syndrome (MFS) spectrum: 4 pathogenic FBN1 mutations and 4 chromosomal imbalances were found (2 patients with both FBN1 mutation and chromosomal rearrangement) (29%). These results suggest either that there are more loci with genes yet to be discovered or that MH can also be a relatively non-specific feature of patients with ID. The search for aortic complications is mandatory even if MH is associated with ID since FBN1 mutations or rearrangements were found in some patients. The excess of males is in favour of the involvement of other X-linked genes. Although it was impossible to make a diagnosis in 80% of patients, these results will improve genetic counselling in families.
Collapse
Affiliation(s)
- P Callier
- Service de Cytogénétique, Plateau technique de Biologie, CHU, Dijon, France; Equipe GAD, EA 4271, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Arachnodactyly literally means spidery fingers, and describes the long, slender fingers typical of patients with Marfan syndrome (MFS). Many clinicians regard arachnodactyly as pathognomonic of MFS; however, this view is misleading as arachnodactyly is a key element of the marfanoid habitus, which is present in several heritable disorders of connective tissue (HDCTs). Other features of the marfanoid habitus include long hands and feet, increased skin stretch, joint hypermobility and characteristic changes in the physiology of the pectum. Here, we focus on the differential diagnosis of diseases with features of the marfanoid habitus. Ectopia lentis (lens dislocation) and aortic root dilation or dissection are cardinal features of MFS. Distinguishing MFS from other HCDTs has important implications for treatment, as cardiovascular and ocular complications commonly seen in patients with MFS are not seen in all HDCTs. Joint hypermobility syndrome and Ehlers-Danlos syndrome are also HDCTs, neither of which is associated with ectopia lentis or aortic changes. Some of the rarer forms of Ehlers-Danlos syndrome are associated with severe vascular, dental and skin pathologies. This Review serves as a guide for correctly diagnosing members of the HDCT family.
Collapse
|
14
|
Dieckmann PM, Lucena LCD, Dutra LA, Pedroso JL, Barsottini OGP. Marfanoid features and X-linked mental retardation associated with craniofacial abnormalities: the Lujan-Fryns syndrome. ARQUIVOS DE NEURO-PSIQUIATRIA 2013; 71:68-9. [PMID: 23338167 DOI: 10.1590/s0004-282x2013000100017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Hereditary disorders of connective tissue: a guide to the emerging differential diagnosis. Genet Med 2010; 12:344-54. [PMID: 20467323 DOI: 10.1097/gim.0b013e3181e074f0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To create a practical desk reference for clinicians focused on the differential diagnosis of individuals presenting with features that suggest an inherited disorder of connective tissue. METHODS We searched the medical literature for distinct clinical entities that shared clinical features with Marfan syndrome and other classical inherited disorders of connective tissue. RESULTS Thirty-six distinct heritable disorders of connective tissue were identified that have overlapping features. These disorders were organized into two matrices according to clinical characteristics and according to causative genes. CONCLUSIONS A broad differential diagnosis is emerging for individuals presenting with features suggestive of altered connective tissue. Recent advances in molecular genetics have aided in the delineation of these disorders.
Collapse
|
16
|
Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonspecific mental retardation with or without autism. Mol Psychiatry 2010; 15:767-76. [PMID: 19238151 DOI: 10.1038/mp.2009.14] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in the UPF3B gene, which encodes a protein involved in nonsense-mediated mRNA decay, have recently been described in four families with specific (Lujan-Fryns and FG syndromes), nonspecific X-linked mental retardation (XLMR) and autism. To further elucidate the contribution of UPF3B to mental retardation (MR), we screened its coding sequence in 397 families collected by the EuroMRX consortium. We identified one nonsense mutation, c.1081C>T/p.Arg361(*), in a family with nonspecific MR (MRX62) and two amino-acid substitutions in two other, unrelated families with MR and/or autism (c.1136G>A/p.Arg379His and c.1103G>A/p.Arg368Gln). Functional studies using lymphoblastoid cell lines from affected patients revealed that c.1081C>T mutation resulted in UPF3B mRNA degradation and consequent absence of the UPF3B protein. We also studied the subcellular localization of the wild-type and mutated UPF3B proteins in mouse primary hippocampal neurons. We did not detect any obvious difference in the localization between the wild-type UPF3B and the proteins carrying the two missense changes identified. However, we show that UPF3B is widely expressed in neurons and also presents in dendritic spines, which are essential structures for proper neurotransmission and thus learning and memory processes. Our results demonstrate that in addition to Lujan-Fryns and FG syndromes, UPF3B protein truncation mutations can cause also nonspecific XLMR. We also identify comorbidity of MR and autism in another family with UPF3B mutation. The neuronal localization pattern of the UPF3B protein and its function in mRNA surveillance suggests a potential function in the regulation of the expression and degradation of various mRNAs present at the synapse.
Collapse
|
17
|
du Souich C, Chou A, Yin J, Oh T, Nelson TN, Hurlburt J, Arbour L, Friedlander R, McGillivray BC, Tyshchenko N, Rump A, Poskitt KJ, Demos MK, Van Allen MI, Boerkoel CF. Characterization of a new X-linked mental retardation syndrome with microcephaly, cortical malformation, and thin habitus. Am J Med Genet A 2010; 149A:2469-78. [PMID: 19842190 DOI: 10.1002/ajmg.a.33071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
X-linked mental retardation (XLMR) affects 1-2/1,000 males and accounts for approximately 10% of all mental retardation (MR). We have ascertained a syndromic form of XLMR segregating within a five-generation family with seven affected males. Prominent characteristics include mild to severe MR, cortical malformation, microcephaly, seizures, thin build with distinct facial features including a long and thin face, epicanthic folds, almond-shaped eyes, upslanting palpebral fissures and micrognathia and behavioral problems. Carrier females have normal physical appearance and intelligence. This combination of features is unreported and distinct from Lujan-Fryns syndrome, Snyder-Robinson syndrome, and zinc finger DHHC domain-containing 9-associated MR. We propose the name of this new syndrome to be CK syndrome.
Collapse
|
18
|
Becerra-Solano LE, Butler J, Castañeda-Cisneros G, McCloskey DE, Wang X, Pegg AE, Schwartz CE, Sánchez-Corona J, García-Ortiz JE. A missense mutation, p.V132G, in the X-linked spermine synthase gene (SMS) causes Snyder-Robinson syndrome. Am J Med Genet A 2009; 149A:328-35. [PMID: 19206178 DOI: 10.1002/ajmg.a.32641] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Snyder-Robinson syndrome (SRS, OMIM 309583) is a rare X-linked syndrome characterized by mental retardation, marfanoid habitus, skeletal defects, osteoporosis, and facial asymmetry. Linkage analysis localized the related gene to Xp21.3-p22.12, and a G-to-A transition at point +5 of intron 4 of the spermine synthase gene, which caused truncation of the SMS protein and loss of enzyme activity, was identified in the original family. Here we describe another family with Snyder-Robinson syndrome in two Mexican brothers and a novel mutation (c.496T>G) in the exon 5 of the SMS gene confirming its involvement in this rare X-linked mental retardation syndrome.
Collapse
Affiliation(s)
- L E Becerra-Solano
- División de Genética, Centro de Investigación Biomédica de Occidente, CMNO-IMSS, Guadalajara, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Satgé D, Vérité C, Bui BN, Perel Y, Taine L, Vekemans M, Lacombe D. A review of malignancies in fragile X syndrome and report of an Ewing sarcoma. ACTA ACUST UNITED AC 2008. [DOI: 10.1515/ijdhd.2008.7.4.441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Tarpey PS, Raymond FL, Nguyen LS, Rodriguez J, Hackett A, Vandeleur L, Smith R, Shoubridge C, Edkins S, Stevens C, O'Meara S, Tofts C, Barthorpe S, Buck G, Cole J, Halliday K, Hills K, Jones D, Mironenko T, Perry J, Varian J, West S, Widaa S, Teague J, Dicks E, Butler A, Menzies A, Richardson D, Jenkinson A, Shepherd R, Raine K, Moon J, Luo Y, Parnau J, Bhat SS, Gardner A, Corbett M, Brooks D, Thomas P, Parkinson-Lawrence E, Porteous ME, Warner JP, Sanderson T, Pearson P, Simensen RJ, Skinner C, Hoganson G, Superneau D, Wooster R, Bobrow M, Turner G, Stevenson RE, Schwartz CE, Futreal PA, Srivastava AK, Stratton MR, Gécz J. Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat Genet 2007; 39:1127-33. [PMID: 17704778 PMCID: PMC2872770 DOI: 10.1038/ng2100] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 06/11/2007] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is of universal biological significance. It has emerged as an important global RNA, DNA and translation regulatory pathway. By systematically sequencing 737 genes (annotated in the Vertebrate Genome Annotation database) on the human X chromosome in 250 families with X-linked mental retardation, we identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype and one with the FG phenotype. We also identified a missense mutation in another family with nonsyndromic mental retardation. Three mutations lead to the introduction of a premature termination codon and subsequent NMD of mutant UPF3B mRNA. Protein blot analysis using lymphoblastoid cell lines from affected individuals showed an absence of the UPF3B protein in two families. The UPF3B protein is an important component of the NMD surveillance machinery. Our results directly implicate abnormalities of NMD in human disease and suggest at least partial redundancy of NMD pathways.
Collapse
Affiliation(s)
- Patrick S Tarpey
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zafeiriou DI, Ververi A, Vargiami E. Childhood autism and associated comorbidities. Brain Dev 2007; 29:257-72. [PMID: 17084999 DOI: 10.1016/j.braindev.2006.09.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/25/2006] [Accepted: 09/06/2006] [Indexed: 12/11/2022]
Abstract
Autism is a heterogeneous neurodevelopmental disorder with a variety of different etiologies, but with a heritability estimate of more than 90%. Although the strong correlation between autism and genetic factors has been long established, the exact genetic background of autism is still unclear. This review refers to all the genetic syndromes that have been described in children with pervasive developmental disorders (tuberous sclerosis, fragile X, Down, neurofibromatosis, Angelman, Prader-Willi, Gilles de la Tourette, Williams, etc.). Issues covered include prevalence and main characteristics of each syndrome, as well as the possible base of its association with autism in terms of contribution to the current knowledge on the etiology and genetic base of pervasive developmental disorders.
Collapse
Affiliation(s)
- Dimitrios I Zafeiriou
- 1st Department of Pediatrics, Aristotle University of Thessaloniki, Egnatia St. 106, 54622 Thessaloniki, Greece.
| | | | | |
Collapse
|
22
|
Schwartz CE, Tarpey PS, Lubs HA, Verloes A, May MM, Risheg H, Friez MJ, Futreal PA, Edkins S, Teague J, Briault S, Skinner C, Bauer-Carlin A, Simensen RJ, Joseph SM, Jones JR, Gecz J, Stratton MR, Raymond FL, Stevenson RE. The original Lujan syndrome family has a novel missense mutation (p.N1007S) in the MED12 gene. J Med Genet 2007; 44:472-7. [PMID: 17369503 PMCID: PMC2597996 DOI: 10.1136/jmg.2006.048637] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A novel missense mutation in the mediator of RNA polymerase II transcription subunit 12 (MED12) gene has been found in the original family with Lujan syndrome and in a second family (K9359) that was initially considered to have Opitz-Kaveggia (FG) syndrome. A different missense mutation in the MED12 gene has been reported previously in the original family with FG syndrome and in five other families with compatible clinical findings. Neither sequence alteration has been found in over 1400 control X chromosomes. Lujan (Lujan-Fryns) syndrome is characterised by tall stature with asthenic habitus, macrocephaly, a tall narrow face, maxillary hypoplasia, a high narrow palate with dental crowding, a small or receding chin, long hands with hyperextensible digits, hypernasal speech, hypotonia, mild-to-moderate mental retardation, behavioural aberrations and dysgenesis of the corpus callosum. Although Lujan syndrome has not been previously considered to be in the differential diagnosis of FG syndrome, there are some overlapping clinical manifestations. Specifically, these are dysgenesis of the corpus callosum, macrocephaly/relative macrocephaly, a tall forehead, hypotonia, mental retardation and behavioural disturbances. Thus, it seems that these two X-linked mental retardation syndromes are allelic, with mutations in the MED12 gene.
Collapse
|