1
|
Huo R, Yang Y, Huo X, Meng D, Huang R, Yang Y, Lin J, Huang Y, Zhu X, Wei C, Huang X. Potential of resveratrol in the treatment of systemic lupus erythematosus (Review). Mol Med Rep 2024; 30:182. [PMID: 39155862 PMCID: PMC11350626 DOI: 10.3892/mmr.2024.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi‑system chronic autoimmune disease with a complex occurrence and development process, associated with immune disorders, uncertain prognosis, and treatment modalities which vary by patient and disease activity. At present, the clinical treatment of SLE mainly focuses on hormones and immunosuppressants. In recent years, the research on new treatment strategies for SLE has been booming, and strong preclinical results and clinical research have promoted the development of numerous drugs (such as rituximab and orencia), but numerous of these drugs have failed to achieve effectiveness in clinical trials, and there are some adverse reactions. Recent evidence suggests that resveratrol (RSV) has the effect of ameliorating immune disorders by inhibiting overactivation of immune cells. In the present review, advances in research on the protective effects and potential mechanisms of RSV against SLE are summarized and the potential potency of RSV and its use as a promising therapeutic option for the treatment of SLE are highlighted.
Collapse
Affiliation(s)
- Rongxiu Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yanting Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xiaocong Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Danli Meng
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Rongjun Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yang Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Jinying Lin
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yijia Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xia Zhu
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Chengcheng Wei
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xinxiang Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| |
Collapse
|
2
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
3
|
Wong HTC, Lang AE, Stein C, Drerup CM. ALS-Linked VapB P56S Mutation Alters Neuronal Mitochondrial Turnover at the Synapse. J Neurosci 2024; 44:e0879242024. [PMID: 39054069 PMCID: PMC11358610 DOI: 10.1523/jneurosci.0879-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Mitochondrial population maintenance in neurons is essential for neuron function and survival. Contact sites between mitochondria and the endoplasmic reticulum (ER) are poised to regulate mitochondrial homeostasis in neurons. These contact sites can facilitate transfer of calcium and lipids between the organelles and have been shown to regulate aspects of mitochondrial dynamics. Vesicle-associated membrane protein-associated protein B (VapB) is an ER membrane protein present at a subset of ER-mitochondrial contact sites. A proline-to-serine mutation in VapB at amino acid 56 (P56S) correlates with susceptibility to amyotrophic lateral sclerosis (ALS) type 8. Given the relationship between failed mitochondrial health and neurodegenerative disease, we investigated the function of VapB in mitochondrial population maintenance. We demonstrated that transgenic expression of VapBP56S in zebrafish larvae (sex undetermined) increased mitochondrial biogenesis, causing increased mitochondrial population size in the axon terminal. Expression of wild-type VapB did not alter biogenesis but, instead, increased mitophagy in the axon terminal. Using genetic manipulations to independently increase mitochondrial biogenesis, we show that biogenesis is normally balanced by mitophagy to maintain a constant mitochondrial population size. VapBP56S transgenics fail to increase mitophagy to compensate for the increase in mitochondrial biogenesis, suggesting an impaired mitophagic response. Finally, using a synthetic ER-mitochondrial tether, we show that VapB's function in mitochondrial turnover is likely independent of ER-mitochondrial tethering by contact sites. Our findings demonstrate that VapB can control mitochondrial turnover in the axon terminal, and this function is altered by the P56S ALS-linked mutation.
Collapse
Affiliation(s)
- Hiu-Tung C Wong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Angelica E Lang
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Chris Stein
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
4
|
Lee J, Pye N, Ellis L, Vos KD, Mortiboys H. Evidence of mitochondrial dysfunction in ALS and methods for measuring in model systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:269-325. [PMID: 38802177 DOI: 10.1016/bs.irn.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Metabolic dysfunction is a hallmark of multiple amyotrophic lateral sclerosis (ALS) models with a majority of ALS patients exhibiting hypermetabolism. The central sites of metabolism in the cell are mitochondria, capable of utilising a multitude of cellular substrates in an array of ATP-generating reactions. With reactive oxygen species (ROS) production occurring during some of these reactions, mitochondria can contribute considerably to oxidative stress. Mitochondria are also very dynamic organelles, interacting with other organelles, undergoing fusion/fission in response to changing metabolic states and being turned over by the cell regularly. Disruptions to many of these mitochondrial functions and processes have been reported in ALS models, largely indicating compromised mitochondrial function, increased ROS production by mitochondria, disrupted interactions with the endoplasmic reticulum and reduced turnover. This chapter summarises methods routinely used to assess mitochondria in ALS models and the alterations that have been reported in these models.
Collapse
Affiliation(s)
- James Lee
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Natalie Pye
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Laura Ellis
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Kurt De Vos
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
5
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
6
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 129] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
7
|
López-Doménech G, Kittler JT. Mitochondrial regulation of local supply of energy in neurons. Curr Opin Neurobiol 2023; 81:102747. [PMID: 37392672 PMCID: PMC11139648 DOI: 10.1016/j.conb.2023.102747] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
Brain computation is metabolically expensive and requires the supply of significant amounts of energy. Mitochondria are highly specialized organelles whose main function is to generate cellular energy. Due to their complex morphologies, neurons are especially dependent on a set of tools necessary to regulate mitochondrial function locally in order to match energy provision with local demands. By regulating mitochondrial transport, neurons control the local availability of mitochondrial mass in response to changes in synaptic activity. Neurons also modulate mitochondrial dynamics locally to adjust metabolic efficiency with energetic demand. Additionally, neurons remove inefficient mitochondria through mitophagy. Neurons coordinate these processes through signalling pathways that couple energetic expenditure with energy availability. When these mechanisms fail, neurons can no longer support brain function giving rise to neuropathological states like metabolic syndromes or neurodegeneration.
Collapse
Affiliation(s)
- Guillermo López-Doménech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
8
|
Danışman B, Ercan Kelek S, Aslan M. Resveratrol in Neurodegeneration, in Neurodegenerative Diseases, and in the Redox Biology of the Mitochondria. PSYCHIAT CLIN PSYCH 2023; 33:147-155. [PMID: 38765928 PMCID: PMC11082578 DOI: 10.5152/pcp.2023.23633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/23/2023] [Indexed: 05/22/2024] Open
Abstract
Neurodegeneration is a process leading to the progressive loss of structure and functions of neurons. Many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease have shown many common points at the subcellular level. Neurons are metabolically active cells and need a high amount of energy. Mitochondria are known as the energy synthesis center for cells, involved in the synthesis of adenosine triphosphate by oxidative phosphorylation. Rather than just being an energy synthesis center, it has critical importance for many cellular functions such as calcium homeostasis, cell proliferation, cell growth, and apoptosis. In the process of mitochondrial dysfunction, cellular functions are disrupted and cells enter the apoptotic or necrotic pathway. Resveratrol (trans-3,5,4-trihydoxystilbene), a plant-derived polyphenol found in the seed of grapes, berries, peanuts, and wine, has many biological effects such as inhibition of lipid peroxidation, scavenging of free radicals, changes in eicosanoid synthesis, inhibition of platelet aggregation, anti-inflammatory and anticancer activity, and regulation of lipid metabolism. Through the reviewed literature, the current study investigated the protective role of resveratrol in neurodegenerative diseases. Studies show that resveratrol moderates mitochondrial function, redox status, and cellular dynamics in both in vivo and in vitro experimental models of neurodegeneration. Resveratrol suppresses reactive oxygen species production by reducing the activity of complex III due to its competition effect with coenzyme Q. In the present work, we discussed the protective effects of resveratrol on neurodegeneration, neurodegenerative diseases, and the redox biology of the mitochondria.
Collapse
Affiliation(s)
- Betül Danışman
- Department of Biophysics, Atatürk University, Faculty of Medicine, Erzurum, Turkey
| | - Sevim Ercan Kelek
- Akdeniz University, Vocational School of Health Services, Antalya, Turkey
| | - Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
9
|
Chen M, Yan R, Luo J, Ning J, Zhou R, Ding L. The Role of PGC-1α-Mediated Mitochondrial Biogenesis in Neurons. Neurochem Res 2023:10.1007/s11064-023-03934-8. [PMID: 37097395 DOI: 10.1007/s11064-023-03934-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
Neurons are highly dependent on mitochondrial ATP production and Ca2+ buffering. Neurons have unique compartmentalized anatomy and energy requirements, and each compartment requires continuously renewed mitochondria to maintain neuronal survival and activity. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a key factor in the regulation of mitochondrial biogenesis. It is widely accepted that mitochondria are synthesized in the cell body and transported via axons to the distal end. However, axonal mitochondrial biogenesis is necessary to maintain axonal bioenergy supply and mitochondrial density due to limitations in mitochondrial axonal transport rate and mitochondrial protein lifespan. In addition, impaired mitochondrial biogenesis leading to inadequate energy supply and neuronal damage has been observed in neurological disorders. In this review, we focus on the sites where mitochondrial biogenesis occurs in neurons and the mechanisms by which it maintains axonal mitochondrial density. Finally, we summarize several neurological disorders in which mitochondrial biogenesis is affected.
Collapse
Affiliation(s)
- Mengjie Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruyu Yan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jiansheng Luo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jiaqi Ning
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruiling Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lingling Ding
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
10
|
Antioxidant Potential of Resveratrol as the Result of Radiation Exposition. Antioxidants (Basel) 2022; 11:antiox11112097. [DOI: 10.3390/antiox11112097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to determine the effect of electron beam irradiation (EBI) at a dose of 25 kGy on the stability and antioxidant properties of resveratrol (RSV), a nutraceutical with clinically proven activity. The electron paramagnetic resonance (EPR) method was used to evaluate the concentration of free radicals after irradiation. Minor changes in chemical structure due to free radicals induced by EBI were confirmed by FTIR spectroscopy. HPLC and HPLC-MS analysis ruled out the appearance of degradation products after irradiation. In addition, HPLC analysis confirmed the absence of trans- to cis-resveratrol conversion. Changes in the antioxidant potential of RSV after irradiation were studied using DPPH, ABTS, CUPRAC, and FRAP techniques. It was confirmed that EBI favorably affected the antioxidant properties of tests based on the HAT mechanism (increase in DPPH and CUPRAC tests).
Collapse
|
11
|
Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022; 13:1015835. [PMID: 36299900 PMCID: PMC9589363 DOI: 10.3389/fphar.2022.1015835] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) disrupts the chemical integrity of macromolecules and increases the risk of neurodegenerative diseases. Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS. We have viewed the NCBI database, PubMed, Science Direct (Elsevier), Springer-Nature, ResearchGate, and Google Scholar databases to search and collect relevant articles during the preparation of this review. The search keywords are OS, neurodegenerative diseases, fisetin, etc. High level of ROS in the brain tissue decreases ATP levels, and mitochondrial membrane potential and induces lipid peroxidation, chronic inflammation, DNA damage, and apoptosis. The subsequent results are various neuronal diseases. Fisetin is a polyphenolic compound, commonly present in dietary ingredients. The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders. Moreover, it maintains the redox profiles, and mitochondrial functions and inhibits NO production. At the molecular level, fisetin regulates the activity of PI3K/Akt, Nrf2, NF-κB, protein kinase C, and MAPK pathways to prevent OS, inflammatory response, and cytotoxicity. The antioxidant properties of fisetin protect the neural cells from inflammation and apoptotic degeneration. Thus, it can be used in the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
12
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Nelson AT, Trotti D. Altered Bioenergetics and Metabolic Homeostasis in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2022; 19:1102-1118. [PMID: 35773551 PMCID: PMC9587161 DOI: 10.1007/s13311-022-01262-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 01/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that primarily affects motor neurons and causes muscle atrophy, paralysis, and death. While a great deal of progress has been made in deciphering the underlying pathogenic mechanisms, no effective treatments for the disease are currently available. This is mainly due to the high degree of complexity and heterogeneity that characterizes the disease. Over the last few decades of research, alterations to bioenergetic and metabolic homeostasis have emerged as a common denominator across many different forms of ALS. These alterations are found at the cellular level (e.g., mitochondrial dysfunction and impaired expression of monocarboxylate transporters) and at the systemic level (e.g., low BMI and hypermetabolism) and tend to be associated with survival or disease outcomes in patients. Furthermore, an increasing amount of preclinical evidence and some promising clinical evidence suggests that targeting energy metabolism could be an effective therapeutic strategy. This review examines the evidence both for and against these ALS-associated metabolic alterations and highlights potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Andrew T Nelson
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, JHN Bldg., 4th floor, room 416, Philadelphia, PA, 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, JHN Bldg., 4th floor, room 416, Philadelphia, PA, 19107, USA.
| |
Collapse
|
14
|
Butyrate Ameliorates Mitochondrial Respiratory Capacity of The Motor-Neuron-like Cell Line NSC34-G93A, a Cellular Model for ALS. Biomolecules 2022; 12:biom12020333. [PMID: 35204833 PMCID: PMC8869540 DOI: 10.3390/biom12020333] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial defects in motor neurons are pathological hallmarks of ALS, a neuromuscular disease with no effective treatment. Studies have shown that butyrate, a natural gut-bacteria product, alleviates the disease progression of ALS mice overexpressing a human ALS-associated mutation, hSOD1G93A. In the current study, we examined the potential molecular mechanisms underlying the effect of butyrate on mitochondrial function in cultured motor-neuron-like NSC34 with overexpression of hSOD1G93A (NSC34-G93A). The live cell confocal imaging study demonstrated that 1mM butyrate in the culture medium improved the mitochondrial network with reduced fragmentation in NSC34-G93A cells. Seahorse analysis revealed that NSC34-G93A cells treated with butyrate showed an increase of ~5-fold in mitochondrial Spare Respiratory Capacity with elevated Maximal Respiration. The time-dependent changes in the mRNA level of PGC1α, a master regulator of mitochondrial biogenesis, revealed a burst induction with an early increase (~5-fold) at 4 h, a peak at 24 h (~19-fold), and maintenance at 48 h (8-fold) post-treatment. In line with the transcriptional induction of PGC1α, both the mRNA and protein levels of the key molecules (MTCO1, MTCO2, and COX4) related to the mitochondrial electron transport chain were increased following the butyrate treatment. Our data indicate that activation of the PGC1α signaling axis could be one of the molecular mechanisms underlying the beneficial effects of butyrate treatment in improving mitochondrial bioenergetics in NSC34-G93A cells.
Collapse
|
15
|
Panes JD, Wendt A, Ramirez-Molina O, Castro PA, Fuentealba J. Deciphering the role of PGC-1α in neurological disorders: from mitochondrial dysfunction to synaptic failure. Neural Regen Res 2022; 17:237-245. [PMID: 34269182 PMCID: PMC8463972 DOI: 10.4103/1673-5374.317957] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The onset and mechanisms underlying neurodegenerative diseases remain uncertain. The main features of neurodegenerative diseases have been related with cellular and molecular events like neuronal loss, mitochondrial dysfunction and aberrant accumulation of misfolded proteins or peptides in specific areas of the brain. The most prevalent neurodegenerative diseases belonging to age-related pathologies are Alzheimer's disease, Huntington's disease, Parkinson's disease and amyotrophic lateral sclerosis. Interestingly, mitochondrial dysfunction has been observed to occur during the early onset of several neuropathological events associated to neurodegenerative diseases. The master regulator of mitochondrial quality control and energetic metabolism is the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Additionally, it has been observed that PGC-1α appears to be a key factor in maintaining neuronal survival and synaptic transmission. In fact, PGC-1α downregulation in different brain areas (hippocampus, substantia nigra, cortex, striatum and spinal cord) that occurs in function of neurological damage including oxidative stress, neuronal loss, and motor disorders has been seen in several animal and cellular models of neurodegenerative diseases. Current evidence indicates that PGC-1α upregulation may serve as a potent therapeutic approach against development and progression of neuronal damage. Remarkably, increasing evidence shows that PGC-1α deficient mice have neurodegenerative diseases-like features, as well as neurological abnormalities. Finally, we discuss recent studies showing novel specific PGC-1α isoforms in the central nervous system that appear to exert a key role in the age of onset of neurodegenerative diseases and have a neuroprotective function in the central nervous system, thus opening a new molecular strategy for treatment of neurodegenerative diseases. The purpose of this review is to provide an up-to-date overview of the PGC-1α role in the physiopathology of neurodegenerative diseases, as well as establish the importance of PGC-1α function in synaptic transmission and neuronal survival.
Collapse
Affiliation(s)
- Jessica D Panes
- Laboratorio de Screening de Compuestos Neuroactivos (LSCN), Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Aline Wendt
- Laboratorio de Screening de Compuestos Neuroactivos (LSCN), Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Oscar Ramirez-Molina
- Laboratorio de Screening de Compuestos Neuroactivos (LSCN), Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Patricio A Castro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Laboratorio de Screening de Compuestos Neuroactivos (LSCN), Departamento de Fisiología; Centro de Investigaciones Avanzadas en Biomedicina (CIAB-UdeC), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
16
|
Covering the Role of PGC-1α in the Nervous System. Cells 2021; 11:cells11010111. [PMID: 35011673 PMCID: PMC8750669 DOI: 10.3390/cells11010111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
The peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a well-known transcriptional coactivator involved in mitochondrial biogenesis. PGC-1α is implicated in the pathophysiology of many neurodegenerative disorders; therefore, a deep understanding of its functioning in the nervous system may lead to the development of new therapeutic strategies. The central nervous system (CNS)-specific isoforms of PGC-1α have been recently identified, and many functions of PGC-1α are assigned to the particular cell types of the central nervous system. In the mice CNS, deficiency of PGC-1α disturbed viability and functioning of interneurons and dopaminergic neurons, followed by alterations in inhibitory signaling and behavioral dysfunction. Furthermore, in the ALS rodent model, PGC-1α protects upper motoneurons from neurodegeneration. PGC-1α is engaged in the generation of neuromuscular junctions by lower motoneurons, protection of photoreceptors, and reduction in oxidative stress in sensory neurons. Furthermore, in the glial cells, PGC-1α is essential for the maturation and proliferation of astrocytes, myelination by oligodendrocytes, and mitophagy and autophagy of microglia. PGC-1α is also necessary for synaptogenesis in the developing brain and the generation and maintenance of synapses in postnatal life. This review provides an outlook of recent studies on the role of PGC-1α in various cells in the central nervous system.
Collapse
|
17
|
Mishra S, Singh VJ, Chawla PA, Chawla V. Neuroprotective Role of Nutritional Supplementation in Athletes. Curr Mol Pharmacol 2021; 15:129-142. [PMID: 34886789 DOI: 10.2174/1874467214666211209144721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative disorders belong to different classes of progressive/chronic conditions that affect the peripheral/central nervous system. It has been shown through studies that athletes who play sports involving repeated head trauma and sub-concussive impacts are more likely to experience neurological impairments and neurodegenerative disorders in the long run. AIMS The aim of the current narrative review article is to provide a summary of various nutraceuticals that offer promise in the prevention or management of sports-related injuries, especially concussions and mild traumatic brain injuries. METHODS This article reviews the various potential nutraceutical agents and their possible mechanisms in providing a beneficial effect in the injury recovery process. A thorough survey of the literature was carried out in the relevant databases to identify studies published in recent years. In the present article, we have also highlighted the major neurological disorders along with the associated nutraceutical(s) therapy in the management of disorders. RESULTS The exact pathological mechanism behind neurodegenerative conditions is complex as well as idiopathic. However, mitochondrial dysfunction, oxidative stress as well as intracellular calcium overload are some common reasons responsible for the progression of these neurodegenerative disorders. Owing to the multifaceted effects of nutraceuticals (complementary medicine), these supplements have gained importance as neuroprotective. These diet-based approaches inhibit different pathways in a physiological manner without eliciting adverse effects. Food habits and lifestyle of an individual also affect neurodegeneration. CONCLUSION Studies have shown nutraceuticals (such as resveratrol, omega-3-fatty acids) to be efficacious in terms of their neuroprotection against several neurodegenerative disorders and to be used as supplements in the management of traumatic brain injuries. Protection prior to injuries is needed since concussions or sub-concussive impacts may trigger several pathophysiological responses or cascades that can lead to long-term complications associated with CNS. Thus, the use of nutraceuticals as prophylactic treatment for neurological interventions has been proposed.
Collapse
Affiliation(s)
- Supriya Mishra
- Department of Pharmacology, SRM College of Pharmacy, Delhi-NCR. India
| | - Vikram Jeet Singh
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, Punjab. India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, Punjab. India
| | - Viney Chawla
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot-151203, Punjab. India
| |
Collapse
|
18
|
Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, Dai DF, Naveed M, Li QY, Saeed M, Shen JQ, Rajput SA, Li JH. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164. [PMID: 34649335 DOI: 10.1016/j.biopha.2021.112164] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.
Collapse
Affiliation(s)
- Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Balochistan, Pakistan
| | - Muhammad Sajjad Khan
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan.
| | - Pei-Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qin-Yuan Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
19
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
20
|
Allodi I, Montañana-Rosell R, Selvan R, Löw P, Kiehn O. Locomotor deficits in a mouse model of ALS are paralleled by loss of V1-interneuron connections onto fast motor neurons. Nat Commun 2021; 12:3251. [PMID: 34059686 PMCID: PMC8166981 DOI: 10.1038/s41467-021-23224-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
ALS is characterized by progressive inability to execute movements. Motor neurons innervating fast-twitch muscle-fibers preferentially degenerate. The reason for this differential vulnerability and its consequences on motor output is not known. Here, we uncover that fast motor neurons receive stronger inhibitory synaptic inputs than slow motor neurons, and disease progression in the SOD1G93A mouse model leads to specific loss of inhibitory synapses onto fast motor neurons. Inhibitory V1 interneurons show similar innervation pattern and loss of synapses. Moreover, from postnatal day 63, there is a loss of V1 interneurons in the SOD1G93A mouse. The V1 interneuron degeneration appears before motor neuron death and is paralleled by the development of a specific locomotor deficit affecting speed and limb coordination. This distinct ALS-induced locomotor deficit is phenocopied in wild-type mice but not in SOD1G93A mice after appearing of the locomotor phenotype when V1 spinal interneurons are silenced. Our study identifies a potential source of non-autonomous motor neuronal vulnerability in ALS and links ALS-induced changes in locomotor phenotype to inhibitory V1-interneurons.
Collapse
Affiliation(s)
- Ilary Allodi
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.
| | - Roser Montañana-Rosell
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Raghavendra Selvan
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen N, Denmark
| | - Peter Löw
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Leite JA, Ghirotto B, Targhetta VP, de Lima J, Câmara NOS. Sirtuins as pharmacological targets in neurodegenerative and neuropsychiatric disorders. Br J Pharmacol 2021; 179:1496-1511. [PMID: 34029375 DOI: 10.1111/bph.15570] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate several processes, such as transcription, cell proliferation, differentiation and development. HDACs are classified as either Zn2+ -dependent or NAD+ -dependent enzymes. Over the years, experimental and clinical evidence has demonstrated that HDAC modulation is a critical process in neurodegenerative and psychiatric disorders. Nevertheless, most of the studies have focused on the role of Zn2+ -dependent HDACs in the development of these diseases, although there is growing evidence showing that the NAD+ -dependent HDACs, known as sirtuins, are also very promising targets. This possibility has been strengthened by reports of decreased levels of NAD+ in CNS disorders, which can lead to alterations in sirtuin activation and therefore result in increased pathology. In this review, we discuss the role of sirtuins in neurodegenerative and neuropsychiatric disorders as well the possible rationale for them to be considered as pharmacological targets in future therapeutic interventions.
Collapse
Affiliation(s)
- Jefferson A Leite
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruno Ghirotto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vitor P Targhetta
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jean de Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels O S Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Trabjerg MS, Andersen DC, Huntjens P, Oklinski KE, Bolther L, Hald JL, Baisgaard AE, Mørk K, Warming N, Kullab UB, Kroese LJ, Pritchard CEJ, Huijbers IJ, Nieland JDV. Downregulating carnitine palmitoyl transferase 1 affects disease progression in the SOD1 G93A mouse model of ALS. Commun Biol 2021; 4:509. [PMID: 33931719 PMCID: PMC8087699 DOI: 10.1038/s42003-021-02034-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease characterized by death of motor neurons. The etiology and pathogenesis remains elusive despite decades of intensive research. Herein, we report that dysregulated metabolism plays a central role in the SOD1 G93A mouse model mimicking ALS. Specifically, we report that the activity of carnitine palmitoyl transferase 1 (CPT1) lipid metabolism is associated with disease progression. Downregulation of CPT1 activity by pharmacological and genetic methods results in amelioration of disease symptoms, inflammation, oxidative stress and mitochondrial function, whereas upregulation by high-fat diet or corticosterone results in a more aggressive disease progression. Finally, we show that downregulating CPT1 shifts the gut microbiota communities towards a protective phenotype in SOD1 G93A mice. These findings reveal that metabolism, and specifically CPT1 lipid metabolism plays a central role in the SOD1 G93A mouse model and shows that CPT1 might be a therapeutic target in ALS.
Collapse
Affiliation(s)
| | | | - Pam Huntjens
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Luise Bolther
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jonas Laugård Hald
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Kasper Mørk
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nikolaj Warming
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ulla Bismark Kullab
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lona John Kroese
- Mouse Clinic for Cancer and Aging Research, Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Colin Eliot Jason Pritchard
- Mouse Clinic for Cancer and Aging Research, Transgenic Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ivo Johan Huijbers
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
23
|
Huang C, Li J, Zhang G, Lin Y, Li C, Zheng X, Song X, Han B, Guo B, Tu Z, Zhang J, Sun Y, Wang Y, Zhang Z, Yan S. TBN improves motor function and prolongs survival in a TDP-43M337V mouse model of ALS. Hum Mol Genet 2021; 30:1484-1496. [PMID: 33929499 DOI: 10.1093/hmg/ddab101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are serious neurodegenerative diseases. Although their pathogenesis is unclear, the abnormal accumulation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological feature that exists in almost all patients. Thus far, there is no drug that can cure ALS/FTLD. Tetramethylpyrazine nitrone (TBN) is a derivative of tetramethylapyrazine, derived from the traditional Chinese medicine Ligusticum chuanxiong, which has been widely proven to have therapeutic effects on models of various neurodegenerative diseases. TBN is currently under clinical investigation for several indications including a Phase II trial of ALS. Here, we explored the therapeutic effect of TBN in an ALS/FTLD mouse model. We injected the TDP-43 M337V virus into the striatum of mice unilaterally and bilaterally, and then administered 30 mg/kg TBN intragastrically to observe changes in behavior and survival rate of mice. The results showed that in mice with unilateral injection of TDP-43M337V into the striatum, TBN improved motor deficits and cognitive impairment in the early stages of disease progression. In mice with bilateral injection of TDP-43M337V into the striatum, TBN not only improved motor function but also prolonged survival rate. Moreover, we show that its therapeutic effect may be through activation of the Akt/mTOR/GSK-3β and AMPK/PGC-1α/Nrf2 signaling pathways. In summary, TBN is a promising agent for the treatment of ALS/FTLD.
Collapse
Affiliation(s)
- Chunhui Huang
- Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Institute of New Drug Research, Jinan University, Guangzhou 510632, China.,Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Jun Li
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Guiliang Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Institute of New Drug Research, Jinan University, Guangzhou 510632, China
| | - Yingqi Lin
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Caijuan Li
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xiao Zheng
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Bofeng Han
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Baojian Guo
- Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Institute of New Drug Research, Jinan University, Guangzhou 510632, China
| | - Zhuchi Tu
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Jun Zhang
- School of traditional Chinese medicine, Jinan University, Guangzhou 510632, China
| | - Yewei Sun
- Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Institute of New Drug Research, Jinan University, Guangzhou 510632, China
| | - Yuqiang Wang
- Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Institute of New Drug Research, Jinan University, Guangzhou 510632, China
| | - Zaijun Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Institute of New Drug Research, Jinan University, Guangzhou 510632, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
24
|
Selective Activation of CNS and Reference PPARGC1A Promoters Is Associated with Distinct Gene Programs Relevant for Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22073296. [PMID: 33804860 PMCID: PMC8036390 DOI: 10.3390/ijms22073296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
The transcriptional regulator peroxisome proliferator activated receptor gamma coactivator 1A (PGC-1α), encoded by PPARGC1A, has been linked to neurodegenerative diseases. Recently discovered CNS-specific PPARGC1A transcripts are initiated far upstream of the reference promoter, spliced to exon 2 of the reference gene, and are more abundant than reference gene transcripts in post-mortem human brain samples. The proteins translated from the CNS and reference transcripts differ only at their N-terminal regions. To dissect functional differences between CNS-specific isoforms and reference proteins, we used clustered regularly interspaced short palindromic repeats transcriptional activation (CRISPRa) for selective endogenous activation of the CNS or the reference promoters in SH-SY5Y cells. Expression and/or exon usage of the targets was ascertained by RNA sequencing. Compared to controls, more differentially expressed genes were observed after activation of the CNS than the reference gene promoter, while the magnitude of alternative exon usage was comparable between activation of the two promoters. Promoter-selective associations were observed with canonical signaling pathways, mitochondrial and nervous system functions and neurological diseases. The distinct N-terminal as well as the shared downstream regions of PGC-1α isoforms affect the exon usage of numerous genes. Furthermore, associations of risk genes of amyotrophic lateral sclerosis and Parkinson's disease were noted with differentially expressed genes resulting from the activation of the CNS and reference gene promoter, respectively. Thus, CNS-specific isoforms markedly amplify the biological functions of PPARGC1A and CNS-specific isoforms and reference proteins have common, complementary and selective functions relevant for neurodegenerative diseases.
Collapse
|
25
|
Gunaseelan S, Wang Z, Tong VKJ, Ming SWS, Razar RBBA, Srimasorn S, Ong WY, Lim KL, Chua JJE. Loss of FEZ1, a gene deleted in Jacobsen syndrome, causes locomotion defects and early mortality by impairing motor neuron development. Hum Mol Genet 2021; 30:5-20. [PMID: 33395696 DOI: 10.1093/hmg/ddaa281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023] Open
Abstract
FEZ1-mediated axonal transport plays important roles in central nervous system development but its involvement in the peripheral nervous system is not well-characterized. FEZ1 is deleted in Jacobsen syndrome (JS), an 11q terminal deletion developmental disorder. JS patients display impaired psychomotor skills, including gross and fine motor delay, suggesting that FEZ1 deletion may be responsible for these phenotypes, given its association with the development of motor-related circuits. Supporting this hypothesis, our data show that FEZ1 is selectively expressed in the rat brain and spinal cord. Its levels progressively increase over the developmental course of human motor neurons (MN) derived from embryonic stem cells. Deletion of FEZ1 strongly impaired axon and dendrite development, and significantly delayed the transport of synaptic proteins into developing neurites. Concurring with these observations, Drosophila unc-76 mutants showed severe locomotion impairments, accompanied by a strong reduction of synaptic boutons at neuromuscular junctions. These abnormalities were ameliorated by pharmacological activation of UNC-51/ATG1, a FEZ1-activating kinase, with rapamycin and metformin. Collectively, the results highlight a role for FEZ1 in MN development and implicate its deletion as an underlying cause of motor impairments in JS patients.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ziyin Wang
- National Neuroscience Institute, Singapore, Singapore
| | - Venetia Kok Jing Tong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National Neuroscience Institute, Singapore, Singapore
| | - Sylvester Wong Shu Ming
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Sumitra Srimasorn
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kah-Leong Lim
- National Neuroscience Institute, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
26
|
Mitochondria and Neurodegenerative Diseases. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Wen J, Li S, Zheng C, Wang F, Luo Y, Wu L, Cao J, Guo B, Yu P, Zhang G, Li S, Sun Y, Yang X, Zhang Z, Wang Y. Tetramethylpyrazine nitrone improves motor dysfunction and pathological manifestations by activating the PGC-1α/Nrf2/HO-1 pathway in ALS mice. Neuropharmacology 2020; 182:108380. [PMID: 33152451 DOI: 10.1016/j.neuropharm.2020.108380] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/11/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of upper and lower motor neurons that results in skeletal muscle atrophy, weakness and paralysis. Oxidative stress plays a key role in the pathogenesis of ALS, including familial forms of the disease arising from mutation of the gene coding for superoxide dismutase (SOD1). We have used the SOD1G93A ALS mouse model to investigate the efficacy of 2-[[(1,1-dimethylethyl)oxidoimino]-methyl]-3,5,6-trimethylpyrazine (TBN), a novel tetramethylpyrazine derivative armed with a powerful free-radical scavenging nitrone moiety. TBN was administered to mice by intraperitoneal or intragastric injection after the onset of motor deficits. TBN slowed the progression of motor neuron disease as evidenced by improved motor performance, reduced spinal motor neuron loss and the associated glial response, and decreased skeletal muscle fiber denervation and fibrosis. TBN treatment activated mitochondrial antioxidant activity through the PGC-1α/Nrf2/HO-1 pathway and decreased the expression of human SOD1. These findings suggest that TBN holds promise as a therapeutic agent for ALS.
Collapse
Affiliation(s)
- Jing Wen
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Shangming Li
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Chengyou Zheng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fengjiao Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Yangwen Luo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Liangmiao Wu
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Jie Cao
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Baojian Guo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Pei Yu
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yewei Sun
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China.
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, 518055, China.
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China.
| | - Yuqiang Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| |
Collapse
|
28
|
Tracey TJ, Kirk SE, Steyn FJ, Ngo ST. The role of lipids in the central nervous system and their pathological implications in amyotrophic lateral sclerosis. Semin Cell Dev Biol 2020; 112:69-81. [PMID: 32962914 DOI: 10.1016/j.semcdb.2020.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Lipids play an important role in the central nervous system (CNS). They contribute to the structural integrity and physical characteristics of cell and organelle membranes, act as bioactive signalling molecules, and are utilised as fuel sources for mitochondrial metabolism. The intricate homeostatic mechanisms underpinning lipid handling and metabolism across two major CNS cell types; neurons and astrocytes, are integral for cellular health and maintenance. Here, we explore the various roles of lipids in these two cell types. Given that changes in lipid metabolism have been identified in a number of neurodegenerative diseases, we also discuss changes in lipid handling and utilisation in the context of amyotrophic lateral sclerosis (ALS), in order to identify key cellular processes affected by the disease, and inform future areas of research.
Collapse
Affiliation(s)
- T J Tracey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.
| | - S E Kirk
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - F J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - S T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia; Centre for Clinical Research, The University of Queensland, Brisbane, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
29
|
Peroxisome Proliferator Activator Receptor Gamma Coactivator-1α Overexpression in Amyotrophic Lateral Sclerosis: A Tale of Two Transgenics. Biomolecules 2020; 10:biom10050760. [PMID: 32414179 PMCID: PMC7277592 DOI: 10.3390/biom10050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder manifesting with upper and lower neuron loss, leading to impairments in voluntary muscle function and atrophy. Mitochondrial dysfunction in metabolism and morphology have been implicated in the pathogenesis of ALS, including atypical oxidative metabolism, reduced mitochondrial respiration in muscle, and protein aggregates in the mitochondrial outer membrane. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) plays an essential role in the regulation of mitochondrial biogenesis, the process by which existing mitochondria grow and divide. PGC-1α has been previously reported to be downregulated in the spinal cord of individuals with ALS. Towards targeting PGC-1α as a therapeutic mechanism, we have previously reported improved motor function and survival in the SOD1G93A mouse model of ALS by neuron-specific over-expression of PGC-1α under a neuron-specific enolase (NSE) promoter. As pharmacological intervention targeting PGC-1α would result in whole-body upregulation of this transcriptional co-activator, in the current study we investigated whether global expression of PGC-1α is beneficial in a SOD1G93A mouse model, by generating transgenic mice with PGC-1α transgene expression driven by an actin promoter. Actin-PGC-1α expression levels were assayed and confirmed in spinal cord, brain, muscle, liver, kidney, and spleen. To determine the therapeutic effects of global expression of PGC-1α, wild-type, actin-PGC-1α, SOD1G93A, and actin-PGC-1α/SOD1G93A animals were monitored for weight loss, motor performance by accelerating rotarod test, and survival. Overexpression of actin-PGC-1α did not confer significant improvement in these assessed outcomes. A potential explanation for this difference is that the actin promoter may not induce levels of PGC-1α relevant to disease pathophysiology in the cells that are specifically relevant to the pathogenesis of ALS. This evidence strongly supports future therapeutic approaches that target PGC-1α primarily in neurons.
Collapse
|
30
|
Vegeto E, Villa A, Della Torre S, Crippa V, Rusmini P, Cristofani R, Galbiati M, Maggi A, Poletti A. The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocr Rev 2020; 41:5572525. [PMID: 31544208 PMCID: PMC7156855 DOI: 10.1210/endrev/bnz005] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDs) are a wide class of disorders of the central nervous system (CNS) with unknown etiology. Several factors were hypothesized to be involved in the pathogenesis of these diseases, including genetic and environmental factors. Many of these diseases show a sex prevalence and sex steroids were shown to have a role in the progression of specific forms of neurodegeneration. Estrogens were reported to be neuroprotective through their action on cognate nuclear and membrane receptors, while adverse effects of male hormones have been described on neuronal cells, although some data also suggest neuroprotective activities. The response of the CNS to sex steroids is a complex and integrated process that depends on (i) the type and amount of the cognate steroid receptor and (ii) the target cell type-either neurons, glia, or microglia. Moreover, the levels of sex steroids in the CNS fluctuate due to gonadal activities and to local metabolism and synthesis. Importantly, biochemical processes involved in the pathogenesis of NDs are increasingly being recognized as different between the two sexes and as influenced by sex steroids. The aim of this review is to present current state-of-the-art understanding on the potential role of sex steroids and their receptors on the onset and progression of major neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, and the peculiar motoneuron disease spinal and bulbar muscular atrophy, in which hormonal therapy is potentially useful as disease modifier.
Collapse
Affiliation(s)
- Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze della Salute (DiSS), Università degli Studi di Milano, Italy
| | - Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Valeria Crippa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Paola Rusmini
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Riccardo Cristofani
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Mariarita Galbiati
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| |
Collapse
|
31
|
Muddapu VR, Dharshini SAP, Chakravarthy VS, Gromiha MM. Neurodegenerative Diseases - Is Metabolic Deficiency the Root Cause? Front Neurosci 2020; 14:213. [PMID: 32296300 PMCID: PMC7137637 DOI: 10.3389/fnins.2020.00213] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/26/2020] [Indexed: 01/31/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer, Parkinson, Huntington, and amyotrophic lateral sclerosis, are a prominent class of neurological diseases currently without a cure. They are characterized by an inexorable loss of a specific type of neurons. The selective vulnerability of specific neuronal clusters (typically a subcortical cluster) in the early stages, followed by the spread of the disease to higher cortical areas, is a typical pattern of disease progression. Neurodegenerative diseases share a range of molecular and cellular pathologies, including protein aggregation, mitochondrial dysfunction, glutamate toxicity, calcium load, proteolytic stress, oxidative stress, neuroinflammation, and aging, which contribute to neuronal death. Efforts to treat these diseases are often limited by the fact that they tend to address any one of the above pathological changes while ignoring others. Lack of clarity regarding a possible root cause that underlies all the above pathologies poses a significant challenge. In search of an integrative theory for neurodegenerative pathology, we hypothesize that metabolic deficiency in certain vulnerable neuronal clusters is the common underlying thread that links many dimensions of the disease. The current review aims to present an outline of such an integrative theory. We present a new perspective of neurodegenerative diseases as metabolic disorders at molecular, cellular, and systems levels. This helps to understand a common underlying mechanism of the many facets of the disease and may lead to more promising disease-modifying therapeutic interventions. Here, we briefly discuss the selective metabolic vulnerability of specific neuronal clusters and also the involvement of glia and vascular dysfunctions. Any failure in satisfaction of the metabolic demand by the neurons triggers a chain of events that precipitate various manifestations of neurodegenerative pathology.
Collapse
Affiliation(s)
- Vignayanandam Ravindernath Muddapu
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - S. Akila Parvathy Dharshini
- Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - V. Srinivasa Chakravarthy
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - M. Michael Gromiha
- Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
32
|
Soyal SM, Bonova P, Kwik M, Zara G, Auer S, Scharler C, Strunk D, Nofziger C, Paulmichl M, Patsch W. The Expression of CNS-Specific PPARGC1A Transcripts Is Regulated by Hypoxia and a Variable GT Repeat Polymorphism. Mol Neurobiol 2020; 57:752-764. [PMID: 31471878 PMCID: PMC7031416 DOI: 10.1007/s12035-019-01731-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
PPARGC1A encodes a transcriptional co-activator also termed peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1-alpha (PGC-1α) which orchestrates multiple transcriptional programs. We have recently identified CNS-specific transcripts that are initiated far upstream of the reference gene (RG) promoter. The regulation of these isoforms may be relevant, as experimental and genetic studies implicated the PPARGC1A locus in neurodegenerative diseases. We therefore studied cis- and trans-regulatory elements activating the CNS promoter in comparison to the RG promoter in human neuronal cell lines. A naturally occurring variable guanidine thymidine (GT) repeat polymorphism within a microsatellite region in the proximal CNS promoter increases promoter activity in neuronal cell lines. Both the RG and the CNS promoters are activated by ESRRA, and the PGC-1α isoforms co-activate ESRRA on their own promoters suggesting an autoregulatory feedback loop. The proximal CNS, but not the RG, promoter is induced by FOXA2 and co-activated by PGC-1α resulting in robust activation. Furthermore, the CNS, but not the RG, promoter is targeted by the canonical hypoxia response involving HIF1A. Importantly, the transactivation by HIF1A is modulated by the size of the GT polymorphism. Increased expression of CNS-specific transcripts in response to hypoxia was observed in an established rat model, while RG transcripts encoding the full-length reference protein were not increased. These results suggest a role of the CNS region of the PPARGC1A locus in ischemia and warrant further studies in humans as the activity of the CNS promoter as well as its induction by hypoxia is subject to inter-individual variability due to the GT polymorphism.
Collapse
Affiliation(s)
- Selma M Soyal
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020, Salzburg, Austria.
| | - Petra Bonova
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Markus Kwik
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Greta Zara
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Simon Auer
- Institute for Medical and Chemical Laboratory Diagnostics, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Cornelia Scharler
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, 5020, Salzburg, Austria
| | - Dirk Strunk
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, 5020, Salzburg, Austria
| | | | - Markus Paulmichl
- PharmGenetix GmbH, Niederalm, 5081, Salzburg, Austria
- Department of Personalized Medicine, Humanomed, 9020, Klagenfurt, Austria
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020, Salzburg, Austria.
| |
Collapse
|
33
|
Pourhanifeh MH, Shafabakhsh R, Reiter RJ, Asemi Z. The Effect of Resveratrol on Neurodegenerative Disorders: Possible Protective Actions Against Autophagy, Apoptosis, Inflammation and Oxidative Stress. Curr Pharm Des 2019; 25:2178-2191. [DOI: 10.2174/1381612825666190717110932] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of neurodegenerative disorders characterized by the loss of neuronal function is rapidly
increasing. The pathogenesis of the majority of these diseases is not entirely clear, but current evidence has
shown the possibility that autophagy, apoptosis, inflammation and oxidative stress are involved. The present
review summarizes the therapeutic effects of resveratrol on neurodegenerative disorders, based on the especially
molecular biology of these diseases. The PubMed, Cochrane, Web of Science and Scopus databases were
searched for studies published in English until March 30th, 2019 that contained data for the role of inflammation,
oxidative stress, angiogenesis and apoptosis in the neurodegenerative disorders. There are also studies documenting
the role of molecular processes in the progression of central nervous system diseases. Based on current evidence,
resveratrol has potential properties that may reduce cell damage due to inflammation. This polyphenol
affects cellular processes, including autophagy and the apoptosis cascade under stressful conditions. Current
evidence supports the beneficial effects of resveratrol on the therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad H. Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
34
|
Xiao Y, Zhang J, Shu X, Bai L, Xu W, Wang A, Chen A, Tu WY, Wang J, Zhang K, Luo B, Shen C. Loss of mitochondrial protein CHCHD10 in skeletal muscle causes neuromuscular junction impairment. Hum Mol Genet 2019; 29:1784-1796. [PMID: 31261376 DOI: 10.1093/hmg/ddz154] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Abstract
The neuromuscular junction (NMJ) is a synapse between motoneurons and skeletal muscles to control motor behavior. Acetylcholine receptors (AChRs) are restricted at the synaptic region for proper neurotransmission. Mutations in the mitochondrial CHCHD10 protein have been identified in multiple neuromuscular disorders; however, the physiological roles of CHCHD10 at NMJs remain elusive. Here, we report that CHCHD10 is highly expressed at the postsynapse of NMJs in skeletal muscles. Muscle conditional knockout CHCHD10 mice showed motor defects, abnormal neuromuscular transmission and NMJ structure. Mechanistically, we found that mitochondrial CHCHD10 is required for ATP production, which facilitates AChR expression and promotes agrin-induced AChR clustering. Importantly, ATP could effectively rescue the reduction of AChR clusters in the CHCHD10-ablated muscles. Our study elucidates a novel physiological role of CHCHD10 at the peripheral synapse. It suggests that mitochondria dysfunction contributes to neuromuscular pathogenesis.
Collapse
Affiliation(s)
- Yatao Xiao
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Zhejiang, China 310003
- Department of Neurobiology, Key laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, Zhejiang, China 310058
| | - Jianmin Zhang
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Zhejiang, China 310003
| | - Xiaoqiu Shu
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Zhejiang, China 310003
| | - Lei Bai
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Zhejiang, China 310003
| | - Wentao Xu
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Zhejiang, China 310003
| | - Ailian Wang
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Zhejiang, China 310003
| | - Aizhong Chen
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Zhejiang, China 310003
| | - Wen-Yo Tu
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Zhejiang, China 310003
| | - Jianwen Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China 310003
| | - Kejing Zhang
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Zhejiang, China 310003
- Department of Neurobiology, Key laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, Zhejiang, China 310058
| | - Benyan Luo
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China 310003
| | - Chengyong Shen
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Zhejiang, China 310003
- Department of Neurobiology, Key laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University, Zhejiang, China 310058
| |
Collapse
|
35
|
Nocella C, Cammisotto V, Pigozzi F, Borrione P, Fossati C, D'Amico A, Cangemi R, Peruzzi M, Gobbi G, Ettorre E, Frati G, Cavarretta E, Carnevale R. Impairment between Oxidant and Antioxidant Systems: Short- and Long-term Implications for Athletes' Health. Nutrients 2019; 11:E1353. [PMID: 31208096 PMCID: PMC6627820 DOI: 10.3390/nu11061353] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
The role of oxidative stress, an imbalance between reactive oxygen species production (ROS) and antioxidants, has been described in several patho-physiological conditions, including cardiovascular, neurological diseases and cancer, thus impacting on individuals' lifelong health. Diet, environmental pollution, and physical activity can play a significant role in the oxidative balance of an organism. Even if physical training has proved to be able to counteract the negative effects caused by free radicals and to provide many health benefits, it is also known that intensive physical activity induces oxidative stress, inflammation, and free radical-mediated muscle damage. Indeed, variations in type, intensity, and duration of exercise training can activate different patterns of oxidant-antioxidant balance leading to different responses in terms of molecular and cellular damage. The aim of the present review is to discuss (1) the role of oxidative status in athletes in relation to exercise training practice, (2) the implications for muscle damage, (3) the long-term effect for neurodegenerative disease manifestations, (4) the role of antioxidant supplementations in preventing oxidative damages.
Collapse
Affiliation(s)
- Cristina Nocella
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy.
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, 00161 Rome, Italy.
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Alessandra D'Amico
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Roberto Cangemi
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy.
| | - Mariangela Peruzzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Giuliana Gobbi
- Department of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), Anatomy and Histology Unit, University of Parma, Ospedale Maggiore, 43126 Parma, Italy.
| | - Evaristo Ettorre
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy.
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- IRCCS Neuromed, 86077 Pozzilli IS, Italy.
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| |
Collapse
|
36
|
Mohammadi S, Oryan S, Komaki A, Eidi A, Zarei M. Effects of Hippocampal Microinjection of Irisin, an Exercise-Induced Myokine, on Spatial and Passive Avoidance Learning and Memory in Male Rats. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09842-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Herskovits AZ, Hunter TA, Maxwell N, Pereira K, Whittaker CA, Valdez G, Guarente LP. SIRT1 deacetylase in aging-induced neuromuscular degeneration and amyotrophic lateral sclerosis. Aging Cell 2018; 17:e12839. [PMID: 30295421 PMCID: PMC6260920 DOI: 10.1111/acel.12839] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 07/20/2018] [Accepted: 08/07/2018] [Indexed: 01/28/2023] Open
Abstract
SIRT1 is an NAD+ -dependent deacetylase that functions in a variety of cells and tissues to mitigate age-associated diseases. However, it remains unknown if SIRT1 also acts to prevent pathological changes that accrue in motor neurons during aging and amyotrophic lateral sclerosis (ALS). In this study, we show that SIRT1 expression decreases in the spinal cord of wild-type mice during normal aging. Using mouse models either overexpressing or lacking SIRT1 in motor neurons, we found that SIRT1 slows age-related degeneration of motor neurons' presynaptic sites at neuromuscular junctions (NMJs). Transcriptional analysis of spinal cord shows an overlap of greater than 90% when comparing alterations during normal aging with changes during ALS, revealing a substantial upregulation in immune and inflammatory response genes and a downregulation of synaptic transcripts. In addition, overexpressing SIRT1 in motor neurons delays progression to end-stage disease in high copy SOD1G93A mice. Thus, our findings suggest that there are parallels between ALS and aging, and interventions to impede aging may also slow the progression of this devastating disease.
Collapse
Affiliation(s)
- Adrianna Z. Herskovits
- Department of PathologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusetts
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Tegan A. Hunter
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts
- University of Miami Miller School of MedicineMiamiFlorida
| | - Nicholas Maxwell
- Virginia Tech Carillion Research Institute Virginia TechRoanokeVirginia
| | - Katherine Pereira
- Virginia Tech Carillion Research Institute Virginia TechRoanokeVirginia
| | - Charles A. Whittaker
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Gregorio Valdez
- Virginia Tech Carillion Research Institute Virginia TechRoanokeVirginia
- Department of Biological SciencesVirginia TechBlacksburgVirginia
| | - Leonard P. Guarente
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts
| |
Collapse
|
38
|
Corrochano S, Blanco G, Acevedo-Arozena A. Skeletal Muscle Modulates Huntington's Disease Pathogenesis in Mice: Role of Physical Exercise. J Exp Neurosci 2018; 12:1179069518809059. [PMID: 30397387 PMCID: PMC6210627 DOI: 10.1177/1179069518809059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
Huntington’s disease (HD) is a monogenic fatal neurodegenerative disorder. However, there is increasing evidence that HD is a pleiotropic systemic disorder. In particular, skeletal muscle metabolism is greatly affected in HD, which in turn can have a major impact on whole-body metabolism and energetic balance. Throughout an unbiased mutagenesis approach in HD mice, we have found that Scn4a, a skeletal muscle–specific sodium channel gene, is a modifier of the disease. Mutations in Scn4a enhance HD disease progression and weight loss by accelerating muscle waste and cachexia, increasing skeletal muscle activity and energy demands. At the molecular level, Scn4a mutations activate AMP-activated protein kinase (AMPK), leading to a fibre switch towards more oxidative types. These adaptations seen in HD; Scn4a double mutant muscles are similar to those observed in healthy individuals after endurance exercise training regimes. This prompted us to assess the effects of an endurance exercise regime in HD mice, independently showing that skeletal muscle adaptations leading to the activation of AMPK are detrimental for HD pathogenesis. Although it is undeniable that physical exercise can lead to many health benefits, our work shows that, at least under certain situations such as in HD, an endurance exercise routine could be a detrimental therapeutic option.
Collapse
Affiliation(s)
| | | | - Abraham Acevedo-Arozena
- Unidad de Investigación, Hospital Universitario de Canarias, Fundación Canaria de Investigación Sanitaria e Instituto de Tecnologías Biomédicas, La Laguna, Spain
| |
Collapse
|
39
|
Lunetta C, Lizio A, Tremolizzo L, Ruscica M, Macchi C, Riva N, Weydt P, Corradi E, Magni P, Sansone V. Serum irisin is upregulated in patients affected by amyotrophic lateral sclerosis and correlates with functional and metabolic status. J Neurol 2018; 265:3001-3008. [DOI: 10.1007/s00415-018-9093-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
|
40
|
Bojungikgi-tang Improves Muscle and Spinal Cord Function in an Amyotrophic Lateral Sclerosis Model. Mol Neurobiol 2018; 56:2394-2407. [PMID: 30030751 DOI: 10.1007/s12035-018-1236-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive motor function impairment, dysphagia, and respiratory failure. Owing to the complexity of its pathogenic mechanisms, an effective therapy for ALS is lacking. Herbal medicines with multiple targets have good efficacy and low adverse reactions for the treatment of neurodegenerative diseases. In this study, the effects of Bojungikgi-tang (BJIGT), an herbal medicine with eight component herbs, on muscle and spinal cord function were evaluated in an ALS animal model. Animals were randomly divided into three groups: a non-transgenic group (nTg, n = 24), a hSOD1G93A transgenic group (Tg, n = 24), and a hSOD1G93A transgenic group in which 8-week-old mice were orally administered BJIGT (1 mg/g) once daily for 6 weeks (Tg+BJIGT, n = 24). The effects of BJIGT were evaluated using a rotarod test, foot-printing, and survival analyses based on Kaplan-Meier survival curves. To determine the biological mechanism underlying the effects of BJIGT in hSOD1G93A mice, western blotting, transmission electron microscopy, and Bungarotoxin staining were used. BJIGT improved motor function and extended the survival duration of hSOD1G93A mice. In addition, BJIGT had protective effects, including anti-oxidative and anti-inflammatory effects, in both the spinal cord and muscle of hSOD1G93A mice. Our results demonstrated that BJIGT causes muscle atrophy and the denervation of neuromuscular junctions in the gastrocnemius of hSOD1G93A mice. The components of BJIGT may alleviate the symptoms of ALS via different mechanisms, and accordingly, BJIGT treatment may be an effective therapeutic approach.
Collapse
|
41
|
PGC-1α sparks the fire of neuroprotection against neurodegenerative disorders. Ageing Res Rev 2018; 44:8-21. [PMID: 29580918 DOI: 10.1016/j.arr.2018.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/30/2022]
Abstract
Recently, growing evidence has demonstrated that peroxisome proliferator activated receptor γ (PPARγ) coactivator-1α (PGC-1α) is a superior transcriptional regulator that acts via controlling the expression of anti-oxidant enzymes and uncoupling proteins and inducing mitochondrial biogenesis, which plays a beneficial part in the central nervous system (CNS). Given the significance of PGC-1α, we summarize the current literature on the molecular mechanisms and roles of PGC-1α in the CNS. Thus, in this review, we first briefly introduce the basic characteristics regarding PGC-1α. We then depict some of its important cerebral functions and discuss upstream modulators, partners, and downstream effectors of the PGC-1α signaling pathway. Finally, we highlight recent progress in research on the involvement of PGC-1α in certain major neurodegenerative disorders (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Collectively, the data presented here may be useful for supporting the future potential of PGC-1α as a therapeutic target.
Collapse
|
42
|
Vandoorne T, De Bock K, Van Den Bosch L. Energy metabolism in ALS: an underappreciated opportunity? Acta Neuropathol 2018; 135:489-509. [PMID: 29549424 PMCID: PMC5978930 DOI: 10.1007/s00401-018-1835-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative disorder that primarily affects motor neurons. Despite our increased understanding of the genetic factors contributing to ALS, no effective treatment is available. A growing body of evidence shows disturbances in energy metabolism in ALS. Moreover, the remarkable vulnerability of motor neurons to ATP depletion has become increasingly clear. Here, we review metabolic alterations present in ALS patients and models, discuss the selective vulnerability of motor neurons to energetic stress, and provide an overview of tested and emerging metabolic approaches to treat ALS. We believe that a further understanding of the metabolic biology of ALS can lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Tijs Vandoorne
- Department of Neurosciences, Experimental Neurology, KU Leuven-University of Leuven, Campus Gasthuisberg O&N 4, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000, Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, KU Leuven-University of Leuven, Campus Gasthuisberg O&N 4, Herestraat 49, PB 602, 3000, Leuven, Belgium.
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000, Leuven, Belgium.
| |
Collapse
|
43
|
Gill JF, Santos G, Schnyder S, Handschin C. PGC-1α affects aging-related changes in muscle and motor function by modulating specific exercise-mediated changes in old mice. Aging Cell 2018; 17. [PMID: 29067788 PMCID: PMC5770876 DOI: 10.1111/acel.12697] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 02/06/2023] Open
Abstract
The age-related impairment in muscle function results in a drastic decline in motor coordination and mobility in elderly individuals. Regular physical activity is the only efficient intervention to prevent and treat this age-associated degeneration. However, the mechanisms that underlie the therapeutic effect of exercise in this context remain unclear. We assessed whether endurance exercise training in old age is sufficient to affect muscle and motor function. Moreover, as muscle peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a key regulatory hub in endurance exercise adaptation with decreased expression in old muscle, we studied the involvement of PGC-1α in the therapeutic effect of exercise in aging. Intriguingly, PGC-1α muscle-specific knockout and overexpression, respectively, precipitated and alleviated specific aspects of aging-related deterioration of muscle function in old mice, while other muscle dysfunctions remained unchanged upon PGC-1α modulation. Surprisingly, we discovered that muscle PGC-1α was not only involved in improving muscle endurance and mitochondrial remodeling, but also phenocopied endurance exercise training in advanced age by contributing to maintaining balance and motor coordination in old animals. Our data therefore suggest that the benefits of exercise, even when performed at old age, extend beyond skeletal muscle and are at least in part mediated by PGC-1α.
Collapse
Affiliation(s)
| | - Gesa Santos
- Biozentrum; University of Basel; Basel Switzerland
| | | | | |
Collapse
|
44
|
Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Front Mol Neurosci 2018; 11:10. [PMID: 29410613 PMCID: PMC5787076 DOI: 10.3389/fnmol.2018.00010] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Lipids are a fundamental class of organic molecules implicated in a wide range of biological processes related to their structural diversity, and based on this can be broadly classified into five categories; fatty acids, triacylglycerols (TAGs), phospholipids, sterol lipids and sphingolipids. Different lipid classes play major roles in neuronal cell populations; they can be used as energy substrates, act as building blocks for cellular structural machinery, serve as bioactive molecules, or a combination of each. In amyotrophic lateral sclerosis (ALS), dysfunctions in lipid metabolism and function have been identified as potential drivers of pathogenesis. In particular, aberrant lipid metabolism is proposed to underlie denervation of neuromuscular junctions, mitochondrial dysfunction, excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced neurotransmitter release. Here we review current knowledge of the roles of lipid metabolism and function in the CNS and discuss how modulating these pathways may offer novel therapeutic options for treating ALS.
Collapse
Affiliation(s)
- Timothy J Tracey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
45
|
Zhang LF, Yu XL, Ji M, Liu SY, Wu XL, Wang YJ, Liu RT. Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson's disease. Food Funct 2018; 9:6414-6426. [DOI: 10.1039/c8fo00964c] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resveratrol exerts neuroprotective effects on the A53T α-synuclein mouse model of Parkinson's disease.
Collapse
Affiliation(s)
- Li-fan Zhang
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xiao-lin Yu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Mei Ji
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Shu-ying Liu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xiao-ling Wu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Sources in Western China
- Ningxia University
- Yinchuan 750021
- China
| | - Yu-jiong Wang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Sources in Western China
- Ningxia University
- Yinchuan 750021
- China
| | - Rui-tian Liu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
46
|
|
47
|
Sirtuins as Modifiers of Huntington's Disease (HD) Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 154:105-145. [DOI: 10.1016/bs.pmbts.2017.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Oliveira ALDB, Monteiro VVS, Navegantes-Lima KC, Reis JF, Gomes RDS, Rodrigues DVS, Gaspar SLDF, Monteiro MC. Resveratrol Role in Autoimmune Disease-A Mini-Review. Nutrients 2017; 9:nu9121306. [PMID: 29194364 PMCID: PMC5748756 DOI: 10.3390/nu9121306] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/20/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases are still considered to be pressing concerns due the fact that they are leaders in death and disability causes worldwide. Resveratrol is a polyphenol derived from a variety of foods and beverages, including red grapes and red wine. Anti-inflammatory, antioxidant, and antiaging properties of resveratrol have been reported, and in some animal and human studies this compound reduced and ameliorated the progression of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, psoriasis, inflammatory bowel disease, and type 1 diabetes mellitus. Thus, this review aims to summarize and critically analyze the role of resveratrol in the modulation of several organ-specific or systemic autoimmune diseases.
Collapse
Affiliation(s)
- Ana Lígia de Brito Oliveira
- Pharmaceutical Science Post-Graduation Program, Neuroscience and Cellular Biology Post Graduation Program, Faculty of Pharmacy, Federal University of Pará, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Valter Vinicius Silva Monteiro
- School of Pharmacy, Health Science Institute, Federal University of Pará/UFPA, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Kely Campos Navegantes-Lima
- Pharmaceutical Science Post-Graduation Program, Neuroscience and Cellular Biology Post Graduation Program, Faculty of Pharmacy, Federal University of Pará, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Jordano Ferreira Reis
- School of Pharmacy, Health Science Institute, Federal University of Pará/UFPA, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Rafaelli de Souza Gomes
- Pharmaceutical Science Post-Graduation Program, Neuroscience and Cellular Biology Post Graduation Program, Faculty of Pharmacy, Federal University of Pará, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Dávila Valentina Silva Rodrigues
- School of Pharmacy, Health Science Institute, Federal University of Pará/UFPA, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Silvia Letícia de França Gaspar
- School of Pharmacy, Health Science Institute, Federal University of Pará/UFPA, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| | - Marta Chagas Monteiro
- Pharmaceutical Science Post-Graduation Program, Neuroscience and Cellular Biology Post Graduation Program, Faculty of Pharmacy, Federal University of Pará, Avenue Augusto Correa SN, Guamá, Pará 66075-110, Brazil.
| |
Collapse
|
49
|
Tang BL. Could Sirtuin Activities Modify ALS Onset and Progression? Cell Mol Neurobiol 2017; 37:1147-1160. [PMID: 27942908 DOI: 10.1007/s10571-016-0452-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a complex etiology. Sirtuins have been implicated as disease-modifying factors in several neurological disorders, and in the past decade, attempts have been made to check if manipulating Sirtuin activities and levels could confer benefit in terms of neuroprotection and survival in ALS models. The efforts have largely focused on mutant SOD1, and while limited in scope, the results were largely positive. Here, the body of work linking Sirtuins with ALS is reviewed, with discussions on how Sirtuins and their activities may impact on the major etiological mechanisms of ALS. Moving forward, it is important that the potentially beneficial effect of Sirtuins in ALS disease onset and progression are assessed in ALS models with TDP-43, FUS, and C9orf72 mutations.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore, 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
| |
Collapse
|
50
|
Nagar S, Trudler D, McKercher SR, Piña-Crespo J, Nakanishi N, Okamoto SI, Lipton SA. Molecular Pathway to Protection From Age-Dependent Photoreceptor Degeneration in Mef2 Deficiency. Invest Ophthalmol Vis Sci 2017; 58:3741-3749. [PMID: 28738418 PMCID: PMC5525556 DOI: 10.1167/iovs.17-21767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Photoreceptor degeneration in the retina is a major cause of blindness in humans. Elucidating mechanisms of degenerative and neuroprotective pathways in photoreceptors should afford identification and development of therapeutic strategies. Methods We used mouse genetic models and improved methods for retinal explant cultures. Retinas were enucleated from Mef2d+/+ and Mef2d−/− mice, stained for MEF2 proteins and outer nuclear layer thickness, and assayed for apoptotic cells. Chromatin immunoprecipitation (ChIP) assays revealed MEF2 binding, and RT-qPCR showed levels of transcription factors. We used AAV2 and electroporation to express genes in retinal explants and electroretinograms to assess photoreceptor functionality. Results We identify a prosurvival MEF2D-PGC1α pathway that plays a neuroprotective role in photoreceptors. We demonstrate that Mef2d−/− mouse retinas manifest decreased expression of PGC1α and increased photoreceptor cell loss, resulting in the absence of light responses. Molecular repletion of PGC1α protects Mef2d−/− photoreceptors and preserves light responsivity. Conclusions These results suggest that the MEF2-PGC1α cascade may represent a new therapeutic target for drugs designed to protect photoreceptors from developmental- and age-dependent loss.
Collapse
Affiliation(s)
- Saumya Nagar
- Neuroscience and Aging Research Center and Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| | - Dorit Trudler
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, California, United States
| | - Scott R McKercher
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, California, United States
| | - Juan Piña-Crespo
- Neuroscience and Aging Research Center and Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| | - Nobuki Nakanishi
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, California, United States
| | - Shu-Ichi Okamoto
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, California, United States
| | - Stuart A Lipton
- Neuroscience and Aging Research Center and Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States 2Neurodegenerative Disease Center, Scintillon Institute, San Diego, California, United States 3Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California, United States 4Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|