1
|
Wang W, Xi H, Fu D, Ma D, Gong W, Zhao Y, Li X, Wu L, Guo Y, Zhao G, Wang H. Growth Process of Fe-O Nanoclusters with Different Sizes Biosynthesized by Protein Nanocages. J Am Chem Soc 2024; 146:11657-11668. [PMID: 38641862 DOI: 10.1021/jacs.3c13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
All protein-directed syntheses of metal nanoclusters (NCs) and nanoparticles (NPs) have attracted considerable attention because protein scaffolds provide a unique metal coordination environment and can adjust the shape and morphology of NCs and NPs. However, the detailed formation mechanisms of NCs or NPs directed by protein templates remain unclear. In this study, by taking advantage of the ferritin nanocage as a biotemplate to monitor the growth of Fe-O NCs as a function of time, we synthesized a series of iron NCs with different sizes and shapes and subsequently solved their corresponding three-dimensional atomic-scale structures by X-ray protein crystallography and cryo-electron microscopy. The time-dependent structure analyses revealed the growth process of these Fe-O NCs with the 4-fold channel of ferritin as nucleation sites. To our knowledge, the newly biosynthesized Fe35O23Glu12 represents the largest Fe-O NCs with a definite atomic structure. This study contributes to our understanding of the formation mechanism of iron NCs and provides an effective method for metal NC synthesis.
Collapse
Affiliation(s)
- Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hongfang Xi
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Dan Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Danyang Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yaqin Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Xiaomei Li
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
| | - Lijie Wu
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
2
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
3
|
Lotan A, Luza S, Opazo CM, Ayton S, Lane DJR, Mancuso S, Pereira A, Sundram S, Weickert CS, Bousman C, Pantelis C, Everall IP, Bush AI. Perturbed iron biology in the prefrontal cortex of people with schizophrenia. Mol Psychiatry 2023; 28:2058-2070. [PMID: 36750734 PMCID: PMC10575779 DOI: 10.1038/s41380-023-01979-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Despite loss of grey matter volume and emergence of distinct cognitive deficits in young adults diagnosed with schizophrenia, current treatments for schizophrenia do not target disruptions in late maturational reshaping of the prefrontal cortex. Iron, the most abundant transition metal in the brain, is essential to brain development and function, but in excess, it can impair major neurotransmission systems and lead to lipid peroxidation, neuroinflammation and accelerated aging. However, analysis of cortical iron biology in schizophrenia has not been reported in modern literature. Using a combination of inductively coupled plasma-mass spectrometry and western blots, we quantified iron and its major-storage protein, ferritin, in post-mortem prefrontal cortex specimens obtained from three independent, well-characterised brain tissue resources. Compared to matched controls (n = 85), among schizophrenia cases (n = 86) we found elevated tissue iron, unlikely to be confounded by demographic and lifestyle variables, by duration, dose and type of antipsychotic medications used or by copper and zinc levels. We further observed a loss of physiologic age-dependent iron accumulation among people with schizophrenia, in that the iron level among cases was already high in young adulthood. Ferritin, which stores iron in a redox-inactive form, was paradoxically decreased in individuals with the disorder. Such iron-ferritin uncoupling could alter free, chemically reactive, tissue iron in key reasoning and planning areas of the young-adult schizophrenia cortex. Using a prediction model based on iron and ferritin, our data provide a pathophysiologic link between perturbed cortical iron biology and schizophrenia and indicate that achievement of optimal cortical iron homeostasis could offer a new therapeutic target.
Collapse
Affiliation(s)
- Amit Lotan
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Psychiatry and the Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sandra Luza
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
| | - Carlos M Opazo
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Serafino Mancuso
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
| | - Avril Pereira
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Mental Health Program, Monash Health, Melbourne, VIC, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Chad Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
- The Cooperative Research Centre (CRC) for Mental Health, Melbourne, VIC, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
- North Western Mental Health, Melbourne, VIC, Australia
| | - Ian P Everall
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton, VIC, Australia
- North Western Mental Health, Melbourne, VIC, Australia
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- The Cooperative Research Centre (CRC) for Mental Health, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Masison J, Mendes P. Modeling the iron storage protein ferritin reveals how residual ferrihydrite iron determines initial ferritin iron sequestration kinetics. PLoS One 2023; 18:e0281401. [PMID: 36745660 PMCID: PMC9901743 DOI: 10.1371/journal.pone.0281401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023] Open
Abstract
Computational models can be created more efficiently by composing them from smaller, well-defined sub-models that represent specific cellular structures that appear often in different contexts. Cellular iron metabolism is a prime example of this as multiple cell types tend to rely on a similar set of components (proteins and regulatory mechanisms) to ensure iron balance. One recurrent component, ferritin, is the primary iron storage protein in mammalian cells and is necessary for cellular iron homeostasis. Its ability to sequester iron protects cells from rising concentrations of ferrous iron limiting oxidative cell damage. The focus of the present work is establishing a model that tractably represents the ferritin iron sequestration kinetics such that it can be incorporated into larger cell models, in addition to contributing to the understanding of general ferritin iron sequestration dynamics within cells. The model's parameter values were determined from published kinetic and binding experiments and the model was validated against independent data not used in its construction. Simulation results indicate that FT concentration is the most impactful on overall sequestration dynamics, while the FT iron saturation (number of iron atoms sequestered per FT cage) fine tunes the initial rates. Finally, because this model has a small number of reactions and species, was built to represent important details of FT kinetics, and has flexibility to include subtle changes in subunit composition, we propose it to be used as a building block in a variety of specific cell type models of iron metabolism.
Collapse
Affiliation(s)
- Joseph Masison
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Pedro Mendes
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| |
Collapse
|
5
|
Grant ES, Hall LT, Hollenberg LCL, McColl G, Simpson DA. Nonmonotonic Superparamagnetic Behavior of the Ferritin Iron Core Revealed via Quantum Spin Relaxometry. ACS NANO 2023; 17:372-381. [PMID: 36534782 DOI: 10.1021/acsnano.2c08698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ferritin is the primary storage protein in our body and is of significant interest in biochemistry, nanotechnology, and condensed matter physics. More specifically within this sphere of interest are the magnetic properties of the iron core of ferritin, which have been utilized as a contrast agent in applications such as magnetic resonance imaging. This magnetism depends on both the number of iron atoms present, L, and the nature of the magnetic ordering of their electron spins. In this work, we create a series of ferritin samples containing homogeneous iron loads and apply diamond-based quantum spin relaxometry to systematically study their room temperature magnetic properties. We observe anomalous magnetic behavior that can be explained using a theoretical model detailing a morphological change to the iron core occurring at relatively low iron loads. This model provides an L0.35±0.06 scaling of the uncompensated Fe spins, in agreement with previous theoretical predictions. The necessary inclusion of this morphological change within the model is also supported by electron microscopy studies of ferritin with low iron content. This provides evidence for a magnetic consequence of this morphological change and positions diamond-based quantum spin relaxometry as an effective, noninvasive tool for probing the magnetic properties of metalloproteins. The low detection limit (ferritin 2% loaded at a concentration of 7.5 ± 0.4 μg/mL) also makes this a promising method for precision applications where low analyte concentrations are unavoidable, such as in biological research or even clinical analysis.
Collapse
Affiliation(s)
- Erin S Grant
- School of Physics, The University of Melbourne, Parkville, Victoria3010, Australia
| | - Liam T Hall
- School of Physics, The University of Melbourne, Parkville, Victoria3010, Australia
- School of Chemistry, The University of Melbourne, Parkville, Victoria3010, Australia
| | - Lloyd C L Hollenberg
- School of Physics, The University of Melbourne, Parkville, Victoria3010, Australia
| | - Gawain McColl
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria3010, Australia
| | - David A Simpson
- School of Physics, The University of Melbourne, Parkville, Victoria3010, Australia
| |
Collapse
|
6
|
Paalvast Y, Moazzen S, Sweegers M, Hogema B, Janssen M, van den Hurk K. A computational model for prediction of ferritin and haemoglobin levels in blood donors. Br J Haematol 2022; 199:143-152. [PMID: 35855538 DOI: 10.1111/bjh.18367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
Blood donors are at risk of iron deficiency anaemia. While this risk is decreased through ferritin-based deferral, ideally ferritin monitoring should also aid in optimising donation frequencies. We extended an existing model of haemoglobin (Hb) synthesis with iron homeostasis and validated the model on a cohort of 300 new donors whose ferritin levels were measured from stored blood samples collected over a 2-year period. We then used the donor's gender, body weight, height, and baseline Hb and ferritin levels to predict subsequent Hb and ferritin levels. The prediction error was within measurement variability in 88% of Hb level predictions and 64% of ferritin level predictions. A sensitivity analysis of the model revealed that baseline ferritin level was the most important in predicting future ferritin levels. Finally, we used the model to calculate the annual donation frequency at which donors would keep their ferritin level >15 ng/ml when measured after donating for 2 years. The mean annual donation frequency would then be 1.9 for women and 4.1 for men. The computational model, requiring baseline values only, can predict future Hb and ferritin levels remarkably well. This enables determination of optimal donation frequencies for individual donors at the start of their donation career.
Collapse
Affiliation(s)
- Yared Paalvast
- Donor Medicine, Sanquin Blood Bank, Amsterdam, the Netherlands
| | - Sara Moazzen
- Donor Medicine Research - Donor Studies, Sanquin Research, Amsterdam, the Netherlands.,Molecular Epidemiology Research Group, MDC Berlin-Buch, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maike Sweegers
- Donor Medicine Research - Donor Studies, Sanquin Research, Amsterdam, the Netherlands
| | - Boris Hogema
- Donor Medicine Research - Blood-borne Infections, Sanquin Research, Amsterdam, the Netherlands
| | - Mart Janssen
- Donor Medicine Research - Transfusion Technology Assessment, Sanquin Research, Amsterdam, the Netherlands
| | - Katja van den Hurk
- Donor Medicine Research - Donor Studies, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Borella E, Oosterholt S, Magni P, Pasqua OD. Characterisation of individual ferritin response in patients receiving chelation therapy. Br J Clin Pharmacol 2022; 88:3683-3694. [PMID: 35199367 PMCID: PMC9544664 DOI: 10.1111/bcp.15290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022] Open
Abstract
Aims To develop a drug–disease model describing iron overload and its effect on ferritin response in patients affected by transfusion‐dependent haemoglobinopathies and investigate the contribution of interindividual differences in demographic and clinical factors on chelation therapy with deferiprone or deferasirox. Methods Individual and mean serum ferritin data were retrieved from 13 published studies in patients affected by haemoglobinopathies receiving deferiprone or deferasirox. A nonlinear mixed effects modelling approach was used to characterise iron homeostasis and serum ferritin production taking into account annual blood consumption, baseline demographic and clinical characteristics. The effect of chelation therapy was parameterised as an increase in the iron elimination rate. Internal and external validation procedures were used to assess model performance across different study populations. Results An indirect response model was identified, including baseline ferritin concentrations and annual blood consumption as covariates. The effect of chelation on iron elimination rate was characterised by a linear function, with different slopes for each drug (0.0109 [90% CI: 0.0079–0.0131] vs. 0.0013 [90% CI: 0.0008–0.0018] L/mg mo). In addition to drug‐specific differences in the magnitude of the ferritin response, simulation scenarios indicate that ferritin elimination rates depend on ferritin concentrations at baseline. Conclusion Modelling of serum ferritin following chronic blood transfusion enabled the evaluation of drug‐induced changes in iron elimination rate and ferritin production. The use of a semi‐mechanistic parameterisation allowed us to disentangle disease‐specific factors from drug‐specific properties. Despite comparable chelation mechanisms, deferiprone appears to have a significantly larger effect on the iron elimination rate than deferasirox.
Collapse
Affiliation(s)
- Elisa Borella
- Department of Industrial Engineering and Informatics, Università degli Studi di Pavia, Pavia, Italy
| | - Sean Oosterholt
- Clinical Pharmacology & Therapeutics Group, University College London, London, United Kingdom
| | - Paolo Magni
- Department of Industrial Engineering and Informatics, Università degli Studi di Pavia, Pavia, Italy
| | - Oscar Della Pasqua
- Clinical Pharmacology & Therapeutics Group, University College London, London, United Kingdom.,Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Brentford, United Kingdom
| |
Collapse
|
8
|
Bossoni L, Hegeman-Kleinn I, van Duinen SG, Bulk M, Vroegindeweij LHP, Langendonk JG, Hirschler L, Webb A, van der Weerd L. Off-resonance saturation as an MRI method to quantify mineral- iron in the post-mortem brain. Magn Reson Med 2021; 87:1276-1288. [PMID: 34655092 PMCID: PMC9293166 DOI: 10.1002/mrm.29041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Purpose To employ an off‐resonance saturation method to measure the mineral‐iron pool in the postmortem brain, which is an endogenous contrast agent that can give information on cellular iron status. Methods An off‐resonance saturation acquisition protocol was implemented on a 7 Tesla preclinical scanner, and the contrast maps were fitted to an established analytical model. The method was validated by correlation and Bland‐Altman analysis on a ferritin‐containing phantom. Mineral‐iron maps were obtained from postmortem tissue of patients with neurological diseases characterized by brain iron accumulation, that is, Alzheimer disease, Huntington disease, and aceruloplasminemia, and validated with histology. Transverse relaxation rate and magnetic susceptibility values were used for comparison. Results In postmortem tissue, the mineral‐iron contrast colocalizes with histological iron staining in all the cases. Iron concentrations obtained via the off‐resonance saturation method are in agreement with literature. Conclusions Off‐resonance saturation is an effective way to detect iron in gray matter structures and partially mitigate for the presence of myelin. If a reference region with little iron is available in the tissue, the method can produce quantitative iron maps. This method is applicable in the study of diseases characterized by brain iron accumulation and can complement existing iron‐sensitive parametric methods.
Collapse
Affiliation(s)
- Lucia Bossoni
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Bulk
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Alzheimer Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lena H P Vroegindeweij
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Janneke G Langendonk
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lydiane Hirschler
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Louise van der Weerd
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Schirm S, Scholz M. A biomathematical model of human erythropoiesis and iron metabolism. Sci Rep 2020; 10:8602. [PMID: 32451387 PMCID: PMC7248076 DOI: 10.1038/s41598-020-65313-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 04/23/2020] [Indexed: 11/09/2022] Open
Abstract
Anaemia therapy or perisurgical support of erythropoiesis often require both, EPO and iron medication. However, excessive iron medication can result in iron overload and it is challenging to control haemoglobin levels in a desired range. To support this task, we develop a biomathematical model to simulate EPO- and iron medication in humans. We combine our previously established model of human erythropoiesis including comprehensive pharmacokinetic models of EPO applications with a newly developed model of iron metabolism including iron supplementation. Equations were derived by translating known biological mechanisms into ordinary differential equations. Qualitative model behaviour is studied in detail considering a variety of interventions such as bleeding, iron malnutrition and medication. The model can explain time courses of erythrocytes, reticulocytes, haemoglobin, haematocrit, red blood cells, EPO, serum iron, ferritin, transferrin saturation, and transferrin under a variety of scenarios including EPO and iron application into healthy volunteers or chemotherapy patients. Unknown model parameters were determined by fitting the predictions of the model to time series data from literature. We demonstrate how the model can be used to make predictions of untested therapy options such as cytotoxic chemotherapy supported by iron and EPO. Following our ultimate goal of establishing a model of anaemia treatment in chronic kidney disease, we aim at translating our model to this pathological condition in the near future.
Collapse
Affiliation(s)
- Sibylle Schirm
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
10
|
Yang LA, Wang J, Toufeeq S, Zhu LB, Zhang SZ, You LL, Hu P, Yu HZ, Zhao K, Xu X, Xu JP. Identification of FerLCH, isolation of ferritin and functional analysis related to interaction with pathogens in Eri-silkworm, Samia cynthia ricini. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21659. [PMID: 31976584 DOI: 10.1002/arch.21659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Ferritin is a ubiquitous and conserved iron storage protein that plays a significant role in host detoxification, iron storage, and immune response. Although ferritin has been studied in many species, little is known about its role in the Eri-silkworm (Samia cynthia ricini). In this study, the ferritin light-chain subunit gene, named ScFerLCH, was identified from S. c. ricini. The full-length gene, ScFerLCH, was 1,155 bp and encoded a protein consisting of 231 amino acids with a deduced molecular weight of 26.38 kDa. Higher ScFerLCH expression levels were found in the midgut, silk gland, and fat body by quantitative reverse-transcription polymerase chain reaction and western blot analysis. Injection of Staphylococcus aureus and Pseudomonas aeruginosa could induce upregulation of ScFerLCH in the hemolymph, fat body, and midgut, indicating that ScFerLCH may contribute to the host defense against invading pathogens. In addition, the native ferritin protein was isolated from S. c. ricini by native polyacrylamide gel electrophoresis and its two subunits, ferritin heavy-chain subunit (ScFerHCH) and ferritin light-chain subunit (ScFerLCH), were identified by mass spectrometry. Specifically, we found that recombinant ferritin subunits could self-assemble into a protein complex in vitro; moreover, both recombinant subunits and the protein complex were found to bind different bacteria, including Escherichia coli, P. aeruginosa, S. aureus, and Bacillus subtilis. However, bactericidal tests showed that the protein complex could not inhibit the growth of bacteria directly. Taken together, our results suggest that ScFerritin might play an important role in mediating molecular interaction with pathogens.
Collapse
Affiliation(s)
- Li-Ang Yang
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jie Wang
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shahzad Toufeeq
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Lin-Bao Zhu
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shang-Zhi Zhang
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ling-Ling You
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Pei Hu
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Hai-Zhong Yu
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Kang Zhao
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Xin Xu
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
11
|
Maity B, Hishikawa Y, Lu D, Ueno T. Recent progresses in the accumulation of metal ions into the apo-ferritin cage: Experimental and theoretical perspectives. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Bennett BD, Gralnick JA. Mechanisms of toxicity by and resistance to ferrous iron in anaerobic systems. Free Radic Biol Med 2019; 140:167-171. [PMID: 31251977 DOI: 10.1016/j.freeradbiomed.2019.06.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 06/13/2019] [Accepted: 06/23/2019] [Indexed: 12/24/2022]
Abstract
Iron is an essential element for nearly all life on Earth, primarily for its value as a redox active cofactor. Iron exists predominantly in two biologically relevant redox states: ferric iron, the oxidized state (Fe3+), and ferrous iron, the reduced state (Fe2+). Fe2+ is well known to facilitate electron transfer reactions that can lead to the generation of reactive oxygen species. Less is known about why iron is toxic to cells in the absence of oxygen, yet this phenomenon is critically important for our understanding of life on early Earth and in iron-rich ecosystems today. In this brief review, we will highlight our current understanding of anaerobic Fe2+ toxicity, focusing on molecular mechanistic studies in several model systems.
Collapse
Affiliation(s)
- B D Bennett
- Pacific Biosciences Research Center, University of Hawai‛i at Mānoa, Honolulu, HI, 96813, USA
| | - J A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St. Paul, MN, 55108, USA.
| |
Collapse
|
13
|
Cegarra L, Colins A, Gerdtzen ZP, Nuñez MT, Salgado JC. Mathematical modeling of the relocation of the divalent metal transporter DMT1 in the intestinal iron absorption process. PLoS One 2019; 14:e0218123. [PMID: 31181103 PMCID: PMC6557526 DOI: 10.1371/journal.pone.0218123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022] Open
Abstract
Iron is essential for the normal development of cellular processes. This metal has a high redox potential that can damage cells and its overload or deficiency is related to several diseases, therefore it is crucial for its absorption to be highly regulated. A fast-response regulatory mechanism has been reported known as mucosal block, which allows to regulate iron absorption after an initial iron challenge. In this mechanism, the internalization of the DMT1 transporters in enterocytes would be a key factor. Two phenomenological models are proposed for the iron absorption process: DMT1's binary switching mechanism model and DMT1's swinging-mechanism model, which represent the absorption mechanism for iron uptake in intestinal cells. The first model considers mutually excluding processes for endocytosis and exocytosis of DMT1. The second model considers a Ball's oscillator to represent the oscillatory behavior of DMT1's internalization. Both models are capable of capturing the kinetics of iron absorption and represent empirical observations, but the DMT1's swinging-mechanism model exhibits a better correlation with experimental data and is able to capture the regulatory phenomenon of mucosal block. The DMT1 swinging-mechanism model is the first phenomenological model reported to effectively represent the complexity of the iron absorption process, as it can predict the behavior of iron absorption fluxes after challenging cells with an initial dose of iron, and the reduction in iron uptake observed as a result of mucosal block after a second iron dose.
Collapse
Affiliation(s)
- Layimar Cegarra
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| | - Andrea Colins
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| | - Ziomara P. Gerdtzen
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| | - Marco T. Nuñez
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - J. Cristian Salgado
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| |
Collapse
|
14
|
Williams SM, Chatterji D. Flexible aspartates propel iron to the ferroxidation sites along pathways stabilized by a conserved arginine in Dps proteins from Mycobacterium smegmatis. Metallomics 2018; 9:685-698. [PMID: 28418062 DOI: 10.1039/c7mt00008a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA-binding proteins under starvation (Dps) are dodecameric nano-compartments for iron oxidation and storage in bacterial cells. These proteins have roughly spherical structures with a hollow interior where iron is stored. Through mutational analysis of a conserved arginine residue in the second Dps protein from Mycobacterium smegmatis, we have identified residues which stabilize the interfaces between the iron entry and ferroxidation sites. Also, we have used X-ray crystallography to determine the structures of co-crystals of iron and Dps in varying proportions and compare the changes in these ligand-bound forms with respect to the apo-protein. The iron-loaded proteins of low, medium and high iron-bound forms were found to exhibit aspartate residues with alternate conformations, some of which could be directly linked to the sites of ferroxidation and iron entry. We conclude that the increased flexibility of aspartates in the presence of iron facilitates its movement from the entry site to the ferroxidaton site, and the two active sites are stabilized by the interactions of a conserved arginine residue R73.
Collapse
|
15
|
Abdizadeh H, Atilgan AR, Atilgan C, Dedeoglu B. Computational approaches for deciphering the equilibrium and kinetic properties of iron transport proteins. Metallomics 2018; 9:1513-1533. [PMID: 28967944 DOI: 10.1039/c7mt00216e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With the advances in three-dimensional structure determination techniques, high quality structures of the iron transport proteins transferrin and the bacterial ferric binding protein (FbpA) have been deposited in the past decade. These are proteins of relatively large size, and developments in hardware and software have only recently made it possible to study their dynamics using standard computational resources. We review computational techniques towards understanding the equilibrium and kinetic properties of iron transport proteins under different environmental conditions. At the level of detail that requires quantum chemical treatments, the octahedral geometry around iron has been scrutinized and it has been established that the iron coordinating tyrosines are in an unusual deprotonated state. At the atomistic level, both the N-lobe and the full bilobal structure of transferrin have been studied under varying conditions of pH, ionic strength and binding of other metal ions by molecular dynamics (MD) simulations. These studies have allowed questions to be answered, among others, on the function of second shell residues in iron release, the role of synergistic anions in preparing the active site for iron binding, and the differences between the kinetics of the N- and the C-lobe. MD simulations on FbpA have led to the detailed observation of the binding kinetics of phosphate to the apo form, and to the conformational preferences of the holo form under conditions mimicking the environmental niches provided by the periplasmic space. To study the dynamics of these proteins with their receptors, one must resort to coarse-grained methodologies, since these systems are prohibitively large for atomistic simulations. A study of the complex of human transferrin (hTf) with its pathogenic receptor by such methods has revealed a potential mechanistic explanation for the defense mechanism that arises in evolutionary warfare. Meanwhile, the motions in the transferrin receptor bound hTf have been shown to disfavor apo hTf dissociation, explaining why the two proteins remain in complex during the recycling process from the endosome to the cell surface. Open problems and possible technological applications related to metal ion binding-release in iron transport proteins that may be handled by hybrid use of quantum mechanical, MD and coarse-grained approaches are discussed.
Collapse
Affiliation(s)
- H Abdizadeh
- Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı 34956, Tuzla, Istanbul, Turkey.
| | | | | | | |
Collapse
|
16
|
Sarkar J, Potdar AA, Saidel GM. Whole-body iron transport and metabolism: Mechanistic, multi-scale model to improve treatment of anemia in chronic kidney disease. PLoS Comput Biol 2018; 14:e1006060. [PMID: 29659573 PMCID: PMC5919696 DOI: 10.1371/journal.pcbi.1006060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/26/2018] [Accepted: 02/27/2018] [Indexed: 02/04/2023] Open
Abstract
Iron plays vital roles in the human body including enzymatic processes, oxygen-transport via hemoglobin and immune response. Iron metabolism is characterized by ~95% recycling and minor replenishment through diet. Anemia of chronic kidney disease (CKD) is characterized by a lack of synthesis of erythropoietin leading to reduced red blood cell (RBC) formation and aberrant iron recycling. Treatment of CKD anemia aims to normalize RBC count and serum hemoglobin. Clinically, the various fluxes of iron transport and accumulation are not measured so that changes during disease (e.g., CKD) and treatment are unknown. Unwanted iron accumulation in patients is known to lead to adverse effects. Current whole-body models lack the mechanistic details of iron transport related to RBC maturation, transferrin (Tf and TfR) dynamics and assume passive iron efflux from macrophages. Hence, they are not predictive of whole-body iron dynamics and cannot be used to design individualized patient treatment. For prediction, we developed a mechanistic, multi-scale computational model of whole-body iron metabolism incorporating four compartments containing major pools of iron and RBC generation process. The model accounts for multiple forms of iron in vivo, mechanisms involved in iron uptake and release and their regulation. Furthermore, the model is interfaced with drug pharmacokinetics to allow simulation of treatment dynamics. We calibrated our model with experimental and clinical data from peer-reviewed literature to reliably simulate CKD anemia and the effects of current treatment involving combination of epoietin-alpha and iron dextran. This in silico whole-body model of iron metabolism predicts that a year of treatment can potentially lead to 90% downregulation of ferroportin (FPN) levels, 15-fold increase in iron stores with only a 20% increase in iron flux from the reticulo-endothelial system (RES). Model simulations quantified unmeasured iron fluxes, previously unknown effects of treatment on FPN-level and iron stores in the RES. This mechanistic whole-body model can be the basis for future studies that incorporate iron metabolism together with related clinical experiments. Such an approach could pave the way for development of effective personalized treatment of CKD anemia.
Collapse
Affiliation(s)
- Joydeep Sarkar
- Pricewaterhouse Coopers LLP, New York, NY, United States of America
| | - Alka A. Potdar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Gerald M. Saidel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- * E-mail:
| |
Collapse
|
17
|
Moglia I, Santiago M, Olivera-Nappa Á, Soler M. An optimized low-cost protocol for standardized production of iron-free apoferritin nanocages with high protein recovery and suitable conformation for nanotechnological applications. J Inorg Biochem 2017; 183:184-190. [PMID: 29279245 DOI: 10.1016/j.jinorgbio.2017.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/24/2017] [Accepted: 11/17/2017] [Indexed: 11/28/2022]
Abstract
Ferritin is a globular protein that consists of 24 subunits forming a hollow nanocage structure that naturally stores iron oxyhydroxides. Elimination of iron atoms to obtain the empty protein called apoferritin is the first step to use this organic shell as a nanoreactor for different nanotechnological applications. Different protocols have been reported for apoferritin formation, but some are time consuming, others are difficult to reproduce and protein recovery yields are seldom reported. Here we tested several protocols and performed a complete material characterization of the apoferritin products using size exclusion chromatography, UV-vis spectroscopy, inductively coupled plasma optical emission spectrometry and dynamic light scattering. Our best method removes more than 99% of the iron from loaded holoferritin, recovering 70-80% of the original protein as monomeric apoferritin nanocages. Our work shows that pH conditions of the reduction step and the presence and nature of chelating agents affect the efficiency of iron removal. Furthermore, process conditions also seem to have an influence on the monomer:aggregate proportion present in the product. We also demonstrate that iron contents markedly increase ferritin absorbance at 280nm. The influence of iron contents on absorbance at 280nm precludes using this simple spectrophotometric measure for protein determination in ferritin‑iron complexes. Apoferritin produced following our protocol only requires readily-available, cheap and biocompatible reagents, which makes this process standardizable, scalable and applicable to be used for in vivo applications of ferritin derivatives as well as nanotechnological and biotechnological uses.
Collapse
Affiliation(s)
- Italo Moglia
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Beauchef 851, Santiago, Chile
| | - Margarita Santiago
- Center for Biotechnology and Bioengineering - CeBiB, FCFM, University of Chile, Beauchef 851, Santiago, Chile
| | - Álvaro Olivera-Nappa
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Beauchef 851, Santiago, Chile; Center for Biotechnology and Bioengineering - CeBiB, FCFM, University of Chile, Beauchef 851, Santiago, Chile.
| | - Mónica Soler
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Beauchef 851, Santiago, Chile.
| |
Collapse
|
18
|
Yu HZ, Zhang SZ, Ma Y, Fei DQ, Li B, Yang LA, Wang J, Li Z, Muhammad A, Xu JP. Molecular Characterization and Functional Analysis of a Ferritin Heavy Chain Subunit from the Eri-Silkworm, Samia cynthia ricini. Int J Mol Sci 2017; 18:ijms18102126. [PMID: 29036914 PMCID: PMC5666808 DOI: 10.3390/ijms18102126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Ferritins are conserved iron-binding proteins that are primarily involved in iron storage, detoxification and the immune response. Despite the importance of ferritin in organisms, little is known about their roles in the eri-silkworm (Samia cynthia ricini). We previously identified a ferritin heavy chain subunit named ScFerHCH in the S. c. ricini transcriptome database. The full-length S. c. ricini ferritin heavy chain subunit (ScFerHCH) was 1863 bp and encoded a protein of 231 amino acids with a deduced molecular weight of 25.89 kDa. Phylogenetic analysis revealed that ScFerHCH shared a high amino acid identity with the Bombyx mori and Danaus plexippus heavy chain subunits. Higher ScFerHCH expression levels were found in the silk gland, fat body and midgut of S. c. ricini by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Injection of Staphylococcus aureus and Pseudomonas aeruginosa was associated with an upregulation of ScFerHCH in the midgut, fat body and hemolymph, indicating that ScFerHCH may contribute to the host’s defense against invading pathogens. In addition, the anti-oxidation activity and iron-binding capacity of recombinant ScFerHCH protein were examined. Taken together, our results suggest that the ferritin heavy chain subunit from eri-silkworm may play critical roles not only in innate immune defense, but also in organismic iron homeostasis.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Ma
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Dong-Qiong Fei
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Li-Ang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Zhen Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Azharuddin Muhammad
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
19
|
Parmar JH, Davis G, Shevchuk H, Mendes P. Modeling the dynamics of mouse iron body distribution: hepcidin is necessary but not sufficient. BMC SYSTEMS BIOLOGY 2017; 11:57. [PMID: 28521769 PMCID: PMC5437513 DOI: 10.1186/s12918-017-0431-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Iron is an essential element of most living organisms but is a dangerous substance when poorly liganded in solution. The hormone hepcidin regulates the export of iron from tissues to the plasma contributing to iron homeostasis and also restricting its availability to infectious agents. Disruption of iron regulation in mammals leads to disorders such as anemia and hemochromatosis, and contributes to the etiology of several other diseases such as cancer and neurodegenerative diseases. Here we test the hypothesis that hepcidin alone is able to regulate iron distribution in different dietary regimes in the mouse using a computational model of iron distribution calibrated with radioiron tracer data. RESULTS A model was developed and calibrated to the data from adequate iron diet, which was able to simulate the iron distribution under a low iron diet. However simulation of high iron diet shows considerable deviations from the experimental data. Namely the model predicts more iron in red blood cells and less iron in the liver than what was observed in experiments. CONCLUSIONS These results suggest that hepcidin alone is not sufficient to regulate iron homeostasis in high iron conditions and that other factors are important. The model was able to simulate anemia when hepcidin was increased but was unable to simulate hemochromatosis when hepcidin was suppressed, suggesting that in high iron conditions additional regulatory interactions are important.
Collapse
Affiliation(s)
- Jignesh H Parmar
- Center for Quantitative Medicine and Department of Cell Biology, UConn Health, Farmington, CT, 06030, USA
| | - Grey Davis
- Center for Quantitative Medicine and Department of Cell Biology, UConn Health, Farmington, CT, 06030, USA
| | - Hope Shevchuk
- Center for Quantitative Medicine and Department of Cell Biology, UConn Health, Farmington, CT, 06030, USA
| | - Pedro Mendes
- Center for Quantitative Medicine and Department of Cell Biology, UConn Health, Farmington, CT, 06030, USA.
- School of Computer Science, University of Manchester, Manchester, UK.
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
20
|
Colins A, Gerdtzen ZP, Nuñez MT, Salgado JC. Mathematical Modeling of Intestinal Iron Absorption Using Genetic Programming. PLoS One 2017; 12:e0169601. [PMID: 28072870 PMCID: PMC5225013 DOI: 10.1371/journal.pone.0169601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/18/2016] [Indexed: 01/08/2023] Open
Abstract
Iron is a trace metal, key for the development of living organisms. Its absorption process is complex and highly regulated at the transcriptional, translational and systemic levels. Recently, the internalization of the DMT1 transporter has been proposed as an additional regulatory mechanism at the intestinal level, associated to the mucosal block phenomenon. The short-term effect of iron exposure in apical uptake and initial absorption rates was studied in Caco-2 cells at different apical iron concentrations, using both an experimental approach and a mathematical modeling framework. This is the first report of short-term studies for this system. A non-linear behavior in the apical uptake dynamics was observed, which does not follow the classic saturation dynamics of traditional biochemical models. We propose a method for developing mathematical models for complex systems, based on a genetic programming algorithm. The algorithm is aimed at obtaining models with a high predictive capacity, and considers an additional parameter fitting stage and an additional Jackknife stage for estimating the generalization error. We developed a model for the iron uptake system with a higher predictive capacity than classic biochemical models. This was observed both with the apical uptake dataset used for generating the model and with an independent initial rates dataset used to test the predictive capacity of the model. The model obtained is a function of time and the initial apical iron concentration, with a linear component that captures the global tendency of the system, and a non-linear component that can be associated to the movement of DMT1 transporters. The model presented in this paper allows the detailed analysis, interpretation of experimental data, and identification of key relevant components for this complex biological process. This general method holds great potential for application to the elucidation of biological mechanisms and their key components in other complex systems.
Collapse
Affiliation(s)
- Andrea Colins
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile
| | - Ziomara P. Gerdtzen
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile
| | - Marco T. Nuñez
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - J. Cristian Salgado
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
21
|
Enculescu M, Metzendorf C, Sparla R, Hahnel M, Bode J, Muckenthaler MU, Legewie S. Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms. PLoS Comput Biol 2017; 13:e1005322. [PMID: 28068331 PMCID: PMC5261815 DOI: 10.1371/journal.pcbi.1005322] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/24/2017] [Accepted: 12/19/2016] [Indexed: 01/01/2023] Open
Abstract
Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional ferroportin-independent homeostasis mechanisms. The importance of iron in many physiological processes relies on its ability to participate in reduction-oxidation reactions. This property also leads to potential toxicity if concentrations of free iron are not properly managed by cells and tissues. Multicellular organisms therefore evolved intricate regulatory mechanisms to control systemic iron levels. A central regulatory mechanism is the binding of the hormone hepcidin to the iron exporter ferroportin, which controls the major fluxes of iron into blood plasma. Here, we present a mathematical model that is fitted and validated against experimental data to simulate the iron content in different organs following dietary changes and/or inflammatory states, or genetic perturbation of the hepcidin/ferroportin regulatory system. We find that hepcidin mediated ferroportin control is essential, but not sufficient to quantitatively explain several of our experimental findings. Thus, further regulatory mechanisms had to be included in the model to reproduce reduced serum iron levels in response to inflammation, the preferential accumulation of iron in the liver in the case of iron overload, or the maintenance of physiological serum iron concentrations if dietary iron levels are very high. We conclude that hepcidin-independent mechanisms play an important role in maintaining systemic iron homeostasis.
Collapse
Affiliation(s)
| | - Christoph Metzendorf
- Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, Heidelberg University, Heidelberg, Germany
| | - Richard Sparla
- Molecular Medicine Partnership Unit, Heidelberg University, Heidelberg, Germany
| | - Maximilian Hahnel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Johannes Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martina U Muckenthaler
- Pediatric Oncology, Hematology & Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
22
|
Ackerman CM, Lee S, Chang CJ. Analytical Methods for Imaging Metals in Biology: From Transition Metal Metabolism to Transition Metal Signaling. Anal Chem 2017; 89:22-41. [PMID: 27976855 PMCID: PMC5827935 DOI: 10.1021/acs.analchem.6b04631] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sumin Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Daugherty AM, Raz N. A virtual water maze revisited: Two-year changes in navigation performance and their neural correlates in healthy adults. Neuroimage 2016; 146:492-506. [PMID: 27659539 DOI: 10.1016/j.neuroimage.2016.09.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/12/2016] [Accepted: 09/17/2016] [Indexed: 11/30/2022] Open
Abstract
Age-related declines in spatial navigation are associated with deficits in procedural and episodic memory and deterioration of their neural substrates. For the lack of longitudinal evidence, the pace and magnitude of these declines and their neural mediators remain unclear. Here we examined virtual navigation in healthy adults (N=213, age 18-77 years) tested twice, two years apart, with complementary indices of navigation performance (path length and complexity) measured over six learning trials at each occasion. Slopes of skill acquisition curves and longitudinal change therein were estimated in structural equation modeling, together with change in regional brain volumes and iron content (R2* relaxometry). Although performance on the first trial did not differ between occasions separated by two years, the slope of path length improvement over trials was shallower and end-of-session performance worse at follow-up. Advanced age, higher pulse pressure, smaller cerebellar and caudate volumes, and greater caudate iron content were associated with longer search paths, i.e. poorer navigation performance. In contrast, path complexity diminished faster over trials at follow-up, albeit less so in older adults. Improvement in path complexity after two years was predicted by lower baseline hippocampal iron content and larger parahippocampal volume. Thus, navigation path length behaves as an index of perceptual-motor skill that is vulnerable to age-related decline, whereas path complexity may reflect cognitive mapping in episodic memory that improves with repeated testing, although not enough to overcome age-related deficits.
Collapse
Affiliation(s)
- Ana M Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI, USA; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| | - Naftali Raz
- Institute of Gerontology, Wayne State University, Detroit, MI, USA; Department of Psychology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
24
|
Daugherty AM, Raz N. Accumulation of iron in the putamen predicts its shrinkage in healthy older adults: A multi-occasion longitudinal study. Neuroimage 2016; 128:11-20. [PMID: 26746579 PMCID: PMC4762718 DOI: 10.1016/j.neuroimage.2015.12.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/16/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022] Open
Abstract
Accumulation of non-heme iron is believed to play a major role in neurodegeneration of the basal ganglia. In healthy aging, however, the temporal relationship between change in brain iron content and age-related volume loss is unclear. Here, we present the first long-term longitudinal multi-occasion investigation of changes in iron content and volume in the neostriatum in a sample of healthy middle-aged and older adults (N=32; ages 49-83years at baseline). Iron content, estimated via R2* relaxometry, increased in the putamen, but not the caudate nucleus. In the former, the rate of accumulation was coupled with change in volume. Moreover, greater baseline iron content predicted faster shrinkage and smaller volumes seven years later. Older age partially accounted for individual differences in neostriatal iron content and volume, but vascular risk did not. Thus, brain iron content may be a promising biomarker of impending decline in normal aging.
Collapse
Affiliation(s)
- Ana M Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI, USA.
| | - Naftali Raz
- Institute of Gerontology, Wayne State University, Detroit, MI, USA; Psychology Department, Wayne State University, Detroit, MI, USA
| |
Collapse
|
25
|
Plath LD, Ozdemir A, Aksenov AA, Bier ME. Determination of iron content and dispersity of intact ferritin by superconducting tunnel junction cryodetection mass spectrometry. Anal Chem 2015; 87:8985-93. [PMID: 26266697 DOI: 10.1021/acs.analchem.5b02180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ferritin is a common iron storage protein complex found in both eukaryotic and prokaryotic organisms. Although horse spleen holoferritin (HS-HoloFt) has been widely studied, this is the first report of mass spectrometry (MS) analysis of the intact form, likely because of its high molecular weight ∼850 kDa and broad iron-core mass distribution. The 24-subunit ferritin heteropolymer protein shell consists of light (L) and heavy (H) subunits and a ferrihydrite-like iron core. The H/L heterogeneity ratio of the horse spleen apoferritin (HS-ApoFt) shell was found to be ∼1:10 by liquid chromatography-electrospray ionization mass spectrometry. Superconducting tunneling junction (STJ) cryodetection matrix-assisted laser desorption ionization time-of-flight MS was utilized to determine the masses of intact HS-ApoFt, HS-HoloFt, and the HS-HoloFt dimer to be ∼505 kDa, ∼835 kDa, and ∼1.63 MDa, respectively. The structural integrity of HS-HoloFt and the proposed mineral adducts found for both purified L and H subunits suggest a robust biomacromolecular complex that is internally stabilized by the iron-based core. However, cross-linking experiments of HS-HoloFt with glutaraldehyde, unexpectedly, showed the complete release of the iron-based core in a one-step process revealing a cross-linked HS-ApoFt with a narrow fwhm peak width of 31.4 kTh compared to 295 kTh for HS-HoloFt. The MS analysis of HS-HoloFt revealed a semiquantitative description of the iron content and core dispersity of 3400 ± 1600 (2σ) iron atoms. Commercially prepared HS-ApoFt was estimated to still contain an average of 240 iron atoms. These iron abundance and dispersity results suggest the use of STJ cryodetection MS for the clinical analysis of iron deficient/overload diseases.
Collapse
Affiliation(s)
- Logan D Plath
- Center for Molecular Analysis, Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Abdil Ozdemir
- Center for Molecular Analysis, Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander A Aksenov
- Center for Molecular Analysis, Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mark E Bier
- Center for Molecular Analysis, Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
26
|
Appraising the Role of Iron in Brain Aging and Cognition: Promises and Limitations of MRI Methods. Neuropsychol Rev 2015; 25:272-87. [PMID: 26248580 DOI: 10.1007/s11065-015-9292-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022]
Abstract
Age-related increase in frailty is accompanied by a fundamental shift in cellular iron homeostasis. By promoting oxidative stress, the intracellular accumulation of non-heme iron outside of binding complexes contributes to chronic inflammation and interferes with normal brain metabolism. In the absence of direct non-invasive biomarkers of brain oxidative stress, iron accumulation estimated in vivo may serve as its proxy indicator. Hence, developing reliable in vivo measurements of brain iron content via magnetic resonance imaging (MRI) is of significant interest in human neuroscience. To date, by estimating brain iron content through various MRI methods, significant age differences and age-related increases in iron content of the basal ganglia have been revealed across multiple samples. Less consistent are the findings that pertain to the relationship between elevated brain iron content and systemic indices of vascular and metabolic dysfunction. Only a handful of cross-sectional investigations have linked high iron content in various brain regions and poor performance on assorted cognitive tests. The even fewer longitudinal studies indicate that iron accumulation may precede shrinkage of the basal ganglia and thus predict poor maintenance of cognitive functions. This rapidly developing field will benefit from introduction of higher-field MRI scanners, improvement in iron-sensitive and -specific acquisition sequences and post-processing analytic and computational methods, as well as accumulation of data from long-term longitudinal investigations. This review describes the potential advantages and promises of MRI-based assessment of brain iron, summarizes recent findings and highlights the limitations of the current methodology.
Collapse
|
27
|
Jutz G, van Rijn P, Santos Miranda B, Böker A. Ferritin: a versatile building block for bionanotechnology. Chem Rev 2015; 115:1653-701. [PMID: 25683244 DOI: 10.1021/cr400011b] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Günther Jutz
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Lehrstuhl für Makromolekulare Materialien und Oberflächen, RWTH Aachen University , Forckenbeckstrasse 50, D-52056 Aachen, Germany
| | | | | | | |
Collapse
|
28
|
Abstract
Iron is essential for all known life due to its redox properties; however, these same properties can also lead to its toxicity in overload through the production of reactive oxygen species. Robust systemic and cellular control are required to maintain safe levels of iron, and the liver seems to be where this regulation is mainly located. Iron misregulation is implicated in many diseases, and as our understanding of iron metabolism improves, the list of iron-related disorders grows. Recent developments have resulted in greater knowledge of the fate of iron in the body and have led to a detailed map of its metabolism; however, a quantitative understanding at the systems level of how its components interact to produce tight regulation remains elusive. A mechanistic computational model of human liver iron metabolism, which includes the core regulatory components, is presented here. It was constructed based on known mechanisms of regulation and on their kinetic properties, obtained from several publications. The model was then quantitatively validated by comparing its results with previously published physiological data, and it is able to reproduce multiple experimental findings. A time course simulation following an oral dose of iron was compared to a clinical time course study and the simulation was found to recreate the dynamics and time scale of the systems response to iron challenge. A disease state simulation of haemochromatosis was created by altering a single reaction parameter that mimics a human haemochromatosis gene (HFE) mutation. The simulation provides a quantitative understanding of the liver iron overload that arises in this disease. This model supports and supplements understanding of the role of the liver as an iron sensor and provides a framework for further modelling, including simulations to identify valuable drug targets and design of experiments to improve further our knowledge of this system. Iron is an essential nutrient required for healthy life but, in excess, is the cause of debilitating and even fatal conditions. The most common genetic disorder in humans caused by a mutation, haemochromatosis, results in an iron overload in the liver. Indeed, the liver plays a central role in the regulation of iron. Recently, an increasing amount of detail has been discovered about molecules related to iron metabolism, but an understanding of how they work together and regulate iron levels (in healthy people) or fail to do it (in disease) is still missing. We present a mathematical model of the regulation of liver iron metabolism that provides explanations of its dynamics and allows further hypotheses to be formulated and later tested in experiments. Importantly, the model reproduces accurately the healthy liver iron homeostasis and simulates haemochromatosis, showing how the causative mutation leads to iron overload. We investigate how best to control iron regulation and identified reactions that can be targets of new medicines to treat iron overload. The model provides a virtual laboratory for investigating iron metabolism and improves understanding of the method by which the liver senses and controls iron levels.
Collapse
|
29
|
Xie Z, Harrison SH, Torti SV, Torti FM, Han J. Application of circuit simulation method for differential modeling of TIM-2 iron uptake and metabolism in mouse kidney cells. Front Physiol 2013; 4:136. [PMID: 23761763 PMCID: PMC3675319 DOI: 10.3389/fphys.2013.00136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/21/2013] [Indexed: 11/25/2022] Open
Abstract
Circuit simulation is a powerful methodology to generate differential mathematical models. Due to its highly accurate modeling capability, circuit simulation can be used to investigate interactions between the parts and processes of a cellular system. Circuit simulation has become a core technology for the field of electrical engineering, but its application in biology has not yet been fully realized. As a case study for evaluating the more advanced features of a circuit simulation tool called Advanced Design System (ADS), we collected and modeled laboratory data for iron metabolism in mouse kidney cells for a H ferritin (HFt) receptor, T cell immunoglobulin and mucin domain-2 (TIM-2). The internal controlling parameters of TIM-2 associated iron metabolism were extracted and the ratios of iron movement among cellular compartments were quantified by ADS. The differential model processed by circuit simulation demonstrated a capability to identify variables and predict outcomes that could not be readily measured by in vitro experiments. For example, an initial rate of uptake of iron-loaded HFt (Fe-HFt) was 2.17 pmol per million cells. TIM-2 binding probability with Fe-HFt was 16.6%. An average of 8.5 min was required for the complex of TIM-2 and Fe-HFt to form an endosome. The endosome containing HFt lasted roughly 2 h. At the end of endocytosis, about 28% HFt remained intact and the rest was degraded. Iron released from degraded HFt was in the labile iron pool (LIP) and stimulated the generation of endogenous HFt for new storage. Both experimental data and the model showed that TIM-2 was not involved in the process of iron export. The extracted internal controlling parameters successfully captured the complexity of TIM-2 pathway and the use of circuit simulation-based modeling across a wider range of cellular systems is the next step for validating the significance and utility of this method.
Collapse
Affiliation(s)
- Zhijian Xie
- Department of Electrical Engineering, North Carolina Agricultural and Technical State University Greensboro, NC, USA
| | | | | | | | | |
Collapse
|
30
|
Theil EC, Chen H, Miranda C, Janser H, Elsenhans B, Núñez MT, Pizarro F, Schümann K. Absorption of iron from ferritin is independent of heme iron and ferrous salts in women and rat intestinal segments. J Nutr 2012; 142:478-83. [PMID: 22259191 PMCID: PMC3278266 DOI: 10.3945/jn.111.145854] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ferritin iron from food is readily bioavailable to humans and has the potential for treating iron deficiency. Whether ferritin iron absorption is mechanistically different from iron absorption from small iron complexes/salts remains controversial. Here, we studied iron absorption (RBC (59)Fe) from radiolabeled ferritin iron (0.5 mg) in healthy women with or without non-ferritin iron competitors, ferrous sulfate, or hemoglobin. A 9-fold excess of non-ferritin iron competitor had no significant effect on ferritin iron absorption. Larger amounts of iron (50 mg and a 99-fold excess of either competitor) inhibited iron absorption. To measure transport rates of iron that was absorbed inside ferritin, rat intestinal segments ex vivo were perfused with radiolabeled ferritin and compared to perfusion with ferric nitrilotriacetic (Fe-NTA), a well-studied form of chelated iron. Intestinal transport of iron absorbed inside exogenous ferritin was 14.8% of the rate measured for iron absorbed from chelated iron. In the steady state, endogenous enterocyte ferritin contained >90% of the iron absorbed from Fe-NTA or ferritin. We found that ferritin is a slow release source of iron, readily available to humans or animals, based on RBC iron incorporation. Ferritin iron is absorbed by a different mechanism than iron salts/chelates or heme iron. Recognition of a second, nonheme iron absorption process, ferritin endocytosis, emphasizes the need for more mechanistic studies on ferritin iron absorption and highlights the potential of ferritin present in foods such as legumes to contribute to solutions for global iron deficiency.
Collapse
Affiliation(s)
- Elizabeth C. Theil
- Children’s Hospital Oakland Research Institute, Oakland, CA,Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA
| | - Huijun Chen
- Children’s Hospital Oakland Research Institute, Oakland, CA,Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA
| | - Constanza Miranda
- Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Heinz Janser
- Walther-Straub-Institut for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Muenchen, Germany
| | - Bernd Elsenhans
- Walther-Straub-Institut for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Muenchen, Germany
| | - Marco T. Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, and Millennium Institute in Cell Dynamic and Biotechnology, Santiago, Chile
| | - Fernando Pizarro
- Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Klaus Schümann
- Research Center for Nutrition and Food Sciences, Biochemistry Unit, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
31
|
|