1
|
Zhang L, Sun X, Ye J, Yuan Q, Zhang X, Sun F, An Y, Chen Y, Qian Y, Yang D, Wang Q, Gao M, Chen T, Ma H, Chen G, Xie Z. Reconstruction and analyses of genome-scale halomonas metabolic network yield a highly efficient PHA production. Metab Eng Commun 2024; 19:e00251. [PMID: 39655187 PMCID: PMC11626823 DOI: 10.1016/j.mec.2024.e00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
In pursuit of reliable and efficient industrial microbes, this study integrates cutting-edge systems biology tools with Halomonas bluephagenesis TD01, a robust halophilic bacterium. We generated the complete and annotated circular genome sequence for this model organism, constructed and meticulously curated a genome-scale metabolic network, achieving striking 86.32% agreement with Biolog Phenotype Microarray data and visualize the network via an interactive Electron/Thrift server architecture. We then analyzed the genome-scale network using vertex sampling analysis (VSA) and found that productions of biomass, polyhydroxyalkanoates (PHA), citrate, acetate, and pyruvate are mutually competing. Recognizing the dynamic nature of H. bluephagenesis TD01, we further developed and implemented the hyper-cube-shrink-analysis (HCSA) framework to predict effects of nutrient availabilities and metabolic reactions in the model on biomass and PHA accumulation. We then, based on the analysis results, proposed and validate multi-step feeding strategies tailored to different fermentation stages. This integrated approach yielded remarkable results, with fermentation culminating in a cell dry weight of 100.4 g/L and 70% PHA content, surpassing previous benchmarks. Our findings exemplify the powerful potential of system-level tools in the design and optimization of industrial microorganisms, paving the way for more efficient and sustainable bio-based processes.
Collapse
Affiliation(s)
- Luhui Zhang
- Peking University International Cancer Institute, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xinpei Sun
- Peking University International Cancer Institute, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University - Yunnan Baiyao International Medical Center, School of Pharmaceutical Science, Peking University, Beijing, 100191, China
| | - Jianwen Ye
- MOE Key Lab of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - QianQian Yuan
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Fei Sun
- School of Pharmacy, University of Wisconsin Madison, WI, 53705, USA
| | - Yongpan An
- Peking University International Cancer Institute, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yutong Chen
- Peking University International Cancer Institute, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuehui Qian
- Peking University International Cancer Institute, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Daqian Yang
- Peking University International Cancer Institute, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qian Wang
- Peking University International Cancer Institute, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Miaomiao Gao
- Peking University International Cancer Institute, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guoqiang Chen
- MOE Key Lab of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhengwei Xie
- Peking University International Cancer Institute, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University - Yunnan Baiyao International Medical Center, School of Pharmaceutical Science, Peking University, Beijing, 100191, China
- Gigaceuticals Co., Ltd, Beijing, 102206, China
| |
Collapse
|
2
|
Noirungsee N, Changkhong S, Phinyo K, Suwannajak C, Tanakul N, Inwongwan S. Genome-scale metabolic modelling of extremophiles and its applications in astrobiological environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13231. [PMID: 38192220 PMCID: PMC10866088 DOI: 10.1111/1758-2229.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Metabolic modelling approaches have become the powerful tools in modern biology. These mathematical models are widely used to predict metabolic phenotypes of the organisms or communities of interest, and to identify metabolic targets in metabolic engineering. Apart from a broad range of industrial applications, the possibility of using metabolic modelling in the contexts of astrobiology are poorly explored. In this mini-review, we consolidated the concepts and related applications of applying metabolic modelling in studying organisms in space-related environments, specifically the extremophilic microbes. We recapitulated the current state of the art in metabolic modelling approaches and their advantages in the astrobiological context. Our review encompassed the applications of metabolic modelling in the theoretical investigation of the origin of life within prebiotic environments, as well as the compilation of existing uses of genome-scale metabolic models of extremophiles. Furthermore, we emphasize the current challenges associated with applying this technique in extreme environments, and conclude this review by discussing the potential implementation of metabolic models to explore theoretically optimal metabolic networks under various space conditions. Through this mini-review, our aim is to highlight the potential of metabolic modelling in advancing the study of astrobiology.
Collapse
Affiliation(s)
- Nuttapol Noirungsee
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| | - Sakunthip Changkhong
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Department of Thoracic SurgeryUniversity Hospital ZurichZurichSwitzerland
| | - Kittiya Phinyo
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research group on Earth—Space Ecology (ESE), Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Office of Research AdministrationChiang Mai UniversityChiang MaiThailand
| | | | - Nahathai Tanakul
- National Astronomical Research Institute of ThailandChiang MaiThailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
3
|
Carter EL, Constantinidou C, Alam MT. Applications of genome-scale metabolic models to investigate microbial metabolic adaptations in response to genetic or environmental perturbations. Brief Bioinform 2023; 25:bbad439. [PMID: 38048080 PMCID: PMC10694557 DOI: 10.1093/bib/bbad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Environmental perturbations are encountered by microorganisms regularly and will require metabolic adaptations to ensure an organism can survive in the newly presenting conditions. In order to study the mechanisms of metabolic adaptation in such conditions, various experimental and computational approaches have been used. Genome-scale metabolic models (GEMs) are one of the most powerful approaches to study metabolism, providing a platform to study the systems level adaptations of an organism to different environments which could otherwise be infeasible experimentally. In this review, we are describing the application of GEMs in understanding how microbes reprogram their metabolic system as a result of environmental variation. In particular, we provide the details of metabolic model reconstruction approaches, various algorithms and tools for model simulation, consequences of genetic perturbations, integration of '-omics' datasets for creating context-specific models and their application in studying metabolic adaptation due to the change in environmental conditions.
Collapse
Affiliation(s)
- Elena Lucy Carter
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | | | | |
Collapse
|
4
|
Enuh BM, Nural Yaman B, Tarzi C, Aytar Çelik P, Mutlu MB, Angione C. Whole-genome sequencing and genome-scale metabolic modeling of Chromohalobacter canadensis 85B to explore its salt tolerance and biotechnological use. Microbiologyopen 2022; 11:e1328. [PMID: 36314754 PMCID: PMC9597258 DOI: 10.1002/mbo3.1328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
Salt tolerant organisms are increasingly being used for the industrial production of high-value biomolecules due to their better adaptability compared to mesophiles. Chromohalobacter canadensis is one of the early halophiles to show promising biotechnology potential, which has not been explored to date. Advanced high throughput technologies such as whole-genome sequencing allow in-depth insight into the potential of organisms while at the frontiers of systems biology. At the same time, genome-scale metabolic models (GEMs) enable phenotype predictions through a mechanistic representation of metabolism. Here, we sequence and analyze the genome of C. canadensis 85B, and we use it to reconstruct a GEM. We then analyze the GEM using flux balance analysis and validate it against literature data on C. canadensis. We show that C. canadensis 85B is a metabolically versatile organism with many features for stress and osmotic adaptation. Pathways to produce ectoine and polyhydroxybutyrates were also predicted. The GEM reveals the ability to grow on several carbon sources in a minimal medium and reproduce osmoadaptation phenotypes. Overall, this study reveals insights from the genome of C. canadensis 85B, providing genomic data and a draft GEM that will serve as the first steps towards a better understanding of its metabolism, for novel applications in industrial biotechnology.
Collapse
Affiliation(s)
- Blaise Manga Enuh
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
| | - Belma Nural Yaman
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
- Department of Biomedical Engineering, Faculty of Engineering and ArchitectureEskişehir Osmangazi UniversityEskişehirTurkey
| | - Chaimaa Tarzi
- School of Computing, Engineering & Digital TechnologiesTeesside UniversityMiddlesbroughUK
| | - Pınar Aytar Çelik
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
- Environmental Protection and Control ProgramEskişehir Osmangazi UniversityEskişehirTurkey
| | - Mehmet Burçin Mutlu
- Department of Biology, Faculty of ScienceEskisehir Technical UniversityEskisehirTurkey
| | - Claudio Angione
- School of Computing, Engineering & Digital TechnologiesTeesside UniversityMiddlesbroughUK
- Centre for Digital InnovationTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| |
Collapse
|
5
|
Reconstruction and Analysis of Thermodynamically Constrained Models Reveal Metabolic Responses of a Deep-Sea Bacterium to Temperature Perturbations. mSystems 2022; 7:e0058822. [PMID: 35950761 PMCID: PMC9426432 DOI: 10.1128/msystems.00588-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microbial acclimation to different temperature conditions can involve broad changes in cell composition and metabolic efficiency. A systems-level view of these metabolic responses in nonmesophilic organisms, however, is currently missing. In this study, thermodynamically constrained genome-scale models were applied to simulate the metabolic responses of a deep-sea psychrophilic bacterium, Shewanella psychrophila WP2, under suboptimal (4°C), optimal (15°C), and supraoptimal (20°C) growth temperatures. The models were calibrated with experimentally determined growth rates of WP2. Gibbs free energy change of reactions (ΔrG'), metabolic fluxes, and metabolite concentrations were predicted using random simulations to characterize temperature-dependent changes in the metabolism. The modeling revealed the highest metabolic efficiency at the optimal temperature, and it suggested distinct patterns of ATP production and consumption that could lead to lower metabolic efficiency under suboptimal or supraoptimal temperatures. The modeling also predicted rearrangement of fluxes through multiple metabolic pathways, including the glycolysis pathway, Entner-Doudoroff pathway, tricarboxylic acid (TCA) cycle, and electron transport system, and these predictions were corroborated through comparisons to WP2 transcriptomes. Furthermore, predictions of metabolite concentrations revealed the potential conservation of reducing equivalents and ATP in the suboptimal temperature, consistent with experimental observations from other psychrophiles. Taken together, the WP2 models provided mechanistic insights into the metabolism of a psychrophile in response to different temperatures. IMPORTANCE Metabolic flexibility is a central component of any organism's ability to survive and adapt to changes in environmental conditions. This study represents the first application of thermodynamically constrained genome-scale models in simulating the metabolic responses of a deep-sea psychrophilic bacterium to various temperatures. The models predicted differences in metabolic efficiency that were attributed to changes in metabolic pathway utilization and metabolite concentration during growth under optimal and nonoptimal temperatures. Experimental growth measurements were used for model calibration, and temperature-dependent transcriptomic changes corroborated the model-predicted rearrangement of metabolic fluxes. Overall, this study highlights the utility of modeling approaches in studying the temperature-driven metabolic responses of an extremophilic organism.
Collapse
|
6
|
Microbial Diversity and Adaptation under Salt-Affected Soils: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14159280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The salinization of soil is responsible for the reduction in the growth and development of plants. As the global population increases day by day, there is a decrease in the cultivation of farmland due to the salinization of soil, which threatens food security. Salt-affected soils occur all over the world, especially in arid and semi-arid regions. The total area of global salt-affected soil is 1 billion ha, and in India, an area of nearly 6.74 million ha−1 is salt-stressed, out of which 2.95 million ha−1 are saline soil (including coastal) and 3.78 million ha−1 are alkali soil. The rectification and management of salt-stressed soils require specific approaches for sustainable crop production. Remediating salt-affected soil by chemical, physical and biological methods with available resources is recommended for agricultural purposes. Bioremediation is an eco-friendly approach compared to chemical and physical methods. The role of microorganisms has been documented by many workers for the bioremediation of such problematic soils. Halophilic Bacteria, Arbuscular mycorrhizal fungi, Cyanobacteria, plant growth-promoting rhizobacteria and microbial inoculation have been found to be effective for plant growth promotion under salt-stress conditions. The microbial mediated approaches can be adopted for the mitigation of salt-affected soil and help increase crop productivity. A microbial product consisting of beneficial halophiles maintains and enhances the soil health and the yield of the crop in salt-affected soil. This review will focus on the remediation of salt-affected soil by using microorganisms and their mechanisms in the soil and interaction with the plants.
Collapse
|
7
|
Mahmoud YAG, El-Naggar ME, Abdel-Megeed A, El-Newehy M. Recent Advancements in Microbial Polysaccharides: Synthesis and Applications. Polymers (Basel) 2021; 13:polym13234136. [PMID: 34883639 PMCID: PMC8659985 DOI: 10.3390/polym13234136] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Polysaccharide materials are widely applied in different applications including food, food packaging, drug delivery, tissue engineering, wound dressing, wastewater treatment, and bioremediation sectors. They were used in these domains due to their efficient, cost-effective, non-toxicity, biocompatibility, and biodegradability. As is known, polysaccharides can be synthesized by different simple, facile, and effective methods. Of these polysaccharides are cellulose, Arabic gum, sodium alginate, chitosan, chitin, curdlan, dextran, pectin, xanthan, pullulan, and so on. In this current article review, we focused on discussing the synthesis and potential applications of microbial polysaccharides. The biosynthesis of polysaccharides from microbial sources has been considered. Moreover, the utilization of molecular biology tools to modify the structure of polysaccharides has been covered. Such polysaccharides provide potential characteristics to transfer toxic compounds and decrease their resilience to the soil. Genetically modified microorganisms not only improve yield of polysaccharides, but also allow economically efficient production. With the rapid advancement of science and medicine, biosynthesis of polysaccharides research has become increasingly important. Synthetic biology approaches can play a critical role in developing polysaccharides in simple and facile ways. In addition, potential applications of microbial polysaccharides in different fields with a particular focus on food applications have been assessed.
Collapse
Affiliation(s)
- Yehia A.-G. Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Mehrez E. El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Cairo 12622, Egypt
- Correspondence: (M.E.E.-N.); (M.E.-N.)
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt;
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: (M.E.E.-N.); (M.E.-N.)
| |
Collapse
|
8
|
Genome-scale metabolic models of Microbacterium species isolated from a high altitude desert environment. Sci Rep 2020; 10:5560. [PMID: 32221328 PMCID: PMC7101325 DOI: 10.1038/s41598-020-62130-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/28/2020] [Indexed: 01/09/2023] Open
Abstract
The Atacama Desert is the most arid desert on Earth, focus of important research activities related to microbial biodiversity studies. In this context, metabolic characterization of arid soil bacteria is crucial to understand their survival strategies under extreme environmental stress. We investigated whether strain-specific features of two Microbacterium species were involved in the metabolic ability to tolerate/adapt to local variations within an extreme desert environment. Using an integrative systems biology approach we have carried out construction and comparison of genome-scale metabolic models (GEMs) of two Microbacterium sp., CGR1 and CGR2, previously isolated from physicochemically contrasting soil sites in the Atacama Desert. Despite CGR1 and CGR2 belong to different phylogenetic clades, metabolic pathways and attributes are highly conserved in both strains. However, comparison of the GEMs showed significant differences in the connectivity of specific metabolites related to pH tolerance and CO2 production. The latter is most likely required to handle acidic stress through decarboxylation reactions. We observed greater GEM connectivity within Microbacterium sp. CGR1 compared to CGR2, which is correlated with the capacity of CGR1 to tolerate a wider pH tolerance range. Both metabolic models predict the synthesis of pigment metabolites (β-carotene), observation validated by HPLC experiments. Our study provides a valuable resource to further investigate global metabolic adaptations of bacterial species to grow in soils with different abiotic factors within an extreme environment.
Collapse
|
9
|
Thomas T, Sudesh K, Bazire A, Elain A, Tan HT, Lim H, Bruzaud S. PHA Production and PHA Synthases of the Halophilic Bacterium Halomonas sp. SF2003. Bioengineering (Basel) 2020; 7:bioengineering7010029. [PMID: 32244900 PMCID: PMC7175313 DOI: 10.3390/bioengineering7010029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 01/18/2023] Open
Abstract
Among the different tools which can be studied and managed to tailor-make polyhydroxyalkanoates (PHAs) and enhance their production, bacterial strain and carbon substrates are essential. The assimilation of carbon sources is dependent on bacterial strain’s metabolism and consequently cannot be dissociated. Both must wisely be studied and well selected to ensure the highest production yield of PHAs. Halomonas sp. SF2003 is a marine bacterium already identified as a PHA-producing strain and especially of poly-3-hydroxybutyrate (P-3HB) and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P-3HB-co-3HV). Previous studies have identified different genes potentially involved in PHA production by Halomonas sp. SF2003, including two phaC genes with atypical characteristics, phaC1 and phaC2. At the same time, an interesting adaptability of the strain in front of various growth conditions was highlighted, making it a good candidate for biotechnological applications. To continue the characterization of Halomonas sp. SF2003, the screening of carbon substrates exploitable for PHA production was performed as well as production tests. Additionally, the functionality of both PHA synthases PhaC1 and PhaC2 was investigated, with an in silico study and the production of transformant strains, in order to confirm and to understand the role of each one on PHA production. The results of this study confirm the adaptability of the strain and its ability to exploit various carbon substrates, in pure or mixed form, for PHA production. Individual expression of PhaC1 and PhaC2 synthases in a non-PHA-producing strain, Cupriavidus necator H16 PHB¯4 (DSM 541), allows obtaining PHA production, demonstrating at the same time, functionality and differences between both PHA synthases. All the results of this study confirm the biotechnological interest in Halomonas sp. SF2003.
Collapse
Affiliation(s)
- Tatiana Thomas
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), EA 3884 Lorient, France;
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), 56300 Pontivy, France;
- Correspondence: ; Tel.: +33-661-730-222
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (K.S.); (H.T.T.); (H.L.)
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), IUEM, Université de Bretagne-Sud (UBS), EA 3884 Lorient, France;
| | - Anne Elain
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), 56300 Pontivy, France;
| | - Hua Tiang Tan
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (K.S.); (H.T.T.); (H.L.)
| | - Hui Lim
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia; (K.S.); (H.T.T.); (H.L.)
| | - Stéphane Bruzaud
- Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS), EA 3884 Lorient, France;
| |
Collapse
|
10
|
A genome-scale metabolic network reconstruction of extremely halophilic bacterium Salinibacter ruber. PLoS One 2019; 14:e0216336. [PMID: 31071110 PMCID: PMC6508672 DOI: 10.1371/journal.pone.0216336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/18/2019] [Indexed: 11/19/2022] Open
Abstract
A genome-scale metabolic network reconstruction of Salinibacter ruber DSM13855 is presented here. To our knowledge, this is the first metabolic model of an organism in the phylum Rhodothermaeota. This model, which will be called iMB631, was reconstructed based on genomic and biochemical data available on the strain Salinibacter ruber DSM13855. This network consists of 1459 reactions, 1363 metabolites and 631 genes. Model evaluation was performed based on existing biochemical data in the literature and also by performing laboratory experiments. For growth on different carbon sources, we show that iMB631 is able to correctly predict the growth in 91% of cases where growth has been observed experimentally and 83% of conditions in which S. ruber did not grow. The F-score was 93%, demonstrating a generally acceptable performance of the model. Based on the predicted flux distributions, we found that under certain autotrophic condition, a reductive tricarboxylic acid cycle (rTCA) has fluxes in all necessary reactions to support autotrophic growth. To include special metabolites of the bacterium, salinixanthin biosynthesis pathway was modeled based on the pathway proposed recently. For years, main glucose consumption pathway has been under debates in S. ruber. Using flux balance analysis, iMB631 predicts pentose phosphate pathway, rather than glycolysis, as the active glucose consumption method in the S. ruber.
Collapse
|
11
|
Yaşar Yildiz S, Nikerel E, Toksoy Öner E. Genome-Scale Metabolic Model of a Microbial Cell Factory ( Brevibacillus thermoruber 423) with Multi-Industry Potentials for Exopolysaccharide Production. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:237-246. [PMID: 30932743 DOI: 10.1089/omi.2019.0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Brevibacillus thermoruber 423 is a thermophilic bacterium capable of producing high levels of exopolysaccharide (EPS) that has broad applications in nutrition, feed, cosmetics, pharmaceutical, and chemical industries, not to mention in health and bionanotechnology sectors. EPS is a natural, nontoxic, and biodegradable polymer of sugar residues and plays pivotal roles in cell-to-cell interactions, adhesion, biofilm formation, and protection of cell against environmental extremes. This bacterium is a thermophilic EPS producer while exceeding other thermophilic producers by virtue of high level of polymer synthesis. Recently, B. thermoruber 423 was noted for relevance to multiple industry sectors because of its capacity to use xylose, and produce EPS, isoprenoids, ethanol/butanol, lipases, proteases, cellulase, and glucoamylase enzymes as well as its resistance to arsenic. A key step in understanding EPS production with a systems-based approach is the knowledge of microbial genome sequence. To speed biotechnology and industrial applications, this study reports on a genome-scale metabolic model (GSMM) of B. thermoruber 423, constructed using the recently available high-quality genome sequence that we have subsequently validated using physiological data on batch growth and EPS production on seven different carbon sources. The model developed contains 1454 reactions (of which 1127 are assigned an enzyme commission number) and 1410 metabolites from 925 genes. This GSMM offers the promise to enable and accelerate further systems biology and industrial scale studies, not to mention the ability to calculate metabolic flux distribution in large networks and multiomic data integration.
Collapse
Affiliation(s)
- Songül Yaşar Yildiz
- 1 Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey
| | - Emrah Nikerel
- 2 Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Ebru Toksoy Öner
- 3 Department of Bioengineering, IBSB, Marmara University, Istanbul, Turkey
| |
Collapse
|
12
|
XU ZIXIANG, GUO JING, YUE YUNXIA, MENG JING, SUN XIAO. IN SILICO GENOME-SCALE RECONSTRUCTION AND ANALYSIS OF THE SHEWANELLA LOIHICA PV-4 METABOLIC NETWORK. J BIOL SYST 2018. [DOI: 10.1142/s0218339018500171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbial Fuel Cells (MFCs) are devices that generate electricity directly from organic compounds with microbes (electricigens) serving as anodic catalysts. As a novel environment-friendly energy source, MFCs have extensive practical value. Since the biological features and metabolic mechanism of electricigens have a great effect on the electricity production of MFCs, it is a big deal to screen strains with high electricity productivity for improving the power output of MFC. Reconstructions and simulations of metabolic networks are of significant help in studying the metabolism of microorganisms so as to guide gene engineering and metabolic engineering to improve their power-generating efficiency. Herein, we reconstructed a genome-scale constraint-based metabolic network model of Shewanella loihica PV-4, an important electricigen, based on its genomic functional annotations, reaction databases and published metabolic network models of seven microorganisms. The resulting network model iGX790 consists of 902 reactions (including 71 exchange reactions), 798 metabolites and 790 genes, covering the main pathways such as carbon metabolism, energy metabolism, amino acid metabolism, nucleic acid metabolism and lipid metabolism. Using the model, we simulated the growth rate, the maximal synthetic rate of ATP, the flux variability analysis of metabolic network, gene deletion and so on to examine the metabolism of S. loihica PV-4.
Collapse
Affiliation(s)
- ZIXIANG XU
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - JING GUO
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - YUNXIA YUE
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - JING MENG
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - XIAO SUN
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
13
|
Mukhtar S, Mehnaz S, Mirza MS, Mirza BS, Malik KA. Diversity of Bacillus-like bacterial community in the rhizospheric and non-rhizospheric soil of halophytes (Salsola stocksii and Atriplex amnicola), and characterization of osmoregulatory genes in halophilic Bacilli. Can J Microbiol 2018; 64:567-579. [DOI: 10.1139/cjm-2017-0544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Salinity is one of the major abiotic stresses; a total of 3% of the world’s land mass is affected by salinity. Approximately 6.3 million hectares of land in Pakistan is affected by salinity to varying degrees, and most of the areas are arid to semiarid with low annual precipitation. The aim of the present study is to identify and characterize Bacillus and Bacillus-derived bacterial genera from the rhizospheric and non-rhizospheric soil samples from the Khewra Salt Mine, Pakistan, by using culture-independent and -dependent methods. Seven Bacillus-like bacterial genera, Bacillus, Halobacillus, Virgibacillus, Brevibacillus, Paenibacillus, Tumebacillus, and Lysinibacillus, were detected by using pyrosequencing analysis, whereas only four genera, Bacillus, Halobacillus, Oceanobacillus, and Virgibacillus, were identified by culture-dependent methods. Most of the Bacillus-like isolates identified in this study were moderately halophilic, alkaliphilic, and mesophilic bacteria and were considered a good source of hydrolytic enzymes because of their ability to degrade proteins, carbohydrates, and lipids. Eight Bacillus-like strains from the genera Bacillus, Halobacillus, Oceanobacillus, and Virgibacillus showed positive results for the presence of ectABC gene cluster (ectoine), six strains could synthesize betaine from choline, and six strains tested positive for the synthesis of proline from either glutamate or ornithine by using proline dehydrogenase enzyme.
Collapse
Affiliation(s)
- Salma Mukhtar
- Department of Biological Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan
- Molecular, Cell & Developmental Biology, UCLA, 621 Charles Young Drive South, Los Angeles, CA 90095-1606, USA
| | - Samina Mehnaz
- Department of Biological Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan
| | - Muhammad Sajjad Mirza
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan
| | - Babur Saeed Mirza
- Missouri State University, 901 S. National Avenue, Springfield, MO 65897, USA
| | - Kauser Abdulla Malik
- Department of Biological Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan
| |
Collapse
|
14
|
Alizadeh-Sani M, Hamishehkar H, Khezerlou A, Azizi-Lalabadi M, Azadi Y, Nattagh-Eshtivani E, Fasihi M, Ghavami A, Aynehchi A, Ehsani A. Bioemulsifiers Derived from Microorganisms: Applications in the Drug and Food Industry. Adv Pharm Bull 2018; 8:191-199. [PMID: 30023320 PMCID: PMC6046428 DOI: 10.15171/apb.2018.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/12/2018] [Accepted: 05/13/2018] [Indexed: 01/05/2023] Open
Abstract
Emulsifiers are a large category of compounds considered as surface active agents or surfactants. An emulsifier acts by reducing the speed of chemical reactions, and enhancing its stability. Bioemulsifiers are known as surface active biomolecule materials, due to their unique features over chemical surfactants, such as non-toxicity, biodegradability, foaming, biocompatibility, efficiency at low concentrations, high selectivity in different pH, temperatures and salinities. Emulsifiers are found in various natural resources and are synthesized by Bacteria, Fungi and Yeast. Bioemulsifier’s molecular weight is higher than that of biosurfactants. Emulsion’s function is closely related to their chemical structure. Therefore, the aim of this paper was to study the various bioemulsifiers derived from microorganisms used in the drug and food industry. In this manuscript, we studied organisms with biosurfactant producing abilities. These inexpensive substrates could be used in environmental remediation and in the petroleum industry.
Collapse
Affiliation(s)
- Mahmood Alizadeh-Sani
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azizi-Lalabadi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaghob Azadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elyas Nattagh-Eshtivani
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Fasihi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abed Ghavami
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aydin Aynehchi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Gumulya Y, Boxall NJ, Khaleque HN, Santala V, Carlson RP, Kaksonen AH. In a quest for engineering acidophiles for biomining applications: challenges and opportunities. Genes (Basel) 2018; 9:E116. [PMID: 29466321 PMCID: PMC5852612 DOI: 10.3390/genes9020116] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/27/2022] Open
Abstract
Biomining with acidophilic microorganisms has been used at commercial scale for the extraction of metals from various sulfide ores. With metal demand and energy prices on the rise and the concurrent decline in quality and availability of mineral resources, there is an increasing interest in applying biomining technology, in particular for leaching metals from low grade minerals and wastes. However, bioprocessing is often hampered by the presence of inhibitory compounds that originate from complex ores. Synthetic biology could provide tools to improve the tolerance of biomining microbes to various stress factors that are present in biomining environments, which would ultimately increase bioleaching efficiency. This paper reviews the state-of-the-art tools to genetically modify acidophilic biomining microorganisms and the limitations of these tools. The first part of this review discusses resilience pathways that can be engineered in acidophiles to enhance their robustness and tolerance in harsh environments that prevail in bioleaching. The second part of the paper reviews the efforts that have been carried out towards engineering robust microorganisms and developing metabolic modelling tools. Novel synthetic biology tools have the potential to transform the biomining industry and facilitate the extraction of value from ores and wastes that cannot be processed with existing biomining microorganisms.
Collapse
Affiliation(s)
- Yosephine Gumulya
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Naomi J Boxall
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Himel N Khaleque
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Ville Santala
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology (TUT), Tampere, 33101, Finland.
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University (MSU), Bozeman, MT 59717, USA.
| | - Anna H Kaksonen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
16
|
Razmilic V, Castro JF, Marchant F, Asenjo JA, Andrews B. Metabolic modelling and flux analysis of microorganisms from the Atacama Desert used in biotechnological processes. Antonie van Leeuwenhoek 2018; 111:1479-1491. [DOI: 10.1007/s10482-018-1031-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/25/2018] [Indexed: 01/16/2023]
|
17
|
Piubeli F, Salvador M, Argandoña M, Nieto JJ, Bernal V, Pastor JM, Cánovas M, Vargas C. Insights into metabolic osmoadaptation of the ectoines-producer bacterium Chromohalobacter salexigens through a high-quality genome scale metabolic model. Microb Cell Fact 2018; 17:2. [PMID: 29316921 PMCID: PMC5759318 DOI: 10.1186/s12934-017-0852-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/20/2017] [Indexed: 01/08/2023] Open
Abstract
Background The halophilic bacterium Chromohalobacter salexigens is a natural producer of ectoines, compatible solutes with current and potential biotechnological applications. As production of ectoines is an osmoregulated process that draws away TCA intermediates, bacterial metabolism needs to be adapted to cope with salinity changes. To explore and use C. salexigens as cell factory for ectoine(s) production, a comprehensive knowledge at the systems level of its metabolism is essential. For this purpose, the construction of a robust and high-quality genome-based metabolic model of C. salexigens was approached. Results We generated and validated a high quality genome-based C. salexigens metabolic model (iFP764). This comprised an exhaustive reconstruction process based on experimental information, analysis of genome sequence, manual re-annotation of metabolic genes, and in-depth refinement. The model included three compartments (periplasmic, cytoplasmic and external medium), and two salinity-specific biomass compositions, partially based on experimental results from C. salexigens. Using previous metabolic data as constraints, the metabolic model allowed us to simulate and analyse the metabolic osmoadaptation of C. salexigens under conditions for low and high production of ectoines. The iFP764 model was able to reproduce the major metabolic features of C. salexigens. Flux Balance Analysis (FBA) and Monte Carlo Random sampling analysis showed salinity-specific essential metabolic genes and different distribution of fluxes and variation in the patterns of correlation of reaction sets belonging to central C and N metabolism, in response to salinity. Some of them were related to bioenergetics or production of reducing equivalents, and probably related to demand for ectoines. Ectoines metabolic reactions were distributed according to its correlation in four modules. Interestingly, the four modules were independent both at low and high salinity conditions, as they did not correlate to each other, and they were not correlated with other subsystems. Conclusions Our validated model is one of the most complete curated networks of halophilic bacteria. It is a powerful tool to simulate and explore C. salexigens metabolism at low and high salinity conditions, driving to low and high production of ectoines. In addition, it can be useful to optimize the metabolism of other halophilic bacteria for metabolite production. Electronic supplementary material The online version of this article (10.1186/s12934-017-0852-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francine Piubeli
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - Manuel Salvador
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - Montserrat Argandoña
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - Joaquín J Nieto
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - Vicente Bernal
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.,Centro de Tecnología de Repsol, REPSOL S.A. Calle Agustín de Betancourt, s/n. 28935, Móstoles, Madrid, Spain
| | - Jose M Pastor
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Manuel Cánovas
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Carmen Vargas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain.
| |
Collapse
|
18
|
Özcan E, Öner ET. Microbial of Extracellular Polysaccharide Production from Biomass Sources. POLYSACCHARIDES 2018. [DOI: 10.1007/978-3-319-03751-6_51-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
19
|
Olsson BE, Korsakova ES, Anan'ina LN, Pyankova AA, Mavrodi OV, Plotnikova EG, Mavrodi DV. Draft genome sequences of strains Salinicola socius SMB35 T, Salinicola sp. MH3R3-1 and Chromohalobacter sp. SMB17 from the Verkhnekamsk potash mining region of Russia. Stand Genomic Sci 2017; 12:39. [PMID: 28729898 PMCID: PMC5518125 DOI: 10.1186/s40793-017-0251-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/12/2017] [Indexed: 09/03/2023] Open
Abstract
Halomonads are moderately halophilic bacteria that are studied as models of prokaryotic osmoadaptation and sources of enzymes and chemicals for biotechnological applications. Despite the progress in understanding the diversity of these organisms, our ability to explain ecological, metabolic, and biochemical traits of halomonads at the genomic sequence level remains limited. This study addresses this gap by presenting draft genomes of Salinicola socius SMB35T, Salinicola sp. MH3R3–1 and Chromohalobacter sp. SMB17, which were isolated from potash mine tailings in the Verkhnekamsk salt deposit area of Russia. The analysis of these genomes confirmed the importance of ectoines and quaternary amines to the capacity of halomonads to tolerate osmotic stress and adapt to hypersaline environments. The study also revealed that Chromohalobacter and Salinicola share 75–90% of the predicted proteome, but also harbor a set of genus-specific genes, which in Salinicola amounted to approximately 0.5 Mbp. These genus-specific genome segments may contribute to the phenotypic diversity of the Halomonadaceae and the ability of these organisms to adapt to changing environmental conditions and colonize new ecological niches.
Collapse
Affiliation(s)
- Björn E Olsson
- University of Skövde, School of Bioscience, Skövde, Sweden
| | - Ekaterina S Korsakova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - Lyudmila N Anan'ina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - Anna A Pyankova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - Olga V Mavrodi
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Elena G Plotnikova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - Dmitri V Mavrodi
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406 USA
| |
Collapse
|
20
|
Establishment of a markerless gene deletion system in Chromohalobacter salexigens DSM 3043. Extremophiles 2017; 21:839-850. [DOI: 10.1007/s00792-017-0946-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/17/2017] [Indexed: 01/18/2023]
|
21
|
Abstract
Constraint-based metabolic modelling (CBMM) consists in the use of computational methods and tools to perform genome-scale simulations and predict metabolic features at the whole cellular level. This approach is rapidly expanding in microbiology, as it combines reliable predictive abilities with conceptually and technically simple frameworks. Among the possible outcomes of CBMM, the capability to i) guide a focused planning of metabolic engineering experiments and ii) provide a system-level understanding of (single or community-level) microbial metabolic circuits also represent primary aims in present-day marine microbiology. In this work we briefly introduce the theoretical formulation behind CBMM and then review the most recent and effective case studies of CBMM of marine microbes and communities. Also, the emerging challenges and possibilities in the use of such methodologies in the context of marine microbiology/biotechnology are discussed. As the potential applications of CBMM have a very broad range, the topics presented in this review span over a large plethora of fields such as ecology, biotechnology and evolution.
Collapse
Affiliation(s)
- Marco Fondi
- Dep. of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy.
| | - Renato Fani
- Dep. of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
22
|
Dhakal D, Pokhrel AR, Shrestha B, Sohng JK. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Front Microbiol 2017; 8:1106. [PMID: 28663748 PMCID: PMC5471306 DOI: 10.3389/fmicb.2017.01106] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/31/2017] [Indexed: 12/28/2022] Open
Abstract
Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Biplav Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University Asan-siSouth Korea
| |
Collapse
|
23
|
Valadez-Cano C, Olivares-Hernández R, Resendis-Antonio O, DeLuna A, Delaye L. Natural selection drove metabolic specialization of the chromatophore in Paulinella chromatophora. BMC Evol Biol 2017; 17:99. [PMID: 28410570 PMCID: PMC5392233 DOI: 10.1186/s12862-017-0947-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/28/2017] [Indexed: 11/17/2022] Open
Abstract
Background Genome degradation of host-restricted mutualistic endosymbionts has been attributed to inactivating mutations and genetic drift while genes coding for host-relevant functions are conserved by purifying selection. Unlike their free-living relatives, the metabolism of mutualistic endosymbionts and endosymbiont-originated organelles is specialized in the production of metabolites which are released to the host. This specialization suggests that natural selection crafted these metabolic adaptations. In this work, we analyzed the evolution of the metabolism of the chromatophore of Paulinella chromatophora by in silico modeling. We asked whether genome reduction is driven by metabolic engineering strategies resulted from the interaction with the host. As its widely known, the loss of enzyme coding genes leads to metabolic network restructuring sometimes improving the production rates. In this case, the production rate of reduced-carbon in the metabolism of the chromatophore. Results We reconstructed the metabolic networks of the chromatophore of P. chromatophora CCAC 0185 and a close free-living relative, the cyanobacterium Synechococcus sp. WH 5701. We found that the evolution of free-living to host-restricted lifestyle rendered a fragile metabolic network where >80% of genes in the chromatophore are essential for metabolic functionality. Despite the lack of experimental information, the metabolic reconstruction of the chromatophore suggests that the host provides several metabolites to the endosymbiont. By using these metabolites as intracellular conditions, in silico simulations of genome evolution by gene lose recover with 77% accuracy the actual metabolic gene content of the chromatophore. Also, the metabolic model of the chromatophore allowed us to predict by flux balance analysis a maximum rate of reduced-carbon released by the endosymbiont to the host. By inspecting the central metabolism of the chromatophore and the free-living cyanobacteria we found that by improvements in the gluconeogenic pathway the metabolism of the endosymbiont uses more efficiently the carbon source for reduced-carbon production. In addition, our in silico simulations of the evolutionary process leading to the reduced metabolic network of the chromatophore showed that the predicted rate of released reduced-carbon is obtained in less than 5% of the times under a process guided by random gene deletion and genetic drift. We interpret previous findings as evidence that natural selection at holobiont level shaped the rate at which reduced-carbon is exported to the host. Finally, our model also predicts that the ABC phosphate transporter (pstSACB) which is conserved in the genome of the chromatophore of P. chromatophora strain CCAC 0185 is a necessary component to release reduced-carbon molecules to the host. Conclusion Our evolutionary analysis suggests that in the case of Paulinella chromatophora natural selection at the holobiont level played a prominent role in shaping the metabolic specialization of the chromatophore. We propose that natural selection acted as a “metabolic engineer” by favoring metabolic restructurings that led to an increased release of reduced-carbon to the host. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0947-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cecilio Valadez-Cano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821, Guanajuato, Irapuato, Mexico
| | - Roberto Olivares-Hernández
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe, Del. Cuajimalpa, C.P. 05348, Ciudad de Mexico, México, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Coordinación de la Investigación Científica-Red de Apoyo a la Investigación (RAI), UNAM, México City, Mexico.,Instituto Nacional de Medicina Genómica (INMEGEN), 14610, México City, Mexico
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, Irapuato, Mexico
| | - Luis Delaye
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821, Guanajuato, Irapuato, Mexico.
| |
Collapse
|
24
|
Salar-García MJ, Bernal V, Pastor JM, Salvador M, Argandoña M, Nieto JJ, Vargas C, Cánovas M. Understanding the interplay of carbon and nitrogen supply for ectoines production and metabolic overflow in high density cultures of Chromohalobacter salexigens. Microb Cell Fact 2017; 16:23. [PMID: 28179004 PMCID: PMC5299690 DOI: 10.1186/s12934-017-0643-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/01/2017] [Indexed: 01/27/2023] Open
Abstract
Background The halophilic bacterium Chromohalobacter salexigens has been proposed as promising cell factory for the production of the compatible solutes ectoine and hydroxyectoine. This bacterium has evolved metabolic adaptations to efficiently grow under high salt concentrations by accumulating ectoines as compatible solutes. However, metabolic overflow, which is a major drawback for the efficient conversion of biological feedstocks, occurs as a result of metabolic unbalances during growth and ectoines production. Optimal production of ectoines is conditioned by the interplay of carbon and nitrogen metabolisms. In this work, we set out to determine how nitrogen supply affects the production of ectoines. Results Chromohalobacter salexigens was challenged to grow in media with unbalanced carbon/nitrogen ratio. In C. salexigens, overflow metabolism and ectoines production are a function of medium composition. At low ammonium conditions, the growth rate decreased importantly, up to 80%. Shifts in overflow metabolism were observed when changing the C/N ratio in the culture medium. 13C-NMR analysis of ectoines labelling revealed a high metabolic rigidity, with almost constant flux ratios in all conditions assayed. Unbalanced C/N ratio led to pyruvate accumulation, especially upon N-limitation. Analysis of an ect− mutant demonstrated the link between metabolic overflow and ectoine biosynthesis. Under non ectoine synthesizing conditions, glucose uptake and metabolic overflow decreased importantly. Finally, in fed-batch cultures, biomass yield was affected by the feeding scheme chosen. High growth (up to 42.4 g L−1) and volumetric ectoine yields (up to 4.21 g L−1) were obtained by minimizing metabolite overflow and nutrient accumulation in high density cultures in a low nitrogen fed-batch culture. Moreover, the yield coefficient calculated for the transformation of glucose into biomass was 30% higher in fed-batch than in the batch culture, demonstrating that the metabolic efficiency of C. salexigens can be improved by careful design of culture feeding schemes. Conclusions Metabolic shifts observed at low ammonium concentrations were explained by a shift in the energy required for nitrogen assimilation. Carbon-limited fed-batch cultures with reduced ammonium supply were the best conditions for cultivation of C. salexigens, supporting high density growth and maintaining high ectoines production. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0643-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María J Salar-García
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain.,Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", Campus Muralla del MarCalle Doctor Fleming S/N, 30202, Cartagena, Spain
| | - Vicente Bernal
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain. .,Área de Biología, Dirección de Tecnología Química y Nuevas Energías, Centro de Tecnología de Repsol S.A., Ctra. de Extremadura A-5, Km. 18, 28375, Móstoles, Spain.
| | - José M Pastor
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Manuel Salvador
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Montserrat Argandoña
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Joaquín J Nieto
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Carmen Vargas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Manuel Cánovas
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain.
| |
Collapse
|
25
|
Draft Genome Sequence of "Halomonas chromatireducens" Strain AGD 8-3, a Haloalkaliphilic Chromate- and Selenite-Reducing Gammaproteobacterium. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00160-16. [PMID: 26988058 PMCID: PMC4796137 DOI: 10.1128/genomea.00160-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the complete genome sequence (3.97 Mb) of "Halomonas chromatireducens" AGD 8-3, a denitrifying bacterium capable of chromate and selenite reduction under extreme haloalkaline conditions. This strain was isolated from soda solonchak soils of the Kulunda steppe, Russian Federation.
Collapse
|
26
|
Okaiyeto K, Nwodo UU, Okoli SA, Mabinya LV, Okoh AI. Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. Microbiologyopen 2016; 5:177-211. [PMID: 26914994 PMCID: PMC4831466 DOI: 10.1002/mbo3.334] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Chemical flocculants are generally used in drinking water and wastewater treatment due to their efficacy and cost effectiveness. However, the question of their toxicity to human health and environmental pollution has been a major concern. In this article, we review the application of some chemical flocculants utilized in water treatment, and bioflocculants as a potential alternative to these chemical flocculants. To the best of our knowledge, there is no report in the literature that provides an up‐to‐date review of the relevant literature on both chemical flocculants and bioflocculants in one paper. As a result, this review paper comprehensively discussed the various chemical flocculants used in water treatment, including their advantages and disadvantages. It also gave insights into bioflocculants production, challenges, various factors influencing their flocculating efficiency and their industrial applications, as well as future research directions including improvement of bioflocculants yields and flocculating activity, and production of cation‐independent bioflocculants. The molecular biology and synthesis of bioflocculants are also discussed.
Collapse
Affiliation(s)
- Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Stanley A Okoli
- GenØK - Centre for Biosafety, Science Park, University of Tromsø, Tromsø, 9291, Norway
| | - Leonard V Mabinya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
27
|
Carlson RP, Oshota O, Shipman M, Caserta JA, Hu P, Saunders CW, Xu J, Jay ZJ, Reeder N, Richards A, Pettigrew C, Peyton BM. Integrated molecular, physiological and in silico characterization of two Halomonas isolates from industrial brine. Extremophiles 2016; 20:261-74. [PMID: 26888357 DOI: 10.1007/s00792-015-0806-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/06/2015] [Indexed: 01/15/2023]
Abstract
Two haloalkaliphilic bacteria isolated from industrial brine solutions were characterized via molecular, physiological, and in silico metabolic pathway analyses. Genomes from the organisms, designated Halomonas BC1 and BC2, were sequenced; 16S ribosomal subunit-based phylogenetic analysis revealed a high level of similarity to each other and to Halomonas meridiana. Both strains were moderate halophiles with near optimal specific growth rates (≥60 % μ max) observed over <0.1-5 % (w/v) NaCl and pH ranging from 7.4 to 10.2. Isolate BC1 was further characterized by measuring uptake or synthesis of compatible solutes under different growth conditions; in complex medium, uptake and accumulation of external glycine betaine was observed while ectoine was synthesized de novo in salts medium. Transcriptome analysis of isolate BC1 grown on glucose or citrate medium measured differences in glycolysis- and gluconeogenesis-based metabolisms, respectively. The annotated BC1 genome was used to build an in silico, genome-scale stoichiometric metabolic model to study catabolic energy strategies and compatible solute synthesis under gradients of oxygen and nutrient availability. The theoretical analysis identified energy metabolism challenges associated with acclimation to high salinity and high pH. The study documents central metabolism data for the industrially and scientifically important haloalkaliphile genus Halomonas.
Collapse
Affiliation(s)
- Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.
| | - Olusegun Oshota
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Matt Shipman
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA.,U.S. Navy, Washington, DC, USA
| | | | - Ping Hu
- Procter and Gamble Co., Cincinnati, OH, 45202, USA
| | | | - Jun Xu
- Procter and Gamble Co., Cincinnati, OH, 45202, USA
| | - Zackary J Jay
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Nancy Reeder
- Procter and Gamble Co., Cincinnati, OH, 45202, USA
| | - Abigail Richards
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
| | | | - Brent M Peyton
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
28
|
Ates O. Systems Biology of Microbial Exopolysaccharides Production. Front Bioeng Biotechnol 2015; 3:200. [PMID: 26734603 PMCID: PMC4683990 DOI: 10.3389/fbioe.2015.00200] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022] Open
Abstract
Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran.
Collapse
Affiliation(s)
- Ozlem Ates
- Department of Medical Services and Techniques, Nisantasi University, Istanbul, Turkey
| |
Collapse
|
29
|
Diken E, Ozer T, Arikan M, Emrence Z, Oner ET, Ustek D, Arga KY. Genomic analysis reveals the biotechnological and industrial potential of levan producing halophilic extremophile, Halomonas smyrnensis AAD6T. SPRINGERPLUS 2015; 4:393. [PMID: 26251777 PMCID: PMC4523562 DOI: 10.1186/s40064-015-1184-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/27/2015] [Indexed: 01/21/2023]
Abstract
Halomonas smyrnensis AAD6T is a gram negative, aerobic, and moderately halophilic bacterium, and is known to produce high levels of levan with many potential uses in foods, feeds, cosmetics, pharmaceutical and chemical industries due to its outstanding properties. Here, the whole-genome analysis was performed to gain more insight about the biological mechanisms, and the whole-genome organization of the bacterium. Industrially crucial genes, including the levansucrase, were detected and the genome-scale metabolic model of H. smyrnensis AAD6T was reconstructed. The bacterium was found to have many potential applications in biotechnology not only being a levan producer, but also because of its capacity to produce Pel exopolysaccharide, polyhydroxyalkanoates, and osmoprotectants. The genomic information presented here will not only provide additional information to enhance our understanding of the genetic and metabolic network of halophilic bacteria, but also accelerate the research on systematical design of engineering strategies for biotechnology applications.
Collapse
Affiliation(s)
- Elif Diken
- />Department of Bioengineering, Marmara University, Goztepe, 34722 Istanbul, Turkey
| | - Tugba Ozer
- />Department of Bioengineering, Marmara University, Goztepe, 34722 Istanbul, Turkey
| | - Muzaffer Arikan
- />Department of Genetics, Institute for Experimental Medicine, Istanbul University, Capa, 34093 Istanbul, Turkey
| | - Zeliha Emrence
- />Department of Genetics, Institute for Experimental Medicine, Istanbul University, Capa, 34093 Istanbul, Turkey
| | - Ebru Toksoy Oner
- />Department of Bioengineering, Marmara University, Goztepe, 34722 Istanbul, Turkey
| | - Duran Ustek
- />Department of Medical Genetics, School of Medicine, REMER, Medipol University, 34810 Istanbul, Turkey
| | - Kazim Yalcin Arga
- />Department of Bioengineering, Marmara University, Goztepe, 34722 Istanbul, Turkey
| |
Collapse
|
30
|
Kazak Sarilmiser H, Ates O, Ozdemir G, Arga KY, Toksoy Oner E. Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6T. J Biosci Bioeng 2015; 119:455-63. [DOI: 10.1016/j.jbiosc.2014.09.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 09/19/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023]
|
31
|
|
32
|
Delbarre-Ladrat C, Sinquin C, Lebellenger L, Zykwinska A, Colliec-Jouault S. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front Chem 2014; 2:85. [PMID: 25340049 PMCID: PMC4189415 DOI: 10.3389/fchem.2014.00085] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/20/2014] [Indexed: 11/13/2022] Open
Abstract
Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity. Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and pharmaceutical industry is looking for more and more molecules with enhanced activities. Glycosaminoglycans (GAGs) found in animal tissues play a critical role in cellular physiological and pathological processes as they bind many cellular components. Therefore, they present a great potential for the design and preparation of therapeutic drugs. On the other hand, microorganisms producing exopolysaccharides (EPS) are renewable resources meeting well the actual industrial demand. In particular, the diversity of marine microorganisms is still largely unexplored offering great opportunities to discover high value products such as new molecules and biocatalysts. EPS-producing bacteria from the marine environment will be reviewed with a focus on marine-derived EPS from bacteria isolated from deep-sea hydrothermal vents. Information on chemical and structural features, putative pathways of biosynthesis, novel strategies for chemical and enzymatic modifications and potentialities in the biomedical field will be provided. An integrated approach should be used to increase the basic knowledge on these compounds and their applications; new clean environmentally friendly processes for the production of carbohydrate bioactive compounds should also be proposed for a sustainable industry.
Collapse
Affiliation(s)
| | - Corinne Sinquin
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| | - Lou Lebellenger
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| | - Agata Zykwinska
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| | - Sylvia Colliec-Jouault
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| |
Collapse
|
33
|
Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Mar Drugs 2014; 12:3005-24. [PMID: 24857960 PMCID: PMC4052328 DOI: 10.3390/md12053005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 01/13/2023] Open
Abstract
In the last decades, research has focused on the capabilities of microbes to secrete exopolysaccharides (EPS), because these polymers differ from the commercial ones derived essentially from plants or algae in their numerous valuable qualities. These biopolymers have emerged as new polymeric materials with novel and unique physical characteristics that have found extensive applications. In marine microorganisms the produced EPS provide an instrument to survive in adverse conditions: They are found to envelope the cells by allowing the entrapment of nutrients or the adhesion to solid substrates. Even if the processes of synthesis and release of exopolysaccharides request high-energy investments for the bacterium, these biopolymers permit resistance under extreme environmental conditions. Marine bacteria like Bacillus, Halomonas, Planococcus, Enterobacter, Alteromonas, Pseudoalteromonas, Vibrio, Rhodococcus, Zoogloea but also Archaea as Haloferax and Thermococcus are here described as EPS producers underlining biopolymer hyperproduction, related fermentation strategies including the effects of the chemical composition of the media, the physical parameters of the growth conditions and the genetic and predicted experimental design tools.
Collapse
|
34
|
Mycobacterium tuberculosis H37Rv: In Silico Drug Targets Identification by Metabolic Pathways Analysis. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:284170. [PMID: 24719775 PMCID: PMC3955624 DOI: 10.1155/2014/284170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/26/2013] [Accepted: 12/26/2013] [Indexed: 02/01/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is a pathogenic bacteria species in the genus Mycobacterium and the causative agent of most cases of tuberculosis. Tuberculosis (TB) is the leading cause of death in the world from a bacterial infectious disease. This antibiotic resistance strain lead to development of the new antibiotics or drug molecules which can kill or suppress the growth of Mycobacterium tuberculosis. We have performed an in silico comparative analysis of metabolic pathways of the host Homo sapiens and the pathogen Mycobacterium tuberculosis (H37Rv). Novel efforts in developing drugs that target the intracellular metabolism of M. tuberculosis often focus on metabolic pathways that are specific to M. tuberculosis. We have identified five unique pathways for Mycobacterium tuberculosis having a number of 60 enzymes, which are nonhomologous to Homo sapiens protein sequences, and among them there were 55 enzymes, which are nonhomologous to Homo sapiens protein sequences. These enzymes were also found to be essential for survival of the Mycobacterium tuberculosis according to the DEG database. Further, the functional analysis using Uniprot showed involvement of all the unique enzymes in the different cellular components.
Collapse
|
35
|
Genome-scale reconstruction of a metabolic network for Gluconobacter oxydans 621H. Biosystems 2014; 117:10-4. [PMID: 24418346 DOI: 10.1016/j.biosystems.2014.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 11/10/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
Abstract
Gluconobacter oxydans is a Gram-negative bacterium with a number of biotechnological applications. Although the genome of G. oxydans has been reported in 2005, the systematical cellular metabolism in this high-value bacterium, however, remains unclear. In this study, a genome-scale metabolic network of G. oxydans 621H, iXW433, was reconstructed and validated on the basis of the known genome annotations and biochemical information. This reconstructed model included 433 genes, 859 reactions, and 985 metabolites. To test the capability of the model, gene and reaction essentiality analysis, flux variability analysis, and robustness analysis simulations were performed. The metabolic states predicted by the model were highly consistent with the experimental data of G. oxydans. According to the result, 92 genes and 137 reactions were identified to be essential, 194 reactions were found to be variable by flux variability analysis, and 2 possible genetically modified targets were determined. The model would be valuable for further research on G. oxydans and thereby expanding its application.
Collapse
|
36
|
Microbial of Extracellular Polysaccharide Production from Biomass Sources. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_51-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
37
|
Dong Y, Kumar CG, Chia N, Kim PJ, Miller PA, Price ND, Cann IKO, Flynn TM, Sanford RA, Krapac IG, Locke RA, Hong PY, Tamaki H, Liu WT, Mackie RI, Hernandez AG, Wright CL, Mikel MA, Walker JL, Sivaguru M, Fried G, Yannarell AC, Fouke BW. Halomonas sulfidaeris-dominated microbial community inhabits a 1.8 km-deep subsurface Cambrian Sandstone reservoir. Environ Microbiol 2013; 16:1695-708. [PMID: 24238218 DOI: 10.1111/1462-2920.12325] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 10/31/2013] [Indexed: 01/12/2023]
Abstract
A low-diversity microbial community, dominated by the γ-proteobacterium Halomonas sulfidaeris, was detected in samples of warm saline formation porewater collected from the Cambrian Mt. Simon Sandstone in the Illinois Basin of the North American Midcontinent (1.8 km/5872 ft burial depth, 50°C, pH 8, 181 bars pressure). These highly porous and permeable quartz arenite sandstones are directly analogous to reservoirs around the world targeted for large-scale hydrocarbon extraction, as well as subsurface gas and carbon storage. A new downhole low-contamination subsurface sampling probe was used to collect in situ formation water samples for microbial environmental metagenomic analyses. Multiple lines of evidence suggest that this H. sulfidaeris-dominated subsurface microbial community is indigenous and not derived from drilling mud microbial contamination. Data to support this includes V1-V3 pyrosequencing of formation water and drilling mud, as well as comparison with previously published microbial analyses of drilling muds in other sites. Metabolic pathway reconstruction, constrained by the geology, geochemistry and present-day environmental conditions of the Mt. Simon Sandstone, implies that H. sulfidaeris-dominated subsurface microbial community may utilize iron and nitrogen metabolisms and extensively recycle indigenous nutrients and substrates. The presence of aromatic compound metabolic pathways suggests this microbial community can readily adapt to and survive subsurface hydrocarbon migration.
Collapse
Affiliation(s)
- Yiran Dong
- Energy Biosciences Institute, University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA; Institute for Genomic Biology, University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA; Department of Geology, University of Illinois Urbana-Champaign, 1301 W. Green Street, Urbana, IL, 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sagar S, Esau L, Holtermann K, Hikmawan T, Zhang G, Stingl U, Bajic VB, Kaur M. Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:344. [PMID: 24305113 PMCID: PMC4235048 DOI: 10.1186/1472-6882-13-344] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/28/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND Marine microorganisms are considered to be an important source of bioactive molecules against various diseases and have great potential to increase the number of lead molecules in clinical trials. Progress in novel microbial culturing techniques as well as greater accessibility to unique oceanic habitats has placed the marine environment as a new frontier in the field of natural product drug discovery. METHODS A total of 24 microbial extracts from deep-sea brine pools in the Red Sea have been evaluated for their anticancer potential against three human cancer cell lines. Downstream analysis of these six most potent extracts was done using various biological assays, such as Caspase-3/7 activity, mitochondrial membrane potential (MMP), PARP-1 cleavage and expression of γH2Ax, Caspase-8 and -9 using western blotting. RESULTS In general, most of the microbial extracts were found to be cytotoxic against one or more cancer cell lines with cell line specific activities. Out of the 13 most active microbial extracts, six extracts were able to induce significantly higher apoptosis (>70%) in cancer cells. Mechanism level studies revealed that extracts from Chromohalobacter salexigens (P3-86A and P3-86B(2)) followed the sequence of events of apoptotic pathway involving MMP disruption, caspase-3/7 activity, caspase-8 cleavage, PARP-1 cleavage and Phosphatidylserine (PS) exposure, whereas another Chromohalobacter salexigens extract (K30) induced caspase-9 mediated apoptosis. The extracts from Halomonas meridiana (P3-37B), Chromohalobacter israelensis (K18) and Idiomarina loihiensis (P3-37C) were unable to induce any change in MMP in HeLa cancer cells, and thus suggested mitochondria-independent apoptosis induction. However, further detection of a PARP-1 cleavage product, and the observed changes in caspase-8 and -9 suggested the involvement of caspase-mediated apoptotic pathways. CONCLUSION Altogether, the study offers novel findings regarding the anticancer potential of several halophilic bacterial species inhabiting the Red Sea (at the depth of 1500-2500 m), which constitute valuable candidates for further isolation and characterization of bioactive molecules.
Collapse
|
39
|
Ates O, Arga KY, Oner ET. The stimulatory effect of mannitol on levan biosynthesis: Lessons from metabolic systems analysis ofHalomonas smyrnensisAAD6T. Biotechnol Prog 2013; 29:1386-97. [DOI: 10.1002/btpr.1823] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 10/02/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Ozlem Ates
- Dept. of Bioengineering; Marmara University; Goztepe 34722 Istanbul Turkey
| | - Kazim Y. Arga
- Dept. of Bioengineering; Marmara University; Goztepe 34722 Istanbul Turkey
| | - Ebru Toksoy Oner
- Dept. of Bioengineering; Marmara University; Goztepe 34722 Istanbul Turkey
| |
Collapse
|
40
|
Pastor JM, Bernal V, Salvador M, Argandoña M, Vargas C, Csonka L, Sevilla A, Iborra JL, Nieto JJ, Cánovas M. Role of central metabolism in the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens. J Biol Chem 2013; 288:17769-81. [PMID: 23615905 DOI: 10.1074/jbc.m113.470567] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bacterial osmoadaptation involves the cytoplasmic accumulation of compatible solutes to counteract extracellular osmolarity. The halophilic and highly halotolerant bacterium Chromohalobacter salexigens is able to grow up to 3 m NaCl in a minimal medium due to the de novo synthesis of ectoines. This is an osmoregulated pathway that burdens central metabolic routes by quantitatively drawing off TCA cycle intermediaries. Consequently, metabolism in C. salexigens has adapted to support this biosynthetic route. Metabolism of C. salexigens is more efficient at high salinity than at low salinity, as reflected by lower glucose consumption, lower metabolite overflow, and higher biomass yield. At low salinity, by-products (mainly gluconate, pyruvate, and acetate) accumulate extracellularly. Using [1-(13)C]-, [2-(13)C]-, [6-(13)C]-, and [U-(13)C6]glucose as carbon sources, we were able to determine the main central metabolic pathways involved in ectoines biosynthesis from glucose. C. salexigens uses the Entner-Doudoroff pathway rather than the standard glycolytic pathway for glucose catabolism, and anaplerotic activity is high to replenish the TCA cycle with the intermediaries withdrawn for ectoines biosynthesis. Metabolic flux ratios at low and high salinity were similar, revealing a certain metabolic rigidity, probably due to its specialization to support high biosynthetic fluxes and partially explaining why metabolic yields are so highly affected by salinity. This work represents an important contribution to the elucidation of specific metabolic adaptations in compatible solute-accumulating halophilic bacteria.
Collapse
Affiliation(s)
- José M Pastor
- Departamento de Bioquímica y Biología Molecular B e Inmunología. Facultad de Química, Campus Regional de Excelencia Internacional "Campus Mare Nostrum," Universidad de Murcia, 30100 Murcia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Srivastava A, Somvanshi P, Mishra BN. Reconstruction and visualization of carbohydrate, N-glycosylation pathways in Pichia pastoris CBS7435 using computational and system biology approaches. SYSTEMS AND SYNTHETIC BIOLOGY 2012; 7:7-22. [PMID: 24432138 DOI: 10.1007/s11693-012-9102-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 12/27/2022]
Abstract
Pichia pastoris is an efficient expression system for production of recombinant proteins. To understand its physiology for building novel applications it is important to understand and reconstruct its metabolic network. The metabolic reconstruction approach connects genotype with phenotype. Here, we have attempted to reconstruct carbohydrate metabolism pathways responsible for high biomass density and N-glycosylation pathways involved in the post translational modification of proteins of P. pastoris CBS7435. Both these metabolic pathways play a crucial role in heterologous protein production. We report novel, missing and unannotated enzymes involved in the target metabolic pathways. A strong possibility of cellulose and xylose metabolic processes in P. pastoris CBS7435 suggests its use in the area of biofuels. The reconstructed metabolic networks can be used for increased yields and improved product quality, for designing appropriate growth medium, for production of recombinant therapeutics and for making biofuels.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Biotechnology, Institute of Engineering and Technology, G.B. Technical University, Sitapur Road, Lucknow, 226021 India
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI University, 10 Institutional Area, Vasant Kunj, New Delhi, 110070 India
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, G.B. Technical University, Sitapur Road, Lucknow, 226021 India
| |
Collapse
|
42
|
Abstract
Halomonas smyrnensis AAD6(T) is a Gram-negative, aerobic, exopolysaccharide-producing, and moderately halophilic bacterium that produces levan, a fructose homopolymer with many potential uses in various industries. We report the draft genome sequence of H. smyrnensis AAD6(T), which will accelerate research on the rational design and optimization of microbial levan production.
Collapse
|
43
|
Ulas T, Riemer SA, Zaparty M, Siebers B, Schomburg D. Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus. PLoS One 2012; 7:e43401. [PMID: 22952675 PMCID: PMC3432047 DOI: 10.1371/journal.pone.0043401] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022] Open
Abstract
We describe the reconstruction of a genome-scale metabolic model of the crenarchaeon Sulfolobus solfataricus, a hyperthermoacidophilic microorganism. It grows in terrestrial volcanic hot springs with growth occurring at pH 2–4 (optimum 3.5) and a temperature of 75–80°C (optimum 80°C). The genome of Sulfolobus solfataricus P2 contains 2,992,245 bp on a single circular chromosome and encodes 2,977 proteins and a number of RNAs. The network comprises 718 metabolic and 58 transport/exchange reactions and 705 unique metabolites, based on the annotated genome and available biochemical data. Using the model in conjunction with constraint-based methods, we simulated the metabolic fluxes induced by different environmental and genetic conditions. The predictions were compared to experimental measurements and phenotypes of S. solfataricus. Furthermore, the performance of the network for 35 different carbon sources known for S. solfataricus from the literature was simulated. Comparing the growth on different carbon sources revealed that glycerol is the carbon source with the highest biomass flux per imported carbon atom (75% higher than glucose). Experimental data was also used to fit the model to phenotypic observations. In addition to the commonly known heterotrophic growth of S. solfataricus, the crenarchaeon is also able to grow autotrophically using the hydroxypropionate-hydroxybutyrate cycle for bicarbonate fixation. We integrated this pathway into our model and compared bicarbonate fixation with growth on glucose as sole carbon source. Finally, we tested the robustness of the metabolism with respect to gene deletions using the method of Minimization of Metabolic Adjustment (MOMA), which predicted that 18% of all possible single gene deletions would be lethal for the organism.
Collapse
Affiliation(s)
- Thomas Ulas
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - S. Alexander Riemer
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie Zaparty
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Bettina Siebers
- Faculty of Chemistry, Biofilm Centre, Molecular Enzyme Technology and Biochemistry, University of Duisburg-Essen, Essen, Germany
| | - Dietmar Schomburg
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
44
|
González-Domenech CM, Belda E, Patiño-Navarrete R, Moya A, Peretó J, Latorre A. Metabolic stasis in an ancient symbiosis: genome-scale metabolic networks from two Blattabacterium cuenoti strains, primary endosymbionts of cockroaches. BMC Microbiol 2012; 12 Suppl 1:S5. [PMID: 22376077 PMCID: PMC3287516 DOI: 10.1186/1471-2180-12-s1-s5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cockroaches are terrestrial insects that strikingly eliminate waste nitrogen as ammonia instead of uric acid. Blattabacterium cuenoti (Mercier 1906) strains Bge and Pam are the obligate primary endosymbionts of the cockroaches Blattella germanica and Periplaneta americana, respectively. The genomes of both bacterial endosymbionts have recently been sequenced, making possible a genome-scale constraint-based reconstruction of their metabolic networks. The mathematical expression of a metabolic network and the subsequent quantitative studies of phenotypic features by Flux Balance Analysis (FBA) represent an efficient functional approach to these uncultivable bacteria. RESULTS We report the metabolic models of Blattabacterium strains Bge (iCG238) and Pam (iCG230), comprising 296 and 289 biochemical reactions, associated with 238 and 230 genes, and 364 and 358 metabolites, respectively. Both models reflect both the striking similarities and the singularities of these microorganisms. FBA was used to analyze the properties, potential and limits of the models, assuming some environmental constraints such as aerobic conditions and the net production of ammonia from these bacterial systems, as has been experimentally observed. In addition, in silico simulations with the iCG238 model have enabled a set of carbon and nitrogen sources to be defined, which would also support a viable phenotype in terms of biomass production in the strain Pam, which lacks the first three steps of the tricarboxylic acid cycle. FBA reveals a metabolic condition that renders these enzymatic steps dispensable, thus offering a possible evolutionary explanation for their elimination. We also confirm, by computational simulations, the fragility of the metabolic networks and their host dependence. CONCLUSIONS The minimized Blattabacterium metabolic networks are surprisingly similar in strains Bge and Pam, after 140 million years of evolution of these endosymbionts in separate cockroach lineages. FBA performed on the reconstructed networks from the two bacteria helps to refine the functional analysis of the genomes enabling us to postulate how slightly different host metabolic contexts drove their parallel evolution.
Collapse
Affiliation(s)
- Carmen Maria González-Domenech
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, P.O. Box 22085, E-46071, València, Spain
- Faculty of Pharmacy, University of Granada. Campus of Cartuja, E-18071. Granada, Spain
| | - Eugeni Belda
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, P.O. Box 22085, E-46071, València, Spain
| | - Rafael Patiño-Navarrete
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, P.O. Box 22085, E-46071, València, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, P.O. Box 22085, E-46071, València, Spain
- Departament de Genètica, Universitat de València, Spain
- Centre for Public Health Research (CSISP), E-46020. València, Spain
| | - Juli Peretó
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, P.O. Box 22085, E-46071, València, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, P.O. Box 22085, E-46071, València, Spain
- Departament de Genètica, Universitat de València, Spain
- Centre for Public Health Research (CSISP), E-46020. València, Spain
| |
Collapse
|
45
|
Copeland A, O’Connor K, Lucas S, Lapidus A, Berry KW, Detter JC, Del Rio TG, Hammon N, Dalin E, Tice H, Pitluck S, Bruce D, Goodwin L, Han C, Tapia R, Saunders E, Schmutz J, Brettin T, Larimer F, Land M, Hauser L, Vargas C, Nieto JJ, Kyrpides NC, Ivanova N, Göker M, Klenk HP, Csonka LN, Woyke T. Complete genome sequence of the halophilic and highly halotolerant Chromohalobacter salexigens type strain (1H11(T)). Stand Genomic Sci 2011; 5:379-88. [PMID: 22675587 PMCID: PMC3368415 DOI: 10.4056/sigs.2285059] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chromohalobacter salexigens is one of nine currently known species of the genus Chromohalobacter in the family Halomonadaceae. It is the most halotolerant of the so-called 'moderately halophilic bacteria' currently known and, due to its strong euryhaline phenotype, it is an established model organism for prokaryotic osmoadaptation. C. salexigens strain 1H11(T) and Halomonas elongata are the first and the second members of the family Halomonadaceae with a completely sequenced genome. The 3,696,649 bp long chromosome with a total of 3,319 protein-coding and 93 RNA genes was sequenced as part of the DOE Joint Genome Institute Program DOEM 2004.
Collapse
Affiliation(s)
- Alex Copeland
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Kathleen O’Connor
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Susan Lucas
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - John C. Detter
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | | | - Nancy Hammon
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Eileen Dalin
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Hope Tice
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - David Bruce
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Lynne Goodwin
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Cliff Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Roxanne Tapia
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Elizabeth Saunders
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Jeremy Schmutz
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Thomas Brettin
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Frank Larimer
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Miriam Land
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Loren Hauser
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Carmen Vargas
- Department of Microbiology and Parasitology, University of Seville, Spain
| | - Joaquin J. Nieto
- Department of Microbiology and Parasitology, University of Seville, Spain
| | | | | | - Markus Göker
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Laszlo N. Csonka
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| |
Collapse
|