1
|
Chowdhury HA, Bhattacharyya DK, Kalita JK. (Differential) Co-Expression Analysis of Gene Expression: A Survey of Best Practices. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1154-1173. [PMID: 30668502 DOI: 10.1109/tcbb.2019.2893170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Analysis of gene expression data is widely used in transcriptomic studies to understand functions of molecules inside a cell and interactions among molecules. Differential co-expression analysis studies diseases and phenotypic variations by finding modules of genes whose co-expression patterns vary across conditions. We review the best practices in gene expression data analysis in terms of analysis of (differential) co-expression, co-expression network, differential networking, and differential connectivity considering both microarray and RNA-seq data along with comparisons. We highlight hurdles in RNA-seq data analysis using methods developed for microarrays. We include discussion of necessary tools for gene expression analysis throughout the paper. In addition, we shed light on scRNA-seq data analysis by including preprocessing and scRNA-seq in co-expression analysis along with useful tools specific to scRNA-seq. To get insights, biological interpretation and functional profiling is included. Finally, we provide guidelines for the analyst, along with research issues and challenges which should be addressed.
Collapse
|
2
|
Chew G, Petretto E. Transcriptional Networks of Microglia in Alzheimer's Disease and Insights into Pathogenesis. Genes (Basel) 2019; 10:E798. [PMID: 31614849 PMCID: PMC6826883 DOI: 10.3390/genes10100798] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Microglia, the main immune cells of the central nervous system, are increasingly implicated in Alzheimer's disease (AD). Manifold transcriptomic studies in the brain have not only highlighted microglia's role in AD pathogenesis, but also mapped crucial pathological processes and identified new therapeutic targets. An important component of many of these transcriptomic studies is the investigation of gene expression networks in AD brain, which has provided important new insights into how coordinated gene regulatory programs in microglia (and other cell types) underlie AD pathogenesis. Given the rapid technological advancements in transcriptional profiling, spanning from microarrays to single-cell RNA sequencing (scRNA-seq), tools used for mapping gene expression networks have evolved to keep pace with the unique features of each transcriptomic platform. In this article, we review the trajectory of transcriptomic network analyses in AD from brain to microglia, highlighting the corresponding methodological developments. Lastly, we discuss examples of how transcriptional network analysis provides new insights into AD mechanisms and pathogenesis.
Collapse
Affiliation(s)
- Gabriel Chew
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 69857 Singapore, Singapore.
| | - Enrico Petretto
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 69857 Singapore, Singapore.
| |
Collapse
|
3
|
Pacini C, Koziol MJ. Bioinformatics challenges and perspectives when studying the effect of epigenetic modifications on alternative splicing. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0073. [PMID: 29685977 PMCID: PMC5915717 DOI: 10.1098/rstb.2017.0073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
It is widely known that epigenetic modifications are important in regulating transcription, but several have also been reported in alternative splicing. The regulation of pre-mRNA splicing is important to explain proteomic diversity and the misregulation of splicing has been implicated in many diseases. Here, we give a brief overview of the role of epigenetics in alternative splicing and disease. We then discuss the bioinformatics methods that can be used to model interactions between epigenetic marks and regulators of splicing. These models can be used to identify alternative splicing and epigenetic changes across different phenotypes. This article is part of a discussion meeting issue ‘Frontiers in epigenetic chemical biology’.
Collapse
Affiliation(s)
- Clare Pacini
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Magdalena J Koziol
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK .,Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
4
|
van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhães JP. Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform 2018; 19:575-592. [PMID: 28077403 PMCID: PMC6054162 DOI: 10.1093/bib/bbw139] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/01/2016] [Indexed: 01/06/2023] Open
Abstract
Gene co-expression networks can be used to associate genes of unknown function with biological processes, to prioritize candidate disease genes or to discern transcriptional regulatory programmes. With recent advances in transcriptomics and next-generation sequencing, co-expression networks constructed from RNA sequencing data also enable the inference of functions and disease associations for non-coding genes and splice variants. Although gene co-expression networks typically do not provide information about causality, emerging methods for differential co-expression analysis are enabling the identification of regulatory genes underlying various phenotypes. Here, we introduce and guide researchers through a (differential) co-expression analysis. We provide an overview of methods and tools used to create and analyse co-expression networks constructed from gene expression data, and we explain how these can be used to identify genes with a regulatory role in disease. Furthermore, we discuss the integration of other data types with co-expression networks and offer future perspectives of co-expression analysis.
Collapse
Affiliation(s)
- Sipko van Dam
- Department of Genetics, UMCG HPC CB50, RB Groningen, Netherlands
| | - Urmo Võsa
- Department of Genetics, UMCG HPC CB50, RB Groningen, Netherlands
| | | | - Lude Franke
- Department of Genetics, UMCG HPC CB50, RB Groningen, Netherlands
| | | |
Collapse
|
5
|
Saha A, Kim Y, Gewirtz ADH, Jo B, Gao C, McDowell IC, Engelhardt BE, Battle A. Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res 2017; 27:1843-1858. [PMID: 29021288 PMCID: PMC5668942 DOI: 10.1101/gr.216721.116] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 08/22/2017] [Indexed: 11/24/2022]
Abstract
Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues.
Collapse
|
6
|
Ramanouskaya TV, Grinev VV. The determinants of alternative RNA splicing in human cells. Mol Genet Genomics 2017; 292:1175-1195. [PMID: 28707092 DOI: 10.1007/s00438-017-1350-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/06/2017] [Indexed: 12/29/2022]
Abstract
Alternative splicing represents an important level of the regulation of gene function in eukaryotic organisms. It plays a critical role in virtually every biological process within an organism, including regulation of cell division and cell death, differentiation of tissues in the embryo and the adult organism, as well as in cellular response to diverse environmental factors. In turn, studies of the last decade have shown that alternative splicing itself is controlled by different mechanisms. Unfortunately, there is no clear understanding of how these diverse mechanisms, or determinants, regulate and constrain the set of alternative RNA species produced from any particular gene in every cell of the human body. Here, we provide a consolidated overview of alternative splicing determinants including RNA-protein interactions, epigenetic regulation via chromatin remodeling, coupling of transcription-to-alternative splicing, effect of secondary structures in pre-RNA, and function of the RNA quality control systems. We also extensively and critically discuss some mechanistic insights on coordinated inclusion/exclusion of exons during the formation of mature RNA molecules. We conclude that the final structure of RNA is pre-determined by a complex interplay between cis- and trans-acting factors. Altogether, currently available empirical data significantly expand our understanding of the functioning of the alternative splicing machinery of cells in normal and pathological conditions. On the other hand, there are still many blind spots that require further deep investigations.
Collapse
|
7
|
Chaitankar V, Karakülah G, Ratnapriya R, Giuste FO, Brooks MJ, Swaroop A. Next generation sequencing technology and genomewide data analysis: Perspectives for retinal research. Prog Retin Eye Res 2016; 55:1-31. [PMID: 27297499 DOI: 10.1016/j.preteyeres.2016.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 02/08/2023]
Abstract
The advent of high throughput next generation sequencing (NGS) has accelerated the pace of discovery of disease-associated genetic variants and genomewide profiling of expressed sequences and epigenetic marks, thereby permitting systems-based analyses of ocular development and disease. Rapid evolution of NGS and associated methodologies presents significant challenges in acquisition, management, and analysis of large data sets and for extracting biologically or clinically relevant information. Here we illustrate the basic design of commonly used NGS-based methods, specifically whole exome sequencing, transcriptome, and epigenome profiling, and provide recommendations for data analyses. We briefly discuss systems biology approaches for integrating multiple data sets to elucidate gene regulatory or disease networks. While we provide examples from the retina, the NGS guidelines reviewed here are applicable to other tissues/cell types as well.
Collapse
Affiliation(s)
- Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Gökhan Karakülah
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Felipe O Giuste
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Matthew J Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA.
| |
Collapse
|
8
|
Iancu OD, Colville A, Oberbeck D, Darakjian P, McWeeney SK, Hitzemann R. Cosplicing network analysis of mammalian brain RNA-Seq data utilizing WGCNA and Mantel correlations. Front Genet 2015; 6:174. [PMID: 26029240 PMCID: PMC4429622 DOI: 10.3389/fgene.2015.00174] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/21/2015] [Indexed: 01/06/2023] Open
Abstract
Across species and tissues and especially in the mammalian brain, production of gene isoforms is widespread. While gene expression coordination has been previously described as a scale-free coexpression network, the properties of transcriptome-wide isoform production coordination have been less studied. Here we evaluate the system-level properties of cosplicing in mouse, macaque, and human brain gene expression data using a novel network inference procedure. Genes are represented as vectors/lists of exon counts and distance measures sensitive to exon inclusion rates quantifies differences across samples. For all gene pairs, distance matrices are correlated across samples, resulting in cosplicing or cotranscriptional network matrices. We show that networks including cosplicing information are scale-free and distinct from coexpression. In the networks capturing cosplicing we find a set of novel hubs with unique characteristics distinguishing them from coexpression hubs: heavy representation in neurobiological functional pathways, strong overlap with markers of neurons and neuroglia, long coding lengths, and high number of both exons and annotated transcripts. Further, the cosplicing hubs are enriched in genes associated with autism spectrum disorders. Cosplicing hub homologs across eukaryotes show dramatically increasing intronic lengths but stable coding region lengths. Shared transcription factor binding sites increase coexpression but not cosplicing; the reverse is true for splicing-factor binding sites. Genes with protein-protein interactions have strong coexpression and cosplicing. Additional factors affecting the networks include shared microRNA binding sites, spatial colocalization within the striatum, and sharing a chromosomal folding domain. Cosplicing network patterns remain relatively stable across species.
Collapse
Affiliation(s)
- Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Alexandre Colville
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Denesa Oberbeck
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Shannon K McWeeney
- Division of Biostatistics, Public Health and Preventative Medicine, Oregon Health & Science University Portland, OR, USA
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA ; Research Service, Veterans Affairs Medical Center Portland, OR, USA
| |
Collapse
|
9
|
Dimitrakopoulou K, Vrahatis AG, Bezerianos A. Integromics network meta-analysis on cardiac aging offers robust multi-layer modular signatures and reveals micronome synergism. BMC Genomics 2015; 16:147. [PMID: 25887273 PMCID: PMC4367845 DOI: 10.1186/s12864-015-1256-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/19/2015] [Indexed: 02/02/2023] Open
Abstract
Background The avalanche of integromics and panomics approaches shifted the deciphering of aging mechanisms from single molecular entities to communities of them. In this orientation, we explore the cardiac aging mechanisms – risk factor for multiple cardiovascular diseases - by capturing the micronome synergism and detecting longevity signatures in the form of communities (modules). For this, we developed a meta-analysis scheme that integrates transcriptome expression data from multiple cardiac-specific independent studies in mouse and human along with proteome and micronome interaction data in the form of multiple independent weighted networks. Modularization of each weighted network produced modules, which in turn were further analyzed so as to define consensus modules across datasets that change substantially during lifespan. Also, we established a metric that determines - from the modular perspective - the synergism of microRNA-microRNA interactions as defined by significantly functionally associated targets. Results The meta-analysis provided 40 consensus integromics modules across mouse datasets and revealed microRNA relations with substantial collective action during aging. Three modules were reproducible, based on homology, when mapped against human-derived modules. The respective homologs mainly represent NADH dehydrogenases, ATP synthases, cytochrome oxidases, Ras GTPases and ribosomal proteins. Among various observations, we corroborate to the involvement of miR-34a (included in consensus modules) as proposed recently; yet we report that has no synergistic effect. Moving forward, we determined its age-related neighborhood in which HCN3, a known heart pacemaker channel, was included. Also, miR-125a-5p/-351, miR-200c/-429, miR-106b/-17, miR-363/-92b, miR-181b/-181d, miR-19a/-19b, let-7d/-7f, miR-18a/-18b, miR-128/-27b and miR-106a/-291a-3p pairs exhibited significant synergy and their association to aging and/or cardiovascular diseases is supported in many cases by a disease database and previous studies. On the contrary, we suggest that miR-22 has not substantial impact on heart longevity as proposed recently. Conclusions We revised several proteins and microRNAs recently implicated in cardiac aging and proposed for the first time modules as signatures. The integromics meta-analysis approach can serve as an efficient subvening signature tool for more-oriented better-designed experiments. It can also promote the combinational multi-target microRNA therapy of age-related cardiovascular diseases along the continuum from prevention to detection, diagnosis, treatment and outcome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1256-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Aristidis G Vrahatis
- Department of Medical Physics, School of Medicine, University of Patras, Patras, 26500, Greece. .,Department of Computer Engineering and Informatics, University of Patras, Patras, 26500, Greece.
| | - Anastasios Bezerianos
- Department of Medical Physics, School of Medicine, University of Patras, Patras, 26500, Greece. .,Singapore Institute for Neurotechnology (SINAPSE), Center of Life Sciences, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
10
|
Li W, Dai C, Kang S, Zhou XJ. Integrative analysis of many RNA-seq datasets to study alternative splicing. Methods 2014; 67:313-24. [PMID: 24583115 DOI: 10.1016/j.ymeth.2014.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing is an important gene regulatory mechanism that dramatically increases the complexity of the proteome. However, how alternative splicing is regulated and how transcription and splicing are coordinated are still poorly understood, and functions of transcript isoforms have been studied only in a few limited cases. Nowadays, RNA-seq technology provides an exceptional opportunity to study alternative splicing on genome-wide scales and in an unbiased manner. With the rapid accumulation of data in public repositories, new challenges arise from the urgent need to effectively integrate many different RNA-seq datasets for study alterative splicing. This paper discusses a set of advanced computational methods that can integrate and analyze many RNA-seq datasets to systematically identify splicing modules, unravel the coupling of transcription and splicing, and predict the functions of splicing isoforms on a genome-wide scale.
Collapse
Affiliation(s)
- Wenyuan Li
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Chao Dai
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Shuli Kang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xianghong Jasmine Zhou
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
11
|
Iancu OD, Colville A, Darakjian P, Hitzemann R. Coexpression and cosplicing network approaches for the study of mammalian brain transcriptomes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 116:73-93. [PMID: 25172472 DOI: 10.1016/b978-0-12-801105-8.00004-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Next-generation sequencing experiments have demonstrated great potential for transcriptome profiling. While transcriptome sequencing greatly increases the level of biological detail, system-level analysis of these high-dimensional datasets is becoming essential. We illustrate gene network approaches to the analysis of transcriptional data, with particular focus on the advantage of RNA-Seq technology compared to microarray platforms. We introduce a novel methodology for constructing cosplicing networks, based on distance measures combined with matrix correlations. We find that the cosplicing network is distinct and complementary to the coexpression network, although it shares the scale-free properties. In the cosplicing network, we find a set of novel hubs that have unique characteristics distinguishing them from coexpression hubs: they are heavily represented in neurobiological functional pathways and have strong overlap with markers of neurons and neuroglia, long-coding lengths, and high number of both exons and annotated transcripts. We also find that gene networks are plastic in the face of genetic and environmental pressures.
Collapse
Affiliation(s)
- Ovidiu Dan Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA.
| | - Alexandre Colville
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA; Research Service, Veterans Affairs Medical Center, Portland, Oregon, USA
| |
Collapse
|
12
|
Hitzemann R, Darakjian P, Walter N, Iancu OD, Searles R, McWeeney S. Introduction to sequencing the brain transcriptome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 116:1-19. [PMID: 25172469 DOI: 10.1016/b978-0-12-801105-8.00001-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High-throughput next-generation sequencing is now entering its second decade. However, it was not until 2008 that the first report of sequencing the brain transcriptome appeared (Mortazavi, Williams, Mccue, Schaeffer, & Wold, 2008). These authors compared short-read RNA-Seq data for mouse whole brain with microarray results for the same sample and noted both the advantages and disadvantages of the RNA-Seq approach. While RNA-Seq provided exon level resolution, the majority of the reads were provided by a small proportion of highly expressed genes and the data analysis was exceedingly complex. Over the past 6 years, there have been substantial improvements in both RNA-Seq technology and data analysis. This volume contains 11 chapters that detail various aspects of sequencing the brain transcriptome. Some of the chapters are very methods driven, while others focus on the use of RNA-Seq to study such diverse areas as development, schizophrenia, and drug abuse. This chapter briefly reviews the transition from microarrays to RNA-Seq as the preferred method for analyzing the brain transcriptome. Compared with microarrays, RNA-Seq has a greater dynamic range, detects both coding and noncoding RNAs, is superior for gene network construction, detects alternative spliced transcripts, and can be used to extract genotype information, e.g., nonsynonymous coding single nucleotide polymorphisms. RNA-Seq embraces the complexity of the brain transcriptome and provides a mechanism to understand the underlying regulatory code; the potential to inform the brain-behavior-disease relationships is substantial.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA; Research Service, Veterans Affairs Medical Center, Portland, Oregon, USA.
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Nikki Walter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA; Research Service, Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Ovidiu Dan Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Searles
- Integrative Genomics Laboratory, Oregon Health & Science University, Portland, Oregon, USA
| | - Shannon McWeeney
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Division of Biostatistics, Public Health & Preventative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|