1
|
Yu L, Li L, Liu J, Sun H, Li X, Xiao H, Alfred MO, Wang M, Wu X, Gao Y, Luo C. Recombinant Reg3α Prevents Islet β-Cell Apoptosis and Promotes β-Cell Regeneration. Int J Mol Sci 2022; 23:ijms231810584. [PMID: 36142497 PMCID: PMC9504149 DOI: 10.3390/ijms231810584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Progressive loss and dysfunction of islet β-cells has not yet been solved in the treatment of diabetes. Regenerating protein (Reg) has been identified as a trophic factor which is demonstrated to be associated with pancreatic tissue regeneration. We previously produced recombinant Reg3α protein (rReg3α) and proved that it protects against acute pancreatitis in mice. Whether rReg3α protects islet β-cells in diabetes has been elusive. In the present study, rReg3α stimulated MIN6 cell proliferation and resisted STZ-caused cell death. The protective effect of rReg3α was also found in mouse primary islets. In BALB/c mice, rReg3α administration largely alleviated STZ-induced diabetes by the preservation of β-cell mass. The protective mechanism could be attributed to Akt/Bcl-2/-xL activation and GRP78 upregulation. Scattered insulin-expressing cells and clusters with small size, low insulin density, and exocrine distribution were observed and considered to be neogenic. In isolated acinar cells with wheat germ agglutinin (WGA) labeling, rReg3α treatment generated insulin-producing cells through Stat3/Ngn3 signaling, but these cells were not fully functional in response to glucose stimulation. Our results demonstrated that rReg3α resists STZ-induced β-cell death and promotes β-cell regeneration. rReg3α could serve as a potential drug for β-cell maintenance in anti-diabetic treatment.
Collapse
Affiliation(s)
- Luting Yu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210037, China
| | - Liang Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Junli Liu
- MeDiC Program, The Research Institute of McGill University Health Centre, Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Hao Sun
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiang Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hanyu Xiao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Martin Omondi Alfred
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
- Institute of Primate Research, End of Karen Road, Karen, Nairobi P.O. Box 24481-00502, Kenya
| | - Min Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xuri Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Gao
- Institute of Suzhou Biobank, Suzhou Center for Disease Prevention and Control, Suzhou 215007, China
- Suzhou Institute of Advanced Study in Public Health, Gusu School, Nanjing Medical University, Suzhou 210029, China
- Correspondence: (Y.G.); (C.L.); Tel.: +86-0512-6826-2385 (Y.G.); +86-138-1388-3828 (C.L.)
| | - Chen Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (Y.G.); (C.L.); Tel.: +86-0512-6826-2385 (Y.G.); +86-138-1388-3828 (C.L.)
| |
Collapse
|
2
|
Huang D, Wang R. Exploring the mechanism of pancreatic cell fate decisions via cell-cell communication. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:2401-2424. [PMID: 33892552 DOI: 10.3934/mbe.2021122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The endocrine and exocrine cells in pancreas originate initially from a group of apparently identical endoderm cells in the early gut. The endocrine and exocrine tissues are composed of islet/acinar and duct cells respectively. To explore the mechanism of pancreas cell fate decisions, we first construct a minimal mathematical model related to pancreatic regulations. The regulatory mechanism of acinar-to-islet cell conversion is revealed by bifurcation analysis of the model. In addition, Notch signaling is critical in determining the fate of endocrine and exocrine in the developing pancreas and it is a typical mediator of lateral inhibition which instructs adjacent cells to make different fate decisions. Next, we construct a multicellular model of cell-cell communication mediated by Notch signaling with trans-activation and cis-inhibition. The roles of Notch signaling in regulating fate decisions of endocrine and exocrine cells during the differentiation of pancreatic cells are explored. The results indicate that high (or low) level of Notch signaling drive cells to select the fate of exocrine (or endocrine) progenitor cells. The networks and the models presented here might be good candidates for providing qualitative mechanisms of pancreatic cell fate decisions. These results can also provide some insight on choosing perturbation strategies for further experimental analysis.
Collapse
Affiliation(s)
- Dasong Huang
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Huang D, Wang R. Exploring the mechanisms of cell reprogramming and transdifferentiation via intercellular communication. Phys Rev E 2020; 102:012406. [PMID: 32795030 DOI: 10.1103/physreve.102.012406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 07/02/2020] [Indexed: 11/07/2022]
Abstract
In the past years, the mechanisms of cell reprogramming and transdifferentiation via the way of gene regulation, stochastic fluctuations, or chemical induction to realize cell type transitions from the perspectives of single cells were explored. In multicellular organisms, intercellular communication plays crucial roles in cell fate decisions. However, the importance of intercellular communication to the processes of cell reprogramming and transdifferentiation is often neglected. In this paper, the mechanisms of cell reprogramming and transdifferentiation by intercellular communication are investigated. A two-gene circuit with mutual inhibition and self-activation as a basic model is selected. Then, a coupling mechanism via intercellular communication by introducing a specific signaling molecule into the gene circuit is considered. Finally, the influence of coupling intensity on the dynamics of the coupled system of two cells is analyzed. Moreover, when the coupling intensity changes with respect to the cell number in a discrete way, the effects of coupling intensity on cell reprogramming and transdifferentiation are discussed. Some theoretical analysis of stability and bifurcation of the systems are also given. Our research shows that cells can realize cell reprogramming and transdifferentiation via intercellular interaction at opportune coupling intensity. These results not only further enrich previous studies but also are beneficial to understand the mechanisms of cell reprogramming and transdifferentiation via intercellular communication in the growth and development of multicellular organisms.
Collapse
Affiliation(s)
- Dasong Huang
- Department of Mathematics, Shanghai University, Shanghai 200436, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai 200436, China
| |
Collapse
|
4
|
Bifurcation analysis of a modular model of embryonic kidney development. Biosystems 2020; 189:104099. [PMID: 31935434 DOI: 10.1016/j.biosystems.2020.104099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/08/2019] [Accepted: 01/05/2020] [Indexed: 11/22/2022]
Abstract
Many biological processes show switching behaviors in response to parameter changes. Although numerous surveys have been conducted on bifurcations in biological systems, they commonly focus on over-represented parts of signaling cascades, known as motifs, ignoring the multi-motif structure of biological systems and the communication links between these building blocks. In this paper, a method is proposed which partitions molecular interactions to modules based on a control theory point of view. The modules are defined so that downstream effect of one module is a regulator for its neighboring modules. Communication links between these modules are then considered as bifurcation parameters to reveal change in steady state status of each module. As a case-study, we generated a molecular interaction map of signaling molecules during the development of mammalian embryonic kidneys. The whole system was divided to modules, where each module is defined as a group of interacting molecules that result in expression of a vital downstream regulator. Bifurcation analysis was then performed on these modules by considering the communication signals as bifurcation parameters. Two-parameter bifurcation analysis was then performed to assess the effects of simultaneous input signals on each module behavior. In the case where a module had more than two inputs, a series of two parameter bifurcation diagrams were calculated each corresponding to different values of the third parameter. We detected multi-stability for RET protein as a key regulator for fate determination. This finding is in agreement with experimental data indicating that ureteric bud cells are bi-potential, able to form tip or trunk of the bud based on their RET activity level. Our findings also indicate that Glial cell-derived neurotrophic factor (GDNF), a known potent regulator of kidney development, exerts its fate-determination function on cell placement through destruction of saddle node bifurcation points in RET steady states and confining RET activity level to high activity in ureteric bud tip. In conclusion, embryonic cells usually show a huge decision making potential; the proposed modular modeling of the system in association with bifurcation analysis provides a quantitative holistic view of organ development.
Collapse
|
5
|
Nickaeen N, Ghaisari J, Heiner M, Moein S, Gheisari Y. Agent-based modeling and bifurcation analysis reveal mechanisms of macrophage polarization and phenotype pattern distribution. Sci Rep 2019; 9:12764. [PMID: 31484958 PMCID: PMC6726649 DOI: 10.1038/s41598-019-48865-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/14/2019] [Indexed: 01/01/2023] Open
Abstract
Macrophages play a key role in tissue regeneration by polarizing to different destinies and generating various phenotypes. Recognizing the underlying mechanisms is critical in designing therapeutic procedures targeting macrophage fate determination. Here, to investigate the macrophage polarization, a nonlinear mathematical model is proposed in which the effect of IL4, IFNγ and LPS, as external stimuli, on STAT1, STAT6, and NFκB is studied using bifurcation analysis. The existence of saddle-node bifurcations in these internal key regulators allows different combinations of steady state levels which are attributable to different fates. Therefore, we propose dynamic bifurcation as a crucial built-in mechanism of macrophage polarization. Next, in order to investigate the polarization of a population of macrophages, bifurcation analysis is employed aligned with agent-based approach and a two-layer model is proposed in which the information from single cells is exploited to model the behavior in tissue level. Also, in this model, a partial differential equation describes the diffusion of secreted cytokines in the medium. Finally, the model was validated against a set of experimental data. Taken together, we have here developed a cell and tissue level model of macrophage polarization behavior which can be used for designing therapeutic interventions.
Collapse
Affiliation(s)
- Niloofar Nickaeen
- Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Jafar Ghaisari
- Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| | - Monika Heiner
- Computer Science Department, Brandenburg University of Technology, 03013, Cottbus, Germany
| | - Shiva Moein
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| |
Collapse
|
6
|
Abdallah HM, Del Vecchio D. Computational Analysis of Altering Cell Fate. Methods Mol Biol 2019; 1975:363-405. [PMID: 31062319 PMCID: PMC7227774 DOI: 10.1007/978-1-4939-9224-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2024]
Abstract
The notion of reprogramming cell fate is a direct challenge to the traditional view in developmental biology that a cell's phenotypic identity is sealed after undergoing differentiation. Direct experimental evidence, beginning with the somatic cell nuclear transfer experiments of the twentieth century and culminating in the more recent breakthroughs in transdifferentiation and induced pluripotent stem cell (iPSC) reprogramming, have rewritten the rules for what is possible with cell fate transformation. Research is ongoing in the manipulation of cell fate for basic research in disease modeling, drug discovery, and clinical therapeutics. In many of these cell fate reprogramming experiments, there is often little known about the genetic and molecular changes accompanying the reprogramming process. However, gene regulatory networks (GRNs) can in some cases be implicated in the switching of phenotypes, providing a starting point for understanding the dynamic changes that accompany a given cell fate reprogramming process. In this chapter, we present a framework for computationally analyzing cell fate changes by mathematically modeling these GRNs. We provide a user guide with several tutorials of a set of techniques from dynamical systems theory that can be used to probe the intrinsic properties of GRNs as well as study their responses to external perturbations.
Collapse
Affiliation(s)
- Hussein M Abdallah
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Jeffery N, Richardson S, Beall C, Harries LW. The species origin of the cellular microenvironment influences markers of beta cell fate and function in EndoC-βH1 cells. Exp Cell Res 2017; 361:284-291. [PMID: 29107069 DOI: 10.1016/j.yexcr.2017.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022]
Abstract
Interaction between islet cell subtypes and the extracellular matrix influences beta-cell function in mammals. The tissue architecture of rodent islets is very different to that of human islets; cell-to-cell communication and interaction with the extracellular matrix may vary between species. In this work, we have compared the responses of the human EndoC-βH1 cell line to non-human and human-derived growth matrices in terms of growth morphology, gene expression and glucose-stimulated insulin secretion (GSIS). EndoC-βH1 cells demonstrated a greater tendency to form cell clusters when cultured in a human microenvironment and exhibited reduced alpha cell markers at the mRNA level; mean expression difference - 0.23 and - 0.51; p = 0.009 and 0.002 for the Aristaless-related homeobox (ARX) and Glucagon (GCG) genes respectively. No differences were noted in the protein expression of mature beta cell markers such as Pdx1 and NeuroD1 were noted in EndoC-βH1 cells grown in a human microenvironment but cells were however more sensitive to glucose (4.3-fold increase in insulin secretion following glucose challenge compared with a 1.9-fold increase in cells grown in a non-human microenvironment; p = 0.0003). Our data suggests that the tissue origin of the cellular microenvironment has effects on the function of EndoC-βH1 cells in vitro, and the use of a more human-like culture microenvironment may bring benefits in terms of increased physiological relevance.
Collapse
Affiliation(s)
- N Jeffery
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon EX2 5DW, UK
| | - S Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon EX2 5DW, UK
| | - C Beall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon EX2 5DW, UK
| | - L W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon EX2 5DW, UK.
| |
Collapse
|
8
|
Tritschler S, Theis FJ, Lickert H, Böttcher A. Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Mol Metab 2017; 6:974-990. [PMID: 28951822 PMCID: PMC5605721 DOI: 10.1016/j.molmet.2017.06.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes mellitus is characterized by loss or dysfunction of insulin-producing β-cells in the pancreas, resulting in failure of blood glucose regulation and devastating secondary complications. Thus, β-cells are currently the prime target for cell-replacement and regenerative therapy. Triggering endogenous repair is a promising strategy to restore β-cell mass and normoglycemia in diabetic patients. Potential strategies include targeting specific β-cell subpopulations to increase proliferation or maturation. Alternatively, transdifferentiation of pancreatic islet cells (e.g. α- or δ-cells), extra-islet cells (acinar and ductal cells), hepatocytes, or intestinal cells into insulin-producing cells might improve glycemic control. To this end, it is crucial to systematically characterize and unravel the transcriptional program of all pancreatic cell types at the molecular level in homeostasis and disease. Furthermore, it is necessary to better determine the underlying mechanisms of β-cell maturation, maintenance, and dysfunction in diabetes, to identify and molecularly profile endocrine subpopulations with regenerative potential, and to translate the findings from mice to man. Recent approaches in single-cell biology started to illuminate heterogeneity and plasticity in the pancreas that might be targeted for β-cell regeneration in diabetic patients. SCOPE OF REVIEW This review discusses recent literature on single-cell analysis including single-cell RNA sequencing, single-cell mass cytometry, and flow cytometry of pancreatic cell types in the context of mechanisms of endogenous β-cell regeneration. We discuss new findings on the regulation of postnatal β-cell proliferation and maturation. We highlight how single-cell analysis recapitulates described principles of functional β-cell heterogeneity in animal models and adds new knowledge on the extent of β-cell heterogeneity in humans as well as its role in homeostasis and disease. Furthermore, we summarize the findings on cell subpopulations with regenerative potential that might enable the formation of new β-cells in diseased state. Finally, we review new data on the transcriptional program and function of rare pancreatic cell types and their implication in diabetes. MAJOR CONCLUSION Novel, single-cell technologies offer high molecular resolution of cellular heterogeneity within the pancreas and provide information on processes and factors that govern β-cell homeostasis, proliferation, and maturation. Eventually, these technologies might lead to the characterization of cells with regenerative potential and unravel disease-associated changes in gene expression to identify cellular and molecular targets for therapy.
Collapse
Affiliation(s)
- Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
9
|
Jeffery N, Harries LW. β-cell differentiation status in type 2 diabetes. Diabetes Obes Metab 2016; 18:1167-1175. [PMID: 27550203 DOI: 10.1111/dom.12778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D) affects 415 million people worldwide and is characterized by chronic hyperglycaemia and insulin resistance, progressing to insufficient insulin production, as a result of β-cell failure. Over time, chronic hyperglycaemia can ultimately lead to loss of β-cell function, leaving patients insulin-dependent. Until recently the loss of β-cell mass seen in T2D was considered to be the result of increased rates of apoptosis; however, it has been proposed that apoptosis alone cannot account for the extent of β-cell mass loss seen in the disease, and that a loss of function may also occur as a result of changes in β-cell differentiation status. In the present review, we consider current knowledge of determinants of β-cell fate in the context of understanding its relevance to disease process in T2D, and also the impact of a diabetogenic environment (hyperglycaemia, hypoxia, inflammation and dyslipidaemia) on the expression of genes involved in maintenance of β-cell identity. We describe current knowledge of the impact of the diabetic microenvironment on gene regulatory processes such alternative splicing, the expression of disallowed genes and epigenetic modifications. Elucidating the molecular mechanisms that underpin changes to β-cell differentiation status and the concomitant β-cell failure offers potential treatment targets for the future management of patients with T2D.
Collapse
Affiliation(s)
- Nicola Jeffery
- Department of Molecular Genetics, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon, UK
| | - Lorna W Harries
- Department of Molecular Genetics, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon, UK
| |
Collapse
|
10
|
Abou Khalil NS, Abou-Elhamd AS, Wasfy SIA, El Mileegy IMH, Hamed MY, Ageely HM. Antidiabetic and Antioxidant Impacts of Desert Date (Balanites aegyptiaca) and Parsley (Petroselinum sativum) Aqueous Extracts: Lessons from Experimental Rats. J Diabetes Res 2016; 2016:8408326. [PMID: 27019854 PMCID: PMC4785268 DOI: 10.1155/2016/8408326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/05/2016] [Accepted: 01/20/2016] [Indexed: 01/23/2023] Open
Abstract
Medicinal plants are effective in controlling plasma glucose level with minimal side effects and are commonly used in developing countries as an alternative therapy for the treatment of type 1 diabetes mellitus. The aim of this study is to evaluate the potential antidiabetic and antioxidant impacts of Balanites aegyptiaca and Petroselinum sativum extracts on streptozotocin-induced diabetic and normal rats. The influences of these extracts on body weight, plasma glucose, insulin, total antioxidant capacity (TAC), malondialdehyde (MDA) levels, and liver-pyruvate kinase (L-PK) levels were assessed. Furthermore, the weight and histomorphological changes of the pancreas were studied in the different experimental groups. The herbal preparations significantly reduced the mean plasma glucose and MDA levels and significantly increased the mean plasma insulin, L-PK, and TAC levels in the treated diabetic groups compared to the diabetic control group. An obvious increase in the weight of the pancreas and the size of the islets of Langerhans and improvement in the histoarchitecture were evident in the treated groups compared to untreated ones. In conclusion, the present study provides a scientific evidence for the traditional use of these extracts as antidiabetic and antioxidant agents in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Nasser S. Abou Khalil
- Department of Physiology, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | - Alaa S. Abou-Elhamd
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Salwa I. A. Wasfy
- Department of Physiology, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | | | - Mohamed Y. Hamed
- Department of Physiology, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | - Hussein M. Ageely
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan 82621, Saudi Arabia
| |
Collapse
|
11
|
|
12
|
Khadra A, Schnell S. Development, growth and maintenance of β-cell mass: models are also part of the story. Mol Aspects Med 2015; 42:78-90. [PMID: 25720614 DOI: 10.1016/j.mam.2015.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/09/2023]
Abstract
Pancreatic β-cells in the islets of Langerhans play a crucial role in regulating glucose homeostasis in the circulation. Loss of β-cell mass or function due to environmental, genetic and immunological factors leads to the manifestation of diabetes mellitus. The mechanisms regulating the dynamics of pancreatic β-cell mass during normal development and diabetes progression are complex. To fully unravel such complexity, experimental and clinical approaches need to be combined with mathematical and computational models. In the natural sciences, mathematical and computational models have aided the identification of key mechanisms underlying the behavior of systems comprising multiple interacting components. A number of mathematical and computational models have been proposed to explain the development, growth and death of pancreatic β-cells. In this review, we discuss some of these models and how their predictions provide novel insight into the mechanisms controlling β-cell mass during normal development and diabetes progression. Lastly, we discuss a handful of the major open questions in the field.
Collapse
Affiliation(s)
- Anmar Khadra
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA; Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA; Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA.
| |
Collapse
|
13
|
Herberg M, Zerjatke T, de Back W, Glauche I, Roeder I. Image-based quantification and mathematical modeling of spatial heterogeneity in ESC colonies. Cytometry A 2015; 87:481-90. [DOI: 10.1002/cyto.a.22598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/11/2014] [Accepted: 11/06/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Maria Herberg
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Thomas Zerjatke
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Walter de Back
- Center for Information Services and High Performance Computing, Technische Universität Dresden; Dresden Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| |
Collapse
|
14
|
Starruß J, de Back W, Brusch L, Deutsch A. Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology. ACTA ACUST UNITED AC 2014; 30:1331-2. [PMID: 24443380 PMCID: PMC3998129 DOI: 10.1093/bioinformatics/btt772] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Summary: Morpheus is a modeling environment for the simulation and integration of cell-based models with ordinary differential equations and reaction-diffusion systems. It allows rapid development of multiscale models in biological terms and mathematical expressions rather than programming code. Its graphical user interface supports the entire workflow from model construction and simulation to visualization, archiving and batch processing. Availability and implementation: Binary packages are available at http://imc.zih.tu-dresden.de/wiki/morpheus for Linux, Mac OSX and MS Windows. Contact:walter.deback@tu-dresden.de Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jörn Starruß
- Center for Information Services and High Performance Computing, Technische Universität Dresden, 01062 Dresden, Germany
| | | | | | | |
Collapse
|