1
|
Leroy A, Fanuel M, Alvarado C, Rogniaux H, Grisel S, Haon M, Berrin JG, Paës G, Guillon F. In situ imaging of LPMO action on plant tissues. Carbohydr Polym 2024; 343:122465. [PMID: 39174080 DOI: 10.1016/j.carbpol.2024.122465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 08/24/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that oxidatively cleave recalcitrant polysaccharides such as cellulose. Several studies have reported LPMO action in synergy with other carbohydrate-active enzymes (CAZymes) for the degradation of lignocellulosic biomass but direct LPMO action at the plant tissue level remains challenging to investigate. Here, we have developed a MALDI-MS imaging workflow to detect oxidised oligosaccharides released by a cellulose-active LPMO at cellular level on maize tissues. Using this workflow, we imaged LPMO action and gained insight into the spatial variation and relative abundance of oxidised and non-oxidised oligosaccharides. We reveal a targeted action of the LPMO related to the composition and organisation of plant cell walls.
Collapse
Affiliation(s)
- Amandine Leroy
- INRAE, UR 1268 BIA, 44316 Nantes, France; INRAE, Université de Reims Champagne Ardenne, FARE, UMR A 614, 51100 Reims, France.
| | - Mathieu Fanuel
- INRAE, UR 1268 BIA, 44316 Nantes, France; INRAE, BIBS Facility, 44316 Nantes, France.
| | | | - Hélène Rogniaux
- INRAE, UR 1268 BIA, 44316 Nantes, France; INRAE, BIBS Facility, 44316 Nantes, France.
| | - Sacha Grisel
- INRAE, Aix Marseille Université, Biodiversité et Biotechnologie Fongiques (BBF), 13009 Marseille, France; INRAE, Aix Marseille Université, 3PE platform, 13009 Marseille, France.
| | - Mireille Haon
- INRAE, Aix Marseille Université, Biodiversité et Biotechnologie Fongiques (BBF), 13009 Marseille, France; INRAE, Aix Marseille Université, 3PE platform, 13009 Marseille, France.
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Université, Biodiversité et Biotechnologie Fongiques (BBF), 13009 Marseille, France.
| | - Gabriel Paës
- INRAE, Université de Reims Champagne Ardenne, FARE, UMR A 614, 51100 Reims, France.
| | | |
Collapse
|
2
|
Wei S, Huang M, Liao W, Li Z, Li Z, Sun Y. Structural changes and grading mechanism of lignin during solid alkali-active oxygen extraction and grading. Int J Biol Macromol 2024; 279:134521. [PMID: 39111510 DOI: 10.1016/j.ijbiomac.2024.134521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 10/12/2024]
Abstract
Cooking with active oxygen and solid alkali (CAOSA) is an efficient pretreatment method for biomass. For better grading of the lignin yellow liquor, the different lignin fractions and the recovered solid alkali were obtained using a simultaneous acid-alkali graded separation method. The results indicated that the recovery rate of solid alkali was 67.25 %, and the grading of lignin components was characterized by smaller dispersion coefficients, and more stable properties and structure. Lignin fractions with low dispersion coefficients possess more key structures, including the Phenol hydroxyl group (ArOH), Methoxy (OMe), and β-aryl ether (β-O-4), and have better thermal properties. The low molecular weight L4 has the highest ArOH content (2.1 mmol/g), which provides better antioxidant properties. The CAOSA process destroyed the S-unit and prevented lignin from condensation. Furthermore, the CAOSA process protected carbohydrates, which could effectively prevent them from dehydrating and re-polymerizing into pseudo-lignin. This allowed the pulp to remain natural, which was beneficial for subsequent transformation and utilization. Overall, the efficient separation of biomass components and lignin grading method proposed by combining the CAOSA process with the acid-alkali grading separation method has a strong application prospect and provides a theoretical basis for the high-value utilization of biomass and lignin.
Collapse
Affiliation(s)
- Shuxia Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Mengyuan Huang
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, College of Energy, Xiamen University, Xiamen 361102, China
| | - Wenbo Liao
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, College of Energy, Xiamen University, Xiamen 361102, China
| | - Zichen Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Zhili Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China.
| | - Yong Sun
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, College of Energy, Xiamen University, Xiamen 361102, China; Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, College of Energy, Xiamen University, China, 361102, China.
| |
Collapse
|
3
|
Oladzad S, Fallah N, Mahboubi A, Afsham N, Taherzadeh MJ, Toghyani J. Comparison of acid and hydrothermal pretreatments of date waste for value creation. Sci Rep 2024; 14:18056. [PMID: 39103400 PMCID: PMC11300665 DOI: 10.1038/s41598-024-68879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
The production of date syrup yields a substantial amount of date press cake (DPC), fibrous and moisturising material with great potential for generating value through bioprocessing. However, the recalcitrant structure of DPC affects the yield of products in bioprocesses. To boost the accessibility of the structure as well as increase the soluble fraction of carbohydrates and facilitate further enzymatic hydrolysis, hydrothermal and dilute acid (0.5% (v/v) sulfuric acid) pretreatments as cost-effective and feasible methods were applied on DPC at relatively low temperatures (80, 100, 120 and 140 °C) and reaction times (60 and 90 min). The success in pretreatment was then evaluated by a post-enzymatic treatment using an enzyme cocktail of cellulases and hemicelluloses. Based on total accessible sugar with minimum produced inhibitors, an optimal operating condition was considered acid pretreatment at 120 °C for 90 min with a 55.02% increase in total sugar yield. To explore the potential use of pretreated DPC, an anaerobic digestion was conducted on untreated and acid-pretreated DPC at 120 °C for 90 min. The results showed that pretreatment increased the total bioproduct yield, including hydrogen, ethanol, and volatile fatty acid yields, by 59.75%. This demonstrates the significant impact of pretreatment on product yields in a bioprocess.
Collapse
Affiliation(s)
- Sepideh Oladzad
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| | - Narges Fallah
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran.
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, The University of Borås, 501 90, Borås, Sweden
| | - Neda Afsham
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| | - Mohammad J Taherzadeh
- Swedish Centre for Resource Recovery, The University of Borås, 501 90, Borås, Sweden
| | - Javad Toghyani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| |
Collapse
|
4
|
Bregado JL, Secchi AR, Tavares FW. A density functional theory study on interactions in water-bridged dimeric complexes of lignin. Phys Chem Chem Phys 2024; 26:9234-9252. [PMID: 38444363 DOI: 10.1039/d4cp00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Lignin is the main plant cell wall component responsible for recalcitrance in the process of lignocellulosic biomass conversion into biofuels. The recalcitrance and insolubility of lignin in different reaction media are due in part to the hydrogen bonds and π interactions that hold syringyl (S) and guaiacyl (G) units together and promote the formation of stable water-bridged dimeric complexes (WBDCs): S⋯G and S⋯S, in native lignin. The current understanding of how each type of interaction influences the stability of these complexes within lignin native cell walls is still limited. Here, we found by DFT calculations that hydrogen bonding is more dominant than π-stacking interaction between aromatic rings of WBDCs. Although there is a stronger interaction of hydrogen bonds between subunits and water and higher π-stacking interaction in the S⋯S complex compared to the S⋯G complex, the former complex is less thermodynamically stable than the latter due to the entropic contribution coming from the methoxy substituents in the S-unit. Our results demonstrate that the methoxylation degree of lignin units does not significantly influence the structural geometries of WBDCs; if anything, an enhanced dispersion interaction between ring aromatics results in quasi-sandwich geometries as found in "coiled" lignin structures in the xylem tissue of wood. In the same way as that with ionic liquids, polar solvents can dissolve S-lignin by favorable interactions with the aliphatic hydroxyl group in the α-position as the key site or the aromatic hydroxyl group as the secondary site.
Collapse
Affiliation(s)
- Jurgen Lange Bregado
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
| | - Argimiro R Secchi
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
- Chemical and Biochemical Process Engineering Program, Escola de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-909, Brazil
| | - Frederico W Tavares
- Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-914, Brazil.
- Chemical and Biochemical Process Engineering Program, Escola de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CP: 21941-909, Brazil
| |
Collapse
|
5
|
Zhou M, Feng Y, Li H, Tian X. Sustainable structural polysaccharides conversion: How does DES pretreatment affect cellulase adsorption, thereby improving enzymatic digestion of lignocellulose? Carbohydr Polym 2024; 326:121593. [PMID: 38142091 DOI: 10.1016/j.carbpol.2023.121593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 12/25/2023]
Abstract
Biomass conversion aims at degrading the structural polysaccharides of lignocellulose into reducing sugars. Pretreatment is necessary to overcome the recalcitrance of lignocellulose. The DES La/ChCl in this paper was selected based on our previous study. To examine cellulase adsorption of lignocellulose after DES pretreatment, sorghum straw was pretreated with DES under different condition. The adsorption improvement of cellulase on lignocellulose after DES pretreatment has positive impact on reducing sugar production of biomass. After DES pretreatment, 1. pore corrosion caused the upward trend of pore radius and the downward trend of SSA. 2. the hydrogen bounding force of pretreated sorghum straw and MCC decreased, the hydrogen bounding force of pretreated lignin increased. 3. although the unsaturation of pretreated lignin increased, DES pretreatment is helpful for the removal of lignin. 4. The decrease in the hydrophobicity of sorghum straw make it easier to disperse. 5. the Zeta potential of pretreated sorghum straw shifted towards the positively charged region, while pretreated lignin shifted towards the negatively charged region. 6. different adsorption behaviors were observed in specific components of cellulase mixtures (BGs, CBHs, EGs and xlylanase). These results revealing the mechanism of enzyme adsorption are conductive for understanding the role of pretreatment in biomass conversion.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Pharmaceutical, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yuxuan Feng
- State Key Laboratory of Pharmaceutical, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Haidong Li
- State Key Laboratory of Pharmaceutical, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xingjun Tian
- State Key Laboratory of Pharmaceutical, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
6
|
Chandrasekar M, Collins JL, Habibi S, Ong RG. Microfluidic reactor designed for time-lapsed imaging of pretreatment and enzymatic hydrolysis of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2024; 393:129989. [PMID: 37931765 DOI: 10.1016/j.biortech.2023.129989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The effect of tissue-specific biochemical heterogeneities of lignocellulosic biomass on biomass deconstruction is best understood through confocal laser scanning microscopy (CLSM) combined with immunohistochemistry. However, this process can be challenging, given the fragility of plant materials, and is generally not able to observe changes in the same section of biomass during both pretreatment and enzymatic hydrolysis. To overcome this challenge, a custom polydimethylsiloxane (PDMS) microfluidic imaging reactor was constructed using standard photolithographic techniques. As proof of concept, CLSM was performed on 60 μm-thick corn stem sections during pretreatment and enzymatic hydrolysis using the imaging reactor. Based on the fluorescence images, the less lignified parenchyma cell walls were more susceptible to pretreatment than the lignin-rich vascular bundles. During enzymatic hydrolysis, the highly lignified protoxylem cell wall was the most resistant, remaining unhydrolyzed even after 48 h. Therefore, imaging thin whole biomass sections was useful to obtain tissue-specific changes during biomass deconstruction.
Collapse
Affiliation(s)
- Meenaa Chandrasekar
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA; DOE Great Lakes Bioenergy Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA
| | - Jeana L Collins
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA
| | - Sanaz Habibi
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA
| | - Rebecca G Ong
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA; DOE Great Lakes Bioenergy Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA.
| |
Collapse
|
7
|
Chen X, Liu Q, Wang N, Liu C, Shi J, Liu L. Enhancing biomass conversion: Efficient hemicellulose removal and cellulose saccharification in poplar with FeCl 3 coupled with acidic electrolyzed water pretreatment. Int J Biol Macromol 2023; 253:127600. [PMID: 37871719 DOI: 10.1016/j.ijbiomac.2023.127600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Due to the recalcitrant structure of woody biomass such as poplar, the efficient disassembly and separation of hemicellulose component from woody biomass is crucial for green biomass processing and full component utilization. This study presented an environmentally friendly approach to utilize acidic electrolyzed water (AEW) combined with metal salts and investigated its pretreatment effects on hemicellulose removal and cellulose and lignin retention under different conditions. Meanwhile, the structural properties and enzymatic hydrolysis performance of the pretreated residues were also characterized. As a result, under the optimized pretreatment conditions (0.03 mol/L FeCl3 with AEW at 180 °C for 10 min), hemicellulose removal from poplar wood reached 98.64 %, accompanied by xylose recovery rate of 98.46 %, cellulose retention rate of 93.43 % and lignin retention rate of 94.29 %. Enzymatic hydrolysis rate of the pretreated cellulose-enriched substrate reached 97.65 %. Furthermore, comprehensive structural characterizations revealed that FeCl3 coupled with AEW pretreatment resulted in surface damage to the poplar wood, effective removal of the amorphous hemicellulose component, and partial destruction of the cellulose crystallinity. In conclusion, FeCl3 coupled with AEW pretreatment effectively separates hemicellulose, leading to significant alterations in biomass composition and structure, ultimately resulting in improved enzymatic digestion. These results provide theoretical support for targeted dissociation of hemicellulose and full component utilization of woody biomass.
Collapse
Affiliation(s)
- Xiaomiao Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qianjing Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Caoyunrong Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
8
|
Ma CY, Luo XT, Xu LH, Sun Q, Wen JL, Liang XF, Liu HZ, Yuan TQ. Structural elucidation and targeted valorization of untractable lignin from pre-hydrolysis liquor of xylose production via a simple and robust separation approach. Int J Biol Macromol 2023; 253:127029. [PMID: 37742903 DOI: 10.1016/j.ijbiomac.2023.127029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Effective separation of lignin macromolecules from the xylose pre-hydrolysates (XPH) during the xylose production, thus optimizing the separation and purification process of xylose, is of great significance for reducing the production costs, achieving the high value-added utilization of lignin and increasing the industrial revenue. In this study, a simple and robust method (pH adjustment) for the separation of lignin from XPH was proposed and systematically compared with the conventional acid-promoted lignin precipitation method. The results showed that the lignin removal ratio (up to 60.34 %) of this simple method was higher than that of the conventional method, and the proposed method eliminated the necessity of heating and specialized equipment, which greatly reduced the separation cost. Meanwhile, this simple method does not destroy the components in XPH (especially xylose), ensuring the yield of the target product. On the other hand, the obtained lignin was nano-scale with less condensed structures, which also possessed small molecular weights with narrow distribution, excellent antioxidant activity (8-14 times higher than commercial antioxidants) and UV protection properties. In conclusion, the proposed simple separation method could effectively separate lignin from XPH at low cost, and the obtained lignin had potential commercial applications, which would further enhance the overall profitability of industrial production.
Collapse
Affiliation(s)
- Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Xi-Tao Luo
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling-Hua Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| | - Xiang-Feng Liang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hui-Zhou Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
9
|
Zabed HM, Akter S, Dar MA, Tuly JA, Kumar Aswathi M, Yun J, Li J, Qi X. Enhanced fermentable sugar production in lignocellulosic biorefinery by exploring a novel corn stover and configuring high-solid pretreatment conditions. BIORESOURCE TECHNOLOGY 2023; 386:129498. [PMID: 37463614 DOI: 10.1016/j.biortech.2023.129498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023]
Abstract
This study aimed to produce enhanced fermentable sugars from a novel stover system through the bioprocessing of its soluble sugars and insoluble carbohydrates. The pretreatment conditions were optimized for this high sugar-containing stover (HSS) to control inhibitor formation and obtain enhanced fermentable sugar concentrations. The optimum temperature, acid loading, and reaction time for the pretreatment were 155 °C, 0.5%, and 30 min, respectively, providing up to 97.15% sugar yield and 76.51 g/L total sugars at 10% solid-load. Sugar concentration further increased to 126.9 g/L at 20% solid-load, generating 3.89 g/L acetate, 0.92 g/L 5-hydroxymethyl furfural, 0.82 g/L furfural, and 3.75 g/L total phenolics as inhibitors. To determine the effects of soluble sugars in HSS on fermentable sugar yield and inhibitor formation, sugar-removed HSS was further studied under the optimum conditions. Although prior removal of sugars exhibited a reduction in inhibitor generation, it also decreased total fermentable sugar production to 115.45 g/L.
Collapse
Affiliation(s)
- Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China; School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Suely Akter
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Mudasir A Dar
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jamila A Tuly
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Mukesh Kumar Aswathi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Junhua Yun
- School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jia Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong Province, China; School of Food & Biological Engineering, Jiangsu University, 301, Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
10
|
Jindal M, Uniyal P, Thallada B. Reductive catalytic fractionation as a novel pretreatment/lignin-first approach for lignocellulosic biomass valorization: A review. BIORESOURCE TECHNOLOGY 2023; 385:129396. [PMID: 37369316 DOI: 10.1016/j.biortech.2023.129396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Presently, the use of lignocellulosic biomass is mainly focused on creating pulp/paper, energy, sugars and bioethanol from the holocellulose component, leaving behind lignin to be discarded or burned as waste despite of its highest aromatic carbon and energy content (22-29 KJ/g). During the pulping process, lignin undergoes significant structural changes to yield technical lignin. For a circular bioeconomy, there is an urgent need to enhance the use of native lignin for generating more valuable products. Over the last few years, a new method called 'lignin-first', or 'reductive catalytic fractionation' (RCF), has been devised to achieve selective phenolic monomers under mild reaction conditions. This involves deconstructing lignin before capitalizing on carbohydrates. The objective of this study is to record the recent developments of the 'lignin-first' process. This review also underlines the contribution of RCF biorefinery towards achieving sustainable development goals (SDGs) and concludes with an overview of challenges and upcoming opportunities.
Collapse
Affiliation(s)
- Meenu Jindal
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India; Material Resource Efficiency Division, CSIR - Indian Institute of Petroleum, Dehradun-248005, Uttarakhand, India
| | - Priyanka Uniyal
- Material Resource Efficiency Division, CSIR - Indian Institute of Petroleum, Dehradun-248005, Uttarakhand, India
| | - Bhaksar Thallada
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India; Material Resource Efficiency Division, CSIR - Indian Institute of Petroleum, Dehradun-248005, Uttarakhand, India.
| |
Collapse
|
11
|
LaVallie A, Andrianova AA, Schumaker J, Reagen S, Lu S, Smoliakova IP, Kozliak EI, Kubátová A. Unfolding of Lignin Structure Using Size-Exclusion Fractionation. Polymers (Basel) 2023; 15:3956. [PMID: 37836005 PMCID: PMC10574856 DOI: 10.3390/polym15193956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The heterogeneous and recalcitrant structure of lignin hinders its practical application. Here, we describe how new approaches to lignin characterization can reveal structural details that could ultimately lead to its more efficient utilization. A suite of methods, which enabled mass balance closure, the evaluation of structural features, and an accurate molecular weight (MW) determination, were employed and revealed unexpected structural features of the five alkali lignin fractions obtained with preparative size-exclusion chromatography (SEC). A thermal carbon analysis (TCA) provided quantitative temperature profiles based on sequential carbon evolution, including the final oxidation of char. The TCA results, supported with thermal desorption/pyrolysis gas chromatography-mass spectrometry (TD-Py-GC-MS) and 31P NMR spectroscopy, revealed the unfolding of the lignin structure as a result of the SEC fractionation, due to the disruption of the interactions between the high- and low-MW components. The "unraveled" lignin revealed poorly accessible hydroxyl groups and showed an altered thermal behavior. The fractionated lignin produced significantly less char upon pyrolysis, 2 vs. 47%. It also featured a higher occurrence of low-MW thermal evolution products, particularly guaiacol carbonyls, and more than double the number of OH groups accessible for phosphitylation. These observations indicate pronounced alterations in the lignin intermolecular association following size-exclusion fractionation, which may be used for more efficient lignin processing in biorefineries.
Collapse
Affiliation(s)
- Audrey LaVallie
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
- Nueta Hidatsa Sahnish College, 220 8th Ave. E, New Town, ND 58763, USA
| | - Anastasia A. Andrianova
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
- Agilent Technologies, 2850 Centerville Rd., Wilmington, DE 19808, USA
| | - Joshua Schumaker
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
- SCIEX, 1201 Radio Rd., Redwood City, CA 94065, USA
| | - Sarah Reagen
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
- North Dakota Office of the Attorney General, Crime Laboratory Division, 2641 E Main Ave., Bismarck, ND 58501, USA
| | - Shelly Lu
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
| | - Irina P. Smoliakova
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
| | - Evguenii I. Kozliak
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, 151 Cornell St., Mail Stop 9024, Grand Forks, ND 58202, USA; (A.L.); (A.A.A.); (J.S.); (S.R.); (S.L.); (I.P.S.)
| |
Collapse
|
12
|
Ma Q, Zhou W, Du X, Huang H, Gong Z. Combined dilute sulfuric acid and Tween 80 pretreatment of corn stover significantly improves the enzyme digestibility: synergistic removal of hemicellulose and lignin. BIORESOURCE TECHNOLOGY 2023; 382:129218. [PMID: 37217142 DOI: 10.1016/j.biortech.2023.129218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Pretreatment is a prerequisite to tackle the issue of biomass recalcitrance, which is the major hindrance of lignocellulose-to-sugars routes. In the present study, a novel combination of dilute sulfuric acid (dilute-H2SO4) with Tween 80 pretreatment of corn stover (CS) was developed to significantly enhance the enzyme digestibility. Strong synergistic effects of H2SO4 and Tween 80 for simultaneously eliminating hemicellulose and lignin and significantly promoting saccharification yield were observed. A response surface optimization realized the maximum monomeric sugar yield of 95.06% at 120 °C for 1.4 h with 0.75wt% of H2SO4 and 73.92 wt% of Tween 80. The excellent enzyme susceptibility of pretreated CS was explained by their physical and chemical characteristics via SEM, XRD, and FITR. The repeatedly recovered pretreatment liquor exerted highly-effective reusability in the subsequent pretreatments for at least four cycles. This strategy offers a highly-efficient and practical pretreatment strategy, which provides valuable information for the lignocellulose-to-sugars routes.
Collapse
Affiliation(s)
- Qishuai Ma
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China; HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Xiaoyu Du
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Hao Huang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China; HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.
| |
Collapse
|
13
|
Evaluating the Potential of Newly Developed Energy Cane Clones for First- and Second-Generation Ethanol Production. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The rapid increases in fuel ethanol demand and food security concerns have driven the need for diverse feedstocks in the ethanol production process. Energy cane is an energy crop that is an ideal sustainable biofuel feedstock. The present study evaluated ethanol production of the juice and bagasse of two newly developed energy cane clones, TByEFC08-0035 and TByEFC10-0004. The results of the chemical composition analyses of the juice and bagasse samples revealed that the two energy cane clones contained high contents of both sucrose (15.36–17.95%) and fiber (13.44–24.16%). The maximum ethanol concentrations from the juice on a laboratory scale (87.10 g/L) and on an agronomic scale (1211.76 kg/ha) were recorded for TByEFC10-0004 fermented with a new isolate Kluyveromyces marxianus SJT83, whereas the maximum ethanol concentrations from bagasse on a laboratory scale (9.81 g/L) and on an agronomic scale (790.68 kg/ha) were reached with TByEFC08-0035 fermented with Scheffersomyces shehatae TTC79. The total ethanol yields from the juice and bagasse samples per cultivation area of both energy cane clones were in the range 1294.23–1469.14 kg/ha, being 1.70–1.93 and 1.08–1.23 times higher than the control energy cane Biotec2 variety and the commercial sugar cane Khon Kaen3 variety, respectively. This study revealed the potential of the energy cane clones TByEFC08-0035 and TByEFC10-0004 currently being developed as sugar and lignocellulose substrates for first- and second-generation ethanol industry applications.
Collapse
|
14
|
du Pasquier J, Paës G, Perré P. Principal factors affecting the yield of dilute acid pretreatment of lignocellulosic biomass: A critical review. BIORESOURCE TECHNOLOGY 2023; 369:128439. [PMID: 36493953 DOI: 10.1016/j.biortech.2022.128439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
This review provides a critical analysis of the state of the art of dilute acid pretreatment applied to lignocellulosic biomass. Data from 63 publications were extracted and analysed. The majority of the papers used residence times of<30 min, temperature ranges from 100 °C to 200 °C, and acid levels between 0 % and 2 %. Yields are quantified directly after pretreatment (xylose content) or after enzymatic hydrolysis (glucose content). Statistical analyses allowed the time-temperature equivalence to be quantified for three types of biomass: they were formulated by non-linear expressions. In further works, investigating less explored areas, for example moderate temperature levels with longer residence times, is recommended. Pretreatment material (time-temperature kinetics, reactor type) and analytical methods should be standardized and better described. It becomes mandatory to promote the development of an open, findable, accessible, interoperable, and reusable data approach for pretreatments research.
Collapse
Affiliation(s)
- Julien du Pasquier
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, 51100 Reims, France; Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 51110 Pomacle, France
| | - Gabriel Paës
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, 51100 Reims, France.
| | - Patrick Perré
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 51110 Pomacle, France
| |
Collapse
|
15
|
Ovejero-Pérez A, Rigual V, Domínguez JC, Alonso MV, Oliet M, Rodriguez F. Effect of autohydrolysis and ionosolv treatments on eucalyptus fractionation and recovered lignin properties †. RSC Adv 2023; 13:10338-10348. [PMID: 37020891 PMCID: PMC10068429 DOI: 10.1039/d2ra08013c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Wood fractionation is key for the integral valorization of its three main components. In this sense, recovering the hemicellulosic fraction after the ionosolv treatment of lignocellulosic materials is one of the main drawbacks of this process. Thus, the incorporation of a previous autohydrolyisis step to recover the hemicellulosic sugars before the ionosolv treatment is an interesting approach. The influence of both treatments, autohydrolysis and ionosolv, on the biomass fractions recovery yields was studied by a central composite design of experiments, varying the autohydrolysis temperature in a 175–195 °C range and ionosolv time between 1–5 h. Lignin recovery and cellulose purity were maximized at 184 °C and 3.5 h of autohydrolysis temperature and ionosolv time, respectively. In addition, lignin properties were incorporated to the statistical model, revealing lignin recondensation at severe conditions and a higher influence of the ionosolv treatment on lignin characteristics. These results remarked the importance of studying the effect of both treatments in the whole fractionation process and not each process separately and enhanced the understanding of the treatments combination in a complete fractionation biorefinery approach. This work enhances the understanding of the effect of autohydrolysis and ionosolv treatments combination on fractionation yields and lignin properties.![]()
Collapse
Affiliation(s)
- Antonio Ovejero-Pérez
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - Victoria Rigual
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - Juan C. Domínguez
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - M. Virginia Alonso
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - Mercedes Oliet
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| | - Francisco Rodriguez
- Department of Chemical Engineering and Materials, Complutense University of Madrid28040 MadridSpain
| |
Collapse
|
16
|
Wang WY, Gao JH, Qin Z, Liu HM. Structural variation of lignin-carbohydrate complexes (LCC) in Chinese quince (Chaenomeles sinensis) fruit as it ripens. Int J Biol Macromol 2022; 223:26-35. [PMID: 36336153 DOI: 10.1016/j.ijbiomac.2022.10.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/08/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Chinese quince (Chaenomeles sinensis) fruits are rich in lignin, and too sour, astringent and woody to be eaten raw. More than 50 % of lignin in plant cell walls is covalently associated with carbohydrates to form lignin-carbohydrate complexes (LCC). In this study, LCC preparations were extracted from fruits harvested on the 15th day of the month from May-October 2019. A variety of chemical and instrumental analytical approaches were used to characterize the LCC fractions, including HPAEC, TGA, GPC, FT-IR, and 2D HSQC NMR. Antioxidant activities were evaluated by DPPH radical scavenging assays. Results showed that the LCC fractions from October fruits had better thermal stability and homogeneity. NMR results revealed that the lignin-lignin linkages in LCC-AcOH preparations included β-O-4', β-β' and β-5', but β-5' linkages were not present in LCC preparations. And the NMR signals of carbohydrate confirmed the presence of lignin-pectin complexes, which was consistent with sugar analysis. All LCC preparations showed good antioxidant activity, among which Björkman LCC from October fruits showed best. This study will facilitate understanding the chemical bonds of LCC macromolecules in the plant cell wall. More specifically, it provides information critical for specific industrial applications of quince fruits.
Collapse
Affiliation(s)
- Wen-Yue Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jing-Hao Gao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhao Qin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hua-Min Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
17
|
Effect of Acidic Hydrochar on Plastic Crude Oil Produced from Hydrothermal Liquefaction of Waste PVC. Processes (Basel) 2022. [DOI: 10.3390/pr10122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In this study, the effect of hydrothermal liquefaction (HTL) of waste PVC was investigated in the presence of acidic hydrochar. The hydrochar was prepared by hydrothermal carbonization of pineapple waste at 250 °C and at 1 h in the presence of citric acid. Hydrochar was acidic, stable, and porous and contained acidic functional groups. Hydrochar was co-fed with PVC during HTL to enhance HTL conversion and quality of the plastic crude oil. HTL experiments were performed at 300–350 °C, 0.25–4 h of reaction times, and 0–20 wt% hydrochar-to-PVC ratio. The plastic crude oil was separated from the solid residue to evaluate HTL conversion and to analyze elemental compositions, boiling point distribution, alteration of chemical bonds, and chemical compositions. The results showed that acidic hydrochar enhances HTL conversion with a maximum value of 28.75 at 5 wt% hydrochar content at 350 °C and 0.5 h. Furthermore, plastic crude oils contained no chloride but contained significantly high carbon and hydrogen, resulting in a higher heating value of up to 36.43 MJ/kg. The major component of the plastic crude oil was 3, 5 dimethylphenol produced ranging from 61.4 to 86.4% (percentage of total identified area) according to gas chromatography mass spectroscopy (GCMS) data.
Collapse
|
18
|
Lee SM, Cho DH, Jung HJ, Kim B, Kim SH, Bhatia SK, Gurav R, Jeon JM, Yoon JJ, Park JH, Park JH, Kim YG, Yang YH. Enhanced tolerance of Cupriavidus necator NCIMB 11599 to lignocellulosic derived inhibitors by inserting NAD salvage pathway genes. Bioprocess Biosyst Eng 2022; 45:1719-1729. [PMID: 36121506 DOI: 10.1007/s00449-022-02779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
Polyhydroxybutyrate (PHB) is a bio-based, biodegradable and biocompatible plastic that has the potential to replace petroleum-based plastics. Lignocellulosic biomass is a promising feedstock for industrial fermentation to produce bioproducts such as polyhydroxybutyrate (PHB). However, the pretreatment processes of lignocellulosic biomass lead to the generation of toxic byproducts, such as furfural, 5-HMF, vanillin, and acetate, which affect microbial growth and productivity. In this study, to reduce furfural toxicity during PHB production from lignocellulosic hydrolysates, we genetically engineered Cupriavidus necator NCIMB 11599, by inserting the nicotine amide salvage pathway genes pncB and nadE to increase the NAD(P)H pool. We found that the expression of pncB was the most effective in improving tolerance to inhibitors, cell growth, PHB production and sugar consumption rate. In addition, the engineered strain harboring pncB showed higher PHB production using lignocellulosic hydrolysates than the wild-type strain. Therefore, the application of NAD salvage pathway genes improves the tolerance of Cupriavidus necator to lignocellulosic-derived inhibitors and should be used to optimize PHB production.
Collapse
Affiliation(s)
- Sun Mi Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Do-Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Republic of Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Joseph P, Ottesen V, Opedal MT, Moe ST. Morphology of lignin structures on fiber surfaces after organosolv pretreatment. Biopolymers 2022; 113:e23520. [PMID: 35751883 PMCID: PMC9787855 DOI: 10.1002/bip.23520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The redeposition of lignin to the fiber surface after organosolv pretreatment was studied using two different reactor types. Results from the conventional autoclave reactor suggest that redeposition occurs during the cooling down stage. Redeposited particles appeared to be spherical in shape. The size and population density of the particles depends on the concentration of organosolv lignin in the cooking liquor, which is consistent with the hypothesis that reprecipitation of lignin occurs when the system is cooled down. The use of a displacement reactor showed that displacing the spent cooking liquor with fresh cooking liquor helps in reducing the redeposition and the inclusion of a washing stage with fresh cooking liquor reduced the reprecipitation of lignin, particularly on the outer fiber surfaces. Redeposition of lignin was still observed on regions that were less accessible to washing liquid, such as fiber lumens, suggesting that complete prevention of redeposition was not achieved.
Collapse
Affiliation(s)
- Prajin Joseph
- Department of Chemical EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Vegar Ottesen
- Department of Chemical EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway,Innlandet FylkeskommuneHamarNorway
| | | | - Størker T. Moe
- Department of Chemical EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
20
|
Wang N, Wang B, Si H, Hu S, Chen L, Liao Y, Wang L, Zhang Y, Jiang J. Comparative investigation of the structural characteristics of tobacco stalk lignin during the DES and alkaline deconstruction toward sustainable materials. Front Bioeng Biotechnol 2022; 10:994760. [PMID: 36091435 PMCID: PMC9452755 DOI: 10.3389/fbioe.2022.994760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Lignin polymer as a natural aromatic macromolecule presents significant prospects in producing functional and sustainable materials, and achieving a comprehensive characterization will facilitate their target valorization. In the present study, deep eutectic solvent (DES) and alkaline delignification were adopted to deconstruct tobacco stalk before and after hydrothermal pretreatment, obtaining diverse lignin fractions with fascinating characteristics. DES lignin exhibited a higher yield and homogenous molecular structure than MWL. A severe cleavage of the inter-unit linkages in lignin was also observed. This result mostly originated from the efficient delignification of the DES deconstruction system adopted. Moreover, all the recovered lignin fractions exhibited good micro-nanoparticle size that can enhance the valorization of lignin in nanomaterial production, in which the hydrothermal-assisted DES deconstruction promoted the formation of the smaller lignin nanoparticle size. Next, all the recovered lignin presented an excellent UV absorption and structure-related absorption performance or thermal properties. Overall, this work provides an important foundation for further exploiting DES/alkaline delignification lignin that can be applied as an ideal feedstock for producing sustainable functional or micro/nanomaterials.
Collapse
Affiliation(s)
- Na Wang
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Bo Wang
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Hui Si
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Suxia Hu
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Lin Chen
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Yu Liao
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
| | - Lei Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
- *Correspondence: Lei Wang, ; Yifan Zhang, ; Jungang Jiang,
| | - Yifan Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
- *Correspondence: Lei Wang, ; Yifan Zhang, ; Jungang Jiang,
| | - Jungang Jiang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
- *Correspondence: Lei Wang, ; Yifan Zhang, ; Jungang Jiang,
| |
Collapse
|
21
|
Jahan N, Huda MM, Tran QX, Rai N. Effect of Solvent Quality on Structure and Dynamics of Lignin in Solution. J Phys Chem B 2022; 126:5752-5764. [PMID: 35915516 DOI: 10.1021/acs.jpcb.2c03147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to its significant aromatic content, lignin is an attractive source of valuable organic chemicals. As most of the proposed lignin depolymerization processes are expected to be liquid-phase, it is necessary to understand the effect of solvent quality on the structure and dynamics of lignin. Here we use all-atom molecular dynamics simulations to understand the evolution of lignin structure as a function of methanol concentration in methanol/water solution at different temperatures. We utilize two different lignin models: softwood consisting of guaiacyl (G) monomer and hardwood consisting of heteropolymer containing guaiacyl/syringyl (S) with a 1.35:1 ratio. The presence of additional methoxy groups in the hardwood lignin leads to a more extended configuration than softwood lignin with increasing methanol concentration. Structural features (radius of gyration and solvent accessible surface area) of lignin correlate with the strength of intermolecular forces quantified using cohesive energy density. We find that methanol preferentially solvates the nonpolar segments of the lignin polymer while water molecules solvate the polar functional groups. Thus, as the methanol concentration increases, methanol can better solvate lignin polymer, leading to a more extended configuration suitable for catalytic transformation to value-added chemicals.
Collapse
Affiliation(s)
- Nusrat Jahan
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Md Masrul Huda
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Quyen Xuan Tran
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
22
|
Remón J, Sevilla-Gasca R, Frecha E, Pinilla JL, Suelves I. Direct conversion of almond waste into value-added liquids using carbon-neutral catalysts: Hydrothermal hydrogenation of almond hulls over a Ru/CNF catalyst. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154044. [PMID: 35202688 DOI: 10.1016/j.scitotenv.2022.154044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The almond industry leaves behind substantial amounts of by-products, with almond hulls being the primary residue generated. Given that one way to improve food security is by decreasing waste to reduce environmental impacts, developing sustainable processes to manage this by-product is necessary. Herein, we report on the hydrothermal hydrogenation of almond hulls over a carbon-neutral Ru supported on carbon nanofibres (Ru/CNF) catalyst, addressing the temperature, H2 pressure, time and catalyst loading. These variables controlled the distribution of the reaction products: gas (0-5%), liquid (49-82%) and solid (13-51%), and ruled the composition of the liquid effluent. This aqueous fraction comprised oligomers (46-81 wt%), saccharides (2-7 wt%), sugar alcohols (2-15 wt%), polyhydric alcohols (1-8 wt%) and carboxylic acids (7-31 wt%). The temperature and reaction time influenced the extension of hydrolysis, depolymerisation, deamination, hydrolysis, hydrogenation and dehydration reactions. Additionally, the initial H2 pressure and catalyst loading kinetically promoted these transformations, whose extensions were ruled by the amount of H2 effectively dissolved in the reaction medium and the prevalence of hydrogenations over dehydration/decarboxylation reactions or vice versa depending on the catalyst loading. Process optimisation revealed that it is feasible to convert up to 67% of almond hulls into merchantable oligomers at 230 °C, 35 bar initial H2, using 1 g catalyst/g biomass (0.4 g Ru/g biomass) for 360 min. Additionally, decreasing the temperature to 187 °C without modifying the other parameters could convert this material into oligomers (31 wt%) and small oxygenates (17 wt% carboxylic acids, 11 wt% sugar alcohols and 6 wt% polyhydric alcohols) concurrently. The theoretical energy assessment revealed that the total and partial combustion of the spent solid material could provide the required energy for the process and allow catalyst recovery and reutilisation. This environmental friendliness and holistic features exemplify a landmark step-change to valorising unavoidable food waste.
Collapse
Affiliation(s)
- Javier Remón
- Instituto de Carboquímica, CSIC, C/Miguel Luesma Castán 4, 50018 Zaragoza, Spain.
| | - Raquel Sevilla-Gasca
- Instituto de Carboquímica, CSIC, C/Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - Esther Frecha
- Instituto de Carboquímica, CSIC, C/Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - José Luis Pinilla
- Instituto de Carboquímica, CSIC, C/Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - Isabel Suelves
- Instituto de Carboquímica, CSIC, C/Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| |
Collapse
|
23
|
Structural elucidation and targeted valorization of poplar lignin from the synergistic hydrothermal-deep eutectic solvent pretreatment. Int J Biol Macromol 2022; 209:1882-1892. [PMID: 35489620 DOI: 10.1016/j.ijbiomac.2022.04.162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/16/2023]
Abstract
Elucidating the structural variations of lignin during the pretreatment is very important for lignin valorization. Herein, poplar wood was pretreated with an integrated process, which was composed of AlCl3-catalyzed hydrothermal pretreatment (HTP, 130-150 °C, 1.0 h) and mild deep-eutectic solvents (DES, 100 °C, 10 min) delignification for recycling lignin fractions. Confocal Raman Microscopy (CRM) was developed to visually monitor the delignification process during the HTP-DES pretreatment. NMR characterizations (2D-HSQC and 31P NMR) and elemental analysis demonstrated that the lignin fractions had undergone the following structural changes, such as dehydration, depolymerization, condensation. Molecular weights (GPC), microstructure (SEM and TEM), and antioxidant activity (DPPH analysis) of the lignins revealed that the DES delignification resulted in homogeneous lignin fragments (1.32 < PDI < 1.58) and facilitated the rapid assemblage of lignin nanoparticles (LNPs) with controllable nanoscale sizes (30-210 nm) and excellent antioxidant activity. These findings will enhance the understanding of structural transformations of the lignin during the integrated process and maximize the lignin valorization in a current biorefinery process.
Collapse
|
24
|
Effect of Combined Particle Size Reduction and Fe3O4 Additives on Biogas and Methane Yields of Arachis hypogea Shells at Mesophilic Temperature. ENERGIES 2022. [DOI: 10.3390/en15113983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Enzymatic hydrolysis of lignocellulose materials has been identified as the rate-limiting step during anaerobic digestion. The application of pretreatment techniques can influence the biodegradability of lignocellulose substrate. This study combined Fe3O4 nanoparticles, which serve as a heterogeneous catalyst during anaerobic digestion, with different particle sizes of Arachis hypogea shells. Batch anaerobic digestion was set up at mesophilic temperature for 35 days. The results showed that 20 mg/L Fe3O4 additives, as a single pretreatment, significantly influence biogas and methane yields with an 80.59 and 106.66% increase, respectively. The combination of 20 mg/L Fe3O4 with a 6 mm particle size of Arachis hypogea shells produced the highest cumulative biogas yield of 130.85 mL/gVSadded and a cumulative methane yield of 100.86 mL/gVSadded. This study shows that 20 mg/L of Fe3O4 additive, combined with the particle size pretreatment, improved the biogas and methane yields of Arachis hypogea shells. This result can be replicated on the industrial scale to improve the energy recovery from Arachis hypogea shells.
Collapse
|
25
|
Al-Da’asen A, Al-Harahsheh A, Al- Hwaiti M, Irshaid Irshaid F. Biogas production via anaerobic codigestion of chemically treated wheat straw with sewage sludge or cow manure. BIOMASS CONVERSION AND BIOREFINERY 2022. [DOI: 10.1007/s13399-022-02760-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
26
|
Al-Da’asen A, Al-Harahsheh A, Al- Hwaiti M, Irshaid Irshaid F. Biogas production via anaerobic codigestion of chemically treated wheat straw with sewage sludge or cow manure. 2022. BIOMASS CONVERSION AND BIOREFINERY 2022. [DOI: https://doi.org/10.1007/s13399-022-02760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Moreira BP, Draszewski CP, Celante D, Brondani L, Lachos-Perez D, Mayer FD, Abaide ER, Castilhos F. Defatted rice bran pretreated with deep eutectic solvents and sequential use as feedstock for subcritical water hydrolysis. BIORESOURCE TECHNOLOGY 2022; 351:127063. [PMID: 35351560 DOI: 10.1016/j.biortech.2022.127063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Deffated rice bran has potential to processing into ethanol due to its lignocellulosic composition and agricultural productivity. The composition of the pretreated deffated rice bran with Deep Eutectic Solvent was investigated aiming the production of sugars and bioproducts using subcritical water hydrolysis. Changes in the deffated rice bran composition at different pretreatment times and mixtures of deep eutectic solvent were evaluated by the derivative of thermogravimetric analysis. The pretreated deffated rice bran presented an enrichment in the content of hemicelluloses (281.0%) and delignification (59.3 %). Under the same condition of subcritical water hydrolysis (230 °C/R-100) the yield of fermentable sugars increased 2.20 times in the same study time interval (20 min) when comparing pretreated and untreated deffated rice bran.
Collapse
Affiliation(s)
- Bárbara P Moreira
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Crisleine P Draszewski
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Dian Celante
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Leoni Brondani
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Daniel Lachos-Perez
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flávio D Mayer
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Ederson R Abaide
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Fernanda Castilhos
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
28
|
|
29
|
New EK, Tnah SK, Voon KS, Yong KJ, Procentese A, Yee Shak KP, Subramonian W, Cheng CK, Wu TY. The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114385. [PMID: 35104699 DOI: 10.1016/j.jenvman.2021.114385] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The high dependence on crude oil for energy utilization leads to a necessity of finding alternative sustainable resources. Solvents are often employed in valorizing the biomass into bioproducts and other value-added chemicals during treatment stages. Unfortunately, despite the effectiveness of conventional solvents, hindrances such as expensive solvents, unfavourable environmental ramifications, and complicated downstream separation systems often occur. Therefore, the scientific community has been actively investigating more cost-effective, environmentally friendly alternatives and possess the excellent dissolving capability for biomass processing. Generally, 'green' solvents are attractive due to their low toxicity, economic value, and biodegradability. Nonetheless, green solvents are not without disadvantages due to their complicated product recovery, recyclability, and high operational cost. This review summarizes and evaluates the recent contributions, including potential advantages, challenges, and drawbacks of green solvents, namely ionic liquids, deep eutectic solvents, water, biomass-derived solvents and carbon dioxide in transforming the lignocellulosic biomass into high-value products. Moreover, research opportunities for future developments and potential upscale implementation of green solvents are also critically discussed.
Collapse
Affiliation(s)
- Eng Kein New
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Shen Khang Tnah
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Khai Shing Voon
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Undergraduate Research Opportunities Program (UROP), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Khai Jie Yong
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Alessandra Procentese
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Katrina Pui Yee Shak
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor Darul Ehsan, Malaysia; Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Wennie Subramonian
- School of Computing, Engineering & Design Technologies, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, United Kingdom
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ta Yeong Wu
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
30
|
Structural characterizations of lignins extracted under same severity using different acids. Int J Biol Macromol 2022; 194:204-212. [PMID: 34863836 DOI: 10.1016/j.ijbiomac.2021.11.171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
As the vital renewable feedstock originated from carbon-neutral resources, due to prominent aromaticity lignin owns the potential to produce high value-added products. Multi-functional lignin valorization demands efficient lignin extraction at milder conditions to keep its structure intact to substitute petroleum-based reactants. Lignin extraction severity (LES) is considered as the primary factor affecting the structure of extracted lignin and ultimately determines its applications. Except for the LES, the selection of suitable reagents for lignin extraction concerned with specific applications is crucially important. To explore the influence of different reagents, this study focused on lignin extraction employing the commonly used strong acids at the same LES. Four lignin preparations were extracted using 80% aqueous dioxane with the addition of H2O (L1), HCl, H2SO4 and HNO3 (pH = 1.30 ± 0.01 L2, L3 and L4, respectively). Analytical high-sensitive NMR (31P and 2D-HSQC) together with other characterizations (FTIR and GPC) were successfully employed and quantified while unveiling the structural heterogeneity among extracted lignin preparations. At the same LES, different reagents yielded lignin with varying structural characteristics and were potentially suitable for different applications.
Collapse
|
31
|
Radhika NL, Sachdeva S, Kumar M. Microbe assisted depolymerization of lignin rich waste and its conversion to gaseous biofuel. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113684. [PMID: 34509817 DOI: 10.1016/j.jenvman.2021.113684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/05/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Biomethanation potential of lignin rich residue (LRR) obtained from lignocellulosic ethanol fermentation was evaluated after subjecting to microbe assisted pretreatment using selectively enriched lignin depolymerizing consortia (LDC). The efficiency of LDC in lignin depolymerization was established using alkali and dealkali lignins (AL and DL) along with LRR as feedstocks. Microbial growth on media having lignin as sole carbon source, activity of lignin depolymerizing enzymes, viz., lignin peroxidase and laccase, ability of culture to decolorize the lignin mimicking dyes like methylene blue and ramezol brilliant blue, were considered to confirm the efficiency of enriched mixed culture. Microbial treatment using LDC showed significant positive impact on lignin breakdown irrespective of the substrate (LRR, 46.33%; AL, 31.37%; DL, 34.20%). The hydrolysate of LRR obtained from microbial pretreatment showed higher biogas yield (424 ml/g VS) owing to the efficiency of lignin depolymerization and availability of readily available biodegradable components in residual lignin from previous processing. Depolymerization of commercial lignins also produced a good amount of biogas (302-324 ml/g VS) after pretreatment with LDC. Overall, an additional energy conversion efficiency of about 11.75 kJ/g VS was obtained by valorizing the residual lignin through integrating biomethanation technology to ethanol fermentation. Outcome of this study indicated the feasibility of using lignin rich residue generated from the second generation cellulosic bioethanol plants as a potential feedstock to meet the current gaseous fuel demands. This integration also helps in closing the biomass based biorefinery loop and also promotes the circular economy.
Collapse
Affiliation(s)
- N L Radhika
- Manav Rachna International Institute of Research and Studies (MRIIRS), Sector 43, Faridabad, Haryana, 121004, India; Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad, 121007, Haryana, India
| | - Sarita Sachdeva
- Manav Rachna International Institute of Research and Studies (MRIIRS), Sector 43, Faridabad, Haryana, 121004, India
| | - Manoj Kumar
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad, 121007, Haryana, India.
| |
Collapse
|
32
|
Chen Y, Zhang H, Feng X, Ma L, Zhang Y, Dai H. Lignocellulose nanocrystals from pineapple peel: Preparation, characterization and application as efficient Pickering emulsion stabilizers. Food Res Int 2021; 150:110738. [PMID: 34865757 DOI: 10.1016/j.foodres.2021.110738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/01/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022]
Abstract
In this study, the pineapple peel treated with different degrees of delignification was used to isolate lignocellulose nanocrystals (LCNC) by sulfuric acid hydrolysis. Controlling delignification treatments can adjust the morphology and structure of pineapple peel and the retention of lignin, thereby achieving the regulation of the properties of LCNC, such as morphology, crystallinity, hydrophobicity and rheological properties. The results of atomic force microscope (AFM), confocal laser scanning microscopy (CLSM), UV/visible (UV-Vis) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the presence of lignin in LCNC, showing a rod-like structure with the distribution of lignin. Regulating delignification of pineapple peel can adjust the average length (310 ∼ 460 nm), diameter (19 ∼ 38 nm), crystallinity (61% ∼ 71%) and hydrophobicity (contact angle 84° ∼ 60°) of the obtained LCNC by acid hydrolysis, and influence the performance of its stabilized Pickering emulsions. This work confirms that the properties of LCNC can be controlled through adjusting delignification degree, possessing great significance for the high value utilization of lignocellulosic agricultural waste.
Collapse
Affiliation(s)
- Yuan Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xin Feng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China.
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
33
|
Peng XP, Bian J, Yao SQ, Ma CY, Wen JL. Effects of P-Coumarate 3-Hydroxylase Downregulation on the Compositional and Structural Characteristics of Lignin and Hemicelluloses in Poplar Wood ( Populus alba × Populus glandulosa). Front Bioeng Biotechnol 2021; 9:790539. [PMID: 34869298 PMCID: PMC8634402 DOI: 10.3389/fbioe.2021.790539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Elucidating the chemical and structural characteristics of hemicelluloses and lignin in the p-coumarate 3-hydroxylase (C3H) down-regulated poplar wood will be beneficial to the upstream gene validation and downstream biomass conversion of this kind of transgenic poplar. Herein, the representative hemicelluloses and lignin with unaltered structures were prepared from control (CK) and C3H down-regulated 84K poplars. Modern analytical techniques, such as 13C NMR, 2D-HSQC NMR, and gel chromatography (GPC), were performed to better delineate the structural changes of hemicelluloses and lignin caused by transgenesis. Results showed that both the hemicelluloses (H-CK and H-C3H) extracted from control and C3H down-regulated poplar wood have a chain backbone of (1→4)-β-D-Xylan with 4-O-Me-α-D-GlcpA as side chain, and the branch degree of the H-C3H is higher than that of H-CK. With regarding to the lignin macromolecules, NMR results demonstrated that the syringyl/guaiacyl (S/G) ratio and dominant substructure β-O-4 linkages in C3H down-regulated poplar were lower than those of control poplar wood. By contrast, native lignin from C3H down-regulated poplar wood exhibited higher contents of p-hydroxybenzoate (PB) and p-hydroxyphenyl (H) units. In short, C3H down-regulation resulted in the chemical and structural changes of the hemicelluloses and lignin in these poplar wood. The identified structures will facilitate the downstream utilization and applications of lignocellulosic materials in the biorefinery strategy. Furthermore, this study could provide some illuminating results for genetic breeding on the improvement of wood properties and efficient utilization of poplar wood.
Collapse
Affiliation(s)
- Xiao-Peng Peng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Shuang-Quan Yao
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| |
Collapse
|
34
|
Draszewski CP, Bragato CA, Lachos-Perez D, Celante D, Frizzo CP, Castilhos F, Tres MV, Zabot GL, Abaide ER, Mayer FD. Subcritical water hydrolysis of rice husks pretreated with deep eutectic solvent for enhance fermentable sugars production. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Saadatinavaz F, Karimi K, Denayer JFM. Hydrothermal pretreatment: An efficient process for improvement of biobutanol, biohydrogen, and biogas production from orange waste via a biorefinery approach. BIORESOURCE TECHNOLOGY 2021; 341:125834. [PMID: 34479139 DOI: 10.1016/j.biortech.2021.125834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Orange waste (OW), an abundant and severe globally environmental treat, was used for biobutanol and biohydrogen production emploing acetone-butanol-ethanol (ABE) fermentation through a biorefinery process. The solvent yield from untreated OW was insufficient; thus, the substrate was subjected to hydrothermal pretreatment before hydrolysis. The pretreatment at 140 ℃ for 30 min resulted in the solid with the highest yield of hydrolysis and fermentation. Moreover, the anaerobic digestion of hydrolysis residue produced appreciable amounts of biomethane. However, the pretreatment liquor was not fermentable; thus, it was detoxified by overliming for 24 h at 30 ℃ and then fermented. Overall, this sustainable biorefinery, based on pretreatment without any additional chemical agent, hydrolysis of pretreated solids, detoxification of pretreatment liquor, ABE fermentation, and anaerobic digestion of residues, produced 42.3 g biobutanol, 33.1 g acetone, 13.4 g ethanol, 104.5 L biohydrogen, and 28.3 L biomethane per kg of OW that contained 4560 kJ energy.
Collapse
Affiliation(s)
- Fateme Saadatinavaz
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050, Brussels, Belgium.
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
36
|
Ma CY, Xu LH, Zhang C, Guo KN, Yuan TQ, Wen JL. A synergistic hydrothermal-deep eutectic solvent (DES) pretreatment for rapid fractionation and targeted valorization of hemicelluloses and cellulose from poplar wood. BIORESOURCE TECHNOLOGY 2021; 341:125828. [PMID: 34461401 DOI: 10.1016/j.biortech.2021.125828] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
A synergistic pretreatment that realizing effective fractionation and targeted valorization can guarantee the implementability to future biorefinery scenario. In the present study, a stepwise approach using hydrothermal and deep eutectic solvents (DES) pretreatment was developed to preferentially dissociate hemicelluloses and further remove lignin from poplar, while retaining a cellulose-rich substrate that can be easily digested via enzymatic saccharification to obtain glucose. Results showed that the hydrothermal filtrate is mainly composed of xylooligosaccharide (XOS), monosaccharides, byproducts, and xylan-type hemicelluloses, which have homogenous structures and uniform molecular weights distribution as well as excellent antioxidant activity. Subsequent DES pretreatment further removed the lignin barriers, leading to a remarkable increase in the saccharification efficiency from 15.72% to 96.33% under optimum conditions for enzymatic hydrolysis. In short, the integrated pretreatment is effective for dissociating and chemical conversion of poplar wood, which was reasonable to promote the frontier of highly available biorefinery.
Collapse
Affiliation(s)
- Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Ling-Hua Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Chen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Kai-Ning Guo
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
37
|
Sun Q, Chen WJ, Pang B, Sun Z, Lam SS, Sonne C, Yuan TQ. Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2021; 341:125807. [PMID: 34474237 DOI: 10.1016/j.biortech.2021.125807] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
In recent years, visualization and characterization of lignocellulose at different scales elucidate the modifications of its ultrastructural and chemical features during hydrothermal pretreatment which include degradation and dissolving of hemicelluloses, swelling and partial hydrolysis of cellulose, melting and redepositing a part of lignin in the surface. As a result, cell walls are swollen, deformed and de-laminated from the adjacent layer, lead to a range of revealed droplets that appear on and within cell walls. Moreover, the certain extent morphological changes significantly promote the downstream processing steps, especially for enzymatic hydrolysis and anaerobic fermentation to bioethanol by increasing the contact area with enzymes. However, the formation of pseudo-lignin hinders the accessibility of cellulase to cellulose, which decreases the efficiency of enzymatic hydrolysis. This review is intended to bridge the gap between the microstructure studies and value-added applications of lignocellulose while inspiring more research prospects to enhance the hydrothermal pretreatment process.
Collapse
Affiliation(s)
- Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Wei-Jing Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Bo Pang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China.
| |
Collapse
|
38
|
Tian S, Xie H, Zhang H, Fu S. Efficient separation of acetylated cellulose from eucalyptus and its enhancement on the mechanical strength of polylactic acid. Int J Biol Macromol 2021; 191:100-107. [PMID: 34537292 DOI: 10.1016/j.ijbiomac.2021.09.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
A simplified and green strategy was provided for the synthesis of cellulose acetate. Cellulose acetate (CA) was isolated from the directly acetylated eucalyptus powder after hydrothermal treatment to selectively remove hemicellulose without delignification. The conversion rate of cellulose (90.75%) and the yield of the acetylated product (61.34%) were greatly improved by hydrothermal treatment, while the re-condensation of lignin during hydrothermal treatment made no adverse difference. The characterization results verified that the acetylated product was cellulose acetate with uniform molecular weight, good thermal stability and semi-crystalline structure. Moreover, CA was used to reinforce polylactic acid (PLA) films prepared by solvent casting. The PLA-CA composite with 5 wt% CA showed an increase of 80.63% in tensile strength and 59.51% in Young's modulus, and their density decreased from 1.2427 g/cm3 to 1.0028 g/cm3. The lightweight and excellent mechanical properties promote the application potential of biodegradable composites to replace petroleum-based plastics.
Collapse
Affiliation(s)
- Shenglong Tian
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Huihui Xie
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Hui Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
| |
Collapse
|
39
|
Dou Y, Yang Y, Mund NK, Wei Y, Liu Y, Wei L, Wang Y, Du P, Zhou Y, Liesche J, Huang L, Fang H, Zhao C, Li J, Wei Y, Chen S. Comparative Analysis of Herbaceous and Woody Cell Wall Digestibility by Pathogenic Fungi. Molecules 2021; 26:molecules26237220. [PMID: 34885803 PMCID: PMC8659149 DOI: 10.3390/molecules26237220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Fungal pathogens have evolved combinations of plant cell-wall-degrading enzymes (PCWDEs) to deconstruct host plant cell walls (PCWs). An understanding of this process is hoped to create a basis for improving plant biomass conversion efficiency into sustainable biofuels and bioproducts. Here, an approach integrating enzyme activity assay, biomass pretreatment, field emission scanning electron microscopy (FESEM), and genomic analysis of PCWDEs were applied to examine digestibility or degradability of selected woody and herbaceous biomass by pathogenic fungi. Preferred hydrolysis of apple tree branch, rapeseed straw, or wheat straw were observed by the apple-tree-specific pathogen Valsa mali, the rapeseed pathogen Sclerotinia sclerotiorum, and the wheat pathogen Rhizoctonia cerealis, respectively. Delignification by peracetic acid (PAA) pretreatment increased PCW digestibility, and the increase was generally more profound with non-host than host PCW substrates. Hemicellulase pretreatment slightly reduced or had no effect on hemicellulose content in the PCW substrates tested; however, the pretreatment significantly changed hydrolytic preferences of the selected pathogens, indicating a role of hemicellulose branching in PCW digestibility. Cellulose organization appears to also impact digestibility of host PCWs, as reflected by differences in cellulose microfibril organization in woody and herbaceous PCWs and variation in cellulose-binding domain organization in cellulases of pathogenic fungi, which is known to influence enzyme access to cellulose. Taken together, this study highlighted the importance of chemical structure of both hemicelluloses and cellulose in host PCW digestibility by fungal pathogens.
Collapse
Affiliation(s)
- Yanhua Dou
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yan Yang
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China;
| | - Nitesh Kumar Mund
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yanping Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yisong Liu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Linfang Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yifan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Panpan Du
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yunheng Zhou
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lili Huang
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Hao Fang
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chen Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yahong Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (Y.W.); (S.C.); Tel.: +86-029-87091021 (S.C.)
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (Y.W.); (S.C.); Tel.: +86-029-87091021 (S.C.)
| |
Collapse
|
40
|
Abstract
Nowadays, the climate mitigation policies of EU promote the energy production based on renewable resources. Anaerobic digestion (AD) constitutes a biochemical process that can convert lignocellulosic materials into biogas, used for chemical products isolation or energy production, in the form of electricity, heat or fuels. Such practices are accompanied by several economic, environmental and climatic benefits. The method of AD is an effective method of utilization of several different low-value and negative-cost highly available materials of residual character, such as the lignocellulosic wastes coming from forest, agricultural or marine biomass utilization processes, in order to convert them into directly usable energy. Lignin depolymerization remains a great challenge for the establishment of a full scale process for AD of lignin waste. This review analyzes the method of anaerobic digestion (biomethanation), summarizes the technology and standards involved, the progress achieved so far on the depolymerization/pre-treatment methods of lignocellulosic bio-wastes and the respective residual byproducts coming from industrial processes, aiming to their conversion into energy and the current attempts concerning the utilization of the produced biogas. Substrates’ mechanical, physical, thermal, chemical, and biological pretreatments or a combination of those before biogas production enhance the hydrolysis stage efficiency and, therefore, biogas generation. AD systems are immensely expanding globally, especially in Europe, meeting the high demands of humans for clean energy.
Collapse
|
41
|
Bioconversion of Lignocellulosic Biomass into Value Added Products under Anaerobic Conditions: Insight into Proteomic Studies. Int J Mol Sci 2021; 22:ijms222212249. [PMID: 34830131 PMCID: PMC8624197 DOI: 10.3390/ijms222212249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 01/14/2023] Open
Abstract
Production of biofuels and other value-added products from lignocellulose breakdown requires the coordinated metabolic activity of varied microorganisms. The increasing global demand for biofuels encourages the development and optimization of production strategies. Optimization in turn requires a thorough understanding of the microbial mechanisms and metabolic pathways behind the formation of each product of interest. Hydrolysis of lignocellulosic biomass is a bottleneck in its industrial use and often affects yield efficiency. The accessibility of the biomass to the microorganisms is the key to the release of sugars that are then taken up as substrates and subsequently transformed into the desired products. While the effects of different metabolic intermediates in the overall production of biofuel and other relevant products have been studied, the role of proteins and their activity under anaerobic conditions has not been widely explored. Shifts in enzyme production may inform the state of the microorganisms involved; thus, acquiring insights into the protein production and enzyme activity could be an effective resource to optimize production strategies. The application of proteomic analysis is currently a promising strategy in this area. This review deals on the aspects of enzymes and proteomics of bioprocesses of biofuels production using lignocellulosic biomass as substrate.
Collapse
|
42
|
Jeong SY, Lee EJ, Ban SE, Lee JW. Structural characterization of the lignin-carbohydrate complex in biomass pretreated with Fenton oxidation and hydrothermal treatment and consequences on enzymatic hydrolysis efficiency. Carbohydr Polym 2021; 270:118375. [PMID: 34364619 DOI: 10.1016/j.carbpol.2021.118375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/05/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
In this study, lignin-carbohydrate complexes (LCCs) were isolated from biomass (raw and pretreated) to investigate the structural changes in biomass pretreated by Fenton oxidation and hydrothermal treatment, and their effect on enzymatic hydrolysis. The composition and structure of the LCCs fractions were investigated via carbohydrate analysis, XRD, FT-IR, and 2D HSQC NMR. The biomass degradation rate of yellow poplar and larch during Fenton oxidation and hydrothermal treatment was approximately 30%. Most of the hemicellulose was degraded during pretreatment, while xylan remained in the yellow poplar, and galactan, mannan, and xylan remained in the larch. The fractional yield of glucan-rich LCC (LCC1) in the yellow poplar (raw and pretreated biomass) was high, while that of glucomannan-rich LCC (LCC3) in larch was higher than the yield yellow poplar. Phenyl glycoside, γ-ester, and benzyl ether linkages were observed in the LCCs of yellow poplar, while phenyl glycoside and γ-ester were detected in those of larch. Following pretreatment, the frequencies of β-β', β-5, and γ-ester in the LCCs of larch were found to be higher than in those of yellow poplar. The efficiencies of enzymatic hydrolysis for the pretreated yellow poplar and larch were 93.53% and 26.23%, respectively. These finding indicated that the β-β', β-5, and γ-ester linkages included in the pretreated biomass affected the efficiency of enzymatic hydrolysis.
Collapse
Affiliation(s)
- So-Yeon Jeong
- Department of Wood Science and Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eun-Ju Lee
- Department of Wood Science and Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Se-Eun Ban
- Department of Wood Science and Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae-Won Lee
- Department of Wood Science and Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
43
|
Genomic Studies of White-Rot Fungus Cerrena unicolor SP02 Provide Insights into Food Safety Value-Added Utilization of Non-Food Lignocellulosic Biomass. J Fungi (Basel) 2021; 7:jof7100835. [PMID: 34682256 PMCID: PMC8541250 DOI: 10.3390/jof7100835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023] Open
Abstract
Cerrena unicolor is an ecologically and biotechnologically important wood-degrading basidiomycete with high lignocellulose degrading ability. Biological and genetic investigations are limited in the Cerrena genus and, thus, hinder genetic modification and commercial use. The aim of the present study was to provide a global understanding through genomic and experimental research about lignocellulosic biomass utilization by Cerrena unicolor. In this study, we reported the genome sequence of C. unicolor SP02 by using the Illumina and PacBio 20 platforms to obtain trustworthy assembly and annotation. This is the combinational 2nd and 3rd genome sequencing and assembly of C. unicolor species. The generated genome was 42.79 Mb in size with an N50 contig size of 2.48 Mb, a G + C content of 47.43%, and encoding of 12,277 predicted genes. The genes encoding various lignocellulolytic enzymes including laccase, lignin peroxidase, manganese peroxidase, cytochromes P450, cellulase, xylanase, α-amylase, and pectinase involved in the degradation of lignin, cellulose, xylan, starch, pectin, and chitin that showed the C. unicolor SP02 potentially have a wide range of applications in lignocellulosic biomass conversion. Genome-scale metabolic analysis opened up a valuable resource for a better understanding of carbohydrate-active enzymes (CAZymes) and oxidoreductases that provide insights into the genetic basis and molecular mechanisms for lignocellulosic degradation. The C. unicolor SP02 model can be used for the development of efficient microbial cell factories in lignocellulosic industries. The understanding of the genetic material of C. unicolor SP02 coding for the lignocellulolytic enzymes will significantly benefit us in genetic manipulation, site-directed mutagenesis, and industrial biotechnology.
Collapse
|
44
|
Liu L, Sim SF, Lin S, Wan J, Zhang W, Li Q, Peng C. Integrated structural and chemical analyses for HCl-supported hydrochar and their adsorption mechanisms for aqueous sulfachloropyridazine removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126009. [PMID: 34229376 DOI: 10.1016/j.jhazmat.2021.126009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/09/2021] [Accepted: 04/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, various HCl-supported hydrochar made from root powder of long-root Eichhornia crassipes were applied to adsorb aqueous sulfachloropyridazine (SCP). Adsorption capacity (qe μg g-1) was positively correlated with combined severity-CS. With CS increasing, carbonization degree, hydrophobicity, porosity and isoelectric point of hydrochar increased, but content of polar functional groups decreased. Hydrophobic interaction was important for SCP adsorption. A 24 × 36 peak area table was generated from 24 FT-IR absorbance spectra computed by peak detection algorithm. Afterwards, correlation analysis between qe μg g-1 and FT-IR peak area were conducted, indicating that wavenumbers at 555.4, 1227.47, 1374.51, 1604.5, 2901.4/2919.2 and 3514.63 cm-1 were helpful for SCP adsorption. Further, multivariate linear regression analyses showed that aromatic skeleton and phenolic hydroxyl were the two biggest contributors. Electrostatic attraction did not exist during the SCP adsorption process. Under strong acid condition, protonated amino groups in cationic SCP acting as a hydrogen donator interacted with electron-rich functional groups onto hydrochar by Hydrogen interaction. Under weak acid condition, neutral SCP served as an π electron donor to bond with hydrochar by π-π electron donator-acceptor interaction. This work could guide the functional groups modification strategy of hydrochar to make better use of it in water purification field.
Collapse
Affiliation(s)
- Lin Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siong Fong Sim
- University Malaysia Sarawak, Faculty of Resource Science and Technology, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Sen Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiang Wan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qiannan Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
45
|
Leroy A, Falourd X, Foucat L, Méchin V, Guillon F, Paës G. Evaluating polymer interplay after hot water pretreatment to investigate maize stem internode recalcitrance. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:164. [PMID: 34332625 PMCID: PMC8325808 DOI: 10.1186/s13068-021-02015-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/21/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Biomass recalcitrance is governed by various molecular and structural factors but the interplay between these multiscale factors remains unclear. In this study, hot water pretreatment (HWP) was applied to maize stem internodes to highlight the impact of the ultrastructure of the polymers and their interactions on the accessibility and recalcitrance of the lignocellulosic biomass. The impact of HWP was analysed at different scales, from the polymer ultrastructure or water mobility to the cell wall organisation by combining complementary compositional, spectral and NMR analyses. RESULTS HWP increased the kinetics and yield of saccharification. Chemical characterisation showed that HWP altered cell wall composition with a loss of hemicelluloses (up to 45% in the 40-min HWP) and of ferulic acid cross-linking associated with lignin enrichment. The lignin structure was also altered (up to 35% reduction in β-O-4 bonds), associated with slight depolymerisation/repolymerisation depending on the length of treatment. The increase in [Formula: see text], [Formula: see text] and specific surface area (SSA) showed that the cellulose environment was looser after pretreatment. These changes were linked to the increased accessibility of more constrained water to the cellulose in the 5-15 nm pore size range. CONCLUSION The loss of hemicelluloses and changes in polymer structural features caused by HWP led to reorganisation of the lignocellulose matrix. These modifications increased the SSA and redistributed the water thereby increasing the accessibility of cellulases and enhancing hydrolysis. Interestingly, lignin content did not have a negative impact on enzymatic hydrolysis but a higher lignin condensed state appeared to promote saccharification. The environment and organisation of lignin is thus more important than its concentration in explaining cellulose accessibility. Elucidating the interactions between polymers is the key to understanding LB recalcitrance and to identifying the best severity conditions to optimise HWP in sustainable biorefineries.
Collapse
Affiliation(s)
- Amandine Leroy
- INRAE, UR 1268 BIA, 44316, Nantes, France
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100, Reims, France
| | - Xavier Falourd
- INRAE, UR 1268 BIA, 44316, Nantes, France
- INRAE, BIBS Facility, 44316, Nantes, France
| | - Loïc Foucat
- INRAE, UR 1268 BIA, 44316, Nantes, France
- INRAE, BIBS Facility, 44316, Nantes, France
| | - Valérie Méchin
- INRAE, Institut Jean-Pierre Bourgin, 78026, Versailles, France
| | | | - Gabriel Paës
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100, Reims, France.
| |
Collapse
|
46
|
Chambon CL, Verdía P, Fennell PS, Hallett JP. Process intensification of the ionoSolv pretreatment: effects of biomass loading, particle size and scale-up from 10 mL to 1 L. Sci Rep 2021; 11:15383. [PMID: 34321510 PMCID: PMC8319198 DOI: 10.1038/s41598-021-94629-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022] Open
Abstract
The ionoSolv process is one of the most promising technologies for biomass pretreatment in a biorefinery context. In order to evaluate the transition of the ionoSolv pretreatment of biomass from bench-scale experiments to commercial scale, there is a need to get better insight in process intensification. In this work, the effects of biomass loading, particle size, pulp washing protocols and 100-fold scale up for the pretreatment of the grassy biomass Miscanthus giganteus with the IL triethylammonium hydrogen sulfate, [TEA][HSO4], are presented as a necessary step in that direction. At the bench scale, increasing biomass loading from 10 to 50 wt% reduced glucose yields from 68 to 23% due to re-precipitation of lignin onto the pulp surface. Omitting the pulp air-drying step maintained saccharification yields at 66% at 50 wt% loading due to reduced fiber hornification. 100-fold scale-up (from 10 mL to 1 L) improved the efficacy of ionoSolv pretreatment and increasing loadings from 10 to 20 wt% reduced lignin reprecipitation and led to higher glucose yields due to the improved heat and mass transfer caused by efficient slurry mixing in the reactor. Pretreatment of particle sizes of 1-3 mm was more effective than fine powders (0.18-0.85 mm) giving higher glucose yields due to reduced surface area available for lignin re-precipitation while reducing grinding energy needs. Stirred ionoSolv pretreatment showed great potential for industrialization and further process intensification after optimization of the pretreatment conditions (temperature, residence time, stirring speed), particle size and biomass loading. Pulp washing protocols need further improvement to reduce the incidence of lignin precipitation and the water requirements of lignin washing.
Collapse
Affiliation(s)
- Clementine L Chambon
- Department of Chemical Engineering, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Pedro Verdía
- Department of Chemical Engineering, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Paul S Fennell
- Department of Chemical Engineering, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Jason P Hallett
- Department of Chemical Engineering, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
47
|
Olatunji KO, Ahmed NA, Ogunkunle O. Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:159. [PMID: 34281615 PMCID: PMC8287798 DOI: 10.1186/s13068-021-02012-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/09/2021] [Indexed: 05/10/2023]
Abstract
Population increase and industrialization has resulted in high energy demand and consumptions, and presently, fossil fuels are the major source of staple energy, supplying 80% of the entire consumption. This has contributed immensely to the greenhouse gas emission and leading to global warming, and as a result of this, there is a tremendous urgency to investigate and improve fresh and renewable energy sources worldwide. One of such renewable energy sources is biogas that is generated by anaerobic fermentation that uses different wastes such as agricultural residues, animal manure, and other organic wastes. During anaerobic digestion, hydrolysis of substrates is regarded as the most crucial stage in the process of biogas generation. However, this process is not always efficient because of the domineering stableness of substrates to enzymatic or bacteria assaults, but substrates' pretreatment before biogas production will enhance biogas production. The principal objective of pretreatments is to ease the accessibility of the enzymes to the lignin, cellulose, and hemicellulose which leads to degradation of the substrates. Hence, the use of pretreatment for catalysis of lignocellulose substrates is beneficial for the production of cost-efficient and eco-friendly process. In this review, we discussed different pretreatment technologies of hydrolysis and their restrictions. The review has shown that different pretreatments have varying effects on lignin, cellulose, and hemicellulose degradation and biogas yield of different substrate and the choice of pretreatment technique will devolve on the intending final products of the process.
Collapse
Affiliation(s)
- Kehinde Oladoke Olatunji
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa.
| | - Noor A Ahmed
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - Oyetola Ogunkunle
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
48
|
Chen X, Chen L, Gan X, Pan S, Pan H. Extension of lubricant drain interval by modified pure biomass oil filter. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaohui Chen
- National Engineering Research Center of Chemical Fertilizer Catalyst, School of Chemical Engineering Fuzhou University Fuzhou China
- School of Chemical Engineering Fuzhou University Fuzhou China
| | - Lu Chen
- National Engineering Research Center of Chemical Fertilizer Catalyst, School of Chemical Engineering Fuzhou University Fuzhou China
- School of Chemical Engineering Fuzhou University Fuzhou China
| | - Xianqian Gan
- National Engineering Research Center of Chemical Fertilizer Catalyst, School of Chemical Engineering Fuzhou University Fuzhou China
- School of Chemical Engineering Fuzhou University Fuzhou China
| | - Shouquan Pan
- Technology R&D Department Fuzhou Savon Environmental Technology Co. Ltd Fuzhou China
| | - Hongkun Pan
- Technology R&D Department Fuzhou Savon Environmental Technology Co. Ltd Fuzhou China
| |
Collapse
|
49
|
Thangaraj B, Solomon PR, Chuangchote S, Wongyao N, Surareungchai W. Biomass‐derived Carbon Quantum Dots – A Review. Part 1: Preparation and Characterization. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baskar Thangaraj
- King Mongkut's University of Technology Thonburi Pilot Plant Development and Training Institute Bangkhuntien-chaitalay Road 10150 Tha Kham, Bangkok Thailand
| | - Pravin Raj Solomon
- SASTRA-Deemed University School of Chemical and Biotechnology 613 402 Thanjavur Tamil Nadu India
| | - Surawut Chuangchote
- King Mongkut's University of Technology Thonburi Research Center of Advanced Materials for Energy and Environmental Technology 126 Prachauthit Road 10140 Bangmod, Bangkok Thailand
- King Mongkut's University of Technology Thonburi Department of Tool and Materials Engineering Faculty of Engineering 126 Prachauthit Road 10140 Bangmod, Thungkru, Bangkok Thailand
| | - Nutthapon Wongyao
- King Mongkut's University of Technology Thonburi Fuel Cells and Hydrogen Research and Engineering Center Pilot Plant Development and Training Institute 10140 Bangkok Thailand
| | - Werasak Surareungchai
- King Mongkut's University of Technology Thonburi School of Bioresources and Technology Nanoscience & Nanotechnology Graduate Programme Faculty of Science Bangkhuntien-chaitalay Road 10150 Tha Kham, Bangkok Thailand
| |
Collapse
|
50
|
Zhang C, Ma CY, Xu LH, Wu YY, Wen JL. The effects of mild Lewis acids-catalyzed ethanol pretreatment on the structural variations of lignin and cellulose conversion in balsa wood. Int J Biol Macromol 2021; 183:1362-1370. [PMID: 34000315 DOI: 10.1016/j.ijbiomac.2021.05.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
Ethanol organosolv pretreatment is a green and effective deconstruction process for main components in lignocellulose biomass. Herein, balsa wood was firstly subjected to a modified ethanol/water solution (EWS) pretreatment with different Lewis acids catalysts (AlCl3, CuCl2, FeCl3) at 140-180 °C. The delignification ratios and structural characteristics of the dissociated lignin, enzymatic hydrolysis of cellulose in the pretreated substrates as well as the degradation products from hemicellulose during the pretreatment process were comprehensively investigated. Results showed that dissociation and depolymerization of lignin fragments was robust in AlCl3-catalyzed pretreatment than those by CuCl2 and FeCl3-catalyzed pretreatment. In detail, the results showed that the optimal delignification ratio and removal of the hemicelluloses occurred in AlCl3-catalyzed pretreatment. Moreover, the structural characterizations of lignin fractions by 2D-HSQC, 31P NMR and GPC also revealed that the obtained lignin has the advantages of small and homogeneous molecules as well as abundant functional groups. As a result of adequate removal of hemicellulose and lignin, the enzymatic digestibility of cellulose in the pretreated residue was significantly elevated. In short, the above findings are also in line with the concept of maximizing the utilization of bioresources, which will be beneficial for value-added applications of balsa wood in the biorefinery.
Collapse
Affiliation(s)
- Chen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Ling-Hua Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Yu-Ying Wu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|