1
|
Yuan F, Zhang S, Wang Y, Gao X, Zhao Y, Ning L, Wang Y, Guo Y, Zhang J. Activatable Near-Infrared Fluorescence Probe for Hypochlorous Acid Detection in Early Diagnosis of Keloids. Anal Chem 2024; 96:16964-16970. [PMID: 39376149 DOI: 10.1021/acs.analchem.4c04201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Keloids represent pathologic conditions characterized by the presence of hyalinized collagen bundles and chronic inflammatory reactions. Recently, increased ROS production and disrupted apoptosis mechanisms in keloids have been reported, although the detailed mechanisms remain unclear. Herein, we developed a specific fluorescence probe, Pro-NBS, to investigate ClO- levels in keloids. The probe demonstrated high specificity for ClO- over other ROS and exhibited a strong linear detection relationship. Based on its performance, we focused on the TGF-β pathway in the development of keloids. ROS upregulation was observed in keloid-derived fibroblasts. Using ClO- as an intrinsic overexpression marker, our probe effectively distinguished between normal fibroblasts and keloid-derived fibroblasts both in vitro and in vivo. Furthermore, Pro-NBS showed potential for monitoring the progression and evaluating the systematic therapy of abnormal scarring or keloids.
Collapse
Affiliation(s)
- Fang Yuan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Suya Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Xuan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Yihan Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Lulu Ning
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, P. R. China
| | - Yuan Guo
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing of the Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, P. R. China
| | - Jianjian Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
2
|
Das M, Mondal S, Ghosh R, Darbar S, Roy L, Das AK, Pal D, Bhattacharya SS, Mallick AK, Kundu JK, Pal SK. A study of scarless wound healing through programmed inflammation, proliferation and maturation using a redox balancing nanogel. J Biomed Mater Res A 2024; 112:1594-1611. [PMID: 38545912 DOI: 10.1002/jbm.a.37712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 07/12/2024]
Abstract
In the study, we have shown the efficacy of an indigenously developed redox balancing chitosan gel with impregnated citrate capped Mn3O4 nanoparticles (nanogel). Application of the nanogel on a wound of preclinical mice model shows role of various signaling molecules and growth factors, and involvement of reactive oxygen species (ROS) at every stage, namely hemostasis, inflammation, and proliferation leading to complete maturation for the scarless wound healing. While in vitro characterization of nanogel using SEM, EDAX, and optical spectroscopy reveals pH regulated redox buffering capacity, in vivo preclinical studies on Swiss albino involving IL-12, IFN-γ, and α-SMA signaling molecules and detailed histopathological investigation and angiogenesis on every stage elucidate role of redox buffering for the complete wound healing process.
Collapse
Affiliation(s)
- Monojit Das
- Department of Zoology, Vidyasagar University, Midnapore, India
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
| | - Susmita Mondal
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Ria Ghosh
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Soumendra Darbar
- Research and Development Division, Dey's Medical Stores (Mfg.) Ltd, Kolkata, India
| | - Lopamudra Roy
- Department of Applied Optics and Photonics, University of Calcutta, Kolkata, West Bengal, India
| | - Anjan Kumar Das
- Department of Pathology, Coochbehar Government Medical College and Hospital, India
| | - Debasish Pal
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
| | | | - Asim Kumar Mallick
- Department of Pediatrics, Nil RatanSircar Medical College and Hospital, Kolkata, India
| | | | - Samir Kumar Pal
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
3
|
Baky NAA, Fouad LM, Ahmed KA, Alzokaky AA. Mechanistic insight into the hepatoprotective effect of Moringa oleifera Lam leaf extract and telmisartan against carbon tetrachloride-induced liver fibrosis: plausible roles of TGF-β1/SMAD3/SMAD7 and HDAC2/NF-κB/PPARγ pathways. Drug Chem Toxicol 2024:1-14. [PMID: 38835191 DOI: 10.1080/01480545.2024.2358066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
The increasing prevalence and limited therapeutic options for liver fibrosis necessitates more medical attention. Our study aims to investigate the potential molecular targets by which Moringa oleifera Lam leaf extract (Mor) and/or telmisartan (Telm) alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Liver fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 50% CCl4 (1 ml/kg) every 72 hours, for 8 weeks. Intoxicated rats with CCl4 were simultaneously orally administrated Mor (400 mg/kg/day for 8 weeks) and/or Telm (10 mg/kg/day for 8 weeks). Treatment of CCl4-intoxicated rats with Mor/Telm significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities compared to CCl4 intoxicated group (P < 0.001). Additionally, Mor/Telm treatment significantly reduced the level of hepatic inflammatory, profibrotic, and apoptotic markers including; nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), transforming growth factor-βeta1 (TGF-β1), and caspase-3. Interestingly, co-treatment of CCl4-intoxicated rats with Mor/Telm downregulated m-RNA expression of histone deacetylase 2 (HDAC2) (71.8%), and reduced protein expression of mothers against decapentaplegic homolog 3 (p-SMAD3) (70.6%) compared to untreated animals. Mor/Telm regimen also elevated p-SMAD7 protein expression as well as m-RNA expression of peroxisome proliferator-activated receptor γ (PPARγ) (3.6 and 3.1 fold, respectively p < 0.05) compared to CCl4 intoxicated group. Histopathological picture of the liver tissue intoxicated with CCl4 revealed marked improvement by Mor/Telm co-treatment. Conclusively, this study substantiated the hepatoprotective effect of Mor/Telm regimen against CCl4-induced liver fibrosis through suppression of TGF-β1/SMAD3, and HDAC2/NF-κB signaling pathways and up-regulation of SMAD7 and PPARγ expression.
Collapse
Affiliation(s)
- Nayira A Abdel Baky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Lamiaa M Fouad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amany A Alzokaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
4
|
Liu WJ, Qiao YH, Wang S, Wang YB, Nong QN, Xiao Q, Bai HX, Wu KH, Chen J, Li XQ, Wang YF, Tan J, Cao W. A novel glycoglycerolipid from Holotrichia diomphalia Bates: Structure characteristics and protective effect against DNA damage. Int J Biol Macromol 2024; 271:132594. [PMID: 38821811 DOI: 10.1016/j.ijbiomac.2024.132594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
A lipidated polysaccharide, HDPS-2II, was isolated from the dried larva of Holotrichia diomphalia, which is used in traditional Chinese medicine. The molecular weight of HDPS-2II was 5.9 kDa, which contained a polysaccharide backbone of →4)-β-Manp-(1 → 4,6)-β-Manp-(1 → [6)-α-Glcp-(1]n → 6)-α-Glcp→ with the side chain α-Glcp-(6 → 1)-α-Glcp-(6 → linked to the C-4 of β-1,4,6-Manp and four types of lipid chains including 4-(4-methyl-2-(methylamino)pentanamido)pentanoic acid, 5-(3-(tert-butyl)phenoxy)hexan-2-ol, N-(3-methyl-5-oxopentan-2-yl)palmitamide, and N-(5-amino-3-methyl-5-oxopentan-2-yl)stearamide. The lipid chains were linked to C-1 of terminal α-1,6-Glcp in carbohydrate chain through diacyl-glycerol. HDPS-2II exhibited DNA protective effects and antioxidative activity on H2O2- or adriamycin (ADM)-induced Chinese hamster lung cells. Furthermore, HDPS-2II significantly ameliorated chromosome aberrations and the accumulation of reactive oxygen species (ROS), reduced γ-H2AX signaling and the expressions of NADPH oxidase (NOX)2, NOX4, P22phox, and P47phox in ADM-induced cardiomyocytes. Mechanistically, HDPS-2II suppressed ADM-induced up-regulation of NOX2 and NOX4 in cardiomyocytes, but not in NOX2 or NOX4 knocked-down cardiomyocytes, indicating that HDPS-2II could relieve intracellular DNA damage by regulating NOX2/NOX4 signaling. These findings demonstrate that HDPS-2II is a new potential DNA protective agent.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yu-He Qiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Shuyao Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Yu-Bo Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Qiu-Na Nong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Qianhan Xiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Hong-Xin Bai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Ke-Han Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jie Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Xiao-Qiang Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Fan Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jin Tan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
5
|
Cai H, Meng Z, Yu F. The involvement of ROS-regulated programmed cell death in hepatocellular carcinoma. Crit Rev Oncol Hematol 2024; 197:104361. [PMID: 38626849 DOI: 10.1016/j.critrevonc.2024.104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Reactive oxidative species (ROS) is a crucial factor in the regulation of cellular biological activity and function, and aberrant levels of ROS can contribute to the development of a variety of diseases, particularly cancer. Numerous discoveries have affirmed that this process is strongly associated with "programmed cell death (PCD)," which refers to the suicide protection mechanism initiated by cells in response to external stimuli, such as apoptosis, autophagy, ferroptosis, etc. Research has demonstrated that ROS-induced PCD is crucial for the development of hepatocellular carcinoma (HCC). These activities serve a dual function in both facilitating and inhibiting cancer, suggesting the existence of a delicate balance within healthy cells that can be disrupted by the abnormal generation of reactive oxygen species (ROS), thereby influencing the eventual advancement or regression of a tumor. In this review, we summarize how ROS regulates PCD to influence the tumorigenesis and progression of HCC. Studying how ROS-induced PCD affects the progression of HCC at a molecular level can help develop better prevention and treatment methods and facilitate the design of more effective preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Hanchen Cai
- The First Afliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ziqi Meng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
6
|
Altunbek M, Gezek M, Gouveia MET, Camci-Unal G. Development of a Sprayable Hydrogel-Based Wound Dressing: An In Vitro Model. Gels 2024; 10:176. [PMID: 38534594 DOI: 10.3390/gels10030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrogel-based dressings can effectively heal wounds by providing multiple functions, such as antibacterial, anti-inflammatory, and preangiogenic bioactivities. The ability to spray the dressing is important for the rapid and effective coverage of the wound surface. In this study, we developed a sprayable hydrogel-based wound dressing using naturally derived materials: hyaluronic acid and gelatin. We introduced methacrylate groups (HAMA and GelMA) to these materials to enable controllable photocrosslinking and form a stable hydrogel on the wound surface. To achieve sprayability, we evaluated the concentration of GelMA within a range of 5-15% (w/v) and then incorporated 1% (w/v) HAMA. Additionally, we incorporated calcium peroxide into the hydrogel at concentrations ranging from 0 to 12 mg/mL to provide self-oxygenation and antibacterial properties. The results showed that the composite hydrogels were sprayable and could provide oxygen for up to two weeks. The released oxygen relieved metabolic stress in fibroblasts and reduced cell death under hypoxia in in vitro culture. Furthermore, calcium peroxide added antibacterial properties to the wound dressing. In conclusion, the developed sprayable hydrogel dressing has the potential to be advantageous for wound healing due to its practical and conformable application, as well as its self-oxygenating and antibacterial functions.
Collapse
Affiliation(s)
- Mine Altunbek
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Maria Eduarda Torres Gouveia
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| |
Collapse
|
7
|
Shu J, Zhang L, Liu G, Wang X, Liu F, Zhang Y, Chen Y. Transcriptome Analysis and Metabolic Profiling Reveal the Key Regulatory Pathways in Drought Stress Responses and Recovery in Tomatoes. Int J Mol Sci 2024; 25:2187. [PMID: 38396864 PMCID: PMC10889177 DOI: 10.3390/ijms25042187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024] Open
Abstract
Drought stress is a major abiotic factor affecting tomato production and fruit quality. However, the genes and metabolites associated with tomato responses to water deficiency and rehydration are poorly characterized. To identify the functional genes and key metabolic pathways underlying tomato responses to drought stress and recovery, drought-susceptible and drought-tolerant inbred lines underwent transcriptomic and metabolomic analyses. A total of 332 drought-responsive and 491 rehydration-responsive core genes were robustly differentially expressed in both genotypes. The drought-responsive and rehydration-responsive genes were mainly related to photosynthesis-antenna proteins, nitrogen metabolism, plant-pathogen interactions, and the MAPK signaling pathway. Various transcription factors, including homeobox-leucine zipper protein ATHB-12, NAC transcription factor 29, and heat stress transcription factor A-6b-like, may be vital for tomato responses to water status. Moreover, 24,30-dihydroxy-12(13)-enolupinol, caffeoyl hawthorn acid, adenosine 5'-monophosphate, and guanosine were the key metabolites identified in both genotypes under drought and recovery conditions. The combined transcriptomic and metabolomic analysis highlighted the importance of 38 genes involved in metabolic pathways, the biosynthesis of secondary metabolites, the biosynthesis of amino acids, and ABC transporters for tomato responses to water stress. Our results provide valuable clues regarding the molecular basis of drought tolerance and rehydration. The data presented herein may be relevant for genetically improving tomatoes to enhance drought tolerance.
Collapse
Affiliation(s)
- Jinshuai Shu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| | - Lili Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.Z.); (G.L.)
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.Z.); (G.L.)
| | - Xiaoxuan Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| | - Fuzhong Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| | - Ying Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| | - Yuhui Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| |
Collapse
|
8
|
Parola M, Pinzani M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies. Mol Aspects Med 2024; 95:101231. [PMID: 38056058 DOI: 10.1016/j.mam.2023.101231] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Liver fibrosis, as an excess deposition of extracellular matrix (ECM) components, results from chronic liver injury as well as persistent activation of inflammatory response and of fibrogenesis. Liver fibrosis is a major determinant for chronic liver disease (CLD) progression and in the last two decades our understanding on the major molecular and cellular mechanisms underlying the fibrogenic progression of CLD has dramatically improved, boosting pre-clinical studies and clinical trials designed to find novel therapeutic approaches. From these studies several critical concepts have emerged, starting to reveal the complexity of the pro-fibrotic microenvironment which involves very complex, dynamic and interrelated interactions between different hepatic and extrahepatic cell populations. This review will offer first a recapitulation of established and novel pathophysiological basic principles and concepts by intentionally focus the attention on NAFLD/NASH, a metabolic-related form of CLD with a high impact on the general population and emerging as a leading cause of CLD worldwide. NAFLD/NASH-related pro-inflammatory and profibrogenic mechanisms will be analysed as well as novel information on cells, mediators and signalling pathways which have taken advantage from novel methodological approaches and techniques (single cell genomics, imaging mass cytometry, novel in vitro two- and three-dimensional models, etc.). We will next offer an overview on recent advancement in diagnostic and prognostic tools, including serum biomarkers and polygenic scores, to support the analysis of liver biopsies. Finally, this review will provide an analysis of current and emerging therapies for the treatment of NAFLD/NASH patients.
Collapse
Affiliation(s)
- Maurizio Parola
- Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine - Royal Free Hospital, London, NW32PF, United Kingdom.
| |
Collapse
|
9
|
Zhao N, Zhu M, Liu Q, Shen Y, Duan S, Zhu L, Yang J. AoPrdx2 Regulates Oxidative Stress, Reactive Oxygen Species, Trap Formation, and Secondary Metabolism in Arthrobotrys oligospora. J Fungi (Basel) 2024; 10:110. [PMID: 38392782 PMCID: PMC10890406 DOI: 10.3390/jof10020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Prdx2 is a peroxiredoxin (Prx) family protein that protects cells from attack via reactive oxygen species (ROS), and it has an important role in improving the resistance and scavenging capacity of ROS in fungi. Arthrobotrys oligospora is a widespread nematode-trapping fungus that can produce three-dimensional nets to capture and kill nematodes. In this study, AoPrdx2, a homologous protein of Prx5, was investigated in A. oligospora via gene disruption, phenotypic analysis, and metabolomics. The deletion of Aoprdx2 resulted in an increase in the number of mycelial septa and a reduction in the number of nuclei and spore yield. Meanwhile, the absence of Aoprdx2 increased sensitivity to oxidative stresses, whereas the ∆Aoprdx2 mutant strain resulted in higher ROS levels than that of the wild-type (WT) strain. In particular, the inactivation of Aoprdx2 severely influenced trap formation and pathogenicity; the number of traps produced by the ∆Aoprdx2 mutant strain was remarkably reduced and the number of mycelial rings of traps in the ∆Aoprdx2 mutant strain was less than that of the WT strain. In addition, the abundance of metabolites in the ∆Aoprdx2 mutant strain was significantly downregulated compared with the WT strain. These results indicate that AoPrdx2 plays an indispensable role in the scavenging of ROS, trap morphogenesis, and secondary metabolism.
Collapse
Affiliation(s)
- Na Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yanmei Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Lirong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
10
|
Yang F, Hilakivi-Clarke L, Shaha A, Wang Y, Wang X, Deng Y, Lai J, Kang N. Metabolic reprogramming and its clinical implication for liver cancer. Hepatology 2023; 78:1602-1624. [PMID: 36626639 PMCID: PMC10315435 DOI: 10.1097/hep.0000000000000005] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Cancer cells often encounter hypoxic and hypo-nutrient conditions, which force them to make adaptive changes to meet their high demands for energy and various biomaterials for biomass synthesis. As a result, enhanced catabolism (breakdown of macromolecules for energy production) and anabolism (macromolecule synthesis from bio-precursors) are induced in cancer. This phenomenon is called "metabolic reprogramming," a cancer hallmark contributing to cancer development, metastasis, and drug resistance. HCC and cholangiocarcinoma (CCA) are 2 different liver cancers with high intertumoral heterogeneity in terms of etiologies, mutational landscapes, transcriptomes, and histological representations. In agreement, metabolism in HCC or CCA is remarkably heterogeneous, although changes in the glycolytic pathways and an increase in the generation of lactate (the Warburg effect) have been frequently detected in those tumors. For example, HCC tumors with activated β-catenin are addicted to fatty acid catabolism, whereas HCC tumors derived from fatty liver avoid using fatty acids. In this review, we describe common metabolic alterations in HCC and CCA as well as metabolic features unique for their subsets. We discuss metabolism of NAFLD as well, because NAFLD will likely become a leading etiology of liver cancer in the coming years due to the obesity epidemic in the Western world. Furthermore, we outline the clinical implication of liver cancer metabolism and highlight the computation and systems biology approaches, such as genome-wide metabolic models, as a valuable tool allowing us to identify therapeutic targets and develop personalized treatments for liver cancer patients.
Collapse
Affiliation(s)
- Flora Yang
- BA/MD Joint Admission Scholars Program, University of Minnesota, Minneapolis, Minnesota
| | - Leena Hilakivi-Clarke
- Food Science and Nutrition Section, The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Aurpita Shaha
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yibin Deng
- Department of Urology, Masonic Cancer Center, The University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, California
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, the Hormel Institute, University of Minnesota, Austin, Minnesota
| |
Collapse
|
11
|
Shalaby N, Samocha-Bonet D, Kaakoush NO, Danta M. The Role of the Gastrointestinal Microbiome in Liver Disease. Pathogens 2023; 12:1087. [PMID: 37764895 PMCID: PMC10536540 DOI: 10.3390/pathogens12091087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Liver disease is a major global health problem leading to approximately two million deaths a year. This is the consequence of a number of aetiologies, including alcohol-related, metabolic-related, viral infection, cholestatic and immune disease, leading to fibrosis and, eventually, cirrhosis. No specific registered antifibrotic therapies exist to reverse liver injury, so current treatment aims at managing the underlying factors to mitigate the development of liver disease. There are bidirectional feedback loops between the liver and the rest of the gastrointestinal tract via the portal venous and biliary systems, which are mediated by microbial metabolites, specifically short-chain fatty acids (SCFAs) and secondary bile acids. The interaction between the liver and the gastrointestinal microbiome has the potential to provide a novel therapeutic modality to mitigate the progression of liver disease and its complications. This review will outline our understanding of hepatic fibrosis, liver disease, and its connection to the microbiome, which may identify potential therapeutic targets or strategies to mitigate liver disease.
Collapse
Affiliation(s)
- Nicholas Shalaby
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, St Vincent’s Healthcare Campus, Darlinghurst, NSW 2010, Australia
| | - Dorit Samocha-Bonet
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, St Vincent’s Healthcare Campus, Darlinghurst, NSW 2010, Australia
- Clinical Insulin Resistance Group, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Nadeem O. Kaakoush
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2033, Australia
| | - Mark Danta
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, St Vincent’s Healthcare Campus, Darlinghurst, NSW 2010, Australia
- Department of Gastroenterology and Hepatology, St Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
12
|
Aja PM, Ogwoni HA, Agu PC, Ekpono EU, Awoke JN, Ukachi OU, Orji OU, Ale BA, Nweke CP, Igwenyi IO, Alum EU, Chukwu DC, Offor CE, Asuk AA, Eze ED, Yakubu OE, Akobi JB, Ani OG, Awuchi CG. Cucumeropsis mannii seed oil protects against Bisphenol A-induced testicular mitochondrial damages. Food Sci Nutr 2023; 11:2631-2641. [PMID: 37324897 PMCID: PMC10261808 DOI: 10.1002/fsn3.3260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 09/20/2024] Open
Abstract
There has been increasing search for the ameliorative properties of seed oils against toxicants. bisphenol A acts as an estrogenic endocrine-disrupting chemical capable of causing male infertility. This study aimed to explore Cucumeropsis mannii seed oil effects against mitochondrial damage in rats using bisphenol A. Forty-eight rats were randomly assigned to six groups (n = 6) of eight rats each and fed the same food and water for 6 weeks. The group A rats were given 1 mL olive oil, while the ones in group B were given bisphenol A at 100 mL/kg body weight via oral route. Group C received C. mannii seed oil 7.5 mL/kg body weight C. mannii seed oil, while group D, group E, and group F were pre-administered bisphenol A at 100 mL/kg body weight, followed by treatment with C. mannii seed oil at 7.5, 5, and 2.5 mL/kg body weight, respectively. Antioxidant enzymes, glutathione, reactive oxygen species, testicular volume, malondialdehyde, body weight, and testicular studies were done using standard methods. The results of the bisphenol A-administered group showed a significant decrease in the antioxidant enzymes, glutathione, body weight, and testicular volume with elevation in the levels of reactive oxygen species, malondialdehyde, and testicular indices. BPA + CMSO-treated group showed a significant increase in GPx activity compared with BPA-exposed rats. CMSO treatment significantly increased catalase activity in comparison with that of rats exposed to BPA. Remarkably, C. mannii seed oil and bisphenol A co-administration significantly reversed the abnormalities observed in the dysregulated biochemical biomarkers. Our findings suggest that C. mannii seed oil has considerable antioxidant potential which can be explored in therapeutic development against systemic toxicity induced by exposure to bisphenol A. Cucumeropsis mannii seed oil protects against bisphenol A-induced testicular mitochondria damages.
Collapse
Affiliation(s)
- Patrick Maduabuchi Aja
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
- Department of BiochemistryKampala International UniversityBushenyiUganda
- Department of BiochemistryMbarara University of Science and TechnologyMbararaUganda
| | | | | | | | | | | | - Obasi Uche Orji
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | | | | | | | - Esther Ugo Alum
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | | | | | - Atamgba Agbor Asuk
- Department of Medical BiochemistryCross River University of Technology (CRUTECH)CalabarNigeria
| | | | | | - J. B. Akobi
- Department of Medical BiochemistryCross River University of Technology (CRUTECH)CalabarNigeria
| | | | - Chinaza Godswill Awuchi
- Department of BiochemistryKampala International UniversityBushenyiUganda
- School of Natural and Applied SciencesKampala International UniversityKampalaUganda
| |
Collapse
|
13
|
Melaibari M, Alkreathy HM, Esmat A, Rajeh NA, Shaik RA, Alghamdi AA, Ahmad A. Anti-Fibrotic Efficacy of Apigenin in a Mice Model of Carbon Tetrachloride-Induced Hepatic Fibrosis by Modulation of Oxidative Stress, Inflammation, and Fibrogenesis: A Preclinical Study. Biomedicines 2023; 11:biomedicines11051342. [PMID: 37239014 DOI: 10.3390/biomedicines11051342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Hepatic fibrosis is a major health problem all over the world, and there is no effective treatment to cure it. Hence, the current study sought to assess the anti-fibrotic efficacy of apigenin against CCl4-induced hepatic fibrosis in mice. METHODS Forty-eight mice were put into six groups. G1: Normal Control, G2: CCl4 Control, G3: Silymarin (100 mg/kg), G4 and G5: Apigenin (2 &20 mg/Kg), G6: Apigenin alone (20 mg/Kg). Groups 2, 3, 4, and 5 were given CCl4 (0.5 mL/kg. i.p.) twice/week for six weeks. The level of AST, ALT, TC, TG, and TB in serum and IL-1β, IL-6, and TNF-α in tissue homogenates were assessed. Histological studies by H&E staining and Immunostaining of liver tissues were also performed. RESULTS The CCl4-challenged group showed increased serum AST (4-fold), ALT (6-fold), and TB (5-fold). Both silymarin and apigenin treatments significantly improved these hepatic biomarkers. The CCl4-challenged group showed reduced levels of CAT (89%), GSH (53%), and increased MDA (3-fold). Both silymarin and apigenin treatments significantly altered these oxidative markers in tissue homogenates. The CCl4-treated group showed a two-fold increase in IL-1β, IL-6, and TNF-α levels. Silymarin and apigenin treatment considerably decreased the IL-1β, IL-6, and TNF-α levels. Apigenin treatment inhibited angiogenic activity, as evidenced by a decrease in VEGF (vascular endothelial growth factor) expression in liver tissues, and a decline in vascular endothelial cell antigen expression (CD34). CONCLUSIONS Finally, these data collectively imply that apigenin may have antifibrotic properties, which may be explained by its anti-inflammatory, antioxidant, and antiangiogenic activities.
Collapse
Affiliation(s)
- Maryam Melaibari
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Huda M Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Nisreen A Rajeh
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anwar A Alghamdi
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacovigilance and Medication Safety Unit, Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aftab Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacovigilance and Medication Safety Unit, Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Ozaki K, Ohtani T, Ishida S, Higuchi S, Ishida T, Takahashi K, Matta Y, KImura H, Gabata T. Extracellular volume fraction obtained by dual-energy CT depicting the etiological differences of liver fibrosis. Abdom Radiol (NY) 2023; 48:1975-1986. [PMID: 36939910 DOI: 10.1007/s00261-023-03873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/21/2023]
Abstract
PURPOSE To assess etiological differences in extracellular volume fraction (ECV) and evaluate its influence on staging performance. METHODS A total of 166 patients with normal liver (n = 14) and chronic liver disease related to viral hepatitis (n = 71), alcohol (n = 44), and nonalcoholic steatohepatitis (NASH) (n = 37) underwent dual-energy CT (DECT) of the liver (5-min equilibrium-phase images) between January 2020 and July 2022. The iodine densities of the parenchyma and aorta were measured and ECV was calculated. Comparisons of ECV between each etiology and METAVIR fibrosis stage were statistically analyzed (p < 0.05). RESULTS ECV in each etiology and all patients significantly increased with higher fibrosis stage (p < 0.001) and showed a strong or moderate correlation with fibrosis stage (Spearman's ρ; all patients, 0.701; viral hepatitis, 0.638; alcoholic, 0.885; NASH, 0.791). In stages F2-F4, ECV in alcoholic liver disease was significantly larger than those for viral hepatitis and NASH (p < 0.05); however, no significant difference in stage F1 was found among the three etiologies. The cutoff values and areas under the receiver operating characteristic curve (AUC-ROCs) for discriminating fibrosis stage (≥ F1- ≥ F4) were higher for alcohol (cutoff values and AUC-ROC; 20.1% and 0.708 for ≥ F1, 23.8% and 0.990 for ≥ F2, 24.3% and 0.968 for ≥ F3, and 26.6% and 0.961 for ≥ F4, respectively) compared with those for the others. CONCLUSION ECV in alcoholic liver disease is higher than that in other etiologies in the advanced stages of fibrosis, and etiological differences in ECV affect the staging performance of fibrosis.
Collapse
Affiliation(s)
- Kumi Ozaki
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan. .,Department of Radiology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan.
| | - Takashi Ohtani
- Radiological Center, University of Fukui Hospital, Eiheiji, Japan
| | - Shota Ishida
- Radiological Center, University of Fukui Hospital, Eiheiji, Japan.,Department of Radiological Technology, Faculty of Medical Science, Kyoto College of Medical Science, Kyoto, Japan
| | - Shohei Higuchi
- Department of Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Tomokazu Ishida
- Radiological Center, University of Fukui Hospital, Eiheiji, Japan
| | - Kouki Takahashi
- Radiological Center, University of Fukui Hospital, Eiheiji, Japan
| | - Yuki Matta
- Radiological Center, University of Fukui Hospital, Eiheiji, Japan
| | - Hirohiko KImura
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Toshifumi Gabata
- Department of Radiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
15
|
Alshehri FS, Alorfi NM. Protective role of resveratrol against VCM-induced hepatotoxicity in male wistar rats. Front Pharmacol 2023; 14:1130670. [PMID: 36825158 PMCID: PMC9941161 DOI: 10.3389/fphar.2023.1130670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Background: Vancomycin is a glycopeptide antibiotic with a high risk of acute liver injury. Resveratrol is believed to protect the liver against toxicity. Aim: To investigate the ability of resveratrol to attenuate vancomycin-induced liver toxicity in rats injected with vancomycin. Method: Twenty-four adult male Wistar rats were distributed into three groups. The control group received only a vehicle, while the treated group received either vancomycin 200 (mg/kg, i. p.) only or vancomycin (200 mg/kg, i. p.) with resveratrol (20 mg/kg, oral gavage). All groups received their dose once daily for 7 days. Hepatic damage was assessed by measuring biochemical parameter levels in serum, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH). Also, antioxidants and inflammation biomarkers such as Interleukin-6 (IL-6), malondialdehyde (MDA), nitric oxide (NO), and glutathione (GSH) were measured. Furthermore, the vancomycin-induced pathological changes in the liver were evaluated by histopathological studies. Results: In the vancomycin-treated group, hepatic serum biomarkers such as AST, ALT, ALP, IL-6, and MDA were elevated, while NO and GSH were depleted. However, resveratrol co-treatment with vancomycin prevented the elevation of AST, ALT, ALP, IL-6, and MDA and it protected the liver from NO and GSH depletion. Also, regarding vancomycin-induced degeneration of hepatocytes, resveratrol co-treatment with vancomycin prevented such degeneration and improved mononuclear cells in the liver. Conclusion: The results showed that oral administration of resveratrol has a significant hepatoprotective effect against vancomycin-induced hepatotoxicity.
Collapse
Affiliation(s)
| | - Nasser M. Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
16
|
Boungou-Tsona G, Gainche M, Decombat C, Ripoche I, Bikindou K, Delort L, Caldefie-Chézet F, Loumouamou A, Chalard P. Chemical Profile, Antioxidant and Anti-Inflammatory Potency of Extracts of Vitex madiensis Oliv. and Crossopteryx febrifuga (Afzel ex G. Don). PLANTS (BASEL, SWITZERLAND) 2023; 12:386. [PMID: 36679099 PMCID: PMC9864984 DOI: 10.3390/plants12020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Vitex madiensis Oliv. (Lamiaceae) and Crossopteryx febrifuga (Rubiaceae), two plants commonly used in traditional African medicines to treat malaria and pain, were studied either to determine their chemical profiles or to evaluate their antioxidant and anti-inflammatory activities. In this study, we investigated leaves, trunk bark, root bark and fruits methanolic extracts of both plants in order to find out which part of the plant is responsible for the activity. The analyses of the chemical profiles allowed us to confirm the presence of several ecdysteroids, especially 20-hydroxyecdysone in some parts of V. madiensis and to highlight the presence of organic acids and phenol derivatives in C. febrifuga. Among the four parts of the plants studied, only the fruits extract of C. febrifuga could present anti-inflammatory activity by decreasing ROS production. The leaves and trunk bark extracts of V. madiensis showed significant free radical scavenging activity compared to ascorbic acid, and the same extracts decrease ROS production significantly. The activity of these two extracts could be explained by the presence of ecdysteroids and flavonoids. The ROS production inhibition of V. madiensis is particularly interesting to investigate with further analyses.
Collapse
Affiliation(s)
- Ghislaine Boungou-Tsona
- Equipe Pluridisciplinaire de Recherche en Alimentation et Nutrition (EPRAN), Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP 389, Congo
- Département des Sciences Chimiques, Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), UR Chimie des Substances Naturelles, Cité Scientifique de Brazzaville, Brazzaville BP 2400, Congo
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, Centre National de la Recherche Scientifique, F-63000 Clermont-Ferrand, France
| | - Maël Gainche
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, Centre National de la Recherche Scientifique, F-63000 Clermont-Ferrand, France
| | - Caroline Decombat
- Unité de Nutrition Humaine, l’Alimentation et l’Environnement, Institut National de Recherche pour l’Agriculture, Université Clermont-Auvergne, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Isabelle Ripoche
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, Centre National de la Recherche Scientifique, F-63000 Clermont-Ferrand, France
| | - Kevin Bikindou
- Equipe Pluridisciplinaire de Recherche en Alimentation et Nutrition (EPRAN), Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP 389, Congo
- Département des Sciences Chimiques, Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), UR Chimie des Substances Naturelles, Cité Scientifique de Brazzaville, Brazzaville BP 2400, Congo
| | - Laetitia Delort
- Unité de Nutrition Humaine, l’Alimentation et l’Environnement, Institut National de Recherche pour l’Agriculture, Université Clermont-Auvergne, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Florence Caldefie-Chézet
- Unité de Nutrition Humaine, l’Alimentation et l’Environnement, Institut National de Recherche pour l’Agriculture, Université Clermont-Auvergne, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Aubin Loumouamou
- Equipe Pluridisciplinaire de Recherche en Alimentation et Nutrition (EPRAN), Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP 389, Congo
- Département des Sciences Chimiques, Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), UR Chimie des Substances Naturelles, Cité Scientifique de Brazzaville, Brazzaville BP 2400, Congo
| | - Pierre Chalard
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, Centre National de la Recherche Scientifique, F-63000 Clermont-Ferrand, France
| |
Collapse
|
17
|
Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11122377. [PMID: 36552584 PMCID: PMC9774301 DOI: 10.3390/antiox11122377] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cerebral ischemic stroke is characterized by acute ischemia in a certain part of the brain, which leads to brain cells necrosis, apoptosis, ferroptosis, pyroptosis, etc. At present, there are limited effective clinical treatments for cerebral ischemic stroke, and the recovery of cerebral blood circulation will lead to cerebral ischemia-reperfusion injury (CIRI). Cerebral ischemic stroke involves many pathological processes such as oxidative stress, inflammation, and mitochondrial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), as one of the most critical antioxidant transcription factors in cells, can coordinate various cytoprotective factors to inhibit oxidative stress. Targeting Nrf2 is considered as a potential strategy to prevent and treat cerebral ischemia injury. During cerebral ischemia, Nrf2 participates in signaling pathways such as Keap1, PI3K/AKT, MAPK, NF-κB, and HO-1, and then alleviates cerebral ischemia injury or CIRI by inhibiting oxidative stress, anti-inflammation, maintaining mitochondrial homeostasis, protecting the blood-brain barrier, and inhibiting ferroptosis. In this review, we have discussed the structure of Nrf2, the mechanisms of Nrf2 in cerebral ischemic stroke, the related research on the treatment of cerebral ischemia through the Nrf2 signaling pathway in recent years, and expounded the important role and future potential of the Nrf2 pathway in cerebral ischemic stroke.
Collapse
|
18
|
Luo F, Yu Y, Li M, Chen Y, Zhang P, Xiao C, Lv G. Polymeric nanomedicines for the treatment of hepatic diseases. J Nanobiotechnology 2022; 20:488. [PMCID: PMC9675156 DOI: 10.1186/s12951-022-01708-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The liver is an important organ in the human body and performs many functions, such as digestion, detoxification, metabolism, immune responses, and vitamin and mineral storage. Therefore, disorders of liver functions triggered by various hepatic diseases, including hepatitis B virus infection, nonalcoholic steatohepatitis, hepatic fibrosis, hepatocellular carcinoma, and transplant rejection, significantly threaten human health worldwide. Polymer-based nanomedicines, which can be easily engineered with ideal physicochemical characteristics and functions, have considerable merits, including contributions to improved therapeutic outcomes and reduced adverse effects of drugs, in the treatment of hepatic diseases compared to traditional therapeutic agents. This review describes liver anatomy and function, and liver targeting strategies, hepatic disease treatment applications and intrahepatic fates of polymeric nanomedicines. The challenges and outlooks of hepatic disease treatment with polymeric nanomedicines are also discussed.
Collapse
Affiliation(s)
- Feixiang Luo
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Ying Yu
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Mingqian Li
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Yuguo Chen
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Peng Zhang
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Chunsheng Xiao
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Guoyue Lv
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
19
|
Sharma N, Shaikh TB, Eedara A, Kuncha M, Sistla R, Andugulapati SB. Dehydrozingerone ameliorates thioacetamide-induced liver fibrosis via inhibition of hepatic stellate cells activation through modulation of the MAPK pathway. Eur J Pharmacol 2022; 937:175366. [DOI: 10.1016/j.ejphar.2022.175366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
|
20
|
Zhang B, Wu F, Li P, Li H. ARRDC3 inhibits liver fibrosis and epithelial-to-mesenchymal transition via the ITGB4/PI3K/Akt signaling pathway. Immunopharmacol Immunotoxicol 2022; 45:160-171. [PMID: 36154540 DOI: 10.1080/08923973.2022.2128369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective The effect of ARRDC3 has not been reported in liver fibrosis. Our study aimed to explore the molecular mechanisms by which ARRDC3 attenuates liver fibrosis.Methods The vectors pcDNA-ARRDC3 (which promotes ARRDC3 expression) and si-ITGB4 (which blocks IGTB4 expression) and their negative controls were constructed. The rat liver fibrosis model was established by intraperitoneal injection of CCl4 with or without intraperitoneal injection of pcDNA-ARRDC3. ELISA was used to detect the concentrations of γ-GGT, ALT, AST, and ALP in serum. HE, Masson's trichome, and Sirius red staining were used to observe the pathological changes in liver tissue. LX-2 cells were treated with TGF-β, and pcDNA-ARRDC3 or si-ITGB4RNA was transfected to promote ARRDC3 expression or knock down ITGB4 expression. Western blotting was used to detect the expression levels of proteins.Results ARRDC3 effectively reduced liver injury, improved liver function, and decreased collagen production and deposition in the CCl4-induced rat fibrosis model. The studies showed that overexpressed ARRDC3 remarkably reduced the expression of E-cadherin and collagen-related protein and increased the expression of mesenchymal markers and EMT-related transcription factors, consequently inhibiting the activity of the ITGB4/PI3K/Akt signaling pathway.Conclusion Our study shows that ARRDC3 could ameliorate CCl4-induced liver fibrosis and EMT progression via the ITGB4/PI3K/Akt signaling pathway, which provides a meaningful reference for the clinical targeted treatment of liver fibrosis.
Collapse
Affiliation(s)
- Bingling Zhang
- Zhangqiao Branch, Ningbo Ninth Hospital, Ningbo, Zhejiang, China
| | - Feng Wu
- Jiangbei Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Pingping Li
- Jiangbei Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Haiding Li
- Zhangqiao Branch, Ningbo Ninth Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
21
|
Combination Treatment with Hydroxytyrosol and Vitamin E Improves NAFLD-Related Fibrosis. Nutrients 2022; 14:nu14183791. [PMID: 36145170 PMCID: PMC9505330 DOI: 10.3390/nu14183791] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD)-related liver fibrosis results in the encapsulation of injured liver parenchyma by a collagenous scar mainly imputable to hepatic stellate cells’ activation. Approved pharmacological treatments against NAFLD-related fibrosis are still lacking, but natural compounds such as hydroxytyrosol (HXT) and vitamin E (VitE), are emerging as promising therapeutic opportunities. In this study, the potential anti-fibrotic effect of HXT + VitE combination therapy was investigated in vitro and in vivo. In particular, tumor growth factor (TGF)-β-activated LX-2 cells as an in vitro model, and carbon tetrachloride plus a Western diet as a mice model were employed. The effect of HXT + VitE on fibrosis was also investigated in children with biopsy-proven NAFLD. Our results demonstrated that HXT + VitE caused a reduction of proliferation, migration, contractility, and expression of pro-fibrogenic genes in TGF-β-activated LX-2 cells. HXT + VitE treatment also antagonized TGF-β-dependent upregulation of pro-oxidant NOX2 by interfering with nuclear translocation/activation of SMAD2/3 transcription factors. The mouse model of NAFLD-related fibrosis treated with HXT + VitE showed a marked reduction of fibrosis pattern by histology and gene expression. Accordingly, in children with NAFLD, HXT + VitE treatment caused a decrease of circulating levels of PIIINP and NOX2 that was supported over time. Our study suggests that HXT + VitE supplementation may improve NAFLD-related fibrosis.
Collapse
|
22
|
Supilnikov AA, Ledovskikh EA, Dzhamalova NM, Trusova LA, Starostina AA, Yunusov RR, Yaremin BI. The role of mitochondria in the pathogenesis of the "complex" wound process. BULLETIN OF THE MEDICAL INSTITUTE "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH) 2022. [DOI: 10.20340/vmi-rvz.2022.5.clin.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Wound healing is a complex biological process involving various cells, mediators, and components of the extracellular matrix involved in the processes of coagulation, inflammation, angiogenesis, epithelialization, and fibroplasia. Wound healing is described by four interrelated phases: hemostasis, inflammation, proliferation and remodeling. Each of the phases has its role at the molecular and tissue levels, and if a defect occurs in the chain of one of the phases of the wound healing process, the healing process is disturbed and a chronic wound condition occurs. Various factors such as infections, arterial and venous circulatory disorders, type 2 diabetes and chronic inflammation contribute to this. Prolonged non-healing wounds represent an urgent problem of modern medicine. Oxidative stress plays a crucial role in the pathogenesis of chronic wounds. In this review the pathogenesis of chronic wounds and its involvement of reactive oxygen species (ROS), oxidative stress, the role of mitochondria in ROS generation as well as the prospects of mitochondrial-directed antioxidants in the treatment of chronic wounds are considered.
Collapse
|
23
|
Oxidative Stress: What Is It? Can It Be Measured? Where Is It Located? Can It Be Good or Bad? Can It Be Prevented? Can It Be Cured? Antioxidants (Basel) 2022; 11:antiox11081431. [PMID: 35892633 PMCID: PMC9329886 DOI: 10.3390/antiox11081431] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The meaning, the appropriate usage and the misusage of the terms oxidative stress, oxidative eustress, and oxidative distress have been evaluated. It has been realized that the terms oxidative stress and oxidative damage are often used inappropriately as synonyms. The usage of the term eustress (intended as good stress) is unsuitable to indicate signaling by reactive molecular an event that can be finalistically considered either good or bad, depending on the circumstances. The so defined oxidative distress is an oxidative damage but not an oxidative stress. What is measured and defined as oxidative stress is in fact an oxidative damage. Damaging oxidations and signaling oxidant events (good or bad) can be present, also simultaneously, in different and multiple location of a cell, tissue or body and the measure of an oxidant event in body fluids or tissue specimen can only be the sum of non-separatable events, sometimes of opposite sign. There is no officially approved therapy to prevent or cure oxidative stress or oxidative damage.
Collapse
|
24
|
Acharya A, Nemade H, Papadopoulos S, Hescheler J, Neumaier F, Schneider T, Rajendra Prasad K, Khan K, Hemmersbach R, Gusmao EG, Mizi A, Papantonis A, Sachinidis A. Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes. iScience 2022; 25:104577. [PMID: 35789849 PMCID: PMC9249673 DOI: 10.1016/j.isci.2022.104577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/25/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure to outer space microgravity poses a risk for the development of various pathologies including cardiovascular disease. To study this, we derived cardiomyocytes (CMs) from human-induced pluripotent stem cells and exposed them to simulated microgravity (SMG). We combined different “omics” and chromosome conformation capture technologies with live-cell imaging of various transgenic lines to discover that SMG impacts on the contractile velocity and function of CMs via the induction of senescence processes. This is linked to SMG-induced changes of reactive oxygen species (ROS) generation and energy metabolism by mitochondria. Taken together, we uncover a microgravity-controlled axis causing contractile dysfunctions to CMs. Our findings can contribute to the design of preventive and therapeutic strategies against senescence-associated disease. Simulated microgravity (SMG) causes ROS production in human cardiomyocytes (CMs) SMG inhibits mitochondria function and energy metabolism and induces senescence of CMs SMG attenuates contractile velocity, beating frequency and Ca2+ influx in CMs SMG induces chromosomal changes and modifies the chromosomal architecture in CMs
Collapse
|
25
|
Hepatic Myofibroblasts: A Heterogeneous and Redox-Modulated Cell Population in Liver Fibrogenesis. Antioxidants (Basel) 2022; 11:antiox11071278. [PMID: 35883770 PMCID: PMC9311931 DOI: 10.3390/antiox11071278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/19/2022] Open
Abstract
During chronic liver disease (CLD) progression, hepatic myofibroblasts (MFs) represent a unique cellular phenotype that plays a critical role in driving liver fibrogenesis and then fibrosis. Although they could originate from different cell types, MFs exhibit a rather common pattern of pro-fibrogenic phenotypic responses, which are mostly elicited or sustained both by oxidative stress and reactive oxygen species (ROS) and several mediators (including growth factors, cytokines, chemokines, and others) that often operate through the up-regulation of the intracellular generation of ROS. In the present review, we will offer an overview of the role of MFs in the fibrogenic progression of CLD from different etiologies by focusing our attention on the direct or indirect role of ROS and, more generally, oxidative stress in regulating MF-related phenotypic responses. Moreover, this review has the purpose of illustrating the real complexity of the ROS modulation during CLD progression. The reader will have to keep in mind that a number of issues are able to affect the behavior of the cells involved: a) the different concentrations of reactive species, b) the intrinsic state of the target cells, as well as c) the presence of different growth factors, cytokines, and other mediators in the extracellular microenvironment or of other cellular sources of ROS.
Collapse
|
26
|
Holubiec MI, Romero JI, Urbainsky C, Gellert M, Galeano P, Capani F, Lillig CH, Hanschmann EM. Nucleoredoxin Plays a Key Role in the Maintenance of Retinal Pigmented Epithelium Differentiation. Antioxidants (Basel) 2022; 11:antiox11061106. [PMID: 35740003 PMCID: PMC9220054 DOI: 10.3390/antiox11061106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023] Open
Abstract
Nucleoredoxin (Nrx) belongs to the Thioredoxin protein family and functions in redox-mediated signal transduction. It contains the dithiol active site motif Cys-Pro-Pro-Cys and interacts and regulates different proteins in distinct cellular pathways. Nrx was shown to be catalytically active in the insulin assay and recent findings indicate that Nrx functions, in fact, as oxidase. Here, we have analyzed Nrx in the mammalian retina exposed to (perinatal) hypoxia-ischemia/reoxygenation, combining ex vivo and in vitro models. Our data show that Nrx regulates cell differentiation, which is important to (i) increase the number of glial cells and (ii) replenish neurons that are lost following the hypoxic insult. Nrx is essential to maintain cell morphology. These regulatory changes are related to VEGF but do not seem to be linked to the Wnt/β-catenin pathway, which is not affected by Nrx knock-down. In conclusion, our results strongly suggest that hypoxia-ischemia could lead to alterations in the organization of the retina, related to changes in RPE cell differentiation. Nrx may play an essential role in the maintenance of the RPE cell differentiation state via the regulation of VEGF release.
Collapse
Affiliation(s)
- Mariana I. Holubiec
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas “Prof. Dr. Alberto C. Taquini” (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires 1122, Argentina;
- Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the MaxPlank Society (IBioBA-CONICET-MPSP), Buenos Aires 2390, Argentina
- Correspondence: (M.I.H.); (E.-M.H.); Tel.: +54-11-51618547 (M.I.H.); +49-211-8106040 (E.-M.H.)
| | - Juan I. Romero
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Fundación Instituto Leloir, Buenos Aires 1405, Argentina; (J.I.R.); (P.G.)
| | - Claudia Urbainsky
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, 17489 Greifswald, Germany; (C.U.); (M.G.); (C.H.L.)
| | - Manuela Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, 17489 Greifswald, Germany; (C.U.); (M.G.); (C.H.L.)
| | - Pablo Galeano
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Fundación Instituto Leloir, Buenos Aires 1405, Argentina; (J.I.R.); (P.G.)
| | - Francisco Capani
- Facultad de Medicina, Instituto de Investigaciones Cardiológicas “Prof. Dr. Alberto C. Taquini” (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires 1122, Argentina;
- Facultad de Medicina, Universidad Católica Argentina (UCA), Buenos Aires 1600, Argentina
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, 17489 Greifswald, Germany; (C.U.); (M.G.); (C.H.L.)
| | - Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, 17489 Greifswald, Germany; (C.U.); (M.G.); (C.H.L.)
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Correspondence: (M.I.H.); (E.-M.H.); Tel.: +54-11-51618547 (M.I.H.); +49-211-8106040 (E.-M.H.)
| |
Collapse
|
27
|
Lee TY, Kim L, Kim D, An S, An YJ. Microplastics from shoe sole fragments cause oxidative stress in a plant (Vigna radiata) and impair soil environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128306. [PMID: 35101758 DOI: 10.1016/j.jhazmat.2022.128306] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 05/06/2023]
Abstract
Shoe sole fragments are generated by sole abrasion, which is unavoidable. These fragments can enter the soil ecosystem. However, limited studies have evaluated their effects on soils and plants. Here, we aimed to evaluate the toxicity of shoe sole fragments on a crop plant, Vigna radiata (mung bean). Shoe sole fragments (size: 57-229 µm) were obtained from four shoe types (trekking shoes, slippers, sneakers, and running shoes) and plant toxicity assessments were performed. Additionally, the fragments were leached for 30 d, and potentially toxic leachates were identified. Shoe sole fragments exhibited adverse effects depending on the shoe type. The fragments of soles from sneakers increased the bulk density of the soil but reduced its water holding capacity. Moreover, the microplastic fragments and leachates directly affected plant growth and photosynthetic activities. The fragments of slippers and running shoes boosted plant growth but changed the flavonoid content and photosynthetic factors. Trekking shoe sole fragments did not exhibit plant photoinhibition; however, their leachate inhibited photosynthesis. Overall, it was concluded that shoe sole fragments can cause adverse effects in plants and impair soil environment. Our study findings indicate that it is necessary to develop shoe soles that have less harmful environmental effects.
Collapse
Affiliation(s)
- Tae-Yang Lee
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Lia Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dokyung Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanghee An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
28
|
Emerald BS, Mohsin S, D’Souza C, John A, El-Hasasna H, Ojha S, Raza H, al-Ramadi B, Adeghate E. Diabetes Mellitus Alters the Immuno-Expression of Neuronal Nitric Oxide Synthase in the Rat Pancreas. Int J Mol Sci 2022; 23:ijms23094974. [PMID: 35563364 PMCID: PMC9105024 DOI: 10.3390/ijms23094974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Nitric oxide is generated from nitric oxide synthase following hyperglycemia-induced oxidative stress during the course of diabetes mellitus (DM). We examined the temporal immuno-expression of neuronal nitric oxide synthase (nNOS) in the pancreas of diabetic and non-diabetic rats using immunohistochemical, immunofluorescence and western blot techniques 12 h, 24 h, 1 week, 2 weeks, 1, 8 and 15 months after induction of DM. nNOS co-localized with pancreatic beta cells but disappears 12 h after the onset of DM. In contrast, the nNOS content of pancreatic nerves increased significantly (p < 0.001) 24 h after the induction of DM, and decreased sharply thereafter. However, nNOS-positive ganglion cells were observed even 15 months post-diabetes. ROS increased by more than 100% two months after the onset of DM compared to non-diabetic control but was significantly (p < 0.000001) reduced at 9 months after the induction of DM. The pancreatic content of GSH increased significantly (p < 0.02) after 9 months of DM. Although, TBARS content was significantly (p < 0.009; p < 0.002) lower in aged (9 months) non-diabetic and DM rats, TBARS rate was markedly (p < 0.02) higher 9 months after the induction of DM when compared to younger age group. In conclusion, nNOS is present in pancreatic beta cell, but disappears 12 h after the onset of diabetes. In contrast, the tissue level of nNOS of pancreatic nerves increased in the first week of diabetes, followed by a sharp reduction. nNOS may play important roles in the metabolism of pancreatic beta cell.
Collapse
Affiliation(s)
- Bright Starling Emerald
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Sahar Mohsin
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Crystal D’Souza
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Annie John
- Departments of Biochemistry, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.J.); (H.R.)
| | - Hussain El-Hasasna
- Departments of Medical Microbiology and Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.E.-H.); (B.a.-R.)
| | - Shreesh Ojha
- Departments of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| | - Haider Raza
- Departments of Biochemistry, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.J.); (H.R.)
| | - Basel al-Ramadi
- Departments of Medical Microbiology and Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.E.-H.); (B.a.-R.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ernest Adeghate
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Correspondence:
| |
Collapse
|
29
|
Alkreathy HM, Esmat A. Lycorine Ameliorates Thioacetamide-Induced Hepatic Fibrosis in Rats: Emphasis on Antioxidant, Anti-Inflammatory, and STAT3 Inhibition Effects. Pharmaceuticals (Basel) 2022; 15:ph15030369. [PMID: 35337166 PMCID: PMC8955817 DOI: 10.3390/ph15030369] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a foremost medical concern worldwide. In Saudi Arabia, numerous risk factors contribute to its high rates. Lycorine—a natural alkaloid—has antioxidant, anti-inflammatory, and antitumor activates. It has been reported to inhibit STAT3 in cancer. Therefore, this study aimed at investigating the possible antifibrotic effect of lycorine against thioacetamide (TAA)-induced liver fibrosis in rats and at elucidating the possible mechanisms. Liver fibrosis was induced by TAA (200 mg/kg i.p.), three per week for four weeks. Treatment with lycorine (0.5 and 1 mg/kg/d) amended TAA-induced rise of serum transaminases that was confirmed histopathologically. Moreover, it ameliorated liver fibrosis in a dose-dependent manner, as indicated by hindering the TAA-induced increase of hepatic hydroxyproline content, α-smooth muscle actin (α-SMA) and transforming growth factor (TGF-β1) expressions. TAA-induced oxidative stress was amended by lycorine treatment via restoring reduced glutathione and diminishing lipid peroxidation. Moreover, lycorine ameliorated hepatic inflammation by preventing the rise of inflammatory cytokines. Notably, lycorine inhibited STAT3 activity, as evidenced by the decreased phospho-STAT3 expression, accompanied by the elevation of the hepatic Bax/Bcl-2 ratio. In conclusion, lycorine hinders TAA-induced liver fibrosis in rats, due to—at least partly—its antioxidative and anti-inflammatory properties, along with its ability to inhibit STAT3 signaling.
Collapse
Affiliation(s)
- Huda Mohammed Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Correspondence:
| |
Collapse
|
30
|
Bona S, Fernandes SA, Moreira ACJ, Rodrigues G, Schemitt EG, Di Naso FC, Marroni CA, Marroni NP. Melatonin restores zinc levels, activates the Keap1/Nrf2 pathway, and modulates endoplasmic reticular stress and HSP in rats with chronic hepatotoxicity. World J Gastrointest Pharmacol Ther 2022; 13:11-22. [PMID: 35433098 PMCID: PMC8968507 DOI: 10.4292/wjgpt.v13.i2.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/18/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Melatonin (MLT) is a potent antioxidant molecule that is shown to have a beneficial effect in various pathological situations, due to its action against free radicals. AIM To evaluate the effect of MLT on carbon tetrachloride (CCl4) induced liver injury in rats in terms of oxidative stress, reticular stress, and cell damage. METHODS Twenty male Wistar rats (230-250 g) were divided into four groups: Control rats, rats treated with MLT alone, rats treated with CCl4 alone, and rats treated with CCl4 plus MLT. CCl4 was administered as follows: Ten doses every 5 d, ten every 4 d, and seven every 3 d. MLT was administered intraperitoneally at a dose of 20 mg/kg from the 10th wk to the end of the experiment (16th wk). RESULTS MLT was able to reduce the release of liver enzymes in the bloodstream and to decrease oxidative stress in CCl4 treated rats by decreasing the level of thiobarbituric acid reactive substances and increasing superoxide dismutase activity, with a lower reduction in serum zinc levels, guaranteeing a reduction in liver damage; additionally, it increased the expression of nuclear factor (erythroid-derived 2)-like 2 and decreased the expression of Kelch-like ECH-associated protein 1. MLT also decreased the expression of the proteins associated with endoplasmic reticulum stress, i.e., glucose-regulated protein 78 and activating transcription factor 6, as well as of heat shock factor 1 and heat shock protein 70. CONCLUSION MLT has a hepatoprotective effect in an experimental model of CCl4-induced liver injury, since it reduces oxidative stress, restores zinc levels, and modulates endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Silvia Bona
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Sabrina Alves Fernandes
- Posgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90040-001, Rio Grande do Sul, Brazil
| | - Andrea C Janz Moreira
- Biological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Graziella Rodrigues
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Elizângela G Schemitt
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Fabio Cangeri Di Naso
- Postgraduate Program in Pneumological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90000-000, Rio Grande do Sul, Brazil
| | - Cláudio A Marroni
- Posgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90040-001, Rio Grande do Sul, Brazil
| | - Norma P Marroni
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| |
Collapse
|
31
|
Zhou L, Li Y, Liang Q, Liu J, Liu Y. Combination therapy based on targeted nano drug co-delivery systems for liver fibrosis treatment: A review. J Drug Target 2022; 30:577-588. [PMID: 35179094 DOI: 10.1080/1061186x.2022.2044485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver fibrosis is the hallmark of liver disease and occurs prior to the stages of cirrhosis and hepatocellular carcinoma. Any type of liver damage or inflammation can result in fibrosis. Fibrosis does not develop overnight, but rather as a result of the long-term action of injury factors. At present, however, there are no good treatment methods or specific drugs other than removing the pathogenic factors. Drug application is still limited, which means that drugs with good performance in vitro cannot achieve good therapeutic effects in vivo, owing to various factors such as poor drug targeting, large side effects, and strong hydrophobicity. Hepatic stellate cells (HSC) are the primary effector cells in liver fibrosis. The nano-drug delivery system is a new and safe drug delivery system that has many advantages which are widely used in the field of liver fibrosis. Drug resistance and side effects can be reduced when two or more drugs are used in combination drug delivery. Combination therapy of drugs with different targets has emerged as a novel approach to treating liver fibrosis, and the nano co-delivery system enhances the benefits of combination therapy. While nano co-delivery systems can maximize benefits while avoiding drug side effects, this is precisely the advantage of the nano co-delivery system. This review briefly described the pathogenesis and current treatment strategies, the different co-delivery systems of combination drugs in the nano delivery system, and targeting strategies for nano delivery systems on liver fibrosis therapy. Because of their superior performance, nano delivery systems and targeting drug delivery systems have received a lot of attention in the new drug delivery system. The new delivery systems offer a new pathway in the treatment of liver fibrosis, and it is believed that it can be a new treatment for fibrosis in the future. Nano co-delivery system of combination drugs and targeting strategies has proven the effectiveness of anti-fibrosis at the experimental level.
Collapse
Affiliation(s)
- Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
32
|
Torres-López L, Olivas-Aguirre M, Villatoro-Gómez K, Dobrovinskaya O. The G-Protein–Coupled Estrogen Receptor Agonist G-1 Inhibits Proliferation and Causes Apoptosis in Leukemia Cell Lines of T Lineage. Front Cell Dev Biol 2022; 10:811479. [PMID: 35237599 PMCID: PMC8882838 DOI: 10.3389/fcell.2022.811479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 11/25/2022] Open
Abstract
The G-protein–coupled estrogen receptor (GPER) mediates non-genomic action of estrogen. Due to its differential expression in some tumors as compared to the original healthy tissues, the GPER has been proposed as a therapeutic target. Accordingly, the non-steroidal GPER agonist G-1, which has often demonstrated marked cytotoxicity in experimental models, has been suggested as a novel anticancer agent for several sensitive tumors. We recently revealed that cell lines derived from acute T-cell (query) lymphoblastic leukemia (T-ALL) express the GPER. Here, we address the question whether G-1 is cytotoxic to T-ALL. We have shown that G-1 causes an early rise of intracellular Ca2+, arrests the cell cycle in G2/M, reduces viability, and provokes apoptosis in T-ALL cell lines. Importantly, G-1 caused destabilization and depolymerization of microtubules. We assume that it is a disturbance of the cytoskeleton that causes G-1 cytotoxic and cytostatic effects in our model. The observed cytotoxic effects, apparently, were not triggered by the interaction of G-1 with the GPER as pre-incubation with the highly selective GPER antagonist G-36 was ineffective in preventing the cytotoxicity of G-1. However, G-36 prevented the intracellular Ca2+ rise provoked by G-1. Finally, G-1 showed only a moderate negative effect on the activation of non-leukemic CD4+ lymphocytes. We suggest G-1 as a potential antileukemic drug.
Collapse
|
33
|
Chrysavgis L, Giannakodimos I, Diamantopoulou P, Cholongitas E. Non-alcoholic fatty liver disease and hepatocellular carcinoma: Clinical challenges of an intriguing link. World J Gastroenterol 2022; 28:310-331. [PMID: 35110952 PMCID: PMC8771615 DOI: 10.3748/wjg.v28.i3.310] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most common liver disorder worldwide mainly attributed to the epidemic spread of obesity and type 2 diabetes mellitus. Although it is considered a benign disease, NAFLD can progress to non-alcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma (HCC). Most data regarding the epidemiology of NAFLD-related HCC are derived from cohort and population studies and show that its incidence is increasing as well as it is likely to emerge as the leading indication for liver transplantation, especially in the Western World. Although cirrhosis constitutes the main risk factor for HCC development, in patients with NAFLD, HCC can arise in the absence of cirrhosis, indicating specific carcinogenic molecular pathways. Since NAFLD as an underlying liver disease for HCC is often underdiagnosed due to lack of sufficient surveillance in this population, NAFLD-HCC patients are at advanced HCC stage at the time of diagnosis making the management of those patients clinically challenging and affecting their prognostic outcomes. In this current review, we summarize the latest literature on the epidemiology, other than liver cirrhosis-pathogenesis, risk factors and prognosis of NAFLD-HCC patients. Finally, we emphasize the prevention of the development of NAFLD-associated HCC and we provide some insight into the open questions and issues regarding the appropriate surveillance policies for those patients.
Collapse
Affiliation(s)
- Lampros Chrysavgis
- Department of Experimental Physiology, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Ilias Giannakodimos
- First Department of Internal Medicine, "Laiko" General Hospital of Athens, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagiota Diamantopoulou
- First Department of Internal Medicine, "Laiko" General Hospital of Athens, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Evangelos Cholongitas
- First Department of Internal Medicine, "Laiko" General Hospital of Athens, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
34
|
Matsumoto KI, Nakanishi I, Zhelev Z, Bakalova R, Aoki I. Nitroxyl Radical as a Theranostic Contrast Agent in Magnetic Resonance Redox Imaging. Antioxid Redox Signal 2022; 36:95-121. [PMID: 34148403 PMCID: PMC8792502 DOI: 10.1089/ars.2021.0110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance:In vivo assessment of paramagnetic and diamagnetic conversions of nitroxyl radicals based on cyclic redox mechanism can be an index of tissue redox status. The redox mechanism of nitroxyl radicals, which enables their use as a normal tissue-selective radioprotector, is seen as being attractive on planning radiation therapy. Recent Advances:In vivo redox imaging using nitroxyl radicals as redox-sensitive contrast agents has been developed to assess tissue redox status. Chemical and biological behaviors depending on chemical structures of nitroxyl radical compounds have been understood in detail. Polymer types of nitroxyl radical contrast agents and/or nitroxyl radical-labeled drugs were designed for approaching theranostics. Critical Issues: Nitroxyl radicals as magnetic resonance imaging (MRI) contrast agents have several advantages compared with those used in electron paramagnetic resonance (EPR) imaging, while support by EPR spectroscopy is important to understand information from MRI. Redox-sensitive paramagnetic contrast agents having a medicinal benefit, that is, nitroxyl-labeled drug, have been developed and proposed. Future Directions: A development of suitable nitroxyl contrast agent for translational theranostic applications with high reaction specificity and low normal tissue toxicity is under progress. Nitroxyl radicals as redox-sensitive magnetic resonance contrast agents can be a useful tool to detect an abnormal tissue redox status such as disordered oxidative stress. Antioxid. Redox Signal. 36, 95-121.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Group, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Zhivko Zhelev
- Medical Faculty, Trakia University, Stara Zagora, Bulgaria.,Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rumiana Bakalova
- Functional and Molecular Imaging Goup, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Ichio Aoki
- Functional and Molecular Imaging Goup, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| |
Collapse
|
35
|
Saklani P, Khan H, Gupta S, Kaur A, Singh TG. Neuropeptides: Potential neuroprotective agents in ischemic injury. Life Sci 2022; 288:120186. [PMID: 34852271 DOI: 10.1016/j.lfs.2021.120186] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
AIM Ischemic damage to the brain is linked to an increased rate of morbidity and mortality worldwide. In certain parts of the world, it remains a leading cause of mortality and the primary cause of long-term impairment. Ischemic injury is exacerbated when particular neuropeptides are removed, or their function in the brain is blocked, whereas supplying such neuropeptides lowers ischemic harm. Here, we have discussed the role of neuropeptides in ischemic injury. MATERIALS & METHODS Numerous neuropeptides had their overexpression following cerebral ischemia. Neuropeptides such as NPY, CGRP, CART, SP, BK, PACAP, oxytocin, nociception, neurotensin and opioid peptides act as transmitters, documented in several "in vivo" and "in vitro" studies. Neuropeptides provide neuroprotection by activating the survival pathways or inhibiting the death pathways, i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB. KEY FINDINGS Neuropeptides have numerous beneficial effects in ischemic models, including antiapoptotic, anti-inflammatory, and antioxidant actions that provide a powerful protective impact in neurons when combined. These innovative therapeutic substances have the potential to treat ischemia injury due to their pleiotropic modes of action. SIGNIFICANCE This review emphasizes the neuroprotective role of neuropeptides in ischemic injury via modulation of various signalling pathways i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB.
Collapse
Affiliation(s)
- Priyanka Saklani
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | |
Collapse
|
36
|
Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214267] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Puertas-Bartolomé M, Włodarczyk-Biegun MK, Del Campo A, Vázquez-Lasa B, San Román J. Development of bioactive catechol functionalized nanoparticles applicable for 3D bioprinting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112515. [PMID: 34857294 DOI: 10.1016/j.msec.2021.112515] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Efficient wound treatments to target specific events in the healing process of chronic wounds constitute a significant aim in regenerative medicine. In this sense, nanomedicine can offer new opportunities to improve the effectiveness of existing wound therapies. The aim of this study was to develop catechol bearing polymeric nanoparticles (NPs) and to evaluate their potential in the field of wound healing. Thus, NPs wound healing promoting activities, potential for drug encapsulation and controlled release, and further incorporation in a hydrogel bioink formulation to fabricate cell-laden 3D scaffolds are studied. NPs with 2 and 29 M % catechol contents (named NP2 and NP29) were obtained by nanoprecipitation and presented hydrodynamic diameters of 100 and 75 nm respectively. These nanocarriers encapsulated the hydrophobic compound coumarin-6 with 70% encapsulation efficiency values. In cell culture studies, the NPs had a protective effect in RAW 264.7 macrophages against oxidative stress damage induced by radical oxygen species (ROS). They also presented a regulatory effect on the inflammatory response of stimulated macrophages and promoted upregulation of the vascular endothelial growth factor (VEGF) in fibroblasts and endothelial cells. In particular, NP29 were used in a hydrogel bioink formulation using carboxymethyl chitosan and hyaluronic acid as polymeric matrices. Using a reactive mixing bioprinting approach, NP-loaded hydrogel scaffolds with good structural integrity, shape fidelity and homogeneous NPs dispersion, were obtained. The in vitro catechol NPs release profile of the printed scaffolds revealed a sustained delivery. The bioprinted scaffolds supported viability and proliferation of encapsulated L929 fibroblasts over 14 days. We envision that the catechol functionalized NPs and resulting bioactive bioink presented in this work offer promising advantages for wound healing applications, as they: 1) support controlled release of bioactive catechol NPs to the wound site; 2) can incorporate additional therapeutic functions by co-encapsulating drugs; 3) can be printed into 3D scaffolds with tailored geometries based on patient requirements.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain; INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | | | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
38
|
Miles JA, Egan JL, Fowler JA, Machattou P, Millard AD, Perry CJ, Scanlan DJ, Taylor PC. The evolutionary origins of peroxynitrite signalling. Biochem Biophys Res Commun 2021; 580:107-112. [PMID: 34638028 DOI: 10.1016/j.bbrc.2021.09.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
Peroxynitrite is a reactive intermediate formed in vivo through uncatalysed reaction of superoxide and nitric oxide radicals. Despite significant interest in detecting peroxynitrite in vivo and understanding its production, little attention has been given to the evolutionary origins of peroxynitrite signalling. Herein we focus on two enzymes that are key to the biosynthesis of superoxide and nitric oxide, NADPH oxidase 5 (NOX5) and endothelial nitric oxide synthase (eNOS), respectively. Multiple sequence alignments of both enzymes including homologues from all domains of life, coupled with a phylogenetic analysis of NOX5, suggest eNOS and NOX5 are present in animals as the result of horizontal gene transfer from ancestral cyanobacteria to ancestral eukaryotes. Therefore, biochemical studies from other laboratories on a NOX5 homologue in Cylindrospermum stagnale and an eNOS homologue in Synechococcus sp. PCC 7335 are likely to be of relevance to human NOX5 and eNOS and to the production of superoxide, nitric oxide and peroxynitrite in humans.
Collapse
Affiliation(s)
- Jennifer A Miles
- School of Chemistry & Astbury Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Joseph L Egan
- School of Chemistry & Astbury Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Jake A Fowler
- School of Chemistry & Astbury Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Petrina Machattou
- School of Chemistry & Astbury Centre, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrew D Millard
- Dept. of Genome Biology & Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | | | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Paul C Taylor
- School of Chemistry & Astbury Centre, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
39
|
Alwazeer D, Liu FFC, Wu XY, LeBaron TW. Combating Oxidative Stress and Inflammation in COVID-19 by Molecular Hydrogen Therapy: Mechanisms and Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5513868. [PMID: 34646423 PMCID: PMC8505069 DOI: 10.1155/2021/5513868] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 is a widespread global pandemic with nearly 185 million confirmed cases and about four million deaths. It is caused by an infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which primarily affects the alveolar type II pneumocytes. The infection induces pathological responses including increased inflammation, oxidative stress, and apoptosis. This situation results in impaired gas exchange, hypoxia, and other sequelae that lead to multisystem organ failure and death. As summarized in this article, many interventions and therapeutics have been proposed and investigated to combat the viral infection-induced inflammation and oxidative stress that contributes to the etiology and pathogenesis of COVID-19. However, these methods have not significantly improved treatment outcomes. This may partly be attributable to their inability at restoring redox and inflammatory homeostasis, for which molecular hydrogen (H2), an emerging novel medical gas, may complement. Herein, we systematically review the antioxidative, anti-inflammatory, and antiapoptotic mechanisms of H2. Its small molecular size and nonpolarity allow H2 to rapidly diffuse through cell membranes and penetrate cellular organelles. H2 has been demonstrated to suppress NF-κB inflammatory signaling and induce the Nrf2/Keap1 antioxidant pathway, as well as to improve mitochondrial function and enhance cellular bioenergetics. Many preclinical and clinical studies have demonstrated the beneficial effects of H2 in varying diseases, including COVID-19. However, the exact mechanisms, primary modes of action, and its true clinical effects remain to be delineated and verified. Accordingly, additional mechanistic and clinical research into this novel medical gas to combat COVID-19 complications is warranted.
Collapse
Affiliation(s)
- Duried Alwazeer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, 76000 Igdır, Turkey
- Research Center for Redox Applications in Foods (RCRAF), Igdir University, 76000 Igdır, Turkey
- Innovative Food Technologies Development, Application, and Research Center, Igdir University, 76000 Igdır, Turkey
| | - Franky Fuh-Ching Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada M5S 3M2
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada M5S 3M2
| | - Tyler W. LeBaron
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia
- Molecular Hydrogen Institute, Enoch, Utah, USA
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, 84720 Utah, USA
| |
Collapse
|
40
|
Hypoxia, Hypoxia-Inducible Factors and Liver Fibrosis. Cells 2021; 10:cells10071764. [PMID: 34359934 PMCID: PMC8305108 DOI: 10.3390/cells10071764] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Liver fibrosis is a potentially reversible pathophysiological event, leading to excess deposition of extracellular matrix (ECM) components and taking place as the net result of liver fibrogenesis, a dynamic and highly integrated process occurring during chronic liver injury of any etiology. Liver fibrogenesis and fibrosis, together with chronic inflammatory response, are primarily involved in the progression of chronic liver diseases (CLD). As is well known, a major role in fibrogenesis and fibrosis is played by activated myofibroblasts (MFs), as well as by macrophages and other hepatic cell populations involved in CLD progression. In the present review, we will focus the attention on the emerging pathogenic role of hypoxia, hypoxia-inducible factors (HIFs) and related mediators in the fibrogenic progression of CLD.
Collapse
|
41
|
Liu Y, Yang X, Liu Y, Jiang T, Ren S, Chen J, Xiong H, Yuan M, Li W, Machens H, Chen Z. NRF2 signalling pathway: New insights and progress in the field of wound healing. J Cell Mol Med 2021; 25:5857-5868. [PMID: 34145735 PMCID: PMC8406474 DOI: 10.1111/jcmm.16597] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/10/2021] [Accepted: 04/17/2021] [Indexed: 12/22/2022] Open
Abstract
As one of the most common pathological processes in the clinic, wound healing has always been an important topic in medical research. Improving the wound healing environment, shortening the healing time and promoting fast and effective wound healing are hot and challenging issues in clinical practice. The nuclear factor-erythroid-related factor 2 (NFE2L2 or NRF2) signalling pathway reduces oxidative damage and participates in the regulation of anti-oxidative gene expression in the process of oxidative stress and thus improves the cell protection. Activation of the NRF2 signalling pathway increases the resistance of the cell to chemical carcinogens and inflammation. The signal transduction pathway regulates anti-inflammatory and antioxidant effects by regulating calcium ions, mitochondrial oxidative stress, autophagy, ferroptosis, pyroptosis and apoptosis. In this article, the role of the NRF2 signalling pathway in wound healing and its research progress in recent years are reviewed. In short, the NRF2 signalling pathway has crucial clinical significance in wound healing and is worthy of further study.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaofan Yang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yutian Liu
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tao Jiang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sen Ren
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jing Chen
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hewei Xiong
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Meng Yuan
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenqing Li
- Department of Hand and Foot SurgeryHuazhong University of Science and Technology Union ShenZhen HospitalShenzhenChina
| | - Hans‐Günther Machens
- Department of Plastic and Hand SurgeryTechnical University of MunichMunichGermany
| | - Zhenbing Chen
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
42
|
Namukobe J, Sekandi P, Byamukama R, Murungi M, Nambooze J, Ekyibetenga Y, Nagawa CB, Asiimwe S. Antibacterial, antioxidant, and sun protection potential of selected ethno medicinal plants used for skin infections in Uganda. Trop Med Health 2021; 49:49. [PMID: 34130746 PMCID: PMC8207782 DOI: 10.1186/s41182-021-00342-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/08/2021] [Indexed: 11/11/2022] Open
Abstract
Background Rural populations in Uganda rely heavily on medicinal plants for the treatment of bacterial skin infections. However, the efficacy of these medicinal plants for their pharmacological action is not known. The study aimed at evaluating the antibacterial, antioxidant, and sun protection potential of Spermacoce princeae, Psorospermum febrifugum, Plectranthus caespitosus, and Erlangea tomentosa extracts. Methods The plant samples were extracted by maceration sequentially using hexane, dichloromethane, ethyl acetate, methanol, and distilled water. Antibacterial activity of each extract was carried out using an agar well diffusion assay against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonie, Streptococcus pyogenes, and Salmonella typhi. Acute dermal toxicity of the aqueous extract of S. princeae and P. febrifugum, and E. tomentosa was assessed in young adult healthy Wistar albino rats at a dose of 8000 and 10,000 mg/kg body weight. The antioxidant activity of each extract was carried out using a 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assay. The sun protection factor was determined using Shimadzu UltraViolet-Visible double beam spectrophotometer between 290 and 320 nm. Results The plant extracts showed good antibacterial activity against the tested bacterial strains with minimum inhibitory concentration (MIC) ranging between 3.12 and 12.5 mg/ml. There was no significant change in the levels of creatinine, alanine aminotransferase, and aspartate aminotransferase in the rats even at a higher dose of 10,000 mg/kg, which was related to the results of biochemical analysis of the blood samples from the treated and control groups. The aqueous and methanol extracts of S. princeae showed potential antioxidant properties, with half maximal inhibitory concentration (IC50) values of 59.82 and 61.20 μg/ml respectively. The organic and aqueous extracts of P. caespitosus showed high levels of protection against Ultraviolet light with sun protection potential values ranging between 30.67 and 37.84. Conclusions The study demonstrated that the selected medicinal plants possessed good antibacterial, antioxidant, and sun protection properties. Therefore, the plants are alternative sources of antibacterial, antioxidant, and sun protection agents in managing bacterial skin infections.
Collapse
Affiliation(s)
- Jane Namukobe
- Department of Chemistry, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Peter Sekandi
- Department of Chemistry, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Robert Byamukama
- Department of Chemistry, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Moses Murungi
- Department of Chemistry, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Jennifer Nambooze
- Department of Chemistry, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Yeremiah Ekyibetenga
- Department of Chemistry, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Christine Betty Nagawa
- Department of Forestry, Biodiversity and Tourism, College of Agriculture and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Savina Asiimwe
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, P.O Box 7062, Kampala, Uganda
| |
Collapse
|
43
|
Shi YS, Li XX, Li HT, Zhang Y. Pelargonidin ameliorates CCl 4-induced liver fibrosis by suppressing the ROS-NLRP3-IL-1β axis via activating the Nrf2 pathway. Food Funct 2021; 11:5156-5165. [PMID: 32432601 DOI: 10.1039/d0fo00660b] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Liver fibrosis is a histological change that often occurs due to hepatic stellate cell (HSC) activation and excessive formation of an extracellular matrix in the liver. Pelargonidin (PEL) is a natural anthocyanidin existing in blueberries, berries, strawberries, and red radishes and has been demonstrated to possess health beneficial effects. Herein, we investigated the effect of PEL on liver fibrosis induced by CCl4 and hepatic stellate cells induced by transforming growth factor-β (TGF-β). We found that PEL administration prevented liver injury and liver fibrosis induced by CCl4 in a dose-dependent manner. Further data revealed that PEL increased liver nuclear factor E2-related factor 2 (Nrf2) and reduced liver oxidative stress and the expression levels of NLRP3, caspase-1 and IL-1β. In TGF-β-challenged HSCs (LX-2 cells), PEL effectively inhibited the LX-2 cell activation. In addition, the anti-fibrosis effects of PEL in LX-2 cells were abolished by Nrf2 knockdown. In summary, our study demonstrated that PEL ameliorated CCl4-induced liver fibrosis and HSC activation induced by TGF-β. The possible molecular mechanisms of PEL in liver fibrosis may be attributed to its suppression of ROS-NLRP3-IL-1β signaling by Nrf2 activation.
Collapse
Affiliation(s)
- Yu-Sheng Shi
- Key Laboratory of Biotechnology and Bioresources Utilization, Educational of Minister, College of Life Science, Dalian Nationalities University, Dalian 116600, People's Republic of China and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Xiao-Xing Li
- School of Bioengineering, Dalian University of Technology, Dalian,116024, People's Republic of China
| | - Hao-Tian Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Educational of Minister, College of Life Science, Dalian Nationalities University, Dalian 116600, People's Republic of China
| | - Yan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China.
| |
Collapse
|
44
|
Zhao Y, Jiang S, Zhang J, Guan XL, Sun BG, Sun L. A virulent Bacillus cereus strain from deep-sea cold seep induces pyroptosis in a manner that involves NLRP3 inflammasome, JNK pathway, and lysosomal rupture. Virulence 2021; 12:1362-1376. [PMID: 34009097 PMCID: PMC8143241 DOI: 10.1080/21505594.2021.1926649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recent studies indicate that the Bacillus species is distributed in deep-sea environments. However, no specific studies on deep-sea Bacillus cereus have been documented. In the present work, we isolated a B. cereus strain, H2, from the deep-sea cold seep in South China Sea. We characterized the pathogenic potential of H2 and investigated H2-induced death of different types of cells. We found that H2 was capable of tissue dissemination and causing acute mortality in mice and fish following intraperitoneal/intramuscular injection. In vitro studies revealed that H2 infection of macrophages induced pyroptosis and activation of the NLRP3 inflammasome pathway that contributed partly to cell death. H2 infection activated p38, JNK, and ERK, but only JNK proved to participate in H2-triggered cell death. Reactive oxygen species (ROS) and intracellular Ca2+ were essential to H2-induced activation of JNK and NLRP3 inflammasome. In contrast, lysosomal rupture and cathepsins were required for H2-induced NLRP3 inflammasome activation but not for JNK activation. This study revealed for the first time the virulence characteristics of deep-sea B. cereus and provided new insights into the mechanism of B. cereus infection.
Collapse
Affiliation(s)
- Yan Zhao
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shuai Jiang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jian Zhang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiao-Lu Guan
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Bo-Guang Sun
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
45
|
Chen F, Yang B, Xu L, Yang J, Li J. A CaO 2 @Tannic Acid-Fe III Nanoconjugate for Enhanced Chemodynamic Tumor Therapy. ChemMedChem 2021; 16:2278-2286. [PMID: 33792182 DOI: 10.1002/cmdc.202100108] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Chemodynamic therapy (CDT) is an effective tumor treatment strategy in which FeII reacts with hydrogen peroxide (H2 O2 ) in tumor cells to produce highly toxic hydroxyl radical (. OH) through the Fenton reaction. However, the content of endogenous H2 O2 in cells is limited, and the reaction between FeIII and H2 O2 is inefficient, greatly limiting the efficiency of the Fenton reaction and reducing the effectiveness of tumor treatment. Therefore, in this work, we designed and synthesized a new type of nano-system (CaO2 @TA-FeIII ) for the enhanced CDT of tumors, in which the polyphenolic compound- tannic acid (TA) and FeIII formed a TA-Fe nano-coating on the surface of calcium peroxide (CaO2 ) nanospherical aggregates. When the CaO2 @TA-FeIII nanoconjugates reach the tumor site, the CaO2 contained in the nanoconjugates produces H2 O2 after disintegration in tumor cells, and the carried TA rapidly reduces FeIII to FeII , solving the two major shortcomings in CDT of (1) insufficient content of H2 O2 in cancer cells, and (2) low catalytic efficiency of the Fenton reaction. Additionally, the . OH produced in the Fenton reaction induces oxidative stress for the tumor cells, promoting the occurrence of the "calcium overload" process, and thereby accelerating the death of tumor cells. Experimental results in vitro and in vivo showed that CaO2 @TA-FeIII nanoconjugates can effectively kill cancer cells and display an excellent tumor therapeutic effect. We believe that the CaO2 @TA-FeIII nanoconjugates are a promising new nano-platform for highly effective tumor treatment.
Collapse
Affiliation(s)
- Fei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Beibei Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jinfeng Yang
- Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
46
|
Bafna P, Sahoo RR, Hazarika K, Manoj M, Rungta S, Wakhlu A. Prevalence of liver fibrosis by Fibroscan in patients on long-term methotrexate therapy for rheumatoid arthritis. Clin Rheumatol 2021; 40:3605-3613. [PMID: 33686476 DOI: 10.1007/s10067-021-05678-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Data on the long-term use of methotrexate (MTX) causing liver fibrosis in patients with rheumatoid arthritis (RA) is sparse. Liver biopsy is the gold standard to assess fibrosis but is an invasive procedure. Transient elastography (TE) by Fibroscan is a noninvasive validated tool to detect and quantify liver fibrosis. The present study aimed to assess the prevalence of liver fibrosis by Fibroscan in patients with RA on long-term MTX therapy and its correlation with cumulative dose of MTX. METHODS This cross-sectional study included adult patients (≥ 18 years age) of RA who had been on MTX for ≥ 3 years. The patients' records were reviewed, and the cumulative dose of MTX was calculated. Liver fibrosis was assessed by TE method, and the cutoff value of 7.1 kPa (kilopascal) was considered abnormal (liver fibrosis). Spearman's rank test was used to assess the correlation between the cumulative dose of MTX and Fibroscan score. RESULTS Seventy-five patients were enrolled of which 69 were females (92%). The mean age was 47.2 ± 11.3 years. The mean body mass index and waist circumference were 24.8 ± 3.9 kg/m2 and 91.6 ± 9.9 cm, respectively. The median duration and cumulative dose of MTX were 336 weeks (interquartile range,144-912 weeks) and 6300 mg (interquartile range, 2400-22,000 mg), respectively. The mean liver stiffness was 5.22 ± 2.03 kPa. Twelve patients (16%) had Fibroscan score ≥ 7.1 kPa, of which 3 patients had severe liver stiffness (9.5 to 12.5 kPa) and one patient had liver stiffness in the range of cirrhosis (> 12.5 kPa). Fibroscan scores significantly correlated with cumulative dose of MTX (r= 0.30, p = 0.008). CONCLUSIONS Long-term MTX therapy in RA was associated with increased liver stiffness on Fibroscan. Key Points • Fibroscan is a useful tool for monitoring MTX-induced liver fibrosis. • Liver fibrosis as evidenced by increased liver stiffness on Fibroscan is prevalent among patients on long-term MTX therapy for RA.
Collapse
Affiliation(s)
- Prashant Bafna
- Department of Clinical Immunology and Rheumatology, King George's Medical University, Lucknow, 226003, India
| | - Rasmi Ranjan Sahoo
- Department of Clinical Immunology and Rheumatology, King George's Medical University, Lucknow, 226003, India
| | - Kasturi Hazarika
- Department of Clinical Immunology and Rheumatology, King George's Medical University, Lucknow, 226003, India
| | - Manesh Manoj
- Department of Clinical Immunology and Rheumatology, King George's Medical University, Lucknow, 226003, India
| | - Sumit Rungta
- Department of Medical Gastroenterology, King George's Medical University, Lucknow, 226003, India
| | - Anupam Wakhlu
- Department of Clinical Immunology and Rheumatology, King George's Medical University, Lucknow, 226003, India.
| |
Collapse
|
47
|
Zhu Y, Wang Q, Wang Y, Xu Y, Li J, Zhao S, Wang D, Ma Z, Yan F, Liu Y. Combined Transcriptomic and Metabolomic Analysis Reveals the Role of Phenylpropanoid Biosynthesis Pathway in the Salt Tolerance Process of Sophora alopecuroides. Int J Mol Sci 2021; 22:ijms22052399. [PMID: 33673678 PMCID: PMC7957753 DOI: 10.3390/ijms22052399] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Salt stress is the main abiotic stress that limits crop yield and agricultural development. Therefore, it is imperative to study the effects of salt stress on plants and the mechanisms through which plants respond to salt stress. In this study, we used transcriptomics and metabolomics to explore the effects of salt stress on Sophora alopecuroides. We found that salt stress incurred significant gene expression and metabolite changes at 0, 4, 24, 48, and 72 h. The integrated transcriptomic and metabolomic analysis revealed that the differentially expressed genes (DEGs) and differential metabolites (DMs) obtained in the phenylpropanoid biosynthesis pathway were significantly correlated under salt stress. Of these, 28 DEGs and seven DMs were involved in lignin synthesis and 23 DEGs and seven DMs were involved in flavonoid synthesis. Under salt stress, the expression of genes and metabolites related to lignin and flavonoid synthesis changed significantly. Lignin and flavonoids may participate in the removal of reactive oxygen species (ROS) in the root tissue of S. alopecuroides and reduced the damage caused under salt stress. Our research provides new ideas and genetic resources to study the mechanism of plant responses to salt stress and further improve the salt tolerance of plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fan Yan
- Correspondence: (F.Y.); (Y.L.)
| | | |
Collapse
|
48
|
Ludhiadch A, Sharma R, Muriki A, Munshi A. Role of Calcium Homeostasis in Ischemic Stroke: A Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:52-61. [DOI: 10.2174/1871527320666210212141232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/10/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022]
Abstract
:
Stroke is the second most common cause of death worldwide. It occurs due to the insufficient supply of oxygen-rich blood to the brain. It is a complex disease with multiple associated risk factors including smoking, alcoholism, age, sex, ethnicity, etc. Calcium ions are known to play a vital role in cell death pathways, which is a ubiquitous intracellular messenger during and immediately after an ischemic period. Disruption in normal calcium hemostasis is known to be a major initiator and activator of the ischemic cell death pathway. Under Ischemic stroke conditions, glutamate is released from the neurons and glia which further activates the N-methyl-D-aspartate (NMDA) receptor and triggers the rapid translocation of Ca2+ from extracellular to intracellular spaces in cerebral tissues and vice versa. Various studies indicated that Ca2+ could have harmful effects on neurons under acute ischemic conditions. Mitochondrial dysfunction also contributes to delayed neuronal death, and it was established decades ago that massive calcium accumulation triggers mitochondrial damage. Elevated Ca2+ levels cause mitochondria to swell and release their contents. As a result oxidative stress and mitochondrial calcium accumulation activate mitochondrial permeability transition and lead to depolarization-coupled production of reactive oxygen species. This association between calcium levels and mitochondrial death suggests that elevated calcium levels might have a role in the neurological outcome in ischemic stroke. Previous studies have also reported that elevated Ca2+ levels play a role in the determination of infarct size, outcome, and recurrence of ischemic stroke. The current review has been compiled to understand the multidimensional role of altered Ca2+ levels in the initiation and alteration of neuronal death after ischemic attack. The underlying mechanisms understood to date have also been discussed.
Collapse
Affiliation(s)
- Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda-151001, India
| | - Rashmi Sharma
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda-151001, India
| | - Aishwarya Muriki
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda-151001, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda-151001, India
| |
Collapse
|
49
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the major drivers for the rising trend in hepatocellular carcinoma (HCC). Over the past three decades, the incidence of both NAFLD and HCC have increased two- to threefold. It has been forecasted that the number of patients with NAFLD in the Unites States will reach 101 million by 2030; global increase is also foreseen. This trend will likely continue to translate into increased HCC in the Unites States and across the globe. In this chapter, we summarize the current evidence linking NAFLD, metabolic syndrome, particularly obesity and type 2 diabetes mellitus, and HCC. We describe the main molecular mechanisms connecting these metabolic perturbations and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Bubu A Banini
- Section of Digestive Diseases, Yale University, New Haven, CT, United States
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
50
|
Chen Y, Li R, Hu N, Yu C, Song H, Li Y, Dai Y, Guo Z, Li M, Zheng Y, Guo Z, Qi Y. Baihe Wuyao decoction ameliorates CCl 4-induced chronic liver injury and liver fibrosis in mice through blocking TGF-β1/Smad2/3 signaling, anti-inflammation and anti-oxidation effects. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113227. [PMID: 32783983 DOI: 10.1016/j.jep.2020.113227] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baihe Wuyao decoction (BWD), a prescription of Traditional Chinese Medicines, composed of Lilium brownii var. viridulum Baker.(Lilii Bulbus) and Lindera aggregata (Sims) Kosterm. (Linderae Radix), has been used to treat epigastric pain and superficial gastritis for hundreds of years in China. Recently, some compounds obtained from Lilii Bulbus and Linderae Radix had active effects of hepatic protection or liver fibrosis alleviation. Thus, we aim to evaluate the effects of BWD on treatment of chronic liver injury and liver fibrosis induced by carbon tetrachloride (CCl4) and to elucidate the possible molecular mechanism. MATERIALS AND METHODS Mice were treated with BWD (low, medium and high dose), diammonium glycyrrhizinate or vehicle by oral gavage once daily, simultaneously intraperitoneal injected with a single dose of CCl4 (1 μl/g body weight) twice a week for consecutive 6 weeks. Next, all mice were sacrificed after fasted 12 h, and serums and liver tissues were harvested for analysis. The hepatic injury was detected by serum biomarker assay, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT). The hepatic histology and collagen were illustrated by hematoxylin-eosin staining and Sirius red staining respectively. The antioxidant capacity of liver tissues was evaluated by the contents of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenization. The mRNA gene or protein expressions related to fibrosis, oxidative stress and inflammation molecules were performed by real-time quantitative PCR (RT-PCR) or Western-blot. RESULTS BWD exhibited a good hepatic protection with ameliorating liver histological changes, decreasing serum AST and ALT contents, and reducing hepatic fibrosis with stimulation ECMs (such as Collagen1 and Collagen3) degradation. BWD inhibited hepatic stellate cells (HSCs) activation, promoted matrix metalloproteinase-2 (MMP2), MMP9, and MMP12 while suppressing tissue inhibitors of matrix metalloproteinase-1 (TIMP1) expression, and blocked traditional fibrosis TGF-β1/Smad2/3 signal pathway. Moreover, BWD exhibited anti-inflammation effect proved by the reduction of liver Interleukin-1β (IL-1β), TNF-α, IL-11 mRNA levels and promoted anti-oxidation effects determined by inhibition of liver MDA and iNOS levels while promoting liver SOD and Mn-SOD. CONCLUSION BWD ameliorates CCl4-induced CLI and liver fibrosis which is correlated to its blocking TGF-β1/Smad2/3 signaling, anti-inflammation, and anti-oxidation effects. BWD, as a small traditional prescription, is a promising treatment for CLI and liver fibrosis through multiple pharmacological targets.
Collapse
Affiliation(s)
- Yajing Chen
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Ruofei Li
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Nan Hu
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Chunping Yu
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Hongyu Song
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yida Li
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yujiao Dai
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhao Guo
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Meng Li
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yi Zheng
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhiyi Guo
- Medical Research Center, North China University of Science and Technology, Tangshan, 063210, China
| | - Yajuan Qi
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China; Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, 063210, China; Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|