1
|
Guo Y, Verma B, Shrestha M, Marshak-Rothstein A, Gregory-Ksander M. Caspase-8-mediated inflammation but not apoptosis drives death of retinal ganglion cells and loss of visual function in glaucomaa. RESEARCH SQUARE 2024:rs.3.rs-4409426. [PMID: 38947028 PMCID: PMC11213175 DOI: 10.21203/rs.3.rs-4409426/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background- Glaucoma is a complex multifactorial disease where apoptosis and inflammation represent two key pathogenic mechanisms. However, the relative contribution of apoptosis versus inflammation in axon degeneration and death of retinal ganglion cells (RGCs) is not well understood. In glaucoma, caspase-8 is linked to RGC apoptosis, as well as glial activation and neuroinflammation. To uncouple these two pathways and determine the extent to which caspase-8-mediated inflammation and/or apoptosis contributes to the death of RGCs, we used the caspase-8 D387A mutant mouse (Casp8 DA/DA ) in which a point mutation in the auto-cleavage site blocks caspase-8-mediated apoptosis but does not block caspase-8-mediated inflammation. Methods- Intracameral injection of magnetic microbeads was used to elevate the intraocular pressure (IOP) in wild-type, Fas deficient Faslpr, and Casp8 DA/DA mice. IOP was monitored by rebound tonometry. Two weeks post microbead injection, retinas were collected for microglia activation analysis. Five weeks post microbead injection, visual acuity and RGC function were assessed by optometer reflex (OMR) and pattern electroretinogram (pERG), respectively. Retina and optic nerves were processed for RGC and axon quantification. Two- and five-weeks post microbead injection, expression of the necrosis marker, RIPK3, was assessed by qPCR. Results- Wild-type, Faslpr, and Casp8 DA/DA mice showed similar IOP elevation as compared to saline controls. A significant reduction in both visual acuity and pERG that correlated with a significant loss of RGCs and axons was observed in wild-type but not in Faslpr mice. The Casp8 DA/DA mice displayed a significant reduction in visual acuity and pERG amplitude and loss of RGCs and axons similar to that in wild-type mice. Immunostaining revealed equal numbers of activated microglia, double positive for P2ry12 and IB4, in the retinas from microbead-injected wild-type and Casp8 DA/DA mutant mice. qPCR analysis revealed no induction of RIPK3 in wild-type or Casp8 DA/DA mice at two- or five-weeks post microbead injection. Conclusions- Our results demonstrate that caspase-8-mediated extrinsic apoptosis is not involved in the death of RGCs in the microbead-induced mouse model of glaucoma implicating caspase-8-mediated inflammation, but not apoptosis, as the driving force in glaucoma progression. Taken together, these results identify the caspase-8-mediated inflammatory pathway as a potential target for neuroprotection in glaucoma.
Collapse
Affiliation(s)
- Yinjie Guo
- Xiangya Hospital Central South University
| | - Bhupender Verma
- Schepens Eye Research Institute of Massachusetts Eye and Ear
| | - Maleeka Shrestha
- Harvard University HSPH: Harvard University T H Chan School of Public Health
| | | | | |
Collapse
|
2
|
Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ, Ramírez JM. Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci 2024; 18:1354569. [PMID: 38333055 PMCID: PMC10850296 DOI: 10.3389/fncel.2024.1354569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Glaucoma is a neurodegenerative disease of the retina characterized by the irreversible loss of retinal ganglion cells (RGCs) leading to visual loss. Degeneration of RGCs and loss of their axons, as well as damage and remodeling of the lamina cribrosa are the main events in the pathogenesis of glaucoma. Different molecular pathways are involved in RGC death, which are triggered and exacerbated as a consequence of a number of risk factors such as elevated intraocular pressure (IOP), age, ocular biomechanics, or low ocular perfusion pressure. Increased IOP is one of the most important risk factors associated with this pathology and the only one for which treatment is currently available, nevertheless, on many cases the progression of the disease continues, despite IOP control. Thus, the IOP elevation is not the only trigger of glaucomatous damage, showing the evidence that other factors can induce RGCs death in this pathology, would be involved in the advance of glaucomatous neurodegeneration. The underlying mechanisms driving the neurodegenerative process in glaucoma include ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. In glaucoma, like as other neurodegenerative disorders, the immune system is involved and immunoregulation is conducted mainly by glial cells, microglia, astrocytes, and Müller cells. The increase in IOP produces the activation of glial cells in the retinal tissue. Chronic activation of glial cells in glaucoma may provoke a proinflammatory state at the retinal level inducing blood retinal barrier disruption and RGCs death. The modulation of the immune response in glaucoma as well as the activation of glial cells constitute an interesting new approach in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jose A. Fernández-Albarral
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José A. Matamoros
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Strong TA, Esquivel J, Wang Q, Ledon PJ, Wang H, Gaidosh G, Tse D, Pelaez D. Activation of multiple Eph receptors on neuronal membranes correlates with the onset of optic neuropathy. EYE AND VISION (LONDON, ENGLAND) 2023; 10:42. [PMID: 37779186 PMCID: PMC10544557 DOI: 10.1186/s40662-023-00359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Optic neuropathy is a major cause of irreversible blindness, yet the molecular determinants that contribute to neuronal demise have not been fully elucidated. Several studies have identified 'ephrin signaling' as one of the most dysregulated pathways in the early pathophysiology of optic neuropathy with varied etiologies. Developmentally, gradients in ephrin signaling coordinate retinotopic mapping via repulsive modulation of cytoskeletal dynamics in neuronal membranes. Little is known about the role ephrin signaling plays in the post-natal visual system and its correlation with the onset of optic neuropathy. METHODS Postnatal mouse retinas were collected for mass spectrometry analysis for erythropoietin-producing human hepatocellular (Eph) receptors. Optic nerve crush (ONC) model was employed to induce optic neuropathy, and proteomic changes during the acute phase of neuropathic onset were analyzed. Confocal and super-resolution microscopy determined the cellular localization of activated Eph receptors after ONC injury. Eph receptor inhibitors assessed the neuroprotective effect of ephrin signaling modulation. RESULTS Mass spectrometry revealed expression of seven Eph receptors (EphA2, A4, A5, B1, B2, B3, and B6) in postnatal mouse retinal tissue. Immunoblotting analysis indicated a significant increase in phosphorylation of these Eph receptors 48 h after ONC. Confocal microscopy demonstrated the presence of both subclasses of Eph receptors within the retina. Stochastic optical reconstruction microscopy (STORM) super-resolution imaging combined with optimal transport colocalization analysis revealed a significant co-localization of activated Eph receptors with injured neuronal cells, compared to uninjured neuronal and/or injured glial cells, 48 h post-ONC. Eph receptor inhibitors displayed notable neuroprotective effects for retinal ganglion cells (RGCs) after six days of ONC injury. CONCLUSIONS Our findings demonstrate the functional presence of diverse Eph receptors in the postnatal mammalian retina, capable of modulating multiple biological processes. Pan-Eph receptor activation contributes to the onset of neuropathy in optic neuropathies, with preferential activation of Eph receptors on neuronal processes in the inner retina following optic nerve injury. Notably, Eph receptor activation precedes neuronal loss. We observed a neuroprotective effect on RGCs upon inhibiting Eph receptors. Our study highlights the importance of investigating this repulsive pathway in early optic neuropathies and provides a comprehensive characterization of the receptors present in the developed retina of mice, relevant to both homeostasis and disease processes.
Collapse
Affiliation(s)
- Thomas A Strong
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, USA
| | - Juan Esquivel
- Department of Physics, University of Florida College of Liberal Arts and Sciences, Gainesville, FL, USA
| | - Qikai Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
| | - Paul J Ledon
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hua Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
| | - Gabriel Gaidosh
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David Tse
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
| | - Daniel Pelaez
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA.
- Department of Biomedical Engineering, University of Miami College of Engineering, University of Miami, Coral Gables, FL, USA.
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
4
|
Mazumder AG, Julé AM, Sun D. Astrocytes of the optic nerve exhibit a region-specific and temporally distinct response to elevated intraocular pressure. Mol Neurodegener 2023; 18:68. [PMID: 37759301 PMCID: PMC10523752 DOI: 10.1186/s13024-023-00658-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The optic nerve is an important tissue in glaucoma and the unmyelinated nerve head region remains an important site of many early neurodegenerative changes. In both humans and mice, astrocytes constitute the major glial cell type in the region, and in glaucoma they become reactive, influencing the optic nerve head (ONH) microenvironment and disease outcome. Despite recognizing their importance in the progression of the disease, the reactive response of optic nerve head astrocytes remains poorly understood. METHODS To determine the global reactive response of ONH astrocytes in glaucoma we studied their transcriptional response to an elevation in IOP induced by the microbead occlusion model. To specifically isolate astrocyte mRNA in vivo from complex tissues, we used the ribotag method to genetically tag ribosomes in astrocytes, restricting analysis to astrocytes and enabling purification of astrocyte-associated mRNA throughout the entire cell, including the fine processes, for bulk RNA-sequencing. We also assessed the response of astrocytes in the more distal myelinated optic nerve proper (ONP) as glaucomatous changes manifest differently between the two regions. RESULTS Astrocytes of the optic nerve exhibited a region-specific and temporally distinct response. Surprisingly, ONH astrocytes showed very few early transcriptional changes and ONP astrocytes demonstrated substantially larger changes over the course of the experimental period. Energy metabolism, particularly oxidative phosphorylation and mitochondrial protein translation emerged as highly upregulated processes in both ONH and ONP astrocytes, with the former showing additional upregulation in antioxidative capacity and proteolysis. Interestingly, optic nerve astrocytes demonstrated a limited neuroinflammatory response, even when challenged with a more severe elevation in IOP. Lastly, there were a greater number of downregulated processes in both astrocyte populations compared to upregulated processes. CONCLUSION Our findings demonstrate an essential role for energy metabolism in the response of optic nerve astrocytes to elevated IOP, and contrary to expectations, neuroinflammation had a limited overall role. The transcriptional response profile is supportive of the notion that optic nerve astrocytes have a beneficial role in glaucoma. These previously uncharacterized transcriptional response of optic nerve astrocytes to injury reveal their functional diversity and a greater heterogeneity than previously appreciated.
Collapse
Affiliation(s)
- Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Amélie M Julé
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
5
|
Narta K, Teltumbade MR, Vishal M, Sadaf S, Faruq M, Jama H, Waseem N, Rao A, Sen A, Ray K, Mukhopadhyay A. Whole Exome Sequencing Reveals Novel Candidate Genes in Familial Forms of Glaucomatous Neurodegeneration. Genes (Basel) 2023; 14:495. [PMID: 36833422 PMCID: PMC9957298 DOI: 10.3390/genes14020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glaucoma is the largest cause of irreversible blindness with a multifactorial genetic etiology. This study explores novel genes and gene networks in familial forms of primary open angle glaucoma (POAG) and primary angle closure glaucoma (PACG) to identify rare mutations with high penetrance. Thirty-one samples from nine MYOC-negative families (five POAG and four PACG) underwent whole-exome sequencing and analysis. A set of prioritized genes and variations were screened in an independent validation cohort of 1536 samples and the whole-exome data from 20 sporadic patients. The expression profiles of the candidate genes were analyzed in 17 publicly available expression datasets from ocular tissues and single cells. Rare, deleterious SNVs in AQP5, SRFBP1, CDH6 and FOXM1 from POAG families and in ACACB, RGL3 and LAMA2 from PACG families were found exclusively in glaucoma cases. AQP5, SRFBP1 and CDH6 also revealed significant altered expression in glaucoma in expression datasets. Single-cell expression analysis revealed enrichment of identified candidate genes in retinal ganglion cells and corneal epithelial cells in POAG; whereas for PACG families, retinal ganglion cells and Schwalbe's Line showed enriched expression. Through an unbiased exome-wide search followed by validation, we identified novel candidate genes for familial cases of POAG and PACG. The SRFBP1 gene found in a POAG family is located within the GLC1M locus on Chr5q. Pathway analysis of candidate genes revealed enrichment of extracellular matrix organization in both POAG and PACG.
Collapse
Affiliation(s)
- Kiran Narta
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manoj Ramesh Teltumbade
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mansi Vishal
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samreen Sadaf
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
| | - Mohd. Faruq
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hodan Jama
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Naushin Waseem
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Aparna Rao
- L. V. Prasad Eye Institute, Bhubaneswar 751024, India
| | | | - Kunal Ray
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Arijit Mukhopadhyay
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Translational Medicine Unit, Biomedical Research & Innovation Centre, University of Salford, Salford M5 4WT, UK
| |
Collapse
|
6
|
Pappenhagen N, Yin E, Morgan AB, Kiehlbauch CC, Inman DM. Stretch stress propels glutamine dependency and glycolysis in optic nerve head astrocytes. Front Neurosci 2022; 16:957034. [PMID: 35992925 PMCID: PMC9389405 DOI: 10.3389/fnins.2022.957034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
Glaucoma is an optic neuropathy that leads to irreversible blindness, the most common subtype of which is typified by a chronic increase in intraocular pressure that promotes a stretch injury to the optic nerve head. In rodents, the predominant glial cell in this region is the optic nerve head astrocyte that provides axons with metabolic support, likely by releasing lactate produced through astrocytic glycolysis. Our primary hypothesis is that stretching of the optic nerve head astrocytes alters their metabolic activity, thereby advancing glaucoma-associated degeneration by compromising the metabolic support that the astrocytes provide to the axons in the optic nerve head. Metabolic changes in optic nerve head astrocytes were investigated by subjecting them to 24 h of 12% biaxial stretch at 1 Hz then measuring the cells’ bioenergetics using a Seahorse XFe24 Analyzer. We observed significant glycolytic and respiratory activity differences between control and stretched cells, including greater extracellular acidification and lower ATP-linked respiration, yet higher maximal respiration and spare capacity in stretched optic nerve head astrocytes. We also determined that both control and stretched optic nerve head astrocytes displayed a dependency for glutamine over pyruvate or long-chain fatty acids for fuel. The increased use of glycolysis as indicated by the extracellular acidification rate, concomitant with a dependency on glutamine, suggests the need to replenish NAD + for continued glycolysis and provision of carbon for TCA cycle intermediates. Stretch alters optic nerve astrocyte bioenergetics to support an increased demand for internal and external energy.
Collapse
Affiliation(s)
- Nathaniel Pappenhagen
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Eric Yin
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Autumn B. Morgan
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Charles C. Kiehlbauch
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Denise M. Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
- *Correspondence: Denise M. Inman,
| |
Collapse
|
7
|
Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res 2022; 87:100998. [PMID: 34348167 PMCID: PMC8803988 DOI: 10.1016/j.preteyeres.2021.100998] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Neuroinflammation relying on the inflammatory responses of glial cells has emerged as an impactful component of the multifactorial etiology of neurodegeneration in glaucoma. It has become increasingly evident that despite early adaptive and reparative features of glial responses, prolonged reactivity of the resident glia, along with the peripheral immune cells, create widespread toxicity to retinal ganglion cell (RGC) axons, somas, and synapses. As much as the synchronized responses of astrocytes and microglia to glaucoma-related stress or neuron injury, their bi-directional interactions are critical to build and amplify neuroinflammation and to dictate the neurodegenerative outcome. Although distinct molecular programs regulate somatic and axonal degeneration in glaucoma, inhibition of neurodegenerative inflammation can provide a broadly beneficial treatment strategy to rescue RGC integrity and function. Since inflammatory toxicity and mitochondrial dysfunction are converging etiological paths that can boost each other and feed into a vicious cycle, anti-inflammatory treatments may also offer a multi-target potential. This review presents an overview of the current knowledge on neuroinflammation in glaucoma with particular emphasis on the cell-intrinsic and cell-extrinsic factors involved in the reciprocal regulation of glial responses, the interdependence between inflammatory and mitochondrial routes of neurodegeneration, and the research aspects inspiring for prospective immunomodulatory treatments. With the advent of powerful technologies, ongoing research on molecular and functional characteristics of glial responses is expected to accumulate more comprehensive and complementary information and to rapidly move the field forward to safe and effective modulation of the glial pro-inflammatory activities, while restoring or augmenting the glial immune-regulatory and neurosupport functions.
Collapse
|
8
|
Biomarkers for primary open-angle glaucoma progression. Exp Eye Res 2022; 219:109025. [DOI: 10.1016/j.exer.2022.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/16/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
|
9
|
Immune Responses in the Glaucomatous Retina: Regulation and Dynamics. Cells 2021; 10:cells10081973. [PMID: 34440742 PMCID: PMC8391899 DOI: 10.3390/cells10081973] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Glaucoma is a multifactorial disease resulting in progressive vision loss due to retinal ganglion cell (RGC) dysfunction and death. Early events in the pathobiology of the disease include oxidative, metabolic, or mechanical stress that acts upon RGC, causing these to rapidly release danger signals, including extracellular ATP, resulting in micro- and macroglial activation and neuroinflammation. Danger signaling also leads to the formation of inflammasomes in the retina that enable maturation of proinflammatory cytokines such IL-1β and IL-18. Chronic neuroinflammation can have directly damaging effects on RGC, but it also creates a proinflammatory environment and compromises the immune privilege of the retina. In particular, continuous synthesis of proinflammatory mediators such as TNFα, IL-1β, and anaphylatoxins weakens the blood–retina barrier and recruits or activates T-cells. Recent data have demonstrated that adaptive immune responses strongly exacerbate RGC loss in animal models of the disease as T-cells appear to target heat shock proteins displayed on the surface of stressed RGC to cause their apoptotic death. It is possible that dysregulation of these immune responses contributes to the continued loss of RGC in some patients.
Collapse
|
10
|
Decorin-An Antagonist of TGF-β in Astrocytes of the Optic Nerve. Int J Mol Sci 2021; 22:ijms22147660. [PMID: 34299278 PMCID: PMC8306213 DOI: 10.3390/ijms22147660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
During the pathogenesis of glaucoma, optic nerve (ON) axons become continuously damaged at the optic nerve head (ONH). This often is associated with reactive astrocytes and increased transforming growth factor (TGF-β) 2 levels. In this study we tested the hypothesis if the presence or absence of decorin (DCN), a small leucine-rich proteoglycan and a natural inhibitor of several members of the TGF family, would affect the expression of the TGF-βs and connective tissue growth factor (CTGF/CCN2) in human ONH astrocytes and murine ON astrocytes. We found that DCN is present in the mouse ON and is expressed by human ONH and murine ON astrocytes. DCN expression and synthesis was significantly reduced after 24 h treatment with 3 nM CTGF/CCN2, while treatment with 4 pM TGF-β2 only reduced expression of DCN significantly. Conversely, DCN treatment significantly reduced the expression of TGF-β1, TGF-β2 and CTGF/CCN2 vis-a-vis untreated controls. Furthermore, DCN treatment significantly reduced expression of fibronectin (FN) and collagen IV (COL IV). Notably, combined treatment with DCN and triciribine, a small molecule inhibitor of protein kinase B (AKT), attenuated effects of DCN on CTGF/CCN2, TGF-β1, and TGF-β2 mRNA expression. We conclude (1) that DCN is an important regulator of TGF-β and CTGF/CCN2 expression in astrocytes of the ON and ONH, (2) that DCN thereby regulates the expression of extracellular matrix (ECM) components and (3) that DCN executes its negative regulatory effects on TGF-β and CTGF/CCN2 via the pAKT/AKT signaling pathway in ON astrocytes.
Collapse
|
11
|
Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells 2021; 10:cells10061372. [PMID: 34199494 PMCID: PMC8228726 DOI: 10.3390/cells10061372] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cell (RGC) somas, degeneration of axons, and loss of synapses at dendrites and axon terminals. Glaucomatous neurodegeneration encompasses multiple triggers, multiple cell types, and multiple molecular pathways through the etiological paths with biomechanical, vascular, metabolic, oxidative, and inflammatory components. As much as intrinsic responses of RGCs themselves, divergent responses and intricate interactions of the surrounding glia also play decisive roles for the cell fate. Seen from a broad perspective, multitarget treatment strategies have a compelling pathophysiological basis to more efficiently manipulate multiple pathogenic processes at multiple injury sites in such a multifactorial neurodegenerative disease. Despite distinct molecular programs for somatic and axonal degeneration, mitochondrial dysfunction and glia-driven neuroinflammation present interdependent processes with widespread impacts in the glaucomatous retina and optic nerve. Since dysfunctional mitochondria stimulate inflammatory responses and proinflammatory mediators impair mitochondria, mitochondrial restoration may be immunomodulatory, while anti-inflammatory treatments protect mitochondria. Manipulation of these converging routes may thus allow a unified treatment strategy to protect RGC axons, somas, and synapses. This review presents an overview of recent research advancements with emphasis on potential treatment targets to achieve the best treatment efficacy to preserve visual function in glaucoma.
Collapse
|
12
|
Duarte JN. Neuroinflammatory Mechanisms of Mitochondrial Dysfunction and Neurodegeneration in Glaucoma. J Ophthalmol 2021; 2021:4581909. [PMID: 33953963 PMCID: PMC8064803 DOI: 10.1155/2021/4581909] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/29/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The exact mechanism of retinal ganglion cell loss in the pathogenesis of glaucoma is yet to be understood. Mitochondrial damage-associated molecular patterns (DAMPs) resulting from mitochondrial dysfunction have been linked to Leber's hereditary optic neuropathy and autosomal dominant optic atrophy, as well as to brain neurodegenerative diseases. Recent evidence shows that, in conditions where mitochondria are damaged, a sustained inflammatory response and downstream pathological inflammation may ensue. Mitochondrial damage has been linked to the accumulation of age-related mitochondrial DNA mutations and mitochondrial dysfunction, possibly through aberrant reactive oxygen species production and defective mitophagy. The present review focuses on how mitochondrial dysfunction may overwhelm the ability of neurons and glial cells to adequately maintain homeostasis and how mitochondria-derived DAMPs trigger the immune system and induce neurodegeneration.
Collapse
Affiliation(s)
- Joao N. Duarte
- Neuroinflammation Unit, Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Vera-González J, Cantone M, Blume C. Network and Systems Biology Approaches in Glial Cells. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
14
|
Yang X, Zeng Q, Barış M, Tezel G. Transgenic inhibition of astroglial NF-κB restrains the neuroinflammatory and neurodegenerative outcomes of experimental mouse glaucoma. J Neuroinflammation 2020; 17:252. [PMID: 32859212 PMCID: PMC7456390 DOI: 10.1186/s12974-020-01930-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Glia-driven neuroinflammation promotes neuron injury in glaucoma that is a chronic neurodegenerative disease of the optic nerve and a leading cause of irreversible blindness. Although therapeutic modulation of neuroinflammation is increasingly viewed as a logical strategy to avoid inflammatory neurotoxicity in glaucoma, current understanding of the molecular regulation of neuroinflammation is incomplete, and the molecular targets for immunomodulation remains unknown. Growing datasets pointed to nuclear factor-kappaB (NF-κB), a key transcriptional activator of inflammation, which was identified to be most affected in glaucomatous astroglia. Using a cell type-specific experimental approach, this study aimed to determine the value of astroglial NF-κB as a potential treatment target for immunomodulation in experimental mouse glaucoma. METHODS Neuroinflammatory and neurodegenerative outcomes of experimental glaucoma were comparatively analyzed in mice with or without cre/lox-based conditional deletion of astroglial IκKβ, which is the main activating kinase involved in IκB degradation through the canonical pathway of NF-κB activation. Glial responses and the inflammatory status of the retina and optic nerve were analyzed by cell morphology and cytokine profiling, and neuron structure and function were analyzed by counting retinal ganglion cell (RGC) axons and somas and recording pattern electroretinography (PERG) responses. RESULTS Analysis of glial inflammatory responses showed immunomodulatory outcomes of the conditional transgenic deletion of IκKβ in astroglia. Various pro-inflammatory cytokines known to be transcriptional targets for NF-κB exhibited decreased production in IκKβ-deleted astroglia, which included TNF-α that can induce RGC apoptosis and axon degeneration during glaucomatous neurodegeneration. Indeed, transgenic modulation of inflammatory responses by astroglial IκKβ deletion reduced neurodegeneration at different neuronal compartments, including both RGC axons and somas, and protected PERG responses. CONCLUSIONS The findings of this study support a key role for astroglial NF-κB in neuroinflammatory and neurodegenerative outcomes of experimental glaucoma and the potential of this transcriptional regulator pathway as a glial treatment target to provide neuroprotection through immunomodulation. By pointing to a potential treatment strategy targeting the astroglia, these experimental findings are promising for future clinical translation through transgenic applications to improve the treatment of this blinding disease.
Collapse
Affiliation(s)
- Xiangjun Yang
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, Edward S. Harkness Eye Institute, 635 West 165th Street, New York, NY, 10032, USA
| | - Qun Zeng
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, Edward S. Harkness Eye Institute, 635 West 165th Street, New York, NY, 10032, USA
| | - Mine Barış
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, Edward S. Harkness Eye Institute, 635 West 165th Street, New York, NY, 10032, USA
| | - Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, Edward S. Harkness Eye Institute, 635 West 165th Street, New York, NY, 10032, USA.
| |
Collapse
|
15
|
Ghosh AK, Rao VR, Wisniewski VJ, Zigrossi AD, Floss J, Koulen P, Stubbs EB, Kaja S. Differential Activation of Glioprotective Intracellular Signaling Pathways in Primary Optic Nerve Head Astrocytes after Treatment with Different Classes of Antioxidants. Antioxidants (Basel) 2020; 9:antiox9040324. [PMID: 32316287 PMCID: PMC7222350 DOI: 10.3390/antiox9040324] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/03/2023] Open
Abstract
Optic nerve head astrocytes are the specialized glia cells that provide structural and trophic support to the optic nerve head. In response to cellular injury, optic nerve head astrocytes undergo reactive astrocytosis, the process of cellular activation associated with cytoskeletal remodeling, increases in the rate of proliferation and motility, and the generation of Reactive Oxygen Species. Antioxidant intervention has previously been proposed as a therapeutic approach for glaucomatous optic neuropathy, however, little is known regarding the response of optic nerve head astrocytes to antioxidants under physiological versus pathological conditions. The goal of this study was to determine the effects of three different antioxidants, manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin (Mn-TM-2-PyP), resveratrol and xanthohumol in primary optic nerve head astrocytes. Effects on the expression of the master regulator nuclear factor erythroid 2-related factor 2 (Nrf2), the antioxidant enzyme, manganese-dependent superoxide dismutase 2 (SOD2), and the pro-oxidant enzyme, nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), were determined by quantitative immunoblotting. Furthermore, efficacy in preventing chemically and reactive astrocytosis-induced increases in cellular oxidative stress was quantified using cell viability assays. The results were compared to the effects of the prototypic antioxidant, Trolox. Antioxidants elicited highly differential changes in the expression levels of Nrf2, SOD2, and NOX4. Notably, Mn-TM-2-PyP increased SOD2 expression eight-fold, while resveratrol increased Nrf2 expression three-fold. In contrast, xanthohumol exerted no statistically significant changes in expression levels. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) uptake and lactate dehydrogenase (LDH) release assays were performed to assess cell viability after chemically and reactive astrocytosis-induced oxidative stress. Mn-TM-2-PyP exerted the most potent glioprotection by fully preventing the loss of cell viability, whereas resveratrol and xanthohumol partially restored cell viability. Our data provide the first evidence for a well-developed antioxidant defense system in optic nerve head astrocytes, which can be pharmacologically targeted by different classes of antioxidants.
Collapse
Affiliation(s)
- Anita K. Ghosh
- Graduate Program in Biochemistry and Molecular Biology, Loyola University Chicago, Health Sciences Campus, Maywood, IL 60153, USA
- Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL 60141, USA
| | - Vidhya R. Rao
- Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL 60141, USA
- Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Victoria J. Wisniewski
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Alexandra D. Zigrossi
- Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Jamie Floss
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Peter Koulen
- Department of Ophthalmology and Biomedical Sciences, Vision Research Center, University of Missouri—Kansas City, School of Medicine, Vision Research Center, Kansas City, MO 64108, USA
| | - Evan B Stubbs
- Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL 60141, USA
- Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Simon Kaja
- Research Service, Edward Hines Jr. Veterans Administration Hospital, Hines, IL 60141, USA
- Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
- Correspondence: ; Tel.: +1-708-216-9223
| |
Collapse
|
16
|
Glaucoma: A Degenerative Optic Neuropathy Related to Neuroinflammation? Cells 2020; 9:cells9030535. [PMID: 32106630 PMCID: PMC7140467 DOI: 10.3390/cells9030535] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/20/2022] Open
Abstract
Glaucoma is one of the leading causes of irreversible blindness in the world and remains a major public health problem. To date, incomplete knowledge of this disease’s pathophysiology has resulted in current therapies (pharmaceutical or surgical) unfortunately having only a slowing effect on disease progression. Recent research suggests that glaucomatous optic neuropathy is a disease that shares common neuroinflammatory mechanisms with “classical” neurodegenerative pathologies. In addition to the death of retinal ganglion cells (RGCs), neuroinflammation appears to be a key element in the progression and spread of this disease. Indeed, early reactivity of glial cells has been observed in the retina, but also in the central visual pathways of glaucoma patients and in preclinical models of ocular hypertension. Moreover, neuronal lesions are not limited to retinal structure, but also occur in central visual pathways. This review summarizes and puts into perspective the experimental and clinical data obtained to date to highlight the need to develop neuroprotective and immunomodulatory therapies to prevent blindness in glaucoma patients.
Collapse
|
17
|
Guo L, Davis BM, Ravindran N, Galvao J, Kapoor N, Haamedi N, Shamsher E, Luong V, Fico E, Cordeiro MF. Topical recombinant human Nerve growth factor (rh-NGF) is neuroprotective to retinal ganglion cells by targeting secondary degeneration. Sci Rep 2020; 10:3375. [PMID: 32099056 PMCID: PMC7042238 DOI: 10.1038/s41598-020-60427-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Optic neuropathy is a major cause of irreversible blindness worldwide, and no effective treatment is currently available. Secondary degeneration is believed to be the major contributor to retinal ganglion cell (RGC) death, the endpoint of optic neuropathy. Partial optic nerve transection (pONT) is an established model of optic neuropathy. Although the mechanisms of primary and secondary degeneration have been delineated in this model, until now how this is influenced by therapy is not well-understood. In this article, we describe a clinically translatable topical, neuroprotective treatment (recombinant human nerve growth factor, rh-NGF) predominantly targeting secondary degeneration in a pONT rat model. Topical application of rh-NGF twice daily for 3 weeks significantly improves RGC survival as shown by reduced RGC apoptosis in vivo and increased RGC population in the inferior retina, which is predominantly affected in this model by secondary degeneration. Topical rh-NGF also promotes greater axonal survival and inhibits astrocyte activity in the optic nerve. Collectively, these results suggest that topical rh-NGF exhibits neuroprotective effects on retinal neurons via influencing secondary degeneration process. As topical rh-NGF is already involved in early clinical trials, this highlights its potential in multiple indications in patients, including those affected by glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Li Guo
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Benjamin M Davis
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Nivedita Ravindran
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Joana Galvao
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Neel Kapoor
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Nasrin Haamedi
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ehtesham Shamsher
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Vy Luong
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Elena Fico
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - M Francesca Cordeiro
- Glaucoma & Retinal Neurodegeneration Research Group, Institute of Ophthalmology, University College London, London, United Kingdom. .,Western Eye Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
18
|
Peptide microarray of pediatric acute myeloid leukemia is related to relapse and reveals involvement of DNA damage response and repair. Oncotarget 2019; 10:4679-4690. [PMID: 31384395 PMCID: PMC6659796 DOI: 10.18632/oncotarget.27086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/29/2019] [Indexed: 01/18/2023] Open
Abstract
The majority of acute myeloid leukemia (AML) patients suffer from relapse and the exact etiology of AML remains unclear. The aim of this study was to gain comprehensive insights into the activity of signaling pathways in AML. In this study, using a high-throughput PepChip™ Kinomics microarray system, pediatric AML samples were analyzed to gain insights of active signal transduction pathway. Unsupervised hierarchical cluster analysis separated the AML blast profiles into two clusters. These two clusters were independent of patient characteristics, whereas the cumulative incidence of relapse (CIR) was significantly higher in the patients belonging to cluster-2. In addition, cluster-2 samples showed to be significantly less sensitive to various chemotherapeutic drugs. The activated peptides in cluster-1 and cluster-2 reflected the activity of cell cycle regulation, cell proliferation, cell differentiation, apoptosis, PI3K/AKT, MAPK, metabolism regulation, transcription factors and GPCRs signaling pathways. The difference between two clusters might be explained by the higher cell cycle arrest response in cluster-1 patients and higher DNA repair mechanism in cluster-2 patients. In conclusion, our study identifies different signaling profiles in pediatric AML in relation with CIR involving DNA damage response and repair.
Collapse
|
19
|
Bariş M, Tezel G. Immunomodulation as a Neuroprotective Strategy for Glaucoma Treatment. CURRENT OPHTHALMOLOGY REPORTS 2019; 7:160-169. [PMID: 31360618 PMCID: PMC6662642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW This review aims to highlight the current knowledge about inflammatory mechanisms of neurodegeneration in glaucoma with emphasis on potential immunomodulation strategies. RECENT FINDINGS Glaucomatous retina and optic nerve present multiple evidences of inflammatory responses of astroglia, microglia, and blood-born immune cells. Although adaptive/protective responses of resident or systemic immune cells can support neurons and promote tissue repair mechanisms after injurious insults, prolonged inflammatory processes can also produce neurotoxic mediators. Treatments targeting these neurodestructive outcomes may restore immune homeostasis and protect neurons from inflammatory injury. Due to widespread and chronic nature of neuroinflammation in glaucoma, immunomodulation offers a treatment strategy to protect different neuronal compartments of RGCs during the chronic and asynchronous course of neurodegeneration. Uncovering of distinct molecular responses and interactions of different immune cells that determine the neuroinflammatory phenotype and participate in neurodegenerative outcomes will be critical to develop effective strategies for immunomodulation in glaucoma. SUMMARY Neuroinflammation has increasingly been recognized to play an important role in glaucomatous neurodegeneration, and its modulation appears to be a promising treatment strategy for neuroprotection.
Collapse
Affiliation(s)
- Mine Bariş
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, NY
| | - Gülgün Tezel
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, NY
| |
Collapse
|
20
|
Pronin A, Pham D, An W, Dvoriantchikova G, Reshetnikova G, Qiao J, Kozhekbaeva Z, Reiser AE, Slepak VZ, Shestopalov VI. Inflammasome Activation Induces Pyroptosis in the Retina Exposed to Ocular Hypertension Injury. Front Mol Neurosci 2019; 12:36. [PMID: 30930743 PMCID: PMC6425693 DOI: 10.3389/fnmol.2019.00036] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
Mechanical stress and hypoxia during episodes of ocular hypertension (OHT) trigger glial activation and neuroinflammation in the retina. Glial activation and release of pro-inflammatory cytokines TNFα and IL-1β, complement, and other danger factors was shown to facilitate injury and loss of retinal ganglion cells (RGCs) that send visual information to the brain. However, cellular events linking neuroinflammation and neurotoxicity remain poorly characterized. Several pro-inflammatory and danger signaling pathways, including P2X7 receptors and Pannexin1 (Panx1) channels, are known to activate inflammasome caspases that proteolytically activate gasdermin D channel-formation to export IL-1 cytokines and/or induce pyroptosis. In this work, we used molecular and genetic approaches to map and characterize inflammasome complexes and detect pyroptosis in the OHT-injured retina. Acute activation of distinct inflammasome complexes containing NLRP1, NLRP3 and Aim2 sensor proteins was detected in RGCs, retinal astrocytes and Muller glia of the OHT-challenged retina. Inflammasome-mediated activation of caspases-1 and release of mature IL-1β were detected within 6 h and peaked at 12–24 h after OHT injury. These coincided with the induction of pyroptotic pore protein gasdermin D in neurons and glia in the ganglion cell layer (GCL) and inner nuclear layer (INL). The OHT-induced release of cytokines and RGC death were significantly decreased in the retinas of Casp1−/−Casp4(11)del, Panx1−/− and in Wild-type (WT) mice treated with the Panx1 inhibitor probenecid. Our results showed a complex spatio-temporal pattern of innate immune responses in the retina. Furthermore, they indicate an active contribution of neuronal NLRP1/NLRP3 inflammasomes and the pro-pyroptotic gasdermin D pathway to pathophysiology of the OHT injury. These results support the feasibility of inflammasome modulation for neuroprotection in OHT-injured retinas.
Collapse
Affiliation(s)
- Alexey Pronin
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dien Pham
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Weijun An
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Galina Reshetnikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jianzhong Qiao
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhanna Kozhekbaeva
- Department of Medicine, The Division of Hematology and Oncology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ashlyn E Reiser
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Valery I Shestopalov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
21
|
YANG YJ, XIANG Y, TIAN Y, XIA F, ZHOU YS, PENG J, PENG QH. Hub Genes of Astrocyte Involved in Glaucoma with Ocular Hypertension by Integrated Bioinformatics Analysis. DIGITAL CHINESE MEDICINE 2018. [DOI: 10.1016/s2589-3777(19)30053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
22
|
Gharahkhani P, Burdon KP, Cooke Bailey JN, Hewitt AW, Law MH, Pasquale LR, Kang JH, Haines JL, Souzeau E, Zhou T, Siggs OM, Landers J, Awadalla M, Sharma S, Mills RA, Ridge B, Lynn D, Casson R, Graham SL, Goldberg I, White A, Healey PR, Grigg J, Lawlor M, Mitchell P, Ruddle J, Coote M, Walland M, Best S, Vincent A, Gale J, RadfordSmith G, Whiteman DC, Montgomery GW, Martin NG, Mackey DA, Wiggs JL, MacGregor S, Craig JE. Analysis combining correlated glaucoma traits identifies five new risk loci for open-angle glaucoma. Sci Rep 2018; 8:3124. [PMID: 29449654 PMCID: PMC5814451 DOI: 10.1038/s41598-018-20435-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
Open-angle glaucoma (OAG) is a major cause of blindness worldwide. To identify new risk loci for OAG, we performed a genome-wide association study in 3,071 OAG cases and 6,750 unscreened controls, and meta-analysed the results with GWAS data for intraocular pressure (IOP) and optic disc parameters (the overall meta-analysis sample size varying between 32,000 to 48,000 participants), which are glaucoma-related traits. We identified and independently validated four novel genome-wide significant associations within or near MYOF and CYP26A1, LINC02052 and CRYGS, LMX1B, and LMO7 using single variant tests, one additional locus (C9) using gene-based tests, and two genetic pathways - "response to fluid shear stress" and "abnormal retina morphology" - in pathway-based tests. Interestingly, some of the new risk loci contribute to risk of other genetically-correlated eye diseases including myopia and age-related macular degeneration. To our knowledge, this study is the first integrative study to combine genetic data from OAG and its correlated traits to identify new risk variants and genetic pathways, highlighting the future potential of combining genetic data from genetically-correlated eye traits for the purpose of gene discovery and mapping.
Collapse
Affiliation(s)
- Puya Gharahkhani
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Jessica N Cooke Bailey
- Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Matthew H Law
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Louis R Pasquale
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jae H Kang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan L Haines
- Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Owen M Siggs
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - John Landers
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Mona Awadalla
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Richard A Mills
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Bronwyn Ridge
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - David Lynn
- South Australian Health & Medical Research Institute, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Robert Casson
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - Stuart L Graham
- Ophthalmology and Vision Science, Macquarie University, Sydney, New South Wales, Australia
| | - Ivan Goldberg
- Department of Ophthalmology, University of Sydney, Sydney, Australia
| | - Andrew White
- Department of Ophthalmology, University of Sydney, Sydney, Australia
- Centre for Vision Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Paul R Healey
- Department of Ophthalmology, University of Sydney, Sydney, Australia
- Centre for Vision Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - John Grigg
- Department of Ophthalmology, University of Sydney, Sydney, Australia
| | - Mitchell Lawlor
- Department of Ophthalmology, University of Sydney, Sydney, Australia
| | - Paul Mitchell
- Centre for Vision Research, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Jonathan Ruddle
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Michael Coote
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Mark Walland
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Stephen Best
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Andrea Vincent
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Jesse Gale
- Department of Ophthalmology, University of Otago, Dunedin, Otago, New Zealand
| | - Graham RadfordSmith
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Herston Campus, Brisbane, QLD, Australia
| | - David C Whiteman
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - David A Mackey
- University of Tasmania, Hobart, Tasmania, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
23
|
Harder JM, Braine CE, Williams PA, Zhu X, MacNicoll KH, Sousa GL, Buchanan RA, Smith RS, Libby RT, Howell GR, John SWM. Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective. Proc Natl Acad Sci U S A 2017; 114:E3839-E3848. [PMID: 28446616 PMCID: PMC5441748 DOI: 10.1073/pnas.1608769114] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wlds allele, which protects from axon dysfunction. We demonstrate that DBA/2J.Wlds mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J.Wlds mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J.Wlds mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma.
Collapse
Affiliation(s)
| | | | | | - Xianjun Zhu
- Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME 04609
| | | | | | | | | | - Richard T Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY 14642
| | | | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME 04609
- Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME 04609
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
24
|
Williams PA, Marsh-Armstrong N, Howell GR. Neuroinflammation in glaucoma: A new opportunity. Exp Eye Res 2017; 157:20-27. [PMID: 28242160 PMCID: PMC5497582 DOI: 10.1016/j.exer.2017.02.014] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/16/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
Mounting evidence suggests neuroinflammation is a key process in glaucoma, yet the precise roles are not known. Understanding these complex processes, which may also be a key in other common neurodegenerations such as Alzheimer's disease, will lead to targeted therapeutics for a disease that affects as many as 80 million people worldwide. Here, we define neuroinflammation as any immune-relevant response by a variety of cell types including astrocytes, microglia, and peripherally derived cells occurring in the optic nerve head and/or retina. In this review article, we first discuss clinical evidence for neuroinflammation in glaucoma and define neuroinflammation in glaucoma. We then review the inflammatory pathways that have been associated with glaucoma. Finally, we set out key research directions that we believe will greatly advance our understanding of the role of neuroinflammation in glaucoma. This review arose from a discussion of neuroinflammation in glaucoma at the 2015 meeting of The Lasker/IRRF Initiative for Innovation in Vision Science. This manuscript sets out to summarize one of these sessions; "Inflammation and Glaucomatous Neurodegeneration", as well as to review the current state of the literature surrounding neuroinflammation in glaucoma.
Collapse
Affiliation(s)
| | - Nick Marsh-Armstrong
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, USA; Graduate Program of Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
25
|
25-Hydroxyvitamin D and matrix metalloproteinases-2, -9 level in patients with primary open angle glaucoma and pseudoexfoliative glaucoma/syndrome. OPHTHALMOLOGY JOURNAL 2017. [DOI: 10.17816/ov10110-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Aim. To determine serum 25(OH)D and plasma MMP-2 and MMP-9 levels in patients with primary open-angle glaucoma (POAG), pseudoexfoliation glaucoma (PEG), and pseudoexfoliation syndrome (PES) - to assess potential associations between vitamin D status and these diseases. Methods. We included 238 patients (105 males and 133 females) aged from 55 to 75 years. One hundred twenty two patients had PEG, 46 patients had POAG, 32 had PES. 38 subjects were healthy, and were considered as the control group. Cases with clinically significant systemic diseases and concomiatant eye diseases were excluded, if there was a confirmed pathogenic impact of vitamin D and MMP. The serum 25(OH)D level was investigated by immunochemiluminescence method, plasma MMP-2 and MMP-9 levels - by ELISA. Results. Serum 25(OH)D level was between 4.6 and 82.25 nM/l (mean 41.7 nM/l), so most participants showed vitamin D deficiency. It was shown that mean serum 25(OH)D level in patients with PEG, POAG and PES was similar (39.3 ± 1.2, 38.8 ± 2.1 and 40.51 ± 2.4 nM/l, p > 0.05), but it was lower than that in the control group (52.7 ± 2.1 nM/l, p < 0.01). Plasma MMP-2 concentration was the same in all study groups. Plasma MMP-9 level was higher in POAG and PES patients (48.23 ± 3.26 and 54.01 ± 3.57 ng/ml) than in the control group (32.60 ± 2.34 ng/ml, p < 0.001) and PEG patients (40.86 ± 3.60 ng/ml, p < 0.05). We found positive correlations between MMP-2 and MMP-9 levels in patients with PEG (r = 0.48, p = 0.001) and patients with POAG (r = 0.43, p = 0.003). The correlation analysis showed also a negative relation between 25(OH)D and MMP-9 (r = -0.32, p = 0.02), MMP-2 (r = -0.33, p = 0.02) in patients with POAG. Summary. Study results confirmed a potential role of vitamin D in apoptosis regulation and tissue remodeling in patients with POAG and PES. Hence, vitamin D deficiency can be considered as a risk factor for glaucoma development.
Collapse
|
26
|
Funke S, Perumal N, Bell K, Pfeiffer N, Grus FH. The potential impact of recent insights into proteomic changes associated with glaucoma. Expert Rev Proteomics 2017; 14:311-334. [PMID: 28271721 DOI: 10.1080/14789450.2017.1298448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Glaucoma, a major ocular neuropathy, is still far from being understood on a molecular scale. Proteomic workflows revealed glaucoma associated alterations in different eye components. By using state-of-the-art mass spectrometric (MS) based discovery approaches large proteome datasets providing important information about glaucoma related proteins and pathways could be generated. Corresponding proteomic information could be retrieved from various ocular sample species derived from glaucoma experimental models or from original human material (e.g. optic nerve head or aqueous humor). However, particular eye tissues with the potential for understanding the disease's molecular pathomechanism remains underrepresented. Areas covered: The present review provides an overview of the analysis depth achieved for the glaucomatous eye proteome. With respect to different eye regions and biofluids, proteomics related literature was found using PubMed, Scholar and UniProtKB. Thereby, the review explores the potential of clinical proteomics for glaucoma research. Expert commentary: Proteomics will provide important contributions to understanding the molecular processes associated with glaucoma. Sensitive discovery and targeted MS approaches will assist understanding of the molecular interplay of different eye components and biofluids in glaucoma. Proteomic results will drive the comprehension of glaucoma, allowing a more stringent disease hypothesis within the coming years.
Collapse
Affiliation(s)
- Sebastian Funke
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Natarajan Perumal
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Katharina Bell
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Norbert Pfeiffer
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Franz H Grus
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| |
Collapse
|
27
|
KAURANI LALIT, VISHAL MANSI, RAY JHARNA, SEN ABHIJIT, RAY KUNAL, MUKHOPADHYAY ARIJIT. TBK1 duplication is found in normal tension and not in high tension glaucoma patients of Indian origin. J Genet 2016; 95:459-61. [DOI: 10.1007/s12041-016-0637-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Soliman M, Nasraoui O, Cooper NGF. Building a glaucoma interaction network using a text mining approach. BioData Min 2016; 9:17. [PMID: 27152122 PMCID: PMC4857381 DOI: 10.1186/s13040-016-0096-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/23/2016] [Indexed: 11/21/2022] Open
Abstract
Background The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. Results A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. Conclusions This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of relations that could not be found in existing interaction databases and that were found to be new, in addition to a smaller subnetwork consisting of interconnected clusters of seven glaucoma genes. Future improvements can be applied towards obtaining a better version of this network. Electronic supplementary material The online version of this article (doi:10.1186/s13040-016-0096-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maha Soliman
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY USA
| | - Olfa Nasraoui
- Knowledge Discovery & Web Mining Lab, Department of Computer Engineering & Computer Science, University of Louisville, J.B Speed School of Engineering, Louisville, KY USA
| | - Nigel G F Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY USA
| |
Collapse
|
29
|
Abstract
BACKGROUND The primary pathophysiological feature of glaucoma is a progressive optic neuropathy with characteristic morphological changes of the optic disc and risk factors of age and intraocular pressure. Recently, involvement of other areas of the central nervous system (CNS) beyond the optic nerve has been demonstrated. This article addresses the proposition that glaucoma shares mechanistic and pathophysiologic features with neurodegenerations in the CNS. METHODS The literature on CNS alterations in patients with glaucoma is reviewed with particular focus on neuroimaging and pathological studies. A theoretical framework for assessing whether glaucoma is truly a neurodegenerative disease is developed based on the comparison with neurodegenerative and nonneurodegenerative diseases. RESULTS Although there is convincing evidence of abnormalities in CNS regions distal to the optic nerve in glaucoma, these are similar to those seen in other disorders of the proximal visual pathways, such as other optic neuropathies or retinal diseases. Similarly, features of glaucoma that are similar to neurodegenerations are also seen in nonneurodegenerative diseases. CONCLUSIONS Glaucoma is less likely a primary neurodegeneration affecting the CNS and more likely a primary optic neuropathy with secondary effects in the CNS.
Collapse
|
30
|
Williams PA, Tribble JR, Pepper KW, Cross SD, Morgan BP, Morgan JE, John SWM, Howell GR. Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma. Mol Neurodegener 2016; 11:26. [PMID: 27048300 PMCID: PMC4822272 DOI: 10.1186/s13024-016-0091-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Background Glaucoma is a complex, multifactorial disease characterised by the loss of retinal ganglion cells and their axons leading to a decrease in visual function. The earliest events that damage retinal ganglion cells in glaucoma are currently unknown. Retinal ganglion cell death appears to be compartmentalised, with soma, dendrite and axon changes potentially occurring through different mechanisms. There is mounting evidence from other neurodegenerative diseases suggesting that neuronal dendrites undergo a prolonged period of atrophy, including the pruning of synapses, prior to cell loss. In addition, recent evidence has shown the role of the complement cascade in synaptic pruning in glaucoma and other diseases. Results Using a genetic (DBA/2J mouse) and an inducible (rat microbead) model of glaucoma we first demonstrate that there is loss of retinal ganglion cell synapses and dendrites at time points that precede axon or soma loss. We next determine the role of complement component 1 (C1) in early synaptic loss and dendritic atrophy during glaucoma. Using a genetic knockout of C1qa (D2.C1qa-/- mouse) or pharmacological inhibition of C1 (in the rat bead model) we show that inhibition of C1 is sufficient to preserve dendritic and synaptic architecture. Conclusions This study further supports assessing the potential for complement-modulating therapeutics for the prevention of retinal ganglion cell degeneration in glaucoma.
Collapse
Affiliation(s)
| | - James R Tribble
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | | | - Stephen D Cross
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - B Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA. .,Department of Ophthalmology, Tufts University of Medicine, Boston, MA, 02111, USA. .,The Howard Hughes Medical Institute, Bar Harbor, ME, 04609, USA.
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA. .,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA, USA.
| |
Collapse
|
31
|
|
32
|
Choi HJ, Sun D, Jakobs TC. Isolation of intact astrocytes from the optic nerve head of adult mice. Exp Eye Res 2015; 137:103-10. [PMID: 26093274 DOI: 10.1016/j.exer.2015.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 01/30/2023]
Abstract
The astrocytes of the optic nerve head are a specialized subtype of white matter astrocytes that form the direct cellular environment of the unmyelinated ganglion cell axons. Due to their potential involvement in glaucoma, these astrocytes have become a target of research. Due to the heterogeneity of the optic nerve tissue, which also contains other cell types, in some cases it may be desirable to conduct gene expression studies on small numbers of well-characterized astrocytes or even individual cells. Here, we describe a simple method to isolate individual astrocytes. This method permits obtaining astrocytes with intact morphology from the adult mouse optic nerve and reduces contamination of the isolated astrocytes by other cell types. Individual astrocytes can be recognized by their morphology and collected under microscopic control. The whole procedure can be completed in 2-3 h. We also discuss downstream applications like multiplex single-cell PCR and quantitative PCR (qPCR).
Collapse
Affiliation(s)
- Hee Joo Choi
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, United States
| | - Daniel Sun
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, United States
| | - Tatjana C Jakobs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, United States.
| |
Collapse
|
33
|
Cao L, Wang L, Cull G, Zhou A. Alterations in molecular pathways in the retina of early experimental glaucoma eyes. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2015; 7:44-53. [PMID: 26069528 PMCID: PMC4446388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
Glaucoma is a multifactorial, neurodegenerative disease. The molecular mechanisms that underlie the pathophysiological changes in glaucomatous eyes, especially at the early stage of the disease, are poorly understood. Here, we report the findings from a quantitative proteomic analysis of retinas from experimental glaucoma (EG) eyes. An early stage of EG was modeled on unilateral eyes of five nonhuman primates (NHP) by laser treatment-induced elevation of intraocular pressure (IOP). Retinal proteins were extracted from individual EG eyes and their contralateral control eyes of the same animals, respectively, and analyzed by quantitative mass spectrometry (MS). As a result, a total, 475 retinal proteins were confidently identified and quantified. Results of bioinformatic analysis of proteins that showed an increase in the EG eyes suggested changes in apoptosis, DNA damage, immune response, cytoskeleton rearrangement and cell adhesion processes. Interestingly, hemoglobin subunit alpha (HBA) and Ras related C3 botulinum toxin substrate 1 (Rac1) were among the increased proteins. Results of molecular modeling of HBA- and Rac1-associated signaling network implicated the involvement of Mitogen-Activated Protein Kinase (MAPK) pathway in the EG, through which Rac1 may exert a regulatory role on HBA. This is the first observation of this potentially novel signaling network in the NHP retina and in EG. Results of Western blot analyses for Rac1, HBA and a selected MAPK pathway protein indicated synergistic changes in all three proteins in the EG eyes. Further, results of hierarchical cluster analysis of proteomes of control eyes revealed a clear age-proteome relationship, and such relationship appeared disrupted in the EG eyes. In conclusion, our results suggested an increased presence of a potentially novel signaling network at the early stage of glaucoma, and age might be one of the determinant factors in retinal proteomic characteristics under normal conditions.
Collapse
Affiliation(s)
- Li Cao
- Neuroscience Institute, Morehouse School of MedicineAtlanta, GA, USA
- Current address: Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of HealthGaithersburg, MD, USA
| | - Lin Wang
- Devers Eye Institute, Legacy HealthPortland, OR, USA
| | - Grant Cull
- Devers Eye Institute, Legacy HealthPortland, OR, USA
| | - An Zhou
- Neuroscience Institute, Morehouse School of MedicineAtlanta, GA, USA
| |
Collapse
|
34
|
Soto I, Howell GR. The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a017269. [PMID: 24993677 DOI: 10.1101/cshperspect.a017269] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glaucoma is a multifactorial neurodegenerative disorder affecting 80 million people worldwide. Loss of retinal ganglion cells and degeneration of their axons in the optic nerve are the major pathological hallmarks. Neuroinflammatory processes, inflammatory processes in the central nervous system, have been identified in human glaucoma and in experimental models of the disease. Furthermore, neuroinflammatory responses occur at early stages of experimental glaucoma, and inhibition of certain proinflammatory pathways appears neuroprotective. Here, we summarize the current understanding of neuroinflammation in the central nervous system, with emphasis on events at the optic nerve head during early stages of glaucoma.
Collapse
Affiliation(s)
- Ileana Soto
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, Maine 04609 School of Medicine, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
35
|
Abstract
In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell-matrix interactions and adhesion, the cell cycle, and the endothelin system.
Collapse
Affiliation(s)
- Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
36
|
Howell GR, Soto I, Libby RT, John SWM. Intrinsic axonal degeneration pathways are critical for glaucomatous damage. Exp Neurol 2013; 246:54-61. [PMID: 22285251 PMCID: PMC3831512 DOI: 10.1016/j.expneurol.2012.01.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/15/2011] [Accepted: 01/10/2012] [Indexed: 12/13/2022]
Abstract
Glaucoma is a neurodegenerative disease affecting 70million people worldwide. For some time, analysis of human glaucoma and animal models suggested that RGC axonal injury in the optic nerve head (where RGC axons exit the eye) is an important early event in glaucomatous neurodegeneration. During the last decade advances in molecular biology and genome manipulation have allowed this hypothesis to be tested more critically, at least in animal models. Data indicate that RGC axon degeneration precedes soma death. Preventing soma death using mouse models that are mutant for BAX, a proapoptotic gene, is not sufficient to prevent the degeneration of RGC axons. This indicates that different degeneration processes occur in different compartments of the RGC during glaucoma. Furthermore, the Wallerian degeneration slow allele (Wld(s)) slows or prevents RGC axon degeneration in rodent models of glaucoma. These experiments and many others, now strongly support the hypothesis that axon degeneration is a critical pathological event in glaucomatous neurodegeneration. However, the events that lead from a glaucomatous insult (e.g. elevated intraocular pressure) to axon damage in glaucoma are not well defined. For developing new therapies, it will be necessary to clearly define and order the molecular events that lead from glaucomatous insults to axon degeneration.
Collapse
Affiliation(s)
- Gareth R Howell
- The Howard Hughes Medical Institute, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| | | | | | | |
Collapse
|
37
|
Bessarabova M, Ishkin A, JeBailey L, Nikolskaya T, Nikolsky Y. Knowledge-based analysis of proteomics data. BMC Bioinformatics 2012; 13 Suppl 16:S13. [PMID: 23176192 PMCID: PMC3489533 DOI: 10.1186/1471-2105-13-s16-s13] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
As it is the case with any OMICs technology, the value of proteomics data is defined by the degree of its functional interpretation in the context of phenotype. Functional analysis of proteomics profiles is inherently complex, as each of hundreds of detected proteins can belong to dozens of pathways, be connected in different context-specific groups by protein interactions and regulated by a variety of one-step and remote regulators. Knowledge-based approach deals with this complexity by creating a structured database of protein interactions, pathways and protein-disease associations from experimental literature and a set of statistical tools to compare the proteomics profiles with this rich source of accumulated knowledge. Here we describe the main methods of ontology enrichment, interactome topology and network analysis applied on a comprehensive, manually curated and semantically consistent knowledge source MetaBase and demonstrate several case studies in different disease areas.
Collapse
Affiliation(s)
- Marina Bessarabova
- Thomson Reuters, IP & Science, 5901 Priestly Dr., #200, Carlsbad, CA 92008, USA
| | | | | | | | | |
Collapse
|
38
|
Liu T, Xie L, Ye J, Liu Y, He X. Screening of candidate genes for primary open angle glaucoma. Mol Vis 2012; 18:2119-26. [PMID: 22876139 PMCID: PMC3413431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/23/2012] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Primary open-angle glaucoma (POAG) is one of the leading causes of irreversible blindness in the world. To make progress in understanding POAG, it is necessary to identify more POAG-causing genes. METHODS Using haplotype analysis, we found that mutational region is located on chromosome 2 in two families. Furthermore, we screened 11 candidate genes on chromosome 2 by protein-protein interaction (PPI) analysis, including mutS homolog 6 (MSH6), mutS homolog 2 (MSH2), v-rel reticuloendotheliosis viral oncogene homolog (REL), endothelial PAS domain protein 1 (EPAS1), vaccinia related kinase 2 (VRK2), F-box protein 11 (FBXO11), EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1), reticulon 4 (RTN4), RAB1A, member RAS oncogene family (RAB1A), ARP2 actin-related protein 2 homolog (ACTR2), and calmodulin 2 (phosphorylase kinase, delta; CALM2). These 11 genes are all predicted to be related to trabecular meshwork changes and progressive loss of retinal ganglion cells in POAG patients. RESULTS According to our study, FBXO11 and VRK2 may interact with tumor protein p53 to regulate mitochondrial membrane permeability, mitochondrial membrane organization, and apoptosis. MSH2 is responsible for repairing DNA mismatches and RTN4 is for neuronal regeneration. Therefore, they are supposed to play a negative role in cellular process in POAG. CALM2 may be involved in retinal ganglion cell death and oxidative damage to cell communication. CONCLUSIONS The results demonstrate that the genes above may be associated with pathogenesis of POAG.
Collapse
Affiliation(s)
- Ting Liu
- Department of Ophthalmology, Daping Hospital, Research Institute of Surgery, Third Military Medical University of PLA, Chongqing, China
| | - Lin Xie
- Department of Ophthalmology, Daping Hospital, Research Institute of Surgery, Third Military Medical University of PLA, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Research Institute of Surgery, Third Military Medical University of PLA, Chongqing, China
| | - Yuewuyang Liu
- Ninth Team of the Cader Brigade of Third Military Medical University of PLA, Chongqing, China
| | - Xiangge He
- Department of Ophthalmology, Daping Hospital, Research Institute of Surgery, Third Military Medical University of PLA, Chongqing, China
| |
Collapse
|
39
|
Nickells RW, Howell GR, Soto I, John SWM. Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci 2012; 35:153-79. [PMID: 22524788 DOI: 10.1146/annurev.neuro.051508.135728] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glaucoma is a complex neurodegenerative disorder that is expected to affect 80 million people by the end of this decade. Retinal ganglion cells (RGCs) are the most affected cell type and progressively degenerate over the course of the disease. RGC axons exit the eye and enter the optic nerve by passing through the optic nerve head (ONH). The ONH is an important site of initial damage in glaucoma. Higher intraocular pressure (IOP) is an important risk factor for glaucoma, but the molecular links between elevated IOP and axon damage in the ONH are poorly defined. In this review and focusing primarily on the ONH, we discuss recent studies that have contributed to understanding the etiology and pathogenesis of glaucoma. We also identify areas that require further investigation and focus on mechanisms identified in other neurodegenerations that may contribute to RGC dysfunction and demise in glaucoma.
Collapse
Affiliation(s)
- Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
40
|
Tribute to Rosario Hernandez. Exp Eye Res 2011; 93:116-9. [DOI: 10.1016/j.exer.2011.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 11/22/2022]
|
41
|
Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE. Genetic networks in the mouse retina: growth associated protein 43 and phosphatase tensin homolog network. Mol Vis 2011; 17:1355-72. [PMID: 21655357 PMCID: PMC3108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/21/2011] [Indexed: 10/26/2022] Open
Abstract
PURPOSE The present study examines the structure and covariance of endogenous variation in gene expression across the recently expanded family of C57BL/6J (B) X DBA/2J (D) Recombinant Inbred (BXD RI) strains of mice. This work is accompanied by a highly interactive database that can be used to generate and test specific hypotheses. For example, we define the genetic network regulating growth associated protein 43 (Gap43) and phosphatase tensin homolog (Pten). METHODS The Hamilton Eye Institute (HEI) Retina Database within GeneNetwork features the data analysis of 346 Illumina Sentrix BeadChip Arrays (mouse whole genome-6 version 2). Eighty strains of mice are presented, including 75 BXD RI strains, the parental strains (C57BL/6J and DBA/2J), the reciprocal crosses, and the BALB/cByJ mice. Independent biologic samples for at least two animals from each gender were obtained with a narrow age range (48 to 118 days). Total RNA was prepared followed by the production of biotinylated cRNAs, which were pipetted into the Mouse WG-6V2 arrays. The data was globally normalized with rank invariant and stabilization (2z+8). RESULTS The HEI Retina Database is located on the GeneNetwork website. The database was used to extract unique transcriptome signatures for specific cell types in the retina (retinal pigment epithelial, amacrine, and retinal ganglion cells). Two genes associated with axonal outgrowth (Gap43 and Pten) were used to display the power of this new retina database. Bioinformatic tools located within GeneNetwork in conjunction with the HEI Retina Database were used to identify the unique signature Quantitative Trait Loci (QTLs) for Gap43 and Pten on chromosomes 1, 2, 12, 15, 16, and 19. Gap43 and Pten possess networks that are similar to ganglion cell networks that may be associated with axonal growth in the mouse retina. This network involves high correlations of transcription factors (SRY sex determining region Y-box 2 [Sox2], paired box gene 6 [Pax6], and neurogenic differentiation 1 [Neurod1]), and genes involved in DNA binding (proliferating cell nuclear antigen [Pcna] and zinc finger, BED-type containing 4 [Zbed4]), as well as an inhibitor of DNA binding (inhibitor of DNA binding 2, dominant negative helix-loop-helix protein [Id2]). Furthermore, we identified the potential upstream modifiers on chromosome 2 (teashirt zinc finger homeobox 2 [Tshz2], RNA export 1 homolog [Rae1] and basic helix-loop-helix domain contatining, class B4 [Bhlhb4]) on chromosome 15 (RAB, member of RAS oncogene family-like 2a [Rabl2a], phosphomannomutase 1 [Pmm1], copine VIII [Cpne8], and fibulin 1 [Fbln1]). CONCLUSIONS The endogenous variation in mRNA levels among BXD RI strains can be used to explore and test expression networks underlying variation in retina structure, function, and disease susceptibility. The Gap43 and Pten network highlights the covariance of gene expression and forms a molecular network associated with axonal outgrowth in the adult retina.
Collapse
Affiliation(s)
| | | | - William E. Orr
- Department of Ophthalmology and Center for Vision Research, Memphis, TN
| | - Lu Lu
- Department of Anatomy and Neurobiology and Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN
| | - Robert W. Williams
- Department of Anatomy and Neurobiology and Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN
| | - Eldon E. Geisert
- Department of Ophthalmology and Center for Vision Research, Memphis, TN
| |
Collapse
|
42
|
Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I, Kneeland SC, Barbay JM, King BL, Marchant JK, Hibbs M, Stevens B, Barres BA, Clark AF, Libby RT, John SWM. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest 2011; 121:1429-44. [PMID: 21383504 DOI: 10.1172/jci44646] [Citation(s) in RCA: 344] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 01/05/2011] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is one of the most common neurodegenerative diseases. Despite this, the earliest stages of this complex disease are still unclear. This study was specifically designed to identify early stages of glaucoma in DBA/2J mice. To do this, we used genome-wide expression profiling of optic nerve head and retina and a series of computational methods. Eyes with no detectable glaucoma by conventional assays were grouped into molecularly defined stages of disease using unbiased hierarchical clustering. These stages represent a temporally ordered sequence of glaucoma states. We then determined networks and biological processes that were altered at these early stages. Early-stage expression changes included upregulation of both the complement cascade and the endothelin system, and so we tested the therapeutic value of separately inhibiting them. Mice with a mutation in complement component 1a (C1qa) were protected from glaucoma. Similarly, inhibition of the endothelin system with bosentan, an endothelin receptor antagonist, was strongly protective against glaucomatous damage. Since endothelin 2 is potently vasoconstrictive and was produced by microglia/macrophages, our data provide what we believe to be a novel link between these cell types and vascular dysfunction in glaucoma. Targeting early molecular events, such as complement and endothelin induction, may provide effective new treatments for human glaucoma.
Collapse
Affiliation(s)
- Gareth R Howell
- The Howard Hughes Medical Institute, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Glaucoma is a group of heterogeneous optic neuropathies with complex genetic basis. Among the three principle subtypes of glaucoma, primary open angle glaucoma (POAG) occurs most frequently. Till date, 25 loci have been found to be linked to POAG. However, only three underlying genes (Myocilin, Optineurin and WDR36) have been identified. In addition, at least 30 other genes have been reported to be associated with POAG. Despite strong genetic influence in POAG pathogenesis, only a small part of the disease can be explained in terms of genetic aberration. Current concepts of glaucoma pathogenesis suggest it to be a neurodegenerative disorder which is triggered by different factors including mechanical stress due to intra-ocular pressure, reduced blood flow to retina, reperfusion injury, oxidative stress, glutamate excitotoxicity, and aberrant immune response. Here we present a mechanistic overview of potential pathways and crosstalk between them operating in POAG pathogenesis.
Collapse
Affiliation(s)
- Kunal Ray
- Molecular and Human Genetic Division, Indian Institute of Chemical Biology (a unit of CSIR), Kolkata, India.
| | | |
Collapse
|
44
|
Piruzian E, Bruskin S, Ishkin A, Abdeev R, Moshkovskii S, Melnik S, Nikolsky Y, Nikolskaya T. Integrated network analysis of transcriptomic and proteomic data in psoriasis. BMC SYSTEMS BIOLOGY 2010; 4:41. [PMID: 20377895 PMCID: PMC2873316 DOI: 10.1186/1752-0509-4-41] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 04/08/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Psoriasis is complex inflammatory skin pathology of autoimmune origin. Several cell types are perturbed in this pathology, and underlying signaling events are complex and still poorly understood. RESULTS In order to gain insight into molecular machinery underlying the disease, we conducted a comprehensive meta-analysis of proteomics and transcriptomics of psoriatic lesions from independent studies. Network-based analysis revealed similarities in regulation at both proteomics and transcriptomics level. We identified a group of transcription factors responsible for overexpression of psoriasis genes and a number of previously unknown signaling pathways that may play a role in this process. We also evaluated functional synergy between transcriptomics and proteomics results. CONCLUSIONS We developed network-based methodology for integrative analysis of high throughput data sets of different types. Investigation of proteomics and transcriptomics data sets on psoriasis revealed versatility in regulatory machinery underlying pathology and showed complementarities between two levels of cellular organization.
Collapse
Affiliation(s)
- Eleonora Piruzian
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina St, 3 GSP-1, 119991 Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|