1
|
Fathima JHS, Jayaraman S, Sekar R, Syed NH. The role of MicroRNAs in the diagnosis and treatment of oral premalignant disorders. Odontology 2024; 112:1023-1032. [PMID: 38619695 DOI: 10.1007/s10266-024-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Oral premalignant disorders (OPMDs) are a group of potentially malignant conditions that pose a significant health burden globally. MicroRNAs (miRNAs), small non-coding RNA molecules, have emerged as crucial regulators of gene expression and have been implicated in various biological processes, including carcinogenesis. This review synthesizes existing knowledge to provide a comprehensive understanding of the molecular mechanisms underlying OPMDs and to highlight the potential of miRNAs as promising biomarkers and therapeutic targets. Additionally, this review seeks to explore the potential of miRNA-based diagnostic biomarkers for early detection of OPMDs in the current literature on miRNAs in OPMDs, examining their involvement in disease pathogenesis, diagnostic potential, and therapeutic implications. Dysregulated miRNAs can target genes involved in critical cellular processes, such as cell cycle regulation, apoptosis, and DNA repair, leading to disease progression. Notably, miR-21, miR-31, miR-135b, and miR-486-5p have shown promise as potential biomarkers for early detection of oral premalignant lesions. Furthermore, the paper discusses the therapeutic implications of miRNAs in OPMDs. Preclinical studies have demonstrated the efficacy of miRNA-targeted therapies, such as miRNA mimics and inhibitors, in suppressing the growth of oral premalignant lesions. Early-phase clinical trials have shown promising results, indicating the potential for personalized treatment approaches. The findings underscore the importance of understanding the molecular mechanisms underlying these disorders and provide insights for the development of improved diagnostic and therapeutic strategies. However, they pose certain limitations given their intrinsic variability in expression profiles, the need for optimized isolation and detection methods, and potential hurdles in transitioning from preclinical success to clinical applications. Thus, future clinical studies are warranted to fully exploit the potential of miRNAs in the management of OPMDs.
Collapse
Affiliation(s)
- J H Shazia Fathima
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, Chennai, India
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Ramya Sekar
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospitals, MAHER, Alapakkam Main Road, Maduravoyal, Chennai, 600095, Tamil Nadu, India
| | - Nazmul Huda Syed
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
2
|
Sulastomo H, Dinarti LK, Hariawan H, Haryana SM. MicroRNA expression alteration in chronic thromboembolic pulmonary hypertension: A systematic review. Pulm Circ 2024; 14:e12443. [PMID: 39308943 PMCID: PMC11413763 DOI: 10.1002/pul2.12443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is marked by persistent blood clots in pulmonary arteries, leading to significant morbidity and mortality. Emerging evidence highlights the role of microRNAs (miRNAs) in pulmonary hypertension, though findings on miRNA expression in CTEPH remain limited and inconsistent. This systematic review evaluates miRNA expression changes in CTEPH and their direction. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we registered our protocol in International Prospective Register of Systematic Reviews (CRD42024524469). We included studies on miRNA expression in CTEPH with comparative or analytical designs, excluding nonhuman studies, interventions, non-English texts, conference abstracts, and editorials. Databases searched included PubMed, EMBASE, Scopus, CENTRAL, and ProQuest. The Quality Assessment of Diagnostic Accuracy Studies-2 tool assessed bias risk, and results were synthesized narratively. Of 313 unique studies, 39 full texts were reviewed, and 9 met inclusion criteria, totaling 235 participants. Blood samples were analysed using quantitative real time polymerase chain reaction. Seven miRNAs (miR-665, miR-3202, miR-382, miR-127, miR-664, miR-376c, miR-30) were uniformly upregulated, while nine (miR-20a-5p13, miR-17-5p, miR-93-5p, miR-22, let-7b, miR-106b-5p, miR-3148, miR-320-a, miR-320b) were downregulated in CTEPH patients. Two upregulated miRNAs (miR-127 and miR-30a) were consistently associated with previous evidence in the mechanism inducing the development of CTEPH, and five downregulated miRNAs (miR-20-a, miR-17-5p, miR-93-5p, let-7b, miR-106b-5p) were associated with a protective effect against CTEPH. We also identified gaps in the literature where the evidence for five upregulated miRNAs (miR-665, miR-3202, miR-382, miR-664 and miR-376c) and four downregulated miRNAs (miR-22, miR-3148, miR-320-a, and miR-320b) in CTEPH is conflicting. Our findings offer insights into the role of miRNAs in CTEPH and underscore the need for further research to validate these miRNAs as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Heru Sulastomo
- Department of Cardiology and Vascular Medicine, Faculty of MedicineUniversitas Sebelas MaretSurakartaIndonesia
| | - Lucia Kris Dinarti
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and NursingUniversitas Gadjah MadaYogyakartaIndonesia
| | - Hariadi Hariawan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and NursingUniversitas Gadjah MadaYogyakartaIndonesia
| | - Sofia Mubarika Haryana
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and NursingUniversitas Gadjah MadaYogyakartaIndonesia
| |
Collapse
|
3
|
Preetam S, Mondal S, Priya S, Bora J, Ramniwas S, Rustagi S, Qusty NF, Alghamdi S, Babalghith AO, Siddiqi A, Malik S. Targeting tumour markers in ovarian cancer treatment. Clin Chim Acta 2024; 559:119687. [PMID: 38663473 DOI: 10.1016/j.cca.2024.119687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Ovarian cancers (OC) are the most common, lethal, and stage-dependent cancers at the global level, specifically in female patients. Targeted therapies involve the administration of drugs that specifically target the alterations in tumour cells responsible for their growth, proliferation, and metastasis, with the aim of treating particular patients. Presently, within the realm of gynaecological malignancies, specifically in breast and OCs, there exist various prospective therapeutic targets encompassing tumour-intrinsic signalling pathways, angiogenesis, homologous-recombination deficit, hormone receptors, and immunologic components. Breast cancers are often detected in advanced stages, primarily due to the lack of a reliable screening method. However, various tumour markers have been extensively researched and employed to evaluate the condition, progression, and effectiveness of medication treatments for this ailment. The emergence of recent technological advancements in the domains of bioinformatics, genomics, proteomics, and metabolomics has facilitated the exploration and identification of hitherto unknown biomarkers. The primary objective of this comprehensive review is to meticulously investigate and analyze both established and emerging methodologies employed in the identification of tumour markers associated with OC.
Collapse
Affiliation(s)
- Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST) Dalseong-gun, Daegu 42988, South Korea.
| | - Sagar Mondal
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Swati Priya
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Jutishna Bora
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Seema Ramniwas
- University Center for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, 248007 Dehradun, Uttarakhand, India.
| | - Naeem F Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Abdullah Siddiqi
- Department of Clinical Laboratory, Makkah Park Clinics, Makkah, Saudi Arabia.
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| |
Collapse
|
4
|
Kushwaha S, Yadav R, Kumar R, Kumar S, Chauhan DS, Vir Singh A. Expression profiling & functional characterization of candidate miRNAs in serum exosomes among Indians with & without HIV-tuberculosis coinfection. Indian J Med Res 2024; 159:653-662. [PMID: 39382473 PMCID: PMC11463872 DOI: 10.25259/ijmr_1281_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Indexed: 10/10/2024] Open
Abstract
Background & objectives Despite the evidence of population differences in miRNA expression, limited information is available about the expression profile of miRNAs in Indian tuberculosis (TB) patients. The present study aimed to investigate the expression profile of candidate serum exosomal microRNAs in Indian patients with and without HIV-TB coinfection. Methods The pool samples of serum exosomes of study participants (HIV-TB coinfection, extra-pulmonary TB, HIV mono-infection, pulmonary TB) and healthy humans were processed for the isolation of total RNA followed by miRNA analysis using miRCURY LNA human focus PCR panel by real-time PCR. The significantly altered miRNAs were identified using differential expression analysis. The target genes prediction and potential functional analysis of exclusively differentially expressed miRNAs were performed using bioinformatics tools. Results The expression profile of 57, 58, 49 and 11 miRNAs was significantly altered in exosome samples of HIV-TB coinfected, extra-pulmonary TB, HIV mono-infected and pulmonary TB patients compared to healthy controls, respectively. The set of three (hsa-let-7i-5p, hsa-miR-24-3p, hsa-miR-92a-3p), three (hsa-miR-20a-5p, hsa-let-7e-5p, hsa-miR-26a-5p) and four (hsa-miR-21-5p, hsa-miR-19a-3p, hsa-miR-19b-3p, hsa-miR-146a-5p) miRNAs were exclusively significantly differentially expressed in study participants with HIV-TB coinfection, extra-pulmonary TB and pulmonary TB, respectively. Most of the target genes of exclusively differentially expressed miRNAs were enriched in pathways in cancer, MAPK signalling pathway and Ras signalling pathway. Interpretation & conclusions The present study demonstrates a distinct expression profile of miRNAs in serum exosomes of the study participants and identified crucial miRNAs which may have a significant impact on the biomarker analysis and pathogenesis of TB in Indian patients.
Collapse
Affiliation(s)
- Shweta Kushwaha
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Rajbala Yadav
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Roopendra Kumar
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Santosh Kumar
- Department of Tuberculosis and Chest, Sarojini Naidu Medical College, Agra, Uttar Pradesh, India
| | - Devendra Singh Chauhan
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Ajay Vir Singh
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| |
Collapse
|
5
|
Li J, Li H, Yang Y, Sen Y, Ye J. miRNA-143 as a potential biomarker in the detection of bladder cancer: a meta-analysis. Future Oncol 2024; 20:1275-1287. [PMID: 38722138 PMCID: PMC11318679 DOI: 10.2217/fon-2023-0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/08/2024] [Indexed: 06/12/2024] Open
Abstract
Aim: This study aimed to systematically evaluate the value of miRNA-143 in the early detection of bladder cancer (BCa). Methods: CNKI, WanFang, PubMed and Wiley Online Library databases were explored according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. A random-effects model was used to obtain pooled sensitivity, specificity and other related indicates. Results: Six studies were included for analysis. The overall pooled sensitivity and specificity were 0.80 (95% CI: 0.74-0.85) and 0.85 (95% CI: 0.78-0.91), and the area under the curve was 0.88 (95% CI: 0.85-0.91). Coupled with miR-100, it showed better diagnostic power (area under the curve: 0.95). Conclusion: miRNA-143 may serve as a promising noninvasive tool for the early detection of BCa.
Collapse
Affiliation(s)
- Jiajin Li
- Department of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Haonan Li
- Department of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yutao Yang
- Department of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Sen
- Department of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jufeng Ye
- Department of Public Health, Southern Medical University, No.1023, ShaTai South Road, Guangzhou City, Guangdong Province, 510515, China
| |
Collapse
|
6
|
Kroeze S, Kootstra NA, van Nuenen AC, Rossouw TM, Kityo CM, Siwale M, Akanmu S, Mandaliya K, de Jager M, Ondoa P, Wit FW, Reiss P, Rinke de Wit TF, Hamers RL. Specific plasma microRNAs are associated with CD4 + T-cell recovery during suppressive antiretroviral therapy for HIV-1. AIDS 2024; 38:791-801. [PMID: 38300257 PMCID: PMC10994156 DOI: 10.1097/qad.0000000000003853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
OBJECTIVE This study investigated the association of plasma microRNAs before and during antiretroviral therapy (ART) with poor CD4 + T-cell recovery during the first year of ART. DESIGN MicroRNAs were retrospectively measured in stored plasma samples from people with HIV (PWH) in sub-Saharan Africa who were enrolled in a longitudinal multicountry cohort and who had plasma viral-load less than 50 copies/ml after 12 months of ART. METHODS First, the levels of 179 microRNAs were screened in a subset of participants from the lowest and highest tertiles of CD4 + T-cell recovery (ΔCD4) ( N = 12 each). Next, 11 discordant microRNAs, were validated in 113 participants (lowest tertile ΔCD4: n = 61, highest tertile ΔCD4: n = 52). For discordant microRNAs in the validation, a pathway analysis was conducted. Lastly, we compared microRNA levels of PWH to HIV-negative controls. RESULTS Poor CD4 + T-cell recovery was associated with higher levels of hsa-miR-199a-3p and hsa-miR-200c-3p before ART, and of hsa-miR-17-5p and hsa-miR-501-3p during ART. Signaling by VEGF and MET, and RNA polymerase II transcription pathways were identified as possible targets of hsa-miR-199a-3p, hsa-200c-3p, and hsa-miR-17-5p. Compared with HIV-negative controls, we observed lower hsa-miR-326, hsa-miR-497-5p, and hsa-miR-501-3p levels before and during ART in all PWH, and higher hsa-miR-199a-3p and hsa-miR-200c-3p levels before ART in all PWH, and during ART in PWH with poor CD4 + T-cell recovery only. CONCLUSION These findings add to the understanding of pathways involved in persistent HIV-induced immune dysregulation during suppressive ART.
Collapse
Affiliation(s)
- Stefanie Kroeze
- Amsterdam Institute for Global Health and Development
- Amsterdam UMC location University of Amsterdam, Department of Global Health
- Amsterdam UMC location University of Amsterdam, Laboratory for Experimental Immunology, Meibergdreef 9
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Amsterdam Institute for Global Health and Development
- Amsterdam UMC location University of Amsterdam, Department of Global Health
- Amsterdam UMC location University of Amsterdam, Laboratory for Experimental Immunology, Meibergdreef 9
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Ad C. van Nuenen
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Theresa M. Rossouw
- Department of Immunology, University of Pretoria, Pretoria, South Africa
| | | | | | - Sulaimon Akanmu
- Department of Haematology and Blood Transfusion, College of Medicine of the University of Lagos and the Lagos University Teaching Hospital, Lagos, Nigeria
| | | | | | - Pascale Ondoa
- Amsterdam Institute for Global Health and Development
- Amsterdam UMC location University of Amsterdam, Department of Global Health
- African Society for Laboratory Medicine, Addis Ababa, Ethiopia
| | - Ferdinand W. Wit
- Amsterdam Institute for Global Health and Development
- Amsterdam UMC location University of Amsterdam, Department of Global Health
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Stichting HIV Monitoring
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Division of Infectious Diseases, Meibergdreef 9, Amsterdam, The Netherlands
| | - Peter Reiss
- Amsterdam Institute for Global Health and Development
- Amsterdam UMC location University of Amsterdam, Department of Global Health
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Division of Infectious Diseases, Meibergdreef 9, Amsterdam, The Netherlands
| | - Tobias F. Rinke de Wit
- Amsterdam Institute for Global Health and Development
- Amsterdam UMC location University of Amsterdam, Department of Global Health
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Raph L. Hamers
- Amsterdam Institute for Global Health and Development
- Amsterdam UMC location University of Amsterdam, Department of Global Health
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Division of Infectious Diseases, Meibergdreef 9, Amsterdam, The Netherlands
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Rama K, Bitla AR, Hulikal N, Yootla M, Yadagiri LA, Asha T, Manickavasagam M, Srinivasa Rao P. Assessment of serum microRNA-21 and miRNA-205 as diagnostic markers for stage I and II breast cancer in Indian population. Indian J Cancer 2024; 61:290-298. [PMID: 38090957 DOI: 10.4103/ijc.ijc_187_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/23/2020] [Indexed: 09/12/2024]
Abstract
BACKGROUND Current markers (carcinoembryonic antigen [CEA] and carbohydrate antigen 15-3 [CA15-3]) lack sensitivity in diagnosis of breast cancer. The aberrantly expressed circulating miRNAs were shown as diagnostic markers in breast cancer. However, there are very few studies from the Indian population. We studied the diagnostic utility of miRNA-21, miRNA-155 and miRNA-205 compared to CEA and CA15-3 in stage I and II breast cancer patients. MATERIALS AND METHODS Sixty newly diagnosed women with stage I/II breast cancer and 20 healthy controls were recruited. Expression of circulating miRNAs was studied using reverse transcription-polymerase chain reaction, whereas CEA and CA 15-3 were analyzed by enzyme-linked immunosorbent assay. RESULTS miRNA-21 and miRNA-155 were upregulated, miRNA-205 down-regulated ( P < 0.05) and serum CEA and CA15-3 levels increased in breast cancer patients ( P < 0.001). Receiver operating characteristic curve analysis showed significant area under curve (AUC) for all markers (0.656 to 0.993; P = 0.015 to <0.001) validating their diagnostic potential. Unlike CEA and CA15-3, miRNAs retained their sensitivity even at higher cut-offs (95% CI of mean). Logistic regression analysis showed significant association between disease and marker positivity for miRNA-21 and miRNA-205 but not for miRNA-155. Combining CA15-3 with miRNAs did not improve their diagnostic performance. However, combining CEA with either miRNA-21 (AUC = 0.742; P < 0.001 versus AUC = 0.656; P = 0.018) or miRNA-205 (AUC = 0.733; P < 0.001 versus AUC = 0.700; P < 0.001) increased its diagnostic performance. CONCLUSION Our study shows miRNA-21 and miRNA-205, are useful as diagnostic markers for breast cancer in the Indian population and combination of these miRNAs with CEA but not with CA 15-3 improved their diagnostic performance.
Collapse
Affiliation(s)
- Kanchi Rama
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Aparna R Bitla
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Narendra Hulikal
- Department of Surgical Oncology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Mutheeswaraiah Yootla
- Department of Surgery, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | | | - T Asha
- Department of Pathology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - M Manickavasagam
- Department of Medical Oncology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Pvln Srinivasa Rao
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| |
Collapse
|
8
|
Saxena R, Krishnan M P S, Christudass CS, Chauhan A, Malik VS, Gupta A, Gupta S, Anthwal A, Goyal B. Micro-RNAs With Prognostic Significance in Gallbladder Cancer: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e55515. [PMID: 38576631 PMCID: PMC10990876 DOI: 10.7759/cureus.55515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Gallbladder cancer (GBC) stands out as one of the most widespread malignancies impacting the biliary tract globally. Despite increasing interest, to the best of our knowledge, no meta-analysis has been undertaken to amalgamate the existing data concerning the prognostic significance of micro-RNAs (miRNAs) in GBC in comparison to studies on miRNAs in other cancers. Hence, this systematic review and meta-analysis aimed at determining the prognostic significance of miRNAs in GBC patients. Comprehensive literature searches were conducted across PubMed, Cochrane Library, Ovid, Scopus, and Science Direct databases. Studies that evaluated the association between miRNAs and overall survival in GBC patients were included. Random-effect meta-analysis was employed to pool hazard ratios (HRs) and their 95% confidence intervals (CIs) across studies. A total of 15 studies, encompassing 16 miRs, were included for our analysis. The pooled analysis revealed that a high expression of miR-204, miR-7-2-3p, miR-29c-3p, miR-125b, miR-20a, miR-139-5p, miR-141, miR-92b-3p, miR-335, and miR-372 was significantly associated with poor prognosis and increased risk (HR>1 and the upper bound of the 95% CI>1). Additionally, these miRNAs were associated with the overall survival (HR = 1.56, 95% CI = 0.91-2.20, I2 = 91.82%). Significant heterogeneity was observed and could be attributed to the limited number of studies available on the GBC and significant reliance on quantitative real-time PCR for the detection of miRNAs. In conclusion, specific miRNAs exhibit prognostic significance in GBC, with potential implications for patient stratification and targeted therapeutic interventions. However, due to the heterogeneity among studies, these findings should be interpreted cautiously and validated in larger cohorts.
Collapse
Affiliation(s)
- Rahul Saxena
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Sarath Krishnan M P
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | | | - Anil Chauhan
- Telemedicine, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| | - Vivek S Malik
- Telemedicine, Centre for Evidence Synthesis and Public Policy, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Amit Gupta
- General Surgery, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Sweety Gupta
- Radiation Oncology, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Akhil Anthwal
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| | - Bela Goyal
- Biochemistry, All India Institute of Medical Sciences, Rishikesh, Rishikesh, IND
| |
Collapse
|
9
|
Meng F, Han L, Liang Q, Lu S, Huang Y, Liu J. The Lnc-RNA APPAT Suppresses Human Aortic Smooth Muscle Cell Proliferation and Migration by Interacting With MiR-647 and FGF5 in Atherosclerosis. J Endovasc Ther 2023; 30:937-950. [PMID: 35880306 DOI: 10.1177/15266028221112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE LncRNA-Atherosclerotic plaque pathogenesis-associated transcript (APPAT) could be detected in circulating blood and has been demonstrated to correlate with the development of atherosclerosis in our previous work. It could be a potential noninvasive biomarker for earlier diagnoses of clinical cardiovascular disease. Moreover, the expression of miR-647 increased in ox-LDL-treated vascular smooth muscle cells and peripheral blood of patients with coronary heart disease. A negative correlation between APPAT and miR-647 was confirmed, and FGF5 was screened as molecular target of miR-647. However, it is largely unclear how APPAT, miR-647, and FGF5 interact and function in disease development. Here, we aim to explore the underlying molecular mechanism in this progression. MATERIALS AND METHODS APPAT, miR-647, and FGF5 expression levels were detected by quantitative reverse transcription polymerase chain reaction; cell proliferation was detected by EdU incorporation assay; cell migration was detected by wound-healing assay; the molecular interaction of APPAT/FGF5 with miR-647 was verified by dual-luciferase reporter assay; the western blot was performed to determine the gene expression at protein levels; subcellular localizations of APPAT and miR-647 were observed by fluorescence in situ hybridization; cytosolic and nucleus fractionation assay was performed to further detect the distribution of miR-647. RESULTS APPAT and miR-647 have inverse effects on human aortic smooth muscle cells' (HASMCs) proliferation and migration. APPAT negatively regulated the cell activity, whereas miR-647 did it in a positive way (p<0.05). Three pairs of molecular interplay were found: mutual negative regulation between APPAT and miR-647, APPAT downregulated FGF5, miR-647 regulation on FGF5 (p<0.05). Subcellular location assay confirmed the molecular interaction of APPAT and miR-647. CONCLUSIONS APPAT could suppress the migration and proliferation of ox-LDL-treated HASMCs via interacting with miR-647 and FGF5. We revealed a nontypical competing endogenous RNA mechanism of long noncoding RNA in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Fanming Meng
- School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Luyang Han
- School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Qin Liang
- School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Shanshan Lu
- School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Yanqing Huang
- School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Junwen Liu
- School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| |
Collapse
|
10
|
Zhou H, Hao X, Zhang P, He S. Noncoding RNA mutations in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1812. [PMID: 37544928 DOI: 10.1002/wrna.1812] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Cancer is driven by both germline and somatic genetic changes. Efforts have been devoted to characterizing essential genetic variations in cancer initiation and development. Most attention has been given to mutations in protein-coding genes and associated regulatory elements such as promoters and enhancers. The development of sequencing technologies and in silico and experimental methods has allowed further exploration of cancer predisposition variants and important somatic mutations in noncoding RNAs, mainly for long noncoding RNAs and microRNAs. Association studies including GWAS have revealed hereditary variations including SNPs and indels in lncRNA or miRNA genes and regulatory regions. These mutations altered RNA secondary structures, expression levels, and target recognition and then conferred cancer predisposition to carriers. Whole-exome/genome sequencing comparing cancer and normal tissues has revealed important somatic mutations in noncoding RNA genes. Mutation hotspots and somatic copy number alterations have been identified in various tumor-associated noncoding RNAs. Increasing focus and effort have been devoted to studying the noncoding region of the genome. The complex genetic network of cancer initiation is being unveiled. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xinpei Hao
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Gastélum-López MDLÁ, Aguilar-Medina M, García Mata C, López-Gutiérrez J, Romero-Quintana G, Bermúdez M, Avendaño-Felix M, López-Camarillo C, Pérez-Plascencia C, Beltrán AS, Ramos-Payán R. Organotypic 3D Cell-Architecture Impacts the Expression Pattern of miRNAs-mRNAs Network in Breast Cancer SKBR3 Cells. Noncoding RNA 2023; 9:66. [PMID: 37987362 PMCID: PMC10661268 DOI: 10.3390/ncrna9060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Currently, most of the research on breast cancer has been carried out in conventional two-dimensional (2D) cell cultures due to its practical benefits, however, the three-dimensional (3D) cell culture is becoming the model of choice in cancer research because it allows cell-cell and cell-extracellular matrix (ECM) interactions, mimicking the native microenvironment of tumors in vivo. METHODS In this work, we evaluated the effect of 3D cell organization on the expression pattern of miRNAs (by Small-RNAseq) and mRNAs (by microarrays) in the breast cancer SKBR3 cell line and analyzed the biological processes and signaling pathways regulated by the differentially expressed protein-coding genes (DE-mRNAs) and miRNAs (DE-microRNAs) found in the organoids. RESULTS We obtained well-defined cell-aggregated organoids with a grape cluster-like morphology with a size up to 9.2 × 105 μm3. The transcriptomic assays showed that cell growth in organoids significantly affected (all p < 0.01) the gene expression patterns of both miRNAs, and mRNAs, finding 20 upregulated and 19 downregulated DE-microRNAs, as well as 49 upregulated and 123 downregulated DE-mRNAs. In silico analysis showed that a subset of 11 upregulated DE-microRNAs target 70 downregulated DE-mRNAs. These genes are involved in 150 gene ontology (GO) biological processes such as regulation of cell morphogenesis, regulation of cell shape, regulation of canonical Wnt signaling pathway, morphogenesis of epithelium, regulation of cytoskeleton organization, as well as in the MAPK and AGE-RAGE signaling KEGG-pathways. Interestingly, hsa-mir-122-5p (Fold Change (FC) = 15.4), hsa-mir-369-3p (FC = 11.4), and hsa-mir-10b-5p (FC = 20.1) regulated up to 81% of the 70 downregulated DE-mRNAs. CONCLUSION The organotypic 3D cell-organization architecture of breast cancer SKBR3 cells impacts the expression pattern of the miRNAs-mRNAs network mainly through overexpression of hsa-mir-122-5p, hsa-mir-369-3p, and hsa-mir-10b-5p. All these findings suggest that the interaction between cell-cell and cell-ECM as well as the change in the culture architecture impacts gene expression, and, therefore, support the pertinence of migrating breast cancer research from conventional cultures to 3D models.
Collapse
Affiliation(s)
- María de los Ángeles Gastélum-López
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Cristina García Mata
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Jorge López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Geovanni Romero-Quintana
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Av. Escorza No. 900, Centro, Chihuahua 31125, Chihuahua, Mexico;
| | - Mariana Avendaño-Felix
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - César López-Camarillo
- Postgraduate in Genomic Sciences, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico;
| | - Carlos Pérez-Plascencia
- National Cancer Institute, Av. San Fernando 22, Belisario Domínguez Sec. 16, Tlalpan, Mexico City 14080, Mexico;
- FES Iztacala, National Autonomous University of Mexico, Av. de los Barrios S/N, Los Reyes Ixtacala, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Adriana S Beltrán
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| |
Collapse
|
12
|
Bhatnagar D, Ladhe S, Kumar D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer's Disease. Mol Neurobiol 2023; 60:5954-5974. [PMID: 37386272 DOI: 10.1007/s12035-023-03446-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Although over the last few decades, numerous attempts have been made to halt Alzheimer's disease (AD) progression and mitigate its symptoms, only a few have been proven beneficial. Most medications available, still only cater to the symptoms of the disease rather than fixing the cause at the root level. A novel approach involving the use of miRNAs, which work on the principle of gene silencing, is being explored by scientists. Naturally present miRNAs in the biological system help to regulate various genes than may be implicated in AD-like BACE-1 and APP. One miRNA thus, holds the power to keep a check on several genes, conferring it the ability to be used as a multi-target therapeutic. With aging and the onset of diseased pathology, dysregulation of these miRNAs is observed. This flawed miRNA expression is responsible for the unusual buildup of amyloid proteins, fibrillation of tau proteins in the brain, neuronal death and other hallmarks leading to AD. The use of miRNA mimics and miRNA inhibitors provides an attractive perspective for fixing the upregulation and downregulation of miRNAs that led to abnormal cellular activities. Furthermore, the detection of miRNAs in the CSF and serum of diseased patients might be considered an earlier biomarker for the disease. While most of the therapies designed around AD have not succeeded completely, the targeting of dysregulated miRNAs in AD patients might give a new direction to scholars to develop an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Devyani Bhatnagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Shreya Ladhe
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India.
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Almohaywi M, Sugita BM, Centa A, Fonseca AS, Antunes VC, Fadda P, Mannion CM, Abijo T, Goldberg SL, Campbell MC, Copeland RL, Kanaan Y, Cavalli LR. Deregulated miRNA Expression in Triple-Negative Breast Cancer of Ancestral Genomic-Characterized Latina Patients. Int J Mol Sci 2023; 24:13046. [PMID: 37685851 PMCID: PMC10487916 DOI: 10.3390/ijms241713046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/10/2023] Open
Abstract
Among patients with triple-negative breast cancer (TNBC), several studies have suggested that deregulated microRNA (miRNA) expression may be associated with a more aggressive phenotype. Although tumor molecular signatures may be race- and/or ethnicity-specific, there is limited information on the molecular profiles in women with TNBC of Hispanic and Latin American ancestry. We simultaneously profiled TNBC biopsies for the genome-wide copy number and miRNA global expression from 28 Latina women and identified a panel of 28 miRNAs associated with copy number alterations (CNAs). Four selected miRNAs (miR-141-3p, miR-150-5p, miR-182-5p, and miR-661) were validated in a subset of tumor and adjacent non-tumor tissue samples, with miR-182-5p being the most discriminatory among tissue groups (AUC value > 0.8). MiR-141-3p up-regulation was associated with increased cancer recurrence; miR-661 down-regulation with larger tumor size; and down-regulation of miR-150-5p with larger tumor size, high p53 expression, increased cancer recurrence, presence of distant metastasis, and deceased status. This study reinforces the importance of integration analysis of CNAs and miRNAs in TNBC, allowing for the identification of interactions among molecular mechanisms. Additionally, this study emphasizes the significance of considering the patients ancestral background when examining TNBC, as it can influence the relationship between intrinsic tumor molecular characteristics and clinical manifestations of the disease.
Collapse
Affiliation(s)
- Maram Almohaywi
- Microbiology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Bruna M. Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Ariana Centa
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Aline S. Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Valquiria C. Antunes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ciaran M. Mannion
- Department of Pathology, Hackensack University Medical Center, Hackensack, NJ 07701, USA
| | - Tomilowo Abijo
- National Institute of Diabetes and Kidney Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Stuart L. Goldberg
- John Theurer Cancer Center, Hackensack Meridian School of Medicine, Hackensack, NJ 07701, USA
- COTA, Inc., New York, NY 10014, USA
| | - Michael C. Campbell
- Department of Biological Sciences Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Robert L. Copeland
- Pharmacology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Yasmine Kanaan
- Microbiology Department, Howard University Cancer Center, Howard University, Washington, DC 20059, USA
| | - Luciane R. Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
14
|
Ryu IS, Kim DH, Ro JY, Park BG, Kim SH, Im JY, Lee JY, Yoon SJ, Kang H, Iwatsubo T, Teunissen CE, Cho HJ, Ryu JH. The microRNA-485-3p concentration in salivary exosome-enriched extracellular vesicles is related to amyloid β deposition in the brain of patients with Alzheimer's disease. Clin Biochem 2023:110603. [PMID: 37355215 DOI: 10.1016/j.clinbiochem.2023.110603] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVES Alzheimer's disease (AD) is an irreversible neurodegenerative disease characterized by progressive long-term memory loss and cognitive dysfunction. Neuroimaging tests for abnormal amyloid-β (Aβ) deposition are considered the most reliable methods for the diagnosis of AD; however, the cost for such testing is very high and generally not covered by national insurance systems. Accordingly, it is only recommended for individuals exhibiting clinical symptoms of AD supported by clinical cognitive assessments. Recently, it was suggested that dysregulated microRNA-485-3p (miRNA-485-3p) in the brain and cerebrospinal fluid is closely related to pathogenesis of AD. However, a relationship between circulating miRNA-485-3p in salivary exosome-enriched extracellular vesicles (EE-EV) and Aβ deposition in the brain has not been observed. DESIGN & METHODS Using quantitative real-time polymerase chain reaction, we analyzed miRNA-485-3p concentration in salivary EE-EV. We used receiver operating characteristic (ROC) curve analysis to evaluate its predictive value for Aβ positron emission tomography (Aβ-PET) positivity in patients with AD. RESULTS Our results showed that the miRNA-485-3p concentration in salivary EE-EV isolated from patients with AD was significantly increased compared with that in the healthy controls (p<0.0001). In the analysis of all participants, the miRNA-485-3p concentration was significantly increased in Aβ-PET-positive participants compared to Aβ-PET-negative participants (p<0.0001). Further analysis using only AD patients also showed that the miRNA-485-3p concentration was significantly increased in Aβ-PET-positive AD patients vs. Aβ-PET-negative AD patients (p=0.0063). The ROC curve analysis for differentiating Aβ-PET-positive and negative participants showed that the area under the curve for miRNA-485-3p was 0.9217. CONCLUSION These findings suggested that the miRNA-485-3p concentration in salivary EE-EV was closely related to Aβ deposition in the brain and had high diagnostic accuracy for predicting Aβ-PET positivity.
Collapse
Affiliation(s)
- In Soo Ryu
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dae Hoon Kim
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Ju-Ye Ro
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Byeong-Gyu Park
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Seo Hyun Kim
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Jong-Yeop Im
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Jun-Young Lee
- Borame Medical Center 20, Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, South Korea
| | - Soo Jin Yoon
- Daejeon Eulji Medical Center, 95, Dunsanseo-ro, Seo-gu, Daejeon 35233, South Korea
| | - Heeyoung Kang
- Gyeongsang National University Hospital, 501, Jinju-daero, Jinju 52828, South Korea
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam 1081, Netherlands
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, South Korea.
| | - Jin-Hyeob Ryu
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea; BIORCHESTRA US., Inc., 1 Kendall square, Building 200, Suite 2-103, Cambridge, MA, 02139, United States.
| |
Collapse
|
15
|
Ždralević M, Raonić J, Popovic N, Vučković L, Rovčanin Dragović I, Vukčević B, Todorović V, Vukmirović F, Marzano F, Tullo A, Guaragnella N, Giannattasio S, Radunović M. The role of miRNA in colorectal cancer diagnosis: A pilot study. Oncol Lett 2023; 25:267. [PMID: 37216163 PMCID: PMC10193376 DOI: 10.3892/ol.2023.13853] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Despite recent advances in diagnosis and treatment, colorectal cancer (CRC) remains the third most common cancer worldwide, and has both a poor prognosis and a high recurrence rate, thus indicating the need for new, sensitive and specific biomarkers. MicroRNAs (miRNAs/miRs) are important regulators of gene expression, which are involved in numerous biological processes implicated in tumorigenesis. The objective of the present study was to investigate the expression of miRNAs in plasma and tissue samples from patients with CRC, and to examine their potential as CRC biomarkers. Using reverse transcription-quantitative PCR, it was revealed that miR-29a, miR-101, miR-125b, miR-146a and miR-155 were dysregulated in the formalin-fixed paraffin-embedded tissues of patients with CRC, compared with the surrounding healthy tissue, and these miRNAs were associated with several pathological features of the tumor. Bioinformatics analysis of overlapping target genes identified AGE-RAGE signaling as a putative joint regulatory pathway. miR-146a was also upregulated in the plasma of patients with CRC, compared with the healthy control group, and had a fair discriminatory power (area under the curve, 0.7006), with 66.7% sensitivity and 77.8% specificity. To the best of our knowledge, this distinct five-miRNA deregulation pattern in tumor tissue, and upregulation of plasma miR-146a, were shown for the first time in patients with CRC; however, studies on larger patient cohorts are warranted to confirm their potential to be used as CRC diagnostic biomarkers.
Collapse
Affiliation(s)
- Maša Ždralević
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | - Janja Raonić
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Natasa Popovic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | - Ljiljana Vučković
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | | | - Batrić Vukčević
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Digestive Surgery, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Vladimir Todorović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Institute for Oncology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Filip Vukmirović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Flaviana Marzano
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Apollonia Tullo
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnologies and Environment, University of Bari ‘Aldo Moro’, I-70126 Bari, Italy
| | - Sergio Giannattasio
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Miodrag Radunović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Digestive Surgery, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| |
Collapse
|
16
|
Mestry C, Ashavaid TF, Shah SA. Key methodological challenges in detecting circulating miRNAs in different biofluids. Ann Clin Biochem 2023; 60:14-26. [PMID: 36113172 DOI: 10.1177/00045632221129778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The technological advancement in diagnostic techniques has immensely improved the capability of predicting disease progression. Yet, there is a great interest in developing newer biomarkers that can enhance disease risk prediction thereby minimising the associated morbidity and mortality. Circulating miRNAs, a non-coding RNA molecule, are critical regulators in the pathophysiology of various complex multifactorial diseases. In recent years, circulating miRNAs have been enormously studied and are considered as an emerging biomarker due to their easy accessibility, stability, and detection by sequence-specific amplification methods. However, there is a distinct lack of consensus regarding the preanalytical factors such as preferred sample selection, methodological aspects, etc that may independently or together influence the detection of circulating miRNAs resulting in erroneous expression profiles. Therefore, the present review makes an attempt to highlight the various pre-analytical and analytical factors that can potentially influence the circulating miRNA levels. Literature on circulating miRNA's stability, processing and quantitation in different biofluids along with the effect of various controllable and uncontrollable factors influencing circulating miRNA expression have been summarised in the current review.
Collapse
Affiliation(s)
- Chitra Mestry
- Research Laboratories, 29537P. D. Hinduja Hospital & Medical Research Centre, Mahim, India
| | - Tester F Ashavaid
- Department of Laboratory Medicine, P. D. Hinduja Hospital & Medical Research Centre, Mahim, India
| | - Swarup Av Shah
- Department of Laboratory Medicine, P. D. Hinduja Hospital & Medical Research Centre, Mahim, India
| |
Collapse
|
17
|
Vetchinkina EA, Kalinkin AI, Kuznetsova EB, Kiseleva AE, Alekseeva EA, Nemtsova MV, Bure IV. Diagnostic and prognostic value of long non-coding RNA PROX1‑AS1 and miR-647 expression in gastric cancer. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-50-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction. Gastric cancer remains one of the most common cancers and has a high mortality rate worldwide. Epigenetic alternations of non-coding RNAs (ncRNAs), including microRNAs and long ncRNAs can contribute to its pathogenesis and progression, and could be potent diagnostic and prognostic biomarkers.Aim. Estimation of PROX1‑AS1 and miR-647 expression in gastric cancer and investigation of its clinical significance. Materials and methods. Tumor and adjacent normal tissues (n = 62), and sectional normal tissue samples (n = 5) were included in the study. The expression of the ncRNAs was quantified by reverse transcription-polymerase chain reaction assay.Results. We have reviled the significant difference in the PROX1‑AS1 expression in tumor (p = 0.002) and non-tumor tissues (p <0.001) obtained from gastric cancer patients in comparison with sectional gastric tissues without pathology. Pearson correlation analysis confirmed a negative correlation between PROX1‑AS1 and miR-647 in gastric cancer both in tumor (р <0,001) and adjacent normal tissues (р <0.001). Besides, expression of PROX1‑AS1 and miR-647 was associated with the size and extent of the primary tumor.Conclusion. The obtained results allow to suggest a potential prognostic value of PROX1‑AS1 and miR-647 in gastric cancer.
Collapse
Affiliation(s)
- E. A. Vetchinkina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | | | - E. B. Kuznetsova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - A. E. Kiseleva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - E. A. Alekseeva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - M. V. Nemtsova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - I. V. Bure
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| |
Collapse
|
18
|
Villegas-Mirón P, Gallego A, Bertranpetit J, Laayouni H, Espinosa-Parrilla Y. Signatures of genetic variation in human microRNAs point to processes of positive selection and population-specific disease risks. Hum Genet 2022; 141:1673-1693. [PMID: 35249174 PMCID: PMC9522702 DOI: 10.1007/s00439-021-02423-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022]
Abstract
The occurrence of natural variation in human microRNAs has been the focus of numerous studies during the last 20 years. Most of them have been focused on the role of specific mutations in disease, while a minor proportion seek to analyse microRNA diversity in the genomes of human populations. We analyse the latest human microRNA annotations in the light of the most updated catalogue of genetic variation provided by the 1000 Genomes Project. By means of the in silico analysis of microRNA genetic variation we show that the level of evolutionary constraint of these sequences is governed by the interplay of different factors, like their evolutionary age or genomic location. The role of mutations in the shaping of microRNA-driven regulatory interactions is emphasized with the acknowledgement that, while the whole microRNA sequence is highly conserved, the seed region shows a pattern of higher genetic diversity that appears to be caused by the dramatic frequency shifts of a fraction of human microRNAs. We highlight the participation of these microRNAs in population-specific processes by identifying that not only the seed, but also the loop, are particularly differentiated regions among human populations. The quantitative computational comparison of signatures of population differentiation showed that candidate microRNAs with the largest differences are enriched in variants implicated in gene expression levels (eQTLs), selective sweeps and pathological processes. We explore the implication of these evolutionary-driven microRNAs and their SNPs in human diseases, such as different types of cancer, and discuss their role in population-specific disease risk.
Collapse
Affiliation(s)
- Pablo Villegas-Mirón
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Alicia Gallego
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Bioinformatics Studies, ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain.
| | - Yolanda Espinosa-Parrilla
- Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
- Laboratorio de Medicina Molecular-LMM, Centro Asistencial, Docente Y de Investigación-CADI, Universidad de Magallanes, Punta Arenas, Chile.
- Interuniversity Center on Healthy Aging, Punta Arenas, Chile.
| |
Collapse
|
19
|
miR-454-3p and miR-194-5p targeting cardiac sarcolemma ion exchange transcripts are potential noninvasive diagnostic biomarkers for childhood dilated cardiomyopathy in Egyptian patients. Egypt Heart J 2022; 74:65. [PMID: 36076093 PMCID: PMC9458794 DOI: 10.1186/s43044-022-00300-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background Childhood dilated cardiomyopathy (CDCM) is the most common cardiomyopathy in children and it is risk factor to heart failure and sudden death. Most of the different etiologic factors which have been postulated to DCM are idiopathic, and its pathogenesis remains uncertain. So it was worth investigating the potential DCM pathogenicity models to establish early noninvasive diagnosis parameters especially in CDCM patients. Beside that miRNAs in the circulatory blood are genetically considered the best option for noninvasive diagnosis; also, implementation of miRNAs as early diagnostic markers for children with DCM is urgent because those children have high risk to sudden heart death. We aimed to identify discriminator diagnostic circulatory miRNA expression levels in CDCM patients.
Results The expression levels of miR-454-3p and miR-194-5p were found significant upregulated (p value = 0.001 and 0.018; CI 95%, respectively), while miR-875-3p was found significant downregulated (p value = 0.040; CI 95%). A receiver operating characteristic (ROC) curve analysis showed significant AUC = 1.000 and 0.798 for miR-454-3p and miR-194-5p, respectively, and the optimal discriminated diagnostic cut-points were computed by index of union (IU) method. Enrichment analysis for the potential targeted mature mRNAs by miR-454-3p and miR-194-5p pointed that Ca, Na and K ions homeostasis in cardiac sarcolemma consider potential CDCM pathogenicity model.
Conclusions miR-454-3p and miR-194-5p are highly influencing noninvasive biomarkers for CDCM, and further circulatory miRNAs-implicated studies are highly recommended.
Collapse
|
20
|
miRNA in Ischemic Heart Disease and Its Potential as Biomarkers: A Comprehensive Review. Int J Mol Sci 2022; 23:ijms23169001. [PMID: 36012267 PMCID: PMC9409094 DOI: 10.3390/ijms23169001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic heart disease (IHD) constitutes the leading global cause of mortality and morbidity. Although significant progress has been achieved in the diagnosis, treatment, and prognosis of IHD, more robust diagnostic biomarkers and therapeutic interventions are still needed to circumvent the increasing incidence of IHD. MicroRNAs (miRNAs) are critical regulators of cardiovascular function and are involved in various facets of cardiovascular biology. While the knowledge of the role of miRNAs in IHD as diagnostic biomarkers has improved, research emphasis on how miRNAs can be effectively used for diagnosis and prognosis of IHD is crucial. This review provides an overview of the biology, therapeutic and diagnostic potential, as well as the caveats of using miRNAs in IHD based on existing research.
Collapse
|
21
|
Shen J, Wu Y, Ruan W, Zhu F, Duan S. miR-1908 Dysregulation in Human Cancers. Front Oncol 2022; 12:857743. [PMID: 35463352 PMCID: PMC9021824 DOI: 10.3389/fonc.2022.857743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 01/19/2023] Open
Abstract
MiR-1908 is a miRNA located in the intron of the fatty acid desaturase 1 (FADS1) gene. The expression level of miR-1908 is abnormal in many diseases such as cancer. miR-1908 can inhibit the expression of at least 27 target genes by binding to the 3’ untranslated region (3’ UTR) of target genes. miR-1908 is involved in the biological processes of cell proliferation, cell differentiation, cell apoptosis, cancer cell invasion, and metastasis. The expression of miR-1908 is regulated by 11 factors, including lncRNA HOTTIP, adipokines (TNF-α, leptin, and resistin), NF-κB, free fatty acid (FFA), cholesterol, stearoyl-CoA desaturase (SCD1), immune-related transcription factors (STAT1, RB1, and IRF1). The expression of miR-1908 is also affected by the anticancer drug OSW-1, growth hormone (GH), and the anticonvulsant drug sodium valproate. In addition, the aberrant expression of miR-1908 is also related to the prognosis of a variety of cancers, including non-small cell lung cancer (NSCLC), ovarian cancer (OC), breast cancer, cervical cancer, glioma, high-grade serous ovarian carcinoma (HGSOC), osteosarcoma, etc. This article summarizes the abnormal expression pattern of miR-1908 in various diseases and its molecular regulation mechanisms. Our work will provide potential hints and direction for future miR-1908-related research.
Collapse
Affiliation(s)
- Jinze Shen
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wenjing Ruan
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Miglioli C, Bakalli G, Orso S, Karemera M, Molinari R, Guerrier S, Mili N. Evidence of antagonistic predictive effects of miRNAs in breast cancer cohorts through data-driven networks. Sci Rep 2022; 12:5166. [PMID: 35338170 PMCID: PMC8956684 DOI: 10.1038/s41598-022-08737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
Non-coding micro RNAs (miRNAs) dysregulation seems to play an important role in the pathways involved in breast cancer occurrence and progression. In different studies, opposite functions may be assigned to the same miRNA, either promoting the disease or protecting from it. Our research tackles the following issues: (i) why aren’t there any concordant findings in many research studies regarding the role of miRNAs in the progression of breast cancer? (ii) could a miRNA have either an activating effect or an inhibiting one in cancer progression according to the other miRNAs with which it interacts? For this purpose, we analyse the AHUS dataset made available on the ArrayExpress platform by Haakensen et al. The breast tissue specimens were collected over 7 years between 2003 and 2009. miRNA-expression profiling was obtained for 55 invasive carcinomas and 70 normal breast tissue samples. Our statistical analysis is based on a recently developed model and feature selection technique which, instead of selecting a single model (i.e. a unique combination of miRNAs), delivers a set of models with equivalent predictive capabilities that allows to interpret and visualize the interaction of these features. As a result, we discover a set of 112 indistinguishable models (in a predictive sense) each with 4 or 5 miRNAs. Within this set, by comparing the model coefficients, we are able to identify three classes of miRNA: (i) oncogenic miRNAs; (ii) protective miRNAs; (iii) undefined miRNAs which can play both an oncogenic and a protective role according to the network with which they interact. These results shed new light on the biological action of miRNAs in breast cancer and may contribute to explain why, in some cases, different studies attribute opposite functions to the same miRNA.
Collapse
Affiliation(s)
- Cesare Miglioli
- University of Geneva, Geneva School of Economics and Management, Geneva, 1205, Switzerland.
| | - Gaetan Bakalli
- Auburn University, Department of Mathematics and Statistics, Auburn, AL, 36849, USA
| | - Samuel Orso
- University of Geneva, Geneva School of Economics and Management, Geneva, 1205, Switzerland
| | - Mucyo Karemera
- Auburn University, Department of Mathematics and Statistics, Auburn, AL, 36849, USA
| | - Roberto Molinari
- Auburn University, Department of Mathematics and Statistics, Auburn, AL, 36849, USA
| | - Stéphane Guerrier
- University of Geneva, Geneva School of Economics and Management, Geneva, 1205, Switzerland.,University of Geneva, Faculty of Science, Geneva, 1211, Switzerland
| | - Nabil Mili
- University of Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
23
|
Factors influencing circulating microRNAs as biomarkers for liver diseases. Mol Biol Rep 2022; 49:4999-5016. [DOI: 10.1007/s11033-022-07170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022]
|
24
|
Staiteieh SA, Akil L, Al Khansa R, Nasr R, Al Sagheer Z, Houshaymi B, Merhi RA. Study of microRNA expression profiling as biomarkers for colorectal cancer patients in Lebanon. Mol Clin Oncol 2022; 16:39. [PMID: 35003737 DOI: 10.3892/mco.2021.2473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/15/2021] [Indexed: 11/05/2022] Open
Abstract
The high incidence and mortality rates of colorectal cancer (CRC) reveal its hazardous effect globally. Thus, it is important to diagnose CRC at an early stage to decrease its burden and improve survival rates. Previous studies have investigated the role of short non-coding microRNAs (miRNAs or miRs) in numerous types of cancer, including CRC. Previous studies have been performed to investigate the role of miRNAs as biomarkers in diagnosis, prognosis and prediction of CRC development. The aim of the present retrospective study was to identify the expression levels of miR-31, miR-145, miR-146b and miR-186 to highlight their role in CRC diagnosis and progression at different stages of the disease (precancerous polyp, adenoma and adenocarcinoma) in a Lebanese population. The expression levels of miRNAs was revealed using TaqMan reverse transcription-quantitative PCR on formalin-fixed paraffin-embedded tissues from Lebanese patients at different stages; their diagnostic value was determined using a receiver operating characteristics curve. Compared with healthy controls, miR-31 was upregulated (P<0.0001) at all stages. By contrast, miR-145, miR-186, and miR-146b were significantly downregulated at all stages (P<0.0001, P=0.0009 and P=0.0241, respectively). Of the four miRNAs studied, miR-31 and miR-145 were identified as potentially useful diagnostic factors, with an area under the curve of 0.7771 and 0.8269 and diagnostic accuracy of 71.3 and 78.5%, respectively. These data suggested that miR-31 and miR-145, upon further clinical validation, may be used as potential diagnostic biomarkers for the early detection of CRC at the polyp stage.
Collapse
Affiliation(s)
- Soumaiah Abou Staiteieh
- Genomics and Surveillance Biotherapy Laboratory, Biology Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath 1003, Lebanon
| | - Laila Akil
- Anatomy and Pathology Department, Bahman Hospital, Haret Hreik, Mount Lebanon 128-25, Lebanon
| | - Rawan Al Khansa
- Genomics and Surveillance Biotherapy Laboratory, Biology Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath 1003, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Zainab Al Sagheer
- Applied Mathematics Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath 1003, Lebanon
| | - Bilal Houshaymi
- Genomics and Surveillance Biotherapy Laboratory, Biology Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath 1003, Lebanon
| | - Raghida Abou Merhi
- Genomics and Surveillance Biotherapy Laboratory, Biology Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath 1003, Lebanon
| |
Collapse
|
25
|
Shahian DM, Badhwar V, O'Brien SM, Habib RH, Han J, McDonald DE, Antman MS, Higgins RSD, Preventza O, Estrera AL, Calhoon JH, Grondin SC, Cooke DT. Social Risk Factors in Society of Thoracic Surgeons Risk Models Part 1: Concepts, Indicator Variables, and Controversies. Ann Thorac Surg 2022; 113:1703-1717. [PMID: 34998732 DOI: 10.1016/j.athoracsur.2021.11.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/01/2022]
Affiliation(s)
- David M Shahian
- Division of Cardiac Surgery, Department of Surgery, and Center for Quality and Safety, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| | - Vinay Badhwar
- Department of Cardiovascular and Thoracic Surgery, West Virginia University, Morgantown WV
| | | | | | - Jane Han
- Society of Thoracic Surgeons, Chicago, IL
| | | | | | - Robert S D Higgins
- Johns Hopkins University School of Medicine and Johns Hopkins Hospital, Baltimore, MD
| | - Ourania Preventza
- Baylor College of Medicine, Texas Heart Institute, Baylor St. Luke's Medical Center, Houston, TX
| | - Anthony L Estrera
- McGovern Medical School at UTHealth; Memorial Hermann Heart and Vascular Institute; Houston, TX
| | - John H Calhoon
- Department of Cardiothoracic Surgery, University of Texas Health Science Center at San Antonio
| | - Sean C Grondin
- Cumming School of Medicine, University of Calgary, and Foothills Medical Centre, Calgary, Alberta, Canada
| | - David T Cooke
- Division of General Thoracic Surgery, UC Davis Health, Sacramento, CA
| |
Collapse
|
26
|
Li CH, Liao CC. The Metabolism Reprogramming of microRNA Let-7-Mediated Glycolysis Contributes to Autophagy and Tumor Progression. Int J Mol Sci 2021; 23:113. [PMID: 35008539 PMCID: PMC8745176 DOI: 10.3390/ijms23010113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer is usually a result of abnormal glucose uptake and imbalanced nutrient metabolization. The dysregulation of glucose metabolism, which controls the processes of glycolysis, gives rise to various physiological defects. Autophagy is one of the metabolic-related cellular functions and involves not only energy regeneration but also tumorigenesis. The dysregulation of autophagy impacts on the imbalance of metabolic homeostasis and leads to a variety of disorders. In particular, the microRNA (miRNA) Let-7 has been identified as related to glycolysis procedures such as tissue repair, stem cell-derived cardiomyocytes, and tumoral metastasis. In many cancers, the expression of glycolysis-related enzymes is correlated with Let-7, in which multiple enzymes are related to the regulation of the autophagy process. However, much recent research has not comprehensively investigated how Let-7 participates in glycolytic reprogramming or its links to autophagic regulations, mainly in tumor progression. Through an integrated literature review and omics-related profiling correlation, this review provides the possible linkage of the Let-7 network between glycolysis and autophagy, and its role in tumor progression.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Chiao-Chun Liao
- Department of Tropical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Public Health and Department of Social Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
27
|
Lange M, Begolli R, Giakountis A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021; 7:47. [PMID: 34449663 PMCID: PMC8395730 DOI: 10.3390/ncrna7030047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.
Collapse
Affiliation(s)
- Marios Lange
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
- Institute for Fundamental Biomedical Research, B.S.R.C “Alexander Fleming”, 34 Fleming Str., 16672 Vari, Greece
| |
Collapse
|
28
|
Xia T, Chen XY, Zhang YN. MicroRNAs as biomarkers and perspectives in the therapy of pancreatic cancer. Mol Cell Biochem 2021; 476:4191-4203. [PMID: 34324119 DOI: 10.1007/s11010-021-04233-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is considered as one of the most aggressive tumor types, representing over 45,750 mortality cases annually in the USA solely. The aggressive nature and late identification of pancreatic cancer, combined with the restrictions of existing chemotherapeutics, present the mandatory need for the advancement of novel treatment systems. Ongoing reports have shown an important role of microRNAs (miRNAs) in the initiation, migration, and metastasis of malignancies. Besides, abnormal transcriptional levels of miRNAs have regularly been related with etiopathogenesis of pancreatic malignancy, underlining the conceivable utilization of miRNAs in the management of pancreatic disease patients. In this review article, we give a concise outline of molecular pathways involved in etiopathogenesis of pancreatic cancer patients as well as miRNA implications in pancreatic cancer patients. Ensuing sections describe the involvement of miRNAs in the diagnosis, prognosis, and therapy of pancreatic cancer patients. The involvement of miRNAs in the chemoresistance of pancreatic cancers was also discussed. End area portrays the substance of survey with future headings.
Collapse
Affiliation(s)
- Tao Xia
- Department of Gastrointestinal-Pancreatic Surgery, General Surgery, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People's Republic of China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated Hospital of Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.
| | - You-Ni Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Kangning Middle Road, Shifeng Street, Tiantai County, Taizhou, 317200, Zhejiang Province, People's Republic of China.
| |
Collapse
|
29
|
ElShelmani H, Wride MA, Saad T, Rani S, Kelly DJ, Keegan D. The Role of Deregulated MicroRNAs in Age-Related Macular Degeneration Pathology. Transl Vis Sci Technol 2021; 10:12. [PMID: 34003896 PMCID: PMC7881277 DOI: 10.1167/tvst.10.2.12] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose We previously identified three microRNAs (miRNAs) with significantly increased expression in the serum of patients with age-related macular degeneration (AMD) compared with healthy controls. Our objective was to identify potential functional roles of these upregulated miRNAs (miR-19a, miR-126, and miR-410) in AMD, using computational tools for miRNAs prediction and identification, and to demonstrate the miRNAs target genes and signaling pathways. We also aim to demonstrate the pathologic role of isolated sera-derived exosomes from patients with AMD and controls using in vitro models. Methods miR-19a, miR-126, and miR-410 were investigated using bioinformatic approaches, including DIANA-mirPath and miR TarBase. Data on the resulting target genes and signaling pathways were incorporated with the differentially expressed miRNAs in AMD. Apoptosis markers, human apoptosis miRNAs polymerase chain reaction arrays and angiogenesis/vasculogenesis assays were performed by adding serum-isolated AMD patient or control patient derived exosomes into an in vitro human angiogenesis model and ARPE-19 cell lines. Results A number of pathways known to be involved in AMD development and progression were predicted, including the vascular endothelial growth factor signaling, apoptosis, and neurodegenerative pathways. The study also provides supporting evidence for the involvement of serum-isolated AMD-derived exosomes in the pathology of AMD, via apoptosis and/or angiogenesis. Conclusions miR-19a, miR-126, miR-410 and their target genes had a significant correlation with AMD pathogenesis. As such, they could be potential new targets as predictive biomarkers or therapies for patients with AMD. Translational Relevance The functional analysis and the pathologic role of altered miRNA expression in AMD may be applicable in developing new therapies for AMD through the disruption of individual or multiple pathophysiologic pathways.
Collapse
Affiliation(s)
- Hanan ElShelmani
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College Dublin, Dublin 2, Ireland.,Mater Retina Research Group, Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland
| | - Michael A Wride
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College Dublin, Dublin 2, Ireland
| | - Tahira Saad
- Mater Retina Research Group, Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland
| | - Sweta Rani
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - David J Kelly
- Zoology Department, School of Natural Sciences, University of Dublin, Trinity College Dublin, Ireland
| | - David Keegan
- Mater Retina Research Group, Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland
| |
Collapse
|
30
|
Differences in plasma microRNA content impair microRNA-based signature for breast cancer diagnosis in cohorts recruited from heterogeneous environmental sites. Sci Rep 2021; 11:11698. [PMID: 34083680 PMCID: PMC8175697 DOI: 10.1038/s41598-021-91278-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/21/2021] [Indexed: 02/04/2023] Open
Abstract
Circulating microRNAs are non-invasive biomarkers that can be used for breast cancer diagnosis. However, differences in cancer tissue microRNA expression are observed in populations with different genetic/environmental backgrounds. This work aims at checking if a previously identified diagnostic circulating microRNA signature is efficient in other genetic and environmental contexts, and if a universal circulating signature might be possible. Two populations are used: women recruited in Belgium and Rwanda. Breast cancer patients and healthy controls were recruited in both populations (Belgium: 143 primary breast cancers and 136 healthy controls; Rwanda: 82 primary breast cancers and 73 healthy controls; Ntot = 434), and cohorts with matched age and cancer subtypes were compared. Plasmatic microRNA profiling was performed by RT-qPCR. Random Forest was used to (1) evaluate the performances of the previously described breast cancer diagnostic tool identified in Belgian-recruited cohorts on Rwandan-recruited cohorts and vice versa; (2) define new diagnostic signatures common to both recruitment sites; (3) define new diagnostic signatures efficient in the Rwandan population. None of the circulating microRNA signatures identified is accurate enough to be used as a diagnostic test in both populations. However, accurate circulating microRNA signatures can be found for each specific population, when taken separately.
Collapse
|
31
|
Guo S, Huang S, Jiang X, Hu H, Han D, Moreno CS, Fairbrother GL, Hughes DA, Stoneking M, Khaitovich P. Variation of microRNA expression in the human placenta driven by population identity and sex of the newborn. BMC Genomics 2021; 22:286. [PMID: 33879051 PMCID: PMC8059241 DOI: 10.1186/s12864-021-07542-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Analysis of lymphocyte cell lines revealed substantial differences in the expression of mRNA and microRNA (miRNA) among human populations. The extent of such population-associated differences in actual human tissues remains largely unexplored. The placenta is one of the few solid human tissues that can be collected in substantial numbers in a controlled manner, enabling quantitative analysis of transient biomolecules such as RNA transcripts. Here, we analyzed microRNA (miRNA) expression in human placental samples derived from 36 individuals representing four genetically distinct human populations: African Americans, European Americans, South Asians, and East Asians. All samples were collected at the same hospital following a unified protocol, thus minimizing potential biases that might influence the results. RESULTS Sequence analysis of the miRNA fraction yielded 938 annotated and 70 novel miRNA transcripts expressed in the placenta. Of them, 82 (9%) of annotated and 11 (16%) of novel miRNAs displayed quantitative expression differences among populations, generally reflecting reported genetic and mRNA-expression-based distances. Several co-expressed miRNA clusters stood out from the rest of the population-associated differences in terms of miRNA evolutionary age, tissue-specificity, and disease-association characteristics. Among three non-environmental influenced demographic parameters, the second largest contributor to miRNA expression variation after population was the sex of the newborn, with 32 miRNAs (3% of detected) exhibiting significant expression differences depending on whether the newborn was male or female. Male-associated miRNAs were evolutionarily younger and correlated inversely with the expression of target mRNA involved in neuron-related functions. In contrast, both male and female-associated miRNAs appeared to mediate different types of hormonal responses. Demographic factors further affected reported imprinted expression of 66 placental miRNAs: the imprinting strength correlated with the mother's weight, but not height. CONCLUSIONS Our results showed that among 12 assessed demographic variables, population affiliation and fetal sex had a substantial influence on miRNA expression variation among human placental samples. The effect of newborn-sex-associated miRNA differences further led to expression inhibition of the target genes clustering in specific functional pathways. By contrast, population-driven miRNA differences might mainly represent neutral changes with minimal functional impacts.
Collapse
Affiliation(s)
- Song Guo
- Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Shuyun Huang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, CAS, 320 Yue Yang Road, Shanghai, 200031, China
| | - Xi Jiang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, CAS, 320 Yue Yang Road, Shanghai, 200031, China
| | - Haiyang Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, CAS, 320 Yue Yang Road, Shanghai, 200031, China
| | - Dingding Han
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, CAS, 320 Yue Yang Road, Shanghai, 200031, China
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine and Department of Biomedical Informatics, Emory University, Atlanta, GA, 30322, USA
| | - Genevieve L Fairbrother
- Obstetrics and Gynecology of Atlanta, 1100 Johnson Ferry Rd NE Suite 800, Center 2, Atlanta, GA, 30342, USA
| | - David A Hughes
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Mark Stoneking
- Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| | | |
Collapse
|
32
|
Pereira-da-Silva T, Napoleão P, Costa MC, Gabriel AF, Selas M, Silva F, Enguita FJ, Ferreira RC, Carmo MM. Cigarette Smoking, miR-27b Downregulation, and Peripheral Artery Disease: Insights into the Mechanisms of Smoking Toxicity. J Clin Med 2021; 10:jcm10040890. [PMID: 33671744 PMCID: PMC7926909 DOI: 10.3390/jcm10040890] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/26/2022] Open
Abstract
Cigarette smoking is a risk factor for the development of peripheral artery disease (PAD), although the proatherosclerotic mediators of cigarette smoking are not entirely known. We explored whether circulating microRNAs (miRNAs) are dysregulated in cigarette smokers and associated with the presence of PAD. Ninety-four participants were recruited, including 58 individuals without and 36 with PAD, 51 never smokers, 28 prior smokers, and 15 active smokers. The relative expression of six circulating miRNAs with distinct biological roles (miR-21, miR-27b, miR-29a, miR-126, miR-146, and miR-218) was assessed. Cigarette smoking was associated with the presence of PAD in multivariate analysis. Active smokers, but not prior smokers, presented miR-27b downregulation and higher leukocyte, neutrophil, and lymphocyte counts; miR-27b expression levels were independently associated with active smoking. Considering the metabolic and/or inflammatory abnormalities induced by cigarette smoking, miR-27b was independently associated with the presence of PAD and downregulated in patients with more extensive PAD. In conclusion, the atheroprotective miR-27b was downregulated in active smokers, but not in prior smokers, and miR-27b expression was independently associated with the presence of PAD. These unreported data suggest that the proatherogenic properties of cigarette smoking are mediated by a downregulation of miR-27b, which may be attenuated by smoking cessation.
Collapse
Affiliation(s)
- Tiago Pereira-da-Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
- NOVA Doctoral School, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence: ; Tel.: +351-919908505
| | - Patrícia Napoleão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Mafalda Selas
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Filipa Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Rui Cruz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Miguel Mota Carmo
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| |
Collapse
|
33
|
Fazmin IT, Achercouk Z, Edling CE, Said A, Jeevaratnam K. Circulating microRNA as a Biomarker for Coronary Artery Disease. Biomolecules 2020; 10:E1354. [PMID: 32977454 PMCID: PMC7598281 DOI: 10.3390/biom10101354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of sudden cardiac death in adults, and new methods of predicting disease and risk-stratifying patients will help guide intervention in order to reduce this burden. Current CAD detection involves multiple modalities, but the consideration of other biomarkers will help improve reliability. The aim of this narrative review is to help researchers and clinicians appreciate the growing relevance of miRNA in CAD and its potential as a biomarker, and also to suggest useful miRNA that may be targets for future study. We sourced information from several databases, namely PubMed, Scopus, and Google Scholar, when collating evidentiary information. MicroRNAs (miRNA) are short, noncoding RNAs that are relevant in cardiovascular physiology and pathophysiology, playing roles in cardiac hypertrophy, maintenance of vascular tone, and responses to vascular injury. CAD is associated with changes in miRNA expression profiles, and so are its risk factors, such as abnormal lipid metabolism and inflammation. Thus, they may potentially be biomarkers of CAD. Nevertheless, there are limitations in using miRNA. These include cost and the presence of several confounding factors that may affect miRNA profiles. Furthermore, there is difficulty in the normalisation of miRNA values between published studies, due to pre-analytical variations in samples.
Collapse
Affiliation(s)
- Ibrahim T. Fazmin
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | - Zakaria Achercouk
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
| | - Charlotte E. Edling
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
| | - Asri Said
- School of Medicine, University Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia;
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK; (I.T.F.); (Z.A.); (C.E.E.)
| |
Collapse
|
34
|
Si J, Quan M, Xiao L, Xie J, Du Q, Zhang D. Genetic interactions among Pto-miR319 family members and their targets influence growth and wood properties in Populus tomentosa. Mol Genet Genomics 2020; 295:855-870. [PMID: 32361785 DOI: 10.1007/s00438-020-01667-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/16/2020] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) play crucial roles in all aspects of plant growth and development, but the genetic interactions of miRNAs and their target genes in woody plants are largely unknown. Here, we integrated association genetics and expression profiling to decipher the allelic variations and interactions of the Pto-MIR319 family of miRNAs and 12 putative Pto-miR319 target genes related to wood formation in 435 unrelated individuals of Populus tomentosa Carrière (Chinese white poplar). Expression pattern analysis showed that among all pairings between expressions of pre-miRNA of Pto-MIR319 members and targets, 70.0% showed negative correlation of expression levels (r = - 0.944 to 0.674, P < 0.01) in eight tissues and organs of poplar, suggesting that Pto-miR319 may participate in the regulatory network of wood formation. Single SNP-based association studies identified 137 significant associations (P < 0.01, Q < 0.1), representing 126 unique SNPs from Pto-MIR319 members and their targets, with 10 tree growth traits, revealing that these genetic factors have common roles related to wood formation. Epistasis analysis uncovered 105 significant SNP-SNP associations (P < 0.01) influencing the 10 traits, demonstrating the close genetic interactions between Pto-MIR319 family members and the 12 Pto-miR319 target genes. Notably, one common SNP, in the precursor region of Pto-MIR319e, affected the stability of Pto-MIR319e's secondary structure by altering the stem-loop structure and minimum free energy, contributing to variations in the expression of Pto-MIR319e and Pto-miR319e target genes. This study enriches the understanding of the functions of miR319 family miRNAs in poplar and exemplifies a feasible approach to exploring the genetic effects underlying miRNA-mRNA interactions related to complex traits in trees.
Collapse
Affiliation(s)
- Jingna Si
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China. .,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China. .,Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| |
Collapse
|
35
|
Zhao D. Single nucleotide alterations in MicroRNAs and human cancer-A not fully explored field. Noncoding RNA Res 2020; 5:27-31. [PMID: 32128468 PMCID: PMC7044681 DOI: 10.1016/j.ncrna.2020.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are ~20 nt long small noncoding RNAs that are processed from stem-looped precursors and function mainly as posttranscriptional regulators of protein coding genes through binding to 3'-untranslated regions of messenger RNAs to inhibit the translation or cause RNA degradation. It is predicted microRNAs could regulate up to half of all human genes and are proved to play important roles in human diseases including cancer. They bind to target mRNAs based on complementary binding which is dominated by the so-called "seed" region which are the 5' 2-8 bases of the microRNA. Due to the small size in nature, even a single nucleotide variation in the precursor region especially those located in the seed regions could show big influence. Here, I summarized and reviewed the current knowledge of these single nucleotide alterations in microRNAs in human cancer including (i) common SNPs in the precursor region, (ii) isomiRs, (iii) somatic mutations of microRNAs. Briefly, this is an underexploited field and clearly, warrants further studies to reveal their biological and clinical significances. I believe they will be key to advancing personalized medicine.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Genetics and Cell Biology, Nankai University School of Life Sciences, Tianjin, 300071, China
| |
Collapse
|
36
|
Bajan S, Hutvagner G. RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs. Cells 2020; 9:E137. [PMID: 31936122 PMCID: PMC7016530 DOI: 10.3390/cells9010137] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
The first therapeutic nucleic acid, a DNA oligonucleotide, was approved for clinical use in 1998. Twenty years later, in 2018, the first therapeutic RNA-based oligonucleotide was United States Food and Drug Administration (FDA) approved. This promises to be a rapidly expanding market, as many emerging biopharmaceutical companies are developing RNA interference (RNAi)-based, and RNA-based antisense oligonucleotide therapies. However, miRNA therapeutics are noticeably absent. miRNAs are regulatory RNAs that regulate gene expression. In disease states, the expression of many miRNAs is measurably altered. The potential of miRNAs as therapies and therapeutic targets has long been discussed and in the context of a wide variety of infections and diseases. Despite the great number of studies identifying miRNAs as potential therapeutic targets, only a handful of miRNA-targeting drugs (mimics or inhibitors) have entered clinical trials. In this review, we will discuss whether the investment in finding potential miRNA therapeutic targets has yielded feasible and practicable results, the benefits and obstacles of miRNAs as therapeutic targets, and the potential future of the field.
Collapse
Affiliation(s)
- Sarah Bajan
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2000, Australia
- Health and Sport Science, University of Sunshine Coast, Sunshine Coast, QLD 4556, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
37
|
Tkachev A, Stepanova V, Zhang L, Khrameeva E, Zubkov D, Giavalisco P, Khaitovich P. Differences in lipidome and metabolome organization of prefrontal cortex among human populations. Sci Rep 2019; 9:18348. [PMID: 31797944 PMCID: PMC6893025 DOI: 10.1038/s41598-019-53762-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Human populations, despite their overwhelming similarity, contain some distinct phenotypic, genetic, epigenetic, and gene expression features. In this study, we explore population differences at yet another level of molecular phenotype: the abundance of non-polar and polar low molecular weight compounds, lipids and metabolites in the prefrontal cortical region of the brain. We assessed the abundance of 1,670 lipids and 258 metabolites in 146 Han Chinese, 97 Western European, and 60 African American individuals of varying ages, covering most of the lifespan. The statistical analysis and logistic regression models both demonstrated extensive lipid and metabolic divergence of the Han Chinese individuals from the other two populations. This divergence was age-dependent, peaking in young adults, and involved metabolites and lipids clustering in specific metabolic pathways.
Collapse
Affiliation(s)
- Anna Tkachev
- Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny Per. 19/1, 127051, Moscow, Russia
| | - Vita Stepanova
- Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny Per. 19/1, 127051, Moscow, Russia
| | - Lei Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, 200031, Shanghai, China
| | | | - Dmitry Zubkov
- Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9B, 50931, Cologne, Germany.
| | - Philipp Khaitovich
- Skolkovo Institute of Science and Technology, 121205, Moscow, Russia.
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, 200031, Shanghai, China.
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| |
Collapse
|
38
|
Daoud AZ, Mulholland EJ, Cole G, McCarthy HO. MicroRNAs in Pancreatic Cancer: biomarkers, prognostic, and therapeutic modulators. BMC Cancer 2019; 19:1130. [PMID: 31752758 PMCID: PMC6868851 DOI: 10.1186/s12885-019-6284-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
A severe lack of early diagnosis coupled with resistance to most available therapeutic options renders pancreatic cancer as a major clinical concern. The limited efficacy of current treatments necessitates the development of novel therapeutic strategies that are based on an understanding of the molecular mechanisms involved in pancreatic cancer progression. MicroRNAs (miRNAs) are non-coding small RNAs that regulate the expression of multiple proteins in the post-translation process and thus have promise as biomarkers, prognostic agents, and as advanced pancreatic therapies. Profiling of deregulated miRNAs in pancreatic cancer can correlate to diagnosis, indicate optimal treatment and predict response to therapy. Furthermore, understanding the main effector genes in pancreatic cancer along with downstream pathways can identify possible miRNAs as therapeutic candidates. Additionally, obstacles to the translation of miRNAs into the clinic are also considered. Distinct miRNA expression profiles can correlate to stages of malignant pancreatic disease, and hold potential as biomarkers, prognostic markers and clinical targets. However, a limited understanding and validation of the specific role of such miRNAs stunts clinical application. Target prediction using algorithms provides a wide range of possible targets, but these miRNAs still require validation through pre-clinical studies to determine the knock-on genetic effects.
Collapse
Affiliation(s)
- Afra Z Daoud
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Northern Ireland, BT9 7BL, UK
| | - Eoghan J Mulholland
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Grace Cole
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 2B5, Canada
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
39
|
Sugita BM, Pereira SR, de Almeida RC, Gill M, Mahajan A, Duttargi A, Kirolikar S, Fadda P, de Lima RS, Urban CA, Makambi K, Madhavan S, Boca SM, Gusev Y, Cavalli IJ, Ribeiro EMSF, Cavalli LR. Integrated copy number and miRNA expression analysis in triple negative breast cancer of Latin American patients. Oncotarget 2019; 10:6184-6203. [PMID: 31692930 PMCID: PMC6817452 DOI: 10.18632/oncotarget.27250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
Triple negative breast cancer (TNBC), a clinically aggressive breast cancer subtype, affects 15-35% of women from Latin America. Using an approach of direct integration of copy number and global miRNA profiling data, performed simultaneously in the same tumor specimens, we identified a panel of 17 miRNAs specifically associated with TNBC of ancestrally characterized patients from Latin America, Brazil. This panel was differentially expressed between the TNBC and non-TNBC subtypes studied (p ≤ 0.05, FDR ≤ 0.25), with their expression levels concordant with the patterns of copy number alterations (CNAs), present mostly frequent at 8q21.3-q24.3, 3q24-29, 6p25.3-p12.2, 1q21.1-q44, 5q11.1-q22.1, 11p13-p11.2, 13q12.11-q14.3, 17q24.2-q25.3 and Xp22.33-p11.21. The combined 17 miRNAs presented a high power (AUC = 0.953 (0.78-0.99);95% CI) in discriminating between the TNBC and non-TNBC subtypes of the patients studied. In addition, the expression of 14 and 15 of the 17miRNAs was significantly associated with tumor subtype when adjusted for tumor stage and grade, respectively. In conclusion, the panel of miRNAs identified demonstrated the impact of CNAs in miRNA expression levels and identified miRNA target genes potentially affected by both CNAs and miRNA deregulation. These targets, involved in critical signaling pathways and biological functions associated specifically with the TNBC transcriptome of Latina patients, can provide biological insights into the observed differences in the TNBC clinical outcome among racial/ethnic groups, taking into consideration their genetic ancestry.
Collapse
Affiliation(s)
- Bruna M Sugita
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Silma R Pereira
- Department of Biology, Federal University of Maranhão, São Luis, MA, Brazil
| | - Rodrigo C de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mandeep Gill
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Akanksha Mahajan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Anju Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Saurabh Kirolikar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rubens S de Lima
- Breast Unit, Hospital Nossa Senhora das Graças, Curitiba, PR, Brazil
| | - Cicero A Urban
- Breast Unit, Hospital Nossa Senhora das Graças, Curitiba, PR, Brazil
| | - Kepher Makambi
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington DC, USA
| | - Subha Madhavan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
- Innovation Center for Biomedical Informatics (ICBI), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Simina M Boca
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington DC, USA
- Innovation Center for Biomedical Informatics (ICBI), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Yuriy Gusev
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
- Innovation Center for Biomedical Informatics (ICBI), Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Iglenir J Cavalli
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Luciane R Cavalli
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
40
|
Meta-Analysis of Differential miRNA Expression after Bariatric Surgery. J Clin Med 2019; 8:jcm8081220. [PMID: 31443156 PMCID: PMC6723285 DOI: 10.3390/jcm8081220] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Bariatric surgery is an efficient treatment for weight loss in obese patients and for resolving obesity comorbidities. However, the mechanisms behind these outcomes are unclear. Recent studies have indicated significant alterations in the transcriptome after surgery, specifically in the differential expression of microRNAs. In order to summarize the recent findings, we conducted a systematic summary of studies comparing microRNA expression levels before and after surgery. We identified 17 animal model and human studies from four databases (Ovid, Scopus, Web of Science, and PubMed) to be enrolled in this meta-analysis. From these studies, we identified 14 miRNAs which had the same direction of modulation of their expression after surgery in at least two studies (downregulated: hsa-miR-93-5p, hsa-miR-106b-5p, hsa-let-7b-5p, hsa-let-7i-5p, hsa-miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-3p, hsa-miR-222-3p, hsa-miR-142-3p, hsa-miR-140-5p, hsa-miR-155-5p, rno-miR-320-3p; upregulated: hsa-miR-7-5p, hsa-miR-320c). Pathway analysis for these miRNAs was done using database resources (DIANA-TarBase and KEGG pathway database) and their predicted target genes were discussed in relation with obesity and its comorbidities. Discrepancies in study design, such as miRNA source, bariatric surgery type, time of observation after surgery, and miRNA profiling methods, were also discussed.
Collapse
|
41
|
Ma H, Wang P, Li Y, Yang Y, Zhan S, Gao Y. Decreased expression of serum miR-647 is associated with poor prognosis in gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2552-2558. [PMID: 31934082 PMCID: PMC6949550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/23/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) have been demonstrated to be critical players in different types of tumors including gastric cancer (GC). However, the expression level of serum miR-647 in patients with GC and its potential prognostic significance were poorly known. The aim of this study was to investigate the clinical significance of serum miR-647 in GC. A total of 105 patients with GC and 50 healthy volunteers were recruited into this study. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) was used to analyze the expression of serum miR-647. Diagnostic accuracy of serum miR-647 in distinguishing GC patients from healthy controls was assessed by the receiver operating characteristic (ROC) curve analysis. Chi-square was used to evaluate the association between serum miR-647 level and clinicopathologic parameters. Kaplan-Meier method was used to analyze the overall survival (OS) and relapse-free survival (RFS). Multivariate Cox proportional hazards analyses were further used to identify prognostic factors. Our results showed that a significantly downregulated expression of serum miR-647 was found in patients with GC. ROC curve analyses showed that serum miR-647 was highly efficient for discriminating patients with GC from healthy controls. In addition, low serum miR-647 expression was associated with aggressive clinical features and unfavorable survival in GC. Mechanistically downregulation of miR-647 in GC cell lines increased the expression levels of STX6, STX7, and PRKCA. In conclusion, our results demonstrate that serum miR-647 might serve as a novel serum biomarker for monitoring GC progression.
Collapse
Affiliation(s)
- Huan Ma
- Division of Gastroenterology, Qingdao Municipal Hospital, QingdaoNo. 1 Jiaozhou Road, Shibei District, Qingdao 266000, Shandong Province, China
| | - Peijun Wang
- Department of Hamatology, Qingdao Central HospitalNo. 127, Siliu South Road, Shibei District, Qingdao 266000, Shandong Province, China
| | - Yuan Li
- Division of Gastroenterology, Qingdao Municipal Hospital, QingdaoNo. 1 Jiaozhou Road, Shibei District, Qingdao 266000, Shandong Province, China
| | - Yan Yang
- Division of Gastroenterology, Qingdao Municipal Hospital, QingdaoNo. 1 Jiaozhou Road, Shibei District, Qingdao 266000, Shandong Province, China
| | - Shuhui Zhan
- Division of Gastroenterology, Qingdao Municipal Hospital, QingdaoNo. 1 Jiaozhou Road, Shibei District, Qingdao 266000, Shandong Province, China
| | - Yuqiang Gao
- Division of Gastroenterology, Qingdao Municipal Hospital, QingdaoNo. 1 Jiaozhou Road, Shibei District, Qingdao 266000, Shandong Province, China
| |
Collapse
|
42
|
Hitte C, Le Béguec C, Cadieu E, Wucher V, Primot A, Prouteau A, Botherel N, Hédan B, Lindblad-Toh K, André C, Derrien T. Genome-Wide Analysis of Long Non-Coding RNA Profiles in Canine Oral Melanomas. Genes (Basel) 2019; 10:genes10060477. [PMID: 31234577 PMCID: PMC6628375 DOI: 10.3390/genes10060477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/25/2022] Open
Abstract
Mucosal melanomas (MM) are rare aggressive cancers in humans, and one of the most common forms of oral cancers in dogs. Similar biological and histological features are shared between MM in both species, making dogs a powerful model for comparative oncology studies of melanomas. Although exome sequencing recently identified recurrent coding mutations in canine MM, little is known about changes in non-coding gene expression, and more particularly, in canine long non-coding RNAs (lncRNAs), which are commonly dysregulated in human cancers. Here, we sampled a large cohort (n = 52) of canine normal/tumor oral MM from three predisposed breeds (poodles, Labrador retrievers, and golden retrievers), and used deep transcriptome sequencing to identify more than 400 differentially expressed (DE) lncRNAs. We further prioritized candidate lncRNAs by comparative genomic analysis to pinpoint 26 dog–human conserved DE lncRNAs, including SOX21-AS, ZEB2-AS, and CASC15 lncRNAs. Using unsupervised co-expression network analysis with coding genes, we inferred the potential functions of the DE lncRNAs, suggesting associations with cancer-related genes, cell cycle, and carbohydrate metabolism Gene Ontology (GO) terms. Finally, we exploited our multi-breed design to identify DE lncRNAs within breeds. This study provides a unique transcriptomic resource for studying oral melanoma in dogs, and highlights lncRNAs that may potentially be diagnostic or therapeutic targets for human and veterinary medicine.
Collapse
Affiliation(s)
- Christophe Hitte
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Céline Le Béguec
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Edouard Cadieu
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Valentin Wucher
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Aline Primot
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Anaïs Prouteau
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Nadine Botherel
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Benoît Hédan
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 24 Uppsala, Sweden.
| | - Catherine André
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Thomas Derrien
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| |
Collapse
|
43
|
Lin Y, Chen Z, Lin S, Zheng Y, Liu Y, Gao J, Chen S. MiR-202 inhibits the proliferation and invasion of colorectal cancer by targeting UHRF1. Acta Biochim Biophys Sin (Shanghai) 2019; 51:598-606. [PMID: 31058289 DOI: 10.1093/abbs/gmz042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to investigate the expression of microRNA-202 (miR-202) and its role in colorectal cancer (CRC) in vivo and in vitro. We examined the expression of miR-202 in CRC tissues by quantitative real-time PCR (qRT-PCR) assay. Lentiviral vectors were constructed to overexpress or inhibit the expression of miR-202 in the CRC cell lines HCT116 and SW480 to determine its effects on cell invasion and proliferation. We found that overexpression of miR-202 significantly inhibited the proliferation and invasion of HCT116 cells. MiRNA target gene prediction, dual luciferase assay, and western blot analysis demonstrated that miR-202 regulated ubiquitin-like with PHD and RING finger domain 1 (UHRF1) expression in both cell lines. The effect of miR-202 on cell proliferation and invasion was partially reversed by activating the expression of UHRF1. Furthermore, miR-202 induced tumor formation in HCT116 xenograft BALB/c nude mice. Mice vaccinated with miR-202-overexpressing cells had smaller tumors and lower UHRF1 expression than the control group. These results indicate the possibility that miR-202 is under-expressed in CRC tissues, and that miR-202 inhibits the proliferation and invasion of CRC via targeting UHRF1. MiR-202 is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yilin Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhihua Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Suyong Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yisu Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ji Gao
- Fujian University of Medicine, School of Nursing, Fuzhou, China
| | - Shaoqin Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
44
|
Nemtsova MV, Zaletaev DV, Bure IV, Mikhaylenko DS, Kuznetsova EB, Alekseeva EA, Beloukhova MI, Deviatkin AA, Lukashev AN, Zamyatnin AA. Epigenetic Changes in the Pathogenesis of Rheumatoid Arthritis. Front Genet 2019; 10:570. [PMID: 31258550 PMCID: PMC6587113 DOI: 10.3389/fgene.2019.00570] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that affects about 1% of the world’s population. The etiology of RA remains unknown. It is considered to occur in the presence of genetic and environmental factors. An increasing body of evidence pinpoints that epigenetic modifications play an important role in the regulation of RA pathogenesis. Epigenetics causes heritable phenotype changes that are not determined by changes in the DNA sequence. The major epigenetic mechanisms include DNA methylation, histone proteins modifications and changes in gene expression caused by microRNAs and other non-coding RNAs. These modifications are reversible and could be modulated by diet, drugs, and other environmental factors. Specific changes in DNA methylation, histone modifications and abnormal expression of non-coding RNAs associated with RA have already been identified. This review focuses on the role of these multiple epigenetic factors in the pathogenesis and progression of the disease, not only in synovial fibroblasts, immune cells, but also in the peripheral blood of patients with RA, which clearly shows their high diagnostic potential and promising targets for therapy in the future.
Collapse
Affiliation(s)
- Marina V Nemtsova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Dmitry V Zaletaev
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Irina V Bure
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dmitry S Mikhaylenko
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina B Kuznetsova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina A Alekseeva
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Marina I Beloukhova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei A Deviatkin
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander N Lukashev
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
45
|
Ludwig N, Hecksteden A, Kahraman M, Fehlmann T, Laufer T, Kern F, Meyer T, Meese E, Keller A, Backes C. Spring is in the air: seasonal profiles indicate vernal change of miRNA activity. RNA Biol 2019; 16:1034-1043. [PMID: 31035857 DOI: 10.1080/15476286.2019.1612217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The envisioned application of miRNAs as diagnostic or prognostic biomarkers calls for an in-depth understanding of their distribution and variability in different physiological states. While effects with respect to ethnic origin, age, or gender are known, the inter-individual variability of miRNAs across the four seasons remained largely hidden. We sequentially profiled the complete repertoire of blood-borne miRNAs for 25 physiologically normal individuals in spring, summer, fall, and winter (altogether 95 samples) and validated the results on 292 individuals (919 samples collected with the Mitra home sampling device) by RT-qPCR. Principal variance component analysis suggests that the largest variability observed in miRNA expression is due to individual variability and the individuals' gender. But the results also highlight a deviation of miRNA activity in samples collected during spring time. Following adjustment for multiple testing, remarkable differences are observed between spring and fall (77 miRNAs). The two most dys-regulated miRNAs were miR-181c-5p and miR-106b-5p (adjusted p-value of 0.007). Other significant miRNAs include miR-140-3p, miR-21-3p, and let-7c-5p. The dys-regulation was validated by RT-qPCR. Systems biology analysis further provides strong evidence for the immunological origin of the signals: dys-regulated miRNAs are enriched in CD56 cells and belong to various signalling and immune-system-related pathways. Our data suggest that besides known confounding factors such as age and sex, also the season in which a test is conducted might have a considerable influence on the expression of blood-borne miRNAs and subsequently might interfere with diagnosis based on such signatures.
Collapse
Affiliation(s)
- Nicole Ludwig
- a Department of Human Genetics , Saarland University Hospital , Homburg , Germany.,b Center for Human and Molecular Biology , Saarland University , Homburg , Germany
| | - Anne Hecksteden
- c Department of Sports Medicine , Saarland University , Saarbrücken , Germany
| | - Mustafa Kahraman
- d Chair for Clinical Bioinformatics , Saarland University , Saarbrücken , Germany.,e Hummingbird Diagnostics GmbH , Heidelberg , Germany
| | - Tobias Fehlmann
- d Chair for Clinical Bioinformatics , Saarland University , Saarbrücken , Germany
| | - Thomas Laufer
- d Chair for Clinical Bioinformatics , Saarland University , Saarbrücken , Germany.,e Hummingbird Diagnostics GmbH , Heidelberg , Germany
| | - Fabian Kern
- d Chair for Clinical Bioinformatics , Saarland University , Saarbrücken , Germany
| | - Tim Meyer
- c Department of Sports Medicine , Saarland University , Saarbrücken , Germany
| | - Eckart Meese
- a Department of Human Genetics , Saarland University Hospital , Homburg , Germany
| | - Andreas Keller
- d Chair for Clinical Bioinformatics , Saarland University , Saarbrücken , Germany
| | - Christina Backes
- d Chair for Clinical Bioinformatics , Saarland University , Saarbrücken , Germany
| |
Collapse
|
46
|
MicroRNA Expression Changes in Women with Breast Cancer Stratified by DNA Repair Capacity Levels. JOURNAL OF ONCOLOGY 2019; 2019:7820275. [PMID: 31191653 PMCID: PMC6525916 DOI: 10.1155/2019/7820275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/15/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women worldwide and is the leading cause of death among Hispanic women. Previous studies have shown that women with a low DNA repair capacity (DRC), measured through the nucleotide excision repair (NER) pathway, have an increased BC risk. Moreover, we previously reported an association between DRC levels and the expression of the microRNA (miRNA) let-7b in BC patients. MiRNAs can induce genomic instability by affecting the cell's DNA damage response while influencing the cancer pathobiology. The aim of this pilot study is to identify plasma miRNAs related to variations in DRC levels in BC cases. Hypothesis. Our hypothesis consists in testing whether DRC levels can be correlated with miRNA expression levels. Methods. Plasma samples were selected from 56 (27 cases and 29 controls) women recruited as part of our BC cohort. DRC values were measured in lymphocytes using the host-cell reactivation assay. The samples were divided into two categories: low (≤3.8%) and high (>3.8%) DRC levels. MiRNAs were extracted to perform an expression profile analysis. Results. Forty miRNAs were identified to be BC-related (p<0.05, MW), while 18 miRNAs were found to be differentially expressed among BC cases and controls with high and low DRC levels (p<0.05, KW). Among these candidates are miR-299-5p, miR-29b-3p, miR-302c-3p, miR-373-3p, miR-636, miR-331-5p, and miR-597-5p. Correlation analyses revealed that 4 miRNAs were negatively correlated within BC cases with low DRC (p<0.05, Spearman's correlation). Results from multivariate analyses revealed that the clinicopathological characteristics may not have a direct effect on specific miRNA expression. Conclusion. This pilot study provides evidence of four miRNAs that are negatively regulated in BC cases with low DRC levels. Additional studies are needed in order to have a complete framework regarding the overall DRC levels, miRNA expression profiles, and tumor characteristics.
Collapse
|
47
|
Gupta I, Sareyeldin RM, Al-Hashimi I, Al-Thawadi HA, Al Farsi H, Vranic S, Al Moustafa AE. Triple Negative Breast Cancer Profile, from Gene to microRNA, in Relation to Ethnicity. Cancers (Basel) 2019; 11:cancers11030363. [PMID: 30871273 PMCID: PMC6468678 DOI: 10.3390/cancers11030363] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cause of cancer-related deaths among women worldwide. It is classified into four major molecular subtypes. Triple-negative breast cancers (TNBCs), a subgroup of breast cancer, are defined by the absence of estrogen and progesterone receptors and the lack of HER-2 expression; this subgroup accounts for ~15% of all breast cancers and exhibits the most aggressive metastatic behavior. Currently, very limited targeted therapies exist for the treatment of patients with TNBCs. On the other hand, it is important to highlight that knowledge of the molecular biology of breast cancer has recently changed the decision-making process regarding the course of cancer therapies. Thus, a number of new techniques, such as gene profiling and sequencing, proteomics, and microRNA analysis have been used to explore human breast carcinogenesis and metastasis including TNBC, which consequently could lead to new therapies. Nevertheless, based on evidence thus far, genomics profiles (gene and miRNA) can differ from one geographic location to another as well as in different ethnic groups. This review provides a comprehensive and updated information on the genomics profile alterations associated with TNBC pathogenesis associated with different ethnic backgrounds.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Israa Al-Hashimi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Halema Al Farsi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Semir Vranic
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
- Biomedical Research Centre, Qatar University, Doha P.O Box: 2713, Qatar.
| |
Collapse
|
48
|
Guerrero Flórez M, Guerrero Gómez OA, Mena Huertas J, Yépez Chamorro MC. Mapping of microRNAs related to cervical cancer in Latin American human genomic variants. F1000Res 2018; 6:946. [PMID: 37766816 PMCID: PMC10521080 DOI: 10.12688/f1000research.10138.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2018] [Indexed: 09/29/2023] Open
Abstract
Background: MicroRNAs are related to human cancers, including cervical cancer (CC) caused by HPV. In 2018, approximately 56.075 cases and 28.252 deaths from this cancer were registered in Latin America and the Caribbean according to GLOBOCAN reports. The main molecular mechanism of HPV in CC is related to integration of viral DNA into the hosts' genome. However, the different variants in the human genome can result in different integration mechanisms, specifically involving microRNAs (miRNAs). Methods: The miRNAs associated with CC were obtained from literature, the miRNA sequences and four human genome variants (HGV) from Latin American populations were obtained from miRBase and 1000 Genomes Browser, respectively. HPV integration sites near cell cycle regulatory genes were identified. miRNAs were mapped on HGV. miRSNPs were identified in the miRNA sequences located at HPV integration sites on the Latin American HGV. Results: Two hundred seventy-two miRNAs associated with CC were identified in 139 reports from different geographic locations. By mapping with Blast-Like Alignment Tool (BLAT), 2028 binding sites were identified from these miRNAs on the human genome (version GRCh38/hg38); 42 miRNAs were located on unique integration sites; and miR-5095, miR-548c-5p and miR-548d-5p were involved with multiple genes related to the cell cycle. Thirty-seven miRNAs were mapped on the Latin American HGV (PUR, MXL, CLM and PEL), but only miR-11-3p, miR-31-3p, miR-107, miR-133a-3p, miR-133a-5p, miR-133b, miR-215-5p, miR-491-3p, miR-548d-5p and miR-944 were conserved. Conclusions: Ten miRNAs were conserved in the four HGV. In the remaining 27 miRNAs, substitutions, deletions or insertions were observed. These variation patterns can imply differentiated mechanisms towards each genomic variant in human populations because of specific genomic patterns and geographic features. These findings may help in determining susceptibility for CC development. Further identification of cellular genes and signalling pathways involved in CC progression could lead new therapeutic strategies based on miRNAs.
Collapse
Affiliation(s)
- Milena Guerrero Flórez
- Department of Biology, University of Nariño, Pasto, Nariño, Colombia
- Department of Biology, Center for Health Studies at the University of Nariño (CESUN), University of Nariño, Pasto, Nariño, Colombia
| | - Olivia Alexandra Guerrero Gómez
- Department of Biology, University of Nariño, Pasto, Nariño, Colombia
- Department of Biology, Center for Health Studies at the University of Nariño (CESUN), University of Nariño, Pasto, Nariño, Colombia
| | - Jaqueline Mena Huertas
- Department of Biology, University of Nariño, Pasto, Nariño, Colombia
- Department of Biology, Center for Health Studies at the University of Nariño (CESUN), University of Nariño, Pasto, Nariño, Colombia
| | - María Clara Yépez Chamorro
- Department of Biology, Center for Health Studies at the University of Nariño (CESUN), University of Nariño, Pasto, Nariño, Colombia
| |
Collapse
|
49
|
Differential MicroRibonucleic Acid Expression in Cardioembolic Stroke. J Stroke Cerebrovasc Dis 2018; 28:121-124. [PMID: 30316639 DOI: 10.1016/j.jstrokecerebrovasdis.2018.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/30/2018] [Accepted: 09/12/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNA) are a class of small, endogenous (17-25 nucleotide) noncoding ribonucleic acids implicated in the transcriptional and post-transcriptional regulation of gene expression. This study examines stroke-specific miRNA expression in large vessel territory cardioembolic stroke. METHODS Peripheral blood was collected from controls and ischemic stroke patients 24 hours after stroke onset. Whole blood miRNA was isolated and analyzed for differential expression. A total of 16 patients with acute middle cerebral artery territory strokes of cardioembolic origin were included in this pilot study. MiRNA profiling was conducted by miRCURY LNA™ microRNA Array. RESULTS In patients with cardioembolic stroke, significant differential expression of 14 miRNAs was observed when compared to controls. Ten of these miRNA had not previously been associated with ischemic stroke (miR-664a-3p, -2116-5pp, -4531, -4765-5p, -647, -4709-3p, -4742-3p, -5584-3p, -4756-3p, and -5187-3p). Subanalysis of severe strokes (NIHSS > 10) identified an additional 5 differentially expressed miRNA. No significant effects of sex or tissue plasminogen activator treatment were seen on miRNA expression. CONCLUSIONS Ischemic stroke patients show a differential miRNA expression profile as compared to controls. These new associations between circulating miRNAs and ischemic stroke may help to refine stroke subtype diagnosis and identify novel therapeutic miRNA targets for the treatment of ischemic stroke.
Collapse
|
50
|
Zhang X, Zhang M, Wang G, Tian Y, He X. Tumor promoter role of miR‑647 in gastric cancer via repression of TP73. Mol Med Rep 2018; 18:3744-3750. [PMID: 30106095 PMCID: PMC6131566 DOI: 10.3892/mmr.2018.9358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
It has previously been demonstrated that miRNA (miR)‑647 exhibits an important role in various cancers, and is aberrantly expressed in gastric cancer (GC). However, the exact role of miR‑647 in GC still remains unclear. The present study aimed to investigate the functional significance of miR‑647 and its target gene in GC. TargetScan and Miranda databases were used to predict the putative targets, and the prediction was validated by Dual‑luciferase Reporter Assays. To investigate whether miR‑647 affects GC cell behavior, a stable miR‑647‑overexpression/low‑expression cell line was generated by transfection with miR‑647 mimic/inhibitor. MTT, Flow Cytometry and Transwell invasion assays were performed to investigate the proliferation, cell apoptosis, migration and invasion properties of MGC‑803 cells. Additionally, reverse transcription‑quantitative polymerase chain reaction and western blot analysis were performed to detect the mRNA and protein expression levels of the apoptosis‑associated genes. The results suggested that tumor protein P73 (TP73) is a target gene of miR‑647. TP73 was markedly decreased following miR‑647 overexpression and significantly increased following miR‑647 inhibition. Following overexpression of miR‑647, the proliferation, migration and invasion of MGC‑803 cells were significantly increased, whereas the percentage of apoptotic cells decreased. Conversely, the proliferation, migration and invasion of MGC‑803 cells were significantly declined, and the percentage of apoptotic cells increased following miR‑647 inhibition. In addition, the B cell lymphoma (Bcl)‑2 Associated X, Apoptosis Regulator/Bcl‑2 ratio was markedly decreased when miR‑647 was overexpressed by miRNA mimics, and significantly increased when miR‑647 expression was inhibited via an miRNA inhibitor. Overall, miR‑647 functions as a tumor promoter in GC by repressing TP73.
Collapse
Affiliation(s)
- Xiangqian Zhang
- College of Life Sciences, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| | - Min Zhang
- College of Life Sciences, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| | - Guifeng Wang
- College of Life Sciences, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| | - Ye Tian
- College of Life Sciences, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| | - Xiaolong He
- College of Life Sciences, Yan'an University, Yanan, Shaanxi 716000, P.R. China
| |
Collapse
|