1
|
Saha S, Chatterjee P, Nasipuri M, Basu S, Chakraborti T. Computational drug repurposing for viral infectious diseases: a case study on monkeypox. Brief Funct Genomics 2024; 23:570-578. [PMID: 38183212 DOI: 10.1093/bfgp/elad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
The traditional method of drug reuse or repurposing has significantly contributed to the identification of new antiviral compounds and therapeutic targets, enabling rapid response to developing infectious illnesses. This article presents an overview of how modern computational methods are used in drug repurposing for the treatment of viral infectious diseases. These methods utilize data sets that include reviewed information on the host's response to pathogens and drugs, as well as various connections such as gene expression patterns and protein-protein interaction networks. We assess the potential benefits and limitations of these methods by examining monkeypox as a specific example, but the knowledge acquired can be applied to other comparable disease scenarios.
Collapse
Affiliation(s)
- Sovan Saha
- Department of Computer Science and Engineering (Artificial Intelligence and Machine Learning), Techno Main Salt Lake, EM-4/1, Sector V, Bidhannagar, Kolkata, West Bengal 700091, India
| | - Piyali Chatterjee
- Department of Computer Science and Engineering, Netaji Subhash Engineering College, Garia, Kolkata-700152, India
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadavpur University, Kolkata - 700032, India
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, Kolkata - 700032, India
| | - Tapabrata Chakraborti
- Department of Medical Physics and Biomedical Engineering, University College London, UK
- Health Science Programme, The Alan Turing Institute, London, UK
- Linacre College, University of Oxford, UK
| |
Collapse
|
2
|
Li X, Liao M, Wang B, Zan X, Huo Y, Liu Y, Bao Z, Xu P, Liu W. A drug repurposing method based on inhibition effect on gene regulatory network. Comput Struct Biotechnol J 2023; 21:4446-4455. [PMID: 37731599 PMCID: PMC10507583 DOI: 10.1016/j.csbj.2023.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Numerous computational drug repurposing methods have emerged as efficient alternatives to costly and time-consuming traditional drug discovery approaches. Some of these methods are based on the assumption that the candidate drug should have a reversal effect on disease-associated genes. However, such methods are not applicable in the case that there is limited overlap between disease-related genes and drug-perturbed genes. In this study, we proposed a novel Drug Repurposing method based on the Inhibition Effect on gene regulatory network (DRIE) to identify potential drugs for cancer treatment. DRIE integrated gene expression profile and gene regulatory network to calculate inhibition score by using the shortest path in the disease-specific network. The results on eleven datasets indicated the superior performance of DRIE when compared to other state-of-the-art methods. Case studies showed that our method effectively discovered novel drug-disease associations. Our findings demonstrated that the top-ranked drug candidates had been already validated by CTD database. Additionally, it clearly identified potential agents for three cancers (colorectal, breast, and lung cancer), which was beneficial when annotating drug-disease relationships in the CTD. This study proposed a novel framework for drug repurposing, which would be helpful for drug discovery and development.
Collapse
Affiliation(s)
- Xianbin Li
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
- School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, China
| | - Minzhen Liao
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Bing Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Xiangzhen Zan
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Yanhao Huo
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Yue Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| | - Zhenshen Bao
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
- School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, China
| | - Peng Xu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
- School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, China
| | - Wenbin Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China
| |
Collapse
|
3
|
Kumar R, Yadav G, Kuddus M, Ashraf GM, Singh R. Unlocking the microbial studies through computational approaches: how far have we reached? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48929-48947. [PMID: 36920617 PMCID: PMC10016191 DOI: 10.1007/s11356-023-26220-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/24/2023] [Indexed: 04/16/2023]
Abstract
The metagenomics approach accelerated the study of genetic information from uncultured microbes and complex microbial communities. In silico research also facilitated an understanding of protein-DNA interactions, protein-protein interactions, docking between proteins and phyto/biochemicals for drug design, and modeling of the 3D structure of proteins. These in silico approaches provided insight into analyzing pathogenic and nonpathogenic strains that helped in the identification of probable genes for vaccines and antimicrobial agents and comparing whole-genome sequences to microbial evolution. Artificial intelligence, more precisely machine learning (ML) and deep learning (DL), has proven to be a promising approach in the field of microbiology to handle, analyze, and utilize large data that are generated through nucleic acid sequencing and proteomics. This enabled the understanding of the functional and taxonomic diversity of microorganisms. ML and DL have been used in the prediction and forecasting of diseases and applied to trace environmental contaminants and environmental quality. This review presents an in-depth analysis of the recent application of silico approaches in microbial genomics, proteomics, functional diversity, vaccine development, and drug design.
Collapse
Affiliation(s)
- Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Garima Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah , 27272, United Arab Emirates
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
4
|
Zulfiqar H, Guo Z, Grace-Mercure BK, Zhang ZY, Gao H, Lin H, Wu Y. Empirical comparison and recent advances of computational prediction of hormone binding proteins using machine learning methods. Comput Struct Biotechnol J 2023; 21:2253-2261. [PMID: 37035551 PMCID: PMC10073991 DOI: 10.1016/j.csbj.2023.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Hormone binding proteins (HBPs) belong to the group of soluble carrier proteins. These proteins selectively and non-covalently interact with hormones and promote growth hormone signaling in human and other animals. The HBPs are useful in many medical and commercial fields. Thus, the identification of HBPs is very important because it can help to discover more details about hormone binding proteins. Meanwhile, the experimental methods are time-consuming and expensive for hormone binding proteins recognition. Computational prediction methods have played significant roles in the correct recognition of hormone binding proteins with the use of sequence information and ML algorithms. In this review, we compared and assessed the implementation of ML-based tools in recognition of HBPs in a unique way. We hope that this study will give enough awareness and knowledge for research on HBPs.
Collapse
Affiliation(s)
- Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhiling Guo
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Bakanina Kissanga Grace-Mercure
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhao-Yue Zhang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Gao
- School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yun Wu
- College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
| |
Collapse
|
5
|
Doumat G, Daher D, Zerdan MB, Nasra N, Bahmad HF, Recine M, Poppiti R. Drug Repurposing in Non-Small Cell Lung Carcinoma: Old Solutions for New Problems. Curr Oncol 2023; 30:704-719. [PMID: 36661704 PMCID: PMC9858415 DOI: 10.3390/curroncol30010055] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related deaths in 2022. The majority (80%) of lung cancer cases belong to the non-small cell lung carcinoma (NSCLC) subtype. Despite the increased screening efforts, the median five-year survival of metastatic NSCLC remains low at approximately 3%. Common treatment approaches for NSCLC include surgery, multimodal chemotherapy, and concurrent radio and chemotherapy. NSCLC exhibits high rates of resistance to treatment, driven by its heterogeneity and the plasticity of cancer stem cells (CSCs). Drug repurposing offers a faster and cheaper way to develop new antineoplastic purposes for existing drugs, to help overcome therapy resistance. The decrease in time and funds needed stems from the availability of the pharmacokinetic and pharmacodynamic profiles of the Food and Drug Administration (FDA)-approved drugs to be repurposed. This review provides a synopsis of the drug-repurposing approaches and mechanisms of action of potential candidate drugs used in treating NSCLC, including but not limited to antihypertensives, anti-hyperlipidemics, anti-inflammatory drugs, anti-diabetics, and anti-microbials.
Collapse
Affiliation(s)
- George Doumat
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Darine Daher
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Morgan Bou Zerdan
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nasri Nasra
- Faculty of Medicine, University of Aleppo, Aleppo 15310, Syria
| | - Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Monica Recine
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
Zhang X, Yin X, Zhang L, Ye Z, Liang G. Identification of drug targets and prognosis projection for uterine carcinosarcoma based on alternative splicing events. Comput Biol Med 2023; 152:106346. [PMID: 36470146 DOI: 10.1016/j.compbiomed.2022.106346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Uterine carcinosarcoma (UCS) is an invasive variant of endometrial cancer. The complicated heterogeneity and low frequency of UCS suggest the relevant research is lack. There is an urgent need to further explore the pathogenic mechanism and identify new biomarkers of UCS from different angels to improve its diagnosis and prognosis. OBJECTIVE This study is to explore the importance of alternative splicing (AS) events in UCS, construct AS-based prognosis model and excavate key splicing factors (SFs). METHOD UCS related gene transcriptome data and AS events data were collected from The Cancer Genome Atlas (TCGA) and TCGA SpliceSeq database. The AS events related to survival were determined by Cox regression analysis, Least absolute shrinkage and selection operator (Lasso) regression analysis and optimal subset analysis. The corresponding risk score was calculated and its efficiency on prognosis was evaluated by Kaplan-Meier (K-M) survival estimate and validated by the receiver operating characteristic (ROC) curve. The prognosis model was constructed with risk score and clinic characters as independent variables to predict patients' survival. On the other hand, Kendall test was applied to inspect the correlation between the SFs and the prognosis-related AS events and a AS-SF network was constructed. Finally, the key SFs were screened through network nodes analysis and survival analysis. RESULT Seven AS events the most related to survival were detected and the risk score was obtained. K-M survival estimate and ROC curve validation suggested the risk score was effective. Then Cox model was constructed based on the risk score and a nomogram model was obtained which provided the highest prediction accuracy of 95%. Through the AS-SF network analysis, 16 SFs were screened, among which four survival-related SFs were eventually obtained. CONCLUSION The prognosis model could predict the survival rate of UCS patients by their clinical characters and AS-based risk score. And four newly discovered SFs could reveal the molecular mechanism of UCS and act as the potential drug targets and prognosis biomarkers.
Collapse
Affiliation(s)
- Xu Zhang
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Xiaofeng Yin
- School of Mathematics and Statistics, Southwest University, Chongqing, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Zhiqiang Ye
- School of Elementary Education, Chongqing Normal University, Chongqing, China
| | - Guangmin Liang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China.
| |
Collapse
|
7
|
Kumar S, Sarmah DT, Asthana S, Chatterjee S. konnect2prot: a web application to explore the protein properties in a functional protein-protein interaction network. Bioinformatics 2022; 39:6955601. [PMID: 36545703 PMCID: PMC9848060 DOI: 10.1093/bioinformatics/btac815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION The regulation of proteins governs the biological processes and functions and, therefore, the organisms' phenotype. So there is an unmet need for a systematic tool for identifying the proteins that play a crucial role in information processing in a protein-protein interaction (PPI) network. However, the current protein databases and web servers still lag behind to provide an end-to-end pipeline that can leverage the topological understanding of a context-specific PPI network to identify the influential spreaders. Addressing this, we developed a web application, 'konnect2prot' (k2p), which can generate context-specific directional PPI network from the input proteins and detect their biological and topological importance in the network. RESULTS We pooled together a large amount of ontological knowledge, parsed it down into a functional network, and gained insight into the molecular underpinnings of the disease development by creating a one-stop junction for PPI data. k2p contains both local and global information about a protein, such as protein class, disease mutations, ligands and PDB structure, enriched processes and pathways, multi-disease interactome and hubs and bottlenecks in the directional network. It also identifies spreaders in the network and maps them to disease hallmarks to determine whether they can affect the disease state or not. AVAILABILITY AND IMPLEMENTATION konnect2prot is freely accessible using the link https://konnect2prot.thsti.in. The code repository is https://github.com/samrat-lab/k2p_bioinfo-2022.
Collapse
Affiliation(s)
| | | | - Shailendra Asthana
- Non-communicable Disease Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | | |
Collapse
|
8
|
Hao Y, Jing XY, Sun Q. Joint learning sample similarity and correlation representation for cancer survival prediction. BMC Bioinformatics 2022; 23:553. [PMID: 36536289 PMCID: PMC9761951 DOI: 10.1186/s12859-022-05110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND As a highly aggressive disease, cancer has been becoming the leading death cause around the world. Accurate prediction of the survival expectancy for cancer patients is significant, which can help clinicians make appropriate therapeutic schemes. With the high-throughput sequencing technology becoming more and more cost-effective, integrating multi-type genome-wide data has been a promising method in cancer survival prediction. Based on these genomic data, some data-integration methods for cancer survival prediction have been proposed. However, existing methods fail to simultaneously utilize feature information and structure information of multi-type genome-wide data. RESULTS We propose a Multi-type Data Joint Learning (MDJL) approach based on multi-type genome-wide data, which comprehensively exploits feature information and structure information. Specifically, MDJL exploits correlation representations between any two data types by cross-correlation calculation for learning discriminant features. Moreover, based on the learned multiple correlation representations, MDJL constructs sample similarity matrices for capturing global and local structures across different data types. With the learned discriminant representation matrix and fused similarity matrix, MDJL constructs graph convolutional network with Cox loss for survival prediction. CONCLUSIONS Experimental results demonstrate that our approach substantially outperforms established integrative methods and is effective for cancer survival prediction.
Collapse
Affiliation(s)
- Yaru Hao
- grid.49470.3e0000 0001 2331 6153School of Computer Science, Wuhan University, Wuhan, China
| | - Xiao-Yuan Jing
- grid.49470.3e0000 0001 2331 6153School of Computer Science, Wuhan University, Wuhan, China ,grid.459577.d0000 0004 1757 6559Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis and School of Computer, Guangdong University of Petrochemical Technology, Maoming, China ,grid.41156.370000 0001 2314 964XState Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Qixing Sun
- grid.49470.3e0000 0001 2331 6153School of Computer Science, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Gu X, Ding Y, Xiao P, He T. A GHKNN model based on the physicochemical property extraction method to identify SNARE proteins. Front Genet 2022; 13:935717. [PMID: 36506312 PMCID: PMC9727185 DOI: 10.3389/fgene.2022.935717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
There is a great deal of importance to SNARE proteins, and their absence from function can lead to a variety of diseases. The SNARE protein is known as a membrane fusion protein, and it is crucial for mediating vesicle fusion. The identification of SNARE proteins must therefore be conducted with an accurate method. Through extensive experiments, we have developed a model based on graph-regularized k-local hyperplane distance nearest neighbor model (GHKNN) binary classification. In this, the model uses the physicochemical property extraction method to extract protein sequence features and the SMOTE method to upsample protein sequence features. The combination achieves the most accurate performance for identifying all protein sequences. Finally, we compare the model based on GHKNN binary classification with other classifiers and measure them using four different metrics: SN, SP, ACC, and MCC. In experiments, the model performs significantly better than other classifiers.
Collapse
Affiliation(s)
- Xingyue Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Tao He
- Beidahuang Industry Group General Hospital, Harbin, China
| |
Collapse
|
10
|
An automatic hypothesis generation for plausible linkage between xanthium and diabetes. Sci Rep 2022; 12:17547. [PMID: 36266295 PMCID: PMC9585073 DOI: 10.1038/s41598-022-20752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/19/2022] [Indexed: 01/13/2023] Open
Abstract
There has been a significant increase in text mining implementation for biomedical literature in recent years. Previous studies introduced the implementation of text mining and literature-based discovery to generate hypotheses of potential candidates for drug development. By conducting a hypothesis-generation step and using evidence from published journal articles or proceedings, previous studies have managed to reduce experimental time and costs. First, we applied the closed discovery approach from Swanson's ABC model to collect publications related to 36 Xanthium compounds or diabetes. Second, we extracted biomedical entities and relations using a knowledge extraction engine, the Public Knowledge Discovery Engine for Java or PKDE4J. Third, we built a knowledge graph using the obtained bio entities and relations and then generated paths with Xanthium compounds as source nodes and diabetes as the target node. Lastly, we employed graph embeddings to rank each path and evaluated the results based on domain experts' opinions and literature. Among 36 Xanthium compounds, 35 had direct paths to five diabetes-related nodes. We ranked 2,740,314 paths in total between 35 Xanthium compounds and three diabetes-related phrases: type 1 diabetes, type 2 diabetes, and diabetes mellitus. Based on the top five percentile paths, we concluded that adenosine, choline, beta-sitosterol, rhamnose, and scopoletin were potential candidates for diabetes drug development using natural products. Our framework for hypothesis generation employs a closed discovery from Swanson's ABC model that has proven very helpful in discovering biological linkages between bio entities. The PKDE4J tools we used to capture bio entities from our document collection could label entities into five categories: genes, compounds, phenotypes, biological processes, and molecular functions. Using the BioPREP model, we managed to interpret the semantic relatedness between two nodes and provided paths containing valuable hypotheses. Lastly, using a graph-embedding algorithm in our path-ranking analysis, we exploited the semantic relatedness while preserving the graph structure properties.
Collapse
|
11
|
Liu X, Yi W, Xi B, Dai Q. Identification of Drug-Disease Associations Using a Random Walk with Restart Method and Supervised Learning. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7035634. [PMID: 36262874 PMCID: PMC9576438 DOI: 10.1155/2022/7035634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
Abstract
Drug-disease correlations play an important role in revealing the mechanism of disease, finding new indications of available drugs, or drug repositioning. A variety of computational approaches were proposed to find drug-disease correlations and achieve good performances. However, these methods used a variety of network information, but integrated networks were rarely used. In addition, the role of known drug-disease association data has not been fully played. In this work, we designed a combination algorithm of random walk and supervised learning to find the drug-disease correlations. We used an integrated network to update the model and selected a gene set as the start of random walk based on the known drug-disease correlations data. The experimental results show that the proposed method can effectively find the correlation between drugs and diseases, and the prediction accuracy is 82.7%. We found that there are 8 pairs of drug-disease relationships that have not yet been reported, and 5 of them have pharmacodynamic effects on Parkinson's disease. We also found that a key linkage between Parkinson's disease and phenylhexol, a drug for the treatment of Parkinson's disease α-synuclein and tau protein, provides a useful exploration for the effectiveness of the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Xiaoqing Liu
- College of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wenjing Yi
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Baohang Xi
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qi Dai
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
12
|
Song Y, Cui H, Zhang T, Yang T, Li X, Xuan P. Prediction of Drug-Related Diseases Through Integrating Pairwise Attributes and Neighbor Topological Structures. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2963-2974. [PMID: 34133286 DOI: 10.1109/tcbb.2021.3089692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Identifying new disease indications for the approved drugs can help reduce the cost and time of drug development. Most of the recent methods focus on exploiting the various information related to drugs and diseases for predicting the candidate drug-disease associations. However, the previous methods failed to deeply integrate the neighborhood topological structure and the node attributes of an interested drug-disease node pair. We propose a new prediction method, ANPred, to learn and integrate pairwise attribute information and neighbor topology information from the similarities and associations related to drugs and diseases. First, a bi-layer heterogeneous network with intra-layer and inter-layer connections is established to combine the drug similarities, the disease similarities, and the drug-disease associations. Second, the embedding of a pair of drug and disease is constructed based on integrating multiple biological premises about drugs and diseases. The learning framework based on multi-layer convolutional neural networks is designed to learn the attribute representation of the pair of drug and disease nodes from its embedding. The sequences composed of neighbor nodes are formed based on random walk on the heterogeneous network. A framework based on fully-connected autoencoder and skip-gram module is constructed to learn the neighbor topological representations of nodes. The cross-validation results indicate the performance of ANPred is superior to several state-of-the-art methods. The case studies on 5 drugs further confirm the ability of ANPred in discovering the potential drug-disease association candidates.
Collapse
|
13
|
Zhang Y, Lei X, Pan Y, Wu FX. Drug Repositioning with GraphSAGE and Clustering Constraints Based on Drug and Disease Networks. Front Pharmacol 2022; 13:872785. [PMID: 35620297 PMCID: PMC9127467 DOI: 10.3389/fphar.2022.872785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
The understanding of therapeutic properties is important in drug repositioning and drug discovery. However, chemical or clinical trials are expensive and inefficient to characterize the therapeutic properties of drugs. Recently, artificial intelligence (AI)-assisted algorithms have received extensive attention for discovering the potential therapeutic properties of drugs and speeding up drug development. In this study, we propose a new method based on GraphSAGE and clustering constraints (DRGCC) to investigate the potential therapeutic properties of drugs for drug repositioning. First, the drug structure features and disease symptom features are extracted. Second, the drug–drug interaction network and disease similarity network are constructed according to the drug–gene and disease–gene relationships. Matrix factorization is adopted to extract the clustering features of networks. Then, all the features are fed to the GraphSAGE to predict new associations between existing drugs and diseases. Benchmark comparisons on two different datasets show that our method has reliable predictive performance and outperforms other six competing. We have also conducted case studies on existing drugs and diseases and aimed to predict drugs that may be effective for the novel coronavirus disease 2019 (COVID-19). Among the predicted anti-COVID-19 drug candidates, some drugs are being clinically studied by pharmacologists, and their binding sites to COVID-19-related protein receptors have been found via the molecular docking technology.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yi Pan
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Firoozbakht F, Rezaeian I, Rueda L, Ngom A. Computationally repurposing drugs for breast cancer subtypes using a network-based approach. BMC Bioinformatics 2022; 23:143. [PMID: 35443626 PMCID: PMC9020161 DOI: 10.1186/s12859-022-04662-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
‘De novo’ drug discovery is costly, slow, and with high risk. Repurposing known drugs for treatment of other diseases offers a fast, low-cost/risk and highly-efficient method toward development of efficacious treatments. The emergence of large-scale heterogeneous biomolecular networks, molecular, chemical and bioactivity data, and genomic and phenotypic data of pharmacological compounds is enabling the development of new area of drug repurposing called ‘in silico’ drug repurposing, i.e., computational drug repurposing (CDR). The aim of CDR is to discover new indications for an existing drug (drug-centric) or to identify effective drugs for a disease (disease-centric). Both drug-centric and disease-centric approaches have the common challenge of either assessing the similarity or connections between drugs and diseases. However, traditional CDR is fraught with many challenges due to the underlying complex pharmacology and biology of diseases, genes, and drugs, as well as the complexity of their associations. As such, capturing highly non-linear associations among drugs, genes, diseases by most existing CDR methods has been challenging. We propose a network-based integration approach that can best capture knowledge (and complex relationships) contained within and between drugs, genes and disease data. A network-based machine learning approach is applied thereafter by using the extracted knowledge and relationships in order to identify single and pair of approved or experimental drugs with potential therapeutic effects on different breast cancer subtypes. Indeed, further clinical analysis is needed to confirm the therapeutic effects of identified drugs on each breast cancer subtype.
Collapse
Affiliation(s)
- Forough Firoozbakht
- School of Computer Science, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| | - Iman Rezaeian
- School of Computer Science, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada.,Rocket Innovation Studio, 156 Chatham St W, Windsor, ON, Canada
| | - Luis Rueda
- School of Computer Science, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada.
| | - Alioune Ngom
- School of Computer Science, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| |
Collapse
|
15
|
Shahidul Islam M, Rafiqul Islam M, Ali AS. Protein complex prediction in large protein-protein interaction network. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Qin L, Wang J, Wu Z, Li W, Liu G, Tang Y. Drug Repurposing for Newly Emerged Diseases via Network-Based Inference on A Gene-Disease-Drug Network. Mol Inform 2022; 41:e2200001. [PMID: 35338586 DOI: 10.1002/minf.202200001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/25/2022] [Indexed: 11/06/2022]
Abstract
Identification of disease-drug associations is an effective strategy for drug repurposing, especially in searching old drugs for newly emerged diseases like COVID-19. In this study, we put forward a network-based method named NEDNBI to predict disease-drug associations based on a gene-disease-drug tripartite network, which could be applied in drug repurposing. The novelty of our method lies in the fact that no negative data are required, and new disease could be added into the disease-drug network with gene as the bridge. The comprehensive evaluation results showed that the proposed method had good performance, with AUC value 0.948 ± 0.009 for 10-fold cross validation. In a case study, 8 of the 20 predicted old drugs have been tested clinically for the treatment of COVID-19, which illustrated the usefulness of our method in drug repurposing. The source code and data of the method are available at https://github.com/Qli97/NEDNBI.
Collapse
Affiliation(s)
- Li Qin
- East China University of Science and Technology School of Pharmacy, CHINA
| | - Jiye Wang
- East China University of Science and Technology School of Pharmacy, CHINA
| | - Zengrui Wu
- East China University of Science and Technology, CHINA
| | | | - Guixia Liu
- East China University of Science and Technology, CHINA
| | - Yun Tang
- East China University of Science and Technology, CHINA
| |
Collapse
|
17
|
Nguyen TTD, Ho QT, Le NQK, Phan VD, Ou YY. Use Chou's 5-Steps Rule With Different Word Embedding Types to Boost Performance of Electron Transport Protein Prediction Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1235-1244. [PMID: 32750894 DOI: 10.1109/tcbb.2020.3010975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Living organisms receive necessary energy substances directly from cellular respiration. The completion of electron storage and transportation requires the process of cellular respiration with the aid of electron transport chains. Therefore, the work of deciphering electron transport proteins is inevitably needed. The identification of these proteins with high performance has a prompt dependence on the choice of methods for feature extraction and machine learning algorithm. In this study, protein sequences served as natural language sentences comprising words. The nominated word embedding-based feature sets, hinged on the word embedding modulation and protein motif frequencies, were useful for feature choosing. Five word embedding types and a variety of conjoint features were examined for such feature selection. The support vector machine algorithm consequentially was employed to perform classification. The performance statistics within the 5-fold cross-validation including average accuracy, specificity, sensitivity, as well as MCC rates surpass 0.95. Such metrics in the independent test are 96.82, 97.16, 95.76 percent, and 0.9, respectively. Compared to state-of-the-art predictors, the proposed method can generate more preferable performance above all metrics indicating the effectiveness of the proposed method in determining electron transport proteins. Furthermore, this study reveals insights about the applicability of various word embeddings for understanding surveyed sequences.
Collapse
|
18
|
Wang R, Ma H, Wang C. An Ensemble Learning Framework for Detecting Protein Complexes From PPI Networks. Front Genet 2022; 13:839949. [PMID: 35281831 PMCID: PMC8908451 DOI: 10.3389/fgene.2022.839949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/14/2022] Open
Abstract
Detecting protein complexes is one of the keys to understanding cellular organization and processes principles. With high-throughput experiments and computing science development, it has become possible to detect protein complexes by computational methods. However, most computational methods are based on either unsupervised learning or supervised learning. Unsupervised learning-based methods do not need training datasets, but they can only detect one or several topological protein complexes. Supervised learning-based methods can detect protein complexes with different topological structures. However, they are usually based on a type of training model, and the generalization of a single model is poor. Therefore, we propose an Ensemble Learning Framework for Detecting Protein Complexes (ELF-DPC) within protein-protein interaction (PPI) networks to address these challenges. The ELF-DPC first constructs the weighted PPI network by combining topological and biological information. Second, it mines protein complex cores using the protein complex core mining strategy we designed. Third, it obtains an ensemble learning model by integrating structural modularity and a trained voting regressor model. Finally, it extends the protein complex cores and forms protein complexes by a graph heuristic search strategy. The experimental results demonstrate that ELF-DPC performs better than the twelve state-of-the-art approaches. Moreover, functional enrichment analysis illustrated that ELF-DPC could detect biologically meaningful protein complexes. The code/dataset is available for free download from https://github.com/RongquanWang/ELF-DPC.
Collapse
Affiliation(s)
- Rongquan Wang
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| | - Huimin Ma
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
- *Correspondence: Huimin Ma,
| | - Caixia Wang
- School of International Economics, China Foreign Affairs University, Beijing, China
| |
Collapse
|
19
|
Bahmad HF, Demus T, Moubarak MM, Daher D, Alvarez Moreno JC, Polit F, Lopez O, Merhe A, Abou-Kheir W, Nieder AM, Poppiti R, Omarzai Y. Overcoming Drug Resistance in Advanced Prostate Cancer by Drug Repurposing. Med Sci (Basel) 2022; 10:medsci10010015. [PMID: 35225948 PMCID: PMC8883996 DOI: 10.3390/medsci10010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men. Common treatments include active surveillance, surgery, or radiation. Androgen deprivation therapy and chemotherapy are usually reserved for advanced disease or biochemical recurrence, such as castration-resistant prostate cancer (CRPC), but they are not considered curative because PCa cells eventually develop drug resistance. The latter is achieved through various cellular mechanisms that ultimately circumvent the pharmaceutical’s mode of action. The need for novel therapeutic approaches is necessary under these circumstances. An alternative way to treat PCa is by repurposing of existing drugs that were initially intended for other conditions. By extrapolating the effects of previously approved drugs to the intracellular processes of PCa, treatment options will expand. In addition, drug repurposing is cost-effective and efficient because it utilizes drugs that have already demonstrated safety and efficacy. This review catalogues the drugs that can be repurposed for PCa in preclinical studies as well as clinical trials.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Correspondence: or ; Tel.: +1-786-961-0216
| | - Timothy Demus
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
- CNRS, IBGC, UMR5095, Universite de Bordeaux, F-33000 Bordeaux, France
| | - Darine Daher
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Francesca Polit
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Olga Lopez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Ali Merhe
- Department of Urology, Jackson Memorial Hospital, University of Miami, Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
| | - Alan M. Nieder
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Robert Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Yumna Omarzai
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
20
|
Hu P, Huang YA, Mei J, Leung H, Chen ZH, Kuang ZM, You ZH, Hu L. Learning from low-rank multimodal representations for predicting disease-drug associations. BMC Med Inform Decis Mak 2021; 21:308. [PMID: 34736437 PMCID: PMC8567544 DOI: 10.1186/s12911-021-01648-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Background Disease-drug associations provide essential information for drug discovery and disease treatment. Many disease-drug associations remain unobserved or unknown, and trials to confirm these associations are time-consuming and expensive. To better understand and explore these valuable associations, it would be useful to develop computational methods for predicting unobserved disease-drug associations. With the advent of various datasets describing diseases and drugs, it has become more feasible to build a model describing the potential correlation between disease and drugs.
Results In this work, we propose a new prediction method, called LMFDA, which works in several stages. First, it studies the drug chemical structure, disease MeSH descriptors, disease-related phenotypic terms, and drug-drug interactions. On this basis, similarity networks of different sources are constructed to enrich the representation of drugs and diseases. Based on the fused disease similarity network and drug similarity network, LMFDA calculated the association score of each pair of diseases and drugs in the database. This method achieves good performance on Fdataset and Cdataset, AUROCs were 91.6% and 92.1% respectively, higher than many of the existing computational models. Conclusions The novelty of LMFDA lies in the introduction of multimodal fusion using low-rank tensors to fuse multiple similar networks and combine matrix complement technology to predict potential association. We have demonstrated that LMFDA can display excellent network integration ability for accurate disease-drug association inferring and achieve substantial improvement over the advanced approach. Overall, experimental results on two real-world networks dataset demonstrate that LMFDA able to delivers an excellent detecting performance. Results also suggest that perfecting similar networks with as much domain knowledge as possible is a promising direction for drug repositioning.
Collapse
Affiliation(s)
- Pengwei Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| | - Yu-An Huang
- The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Henry Leung
- Electrical and Computer Engineering, University of Calgary, Calgary, Canada
| | - Zhan-Heng Chen
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| | - Ze-Min Kuang
- Beijing Anzhen Hospital of Capital Medical University, Beijing, China
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China.
| | - Lun Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China.
| |
Collapse
|
21
|
Islam MM, Wang Y, Hu P. A Maximum Flow-Based Approach to Prioritize Drugs for Drug Repurposing of Chronic Diseases. Life (Basel) 2021; 11:1115. [PMID: 34832991 PMCID: PMC8625622 DOI: 10.3390/life11111115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
The discovery of new drugs is required in the time of global aging and increasing populations. Traditional drug development strategies are expensive, time-consuming, and have high risks. Thus, drug repurposing, which treats new/other diseases using existing drugs, has become a very admired tactic. It can also be referred to as the re-investigation of the existing drugs that failed to indicate the usefulness for the new diseases. Previously published literature used maximum flow approaches to identify new drug targets for drug-resistant infectious diseases but not for drug repurposing. Therefore, we are proposing a maximum flow-based protein-protein interactions (PPIs) network analysis approach to identify new drug targets (proteins) from the targets of the FDA (Food and Drug Administration) drugs and their associated drugs for chronic diseases (such as breast cancer, inflammatory bowel disease (IBD), and chronic obstructive pulmonary disease (COPD)) treatment. Experimental results showed that we have successfully turned the drug repurposing into a maximum flow problem. Our top candidates of drug repurposing, Guanidine, Dasatinib, and Phenethyl Isothiocyanate for breast cancer, IBD, and COPD were experimentally validated by other independent research as the potential candidate drugs for these diseases, respectively. This shows the usefulness of the proposed maximum flow approach for drug repurposing.
Collapse
Affiliation(s)
- Md. Mohaiminul Islam
- Department of Computer Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.M.I.); (Y.W.)
| | - Yang Wang
- Department of Computer Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.M.I.); (Y.W.)
| | - Pingzhao Hu
- Department of Computer Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.M.I.); (Y.W.)
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Electrical Computer Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
22
|
Abstract
Drug repositioning is a strategy to identify new uses for existing, approved, or research drugs that are outside the scope of its original medical indication. Drug repurposing is based on the fact that one drug can act on multiple targets or that two diseases can have molecular similarities, among others. Currently, thanks to the rapid advancement of high-performance technologies, a massive amount of biological and biomedical data is being generated. This allows the use of computational methods and models based on biological networks to develop new possibilities for drug repurposing. Therefore, here, we provide an in-depth review of the main applications of drug repositioning that have been carried out using biological network models. The goal of this review is to show the usefulness of these computational methods to predict associations and to find candidate drugs for repositioning in new indications of certain diseases.
Collapse
|
23
|
Yi HC, You ZH, Wang L, Su XR, Zhou X, Jiang TH. In silico drug repositioning using deep learning and comprehensive similarity measures. BMC Bioinformatics 2021; 22:293. [PMID: 34074242 PMCID: PMC8170943 DOI: 10.1186/s12859-020-03882-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drug repositioning, meanings finding new uses for existing drugs, which can accelerate the processing of new drugs research and development. Various computational methods have been presented to predict novel drug-disease associations for drug repositioning based on similarity measures among drugs and diseases. However, there are some known associations between drugs and diseases that previous studies not utilized. METHODS In this work, we develop a deep gated recurrent units model to predict potential drug-disease interactions using comprehensive similarity measures and Gaussian interaction profile kernel. More specifically, the similarity measure is used to exploit discriminative feature for drugs based on their chemical fingerprints. Meanwhile, the Gaussian interactions profile kernel is employed to obtain efficient feature of diseases based on known disease-disease associations. Then, a deep gated recurrent units model is developed to predict potential drug-disease interactions. RESULTS The performance of the proposed model is evaluated on two benchmark datasets under tenfold cross-validation. And to further verify the predictive ability, case studies for predicting new potential indications of drugs were carried out. CONCLUSION The experimental results proved the proposed model is a useful tool for predicting new indications for drugs or new treatments for diseases, and can accelerate drug repositioning and related drug research and discovery.
Collapse
Affiliation(s)
- Hai-Cheng Yi
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhu-Hong You
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Lei Wang
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xiao-Rui Su
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Zhou
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Tong-Hai Jiang
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
24
|
Wang J, Wang W, Yan C, Luo J, Zhang G. Predicting Drug-Disease Association Based on Ensemble Strategy. Front Genet 2021; 12:666575. [PMID: 34012464 PMCID: PMC8128144 DOI: 10.3389/fgene.2021.666575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Drug repositioning is used to find new uses for existing drugs, effectively shortening the drug research and development cycle and reducing costs and risks. A new model of drug repositioning based on ensemble learning is proposed. This work develops a novel computational drug repositioning approach called CMAF to discover potential drug-disease associations. First, for new drugs and diseases or unknown drug-disease pairs, based on their known neighbor information, an association probability can be obtained by implementing the weighted K nearest known neighbors (WKNKN) method and improving the drug-disease association information. Then, a new drug similarity network and new disease similarity network can be constructed. Three prediction models are applied and ensembled to enable the final association of drug-disease pairs based on improved drug-disease association information and the constructed similarity network. The experimental results demonstrate that the developed approach outperforms recent state-of-the-art prediction models. Case studies further confirm the predictive ability of the proposed method. Our proposed method can effectively improve the prediction results.
Collapse
Affiliation(s)
- Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Wenxiu Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| |
Collapse
|
25
|
Abstract
Background:
Bioluminescence is a unique and significant phenomenon in nature.
Bioluminescence is important for the lifecycle of some organisms and is valuable in biomedical
research, including for gene expression analysis and bioluminescence imaging technology. In recent
years, researchers have identified a number of methods for predicting bioluminescent proteins
(BLPs), which have increased in accuracy, but could be further improved.
Method:
In this study, a new bioluminescent proteins prediction method, based on a voting
algorithm, is proposed. Four methods of feature extraction based on the amino acid sequence were
used. 314 dimensional features in total were extracted from amino acid composition,
physicochemical properties and k-spacer amino acid pair composition. In order to obtain the highest
MCC value to establish the optimal prediction model, a voting algorithm was then used to build the
model. To create the best performing model, the selection of base classifiers and vote counting rules
are discussed.
Results:
The proposed model achieved 93.4% accuracy, 93.4% sensitivity and
91.7% specificity in the test set, which was better than any other method. A previous prediction of
bioluminescent proteins in three lineages was also improved using the model building method,
resulting in greatly improved accuracy.
Collapse
Affiliation(s)
- Shulin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba Science City, Japan
| | - Jun Zhang
- Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Shuguang Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
26
|
Cui C, Ding X, Wang D, Chen L, Xiao F, Xu T, Zheng M, Luo X, Jiang H, Chen K. Drug repurposing against breast cancer by integrating drug-exposure expression profiles and drug-drug links based on graph neural network. Bioinformatics 2021; 37:2930-2937. [PMID: 33739367 PMCID: PMC8479657 DOI: 10.1093/bioinformatics/btab191] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION Breast cancer is one of the leading causes of cancer deaths among women worldwide. It is necessary to develop new breast cancer drugs because of the shortcomings of existing therapies. The traditional discovery process is time-consuming and expensive. Repositioning of clinically approved drugs has emerged as a novel approach for breast cancer therapy. However, serendipitous or experiential repurposing cannot be used as a routine method. RESULTS In this study, we proposed a graph neural network model GraphRepur based on GraphSAGE for drug repurposing against breast cancer. GraphRepur integrated two major classes of computational methods, drug network-based and drug signature-based. The differentially expressed genes of disease, drug-exposure gene expression data and the drug-drug links information were collected. By extracting the drug signatures and topological structure information contained in the drug relationships, GraphRepur can predict new drugs for breast cancer, outperforming previous state-of-the-art approaches and some classic machine learning methods. The high-ranked drugs have indeed been reported as new uses for breast cancer treatment recently. AVAILABILITYAND IMPLEMENTATION The source code of our model and datasets are available at: https://github.com/cckamy/GraphRepur and https://figshare.com/articles/software/GraphRepur_Breast_Cancer_Drug_Repurposing/14220050. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chen Cui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Ding
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingyan Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifan Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Xiao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- To whom correspondence should be addressed. or
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- To whom correspondence should be addressed. or
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Kaixian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
27
|
Chen H, Zhang Z, Zhang J. In silico drug repositioning based on the integration of chemical, genomic and pharmacological spaces. BMC Bioinformatics 2021; 22:52. [PMID: 33557749 PMCID: PMC7868667 DOI: 10.1186/s12859-021-03988-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drug repositioning refers to the identification of new indications for existing drugs. Drug-based inference methods for drug repositioning apply some unique features of drugs for new indication prediction. Complementary information is provided by these different features. It is therefore necessary to integrate these features for more accurate in silico drug repositioning. RESULTS In this study, we collect 3 different types of drug features (i.e., chemical, genomic and pharmacological spaces) from public databases. Similarities between drugs are separately calculated based on each of the features. We further develop a fusion method to combine the 3 similarity measurements. We test the inference abilities of the 4 similarity datasets in drug repositioning under the guilt-by-association principle. Leave-one-out cross-validations show the integrated similarity measurement IntegratedSim receives the best prediction performance, with the highest AUC value of 0.8451 and the highest AUPR value of 0.2201. Case studies demonstrate IntegratedSim produces the largest numbers of confirmed predictions in most cases. Moreover, we compare our integration method with 3 other similarity-fusion methods using the datasets in our study. Cross-validation results suggest our method improves the prediction accuracy in terms of AUC and AUPR values. CONCLUSIONS Our study suggests that the 3 drug features used in our manuscript are valuable information for drug repositioning. The comparative results indicate that integration of the 3 drug features would improve drug-disease association prediction. Our study provides a strategy for the fusion of different drug features for in silico drug repositioning.
Collapse
Affiliation(s)
- Hailin Chen
- School of Software, East China Jiaotong University, Nanchang, 330013 China
| | - Zuping Zhang
- School of Computer Science and Engineering, Central South University, Changsha, 410083 China
| | - Jingpu Zhang
- School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan, 467000 China
| |
Collapse
|
28
|
Yu L, Wang M, Yang Y, Xu F, Zhang X, Xie F, Gao L, Li X. Predicting therapeutic drugs for hepatocellular carcinoma based on tissue-specific pathways. PLoS Comput Biol 2021; 17:e1008696. [PMID: 33561121 PMCID: PMC7920387 DOI: 10.1371/journal.pcbi.1008696] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 03/01/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant health problem worldwide with poor prognosis. Drug repositioning represents a profitable strategy to accelerate drug discovery in the treatment of HCC. In this study, we developed a new approach for predicting therapeutic drugs for HCC based on tissue-specific pathways and identified three newly predicted drugs that are likely to be therapeutic drugs for the treatment of HCC. We validated these predicted drugs by analyzing their overlapping drug indications reported in PubMed literature. By using the cancer cell line data in the database, we constructed a Connectivity Map (CMap) profile similarity analysis and KEGG enrichment analysis on their related genes. By experimental validation, we found securinine and ajmaline significantly inhibited cell viability of HCC cells and induced apoptosis. Among them, securinine has lower toxicity to normal liver cell line, which is worthy of further research. Our results suggested that the proposed approach was effective and accurate for discovering novel therapeutic options for HCC. This method also could be used to indicate unmarked drug-disease associations in the Comparative Toxicogenomics Database. Meanwhile, our method could also be applied to predict the potential drugs for other types of tumors by changing the database.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Shaanxi, China
| | - Meng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, 72, Jimo District, Qingdao, Shandong, China
| | - Yang Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, 72, Jimo District, Qingdao, Shandong, China
| | - Fengdan Xu
- School of Computer Science and Technology, Xidian University, Shaanxi, China
| | - Xu Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, 72, Jimo District, Qingdao, Shandong, China
| | - Fei Xie
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, 72, Jimo District, Qingdao, Shandong, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Shaanxi, China
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, 72, Jimo District, Qingdao, Shandong, China
| |
Collapse
|
29
|
Wu Z, Liao Q, Fan S, Liu B. idenPC-CAP: Identify protein complexes from weighted RNA-protein heterogeneous interaction networks using co-assemble partner relation. Brief Bioinform 2020; 22:6041167. [PMID: 33333549 DOI: 10.1093/bib/bbaa372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/07/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Protein complexes play important roles in most cellular processes. The available genome-wide protein-protein interaction (PPI) data make it possible for computational methods identifying protein complexes from PPI networks. However, PPI datasets usually contain a large ratio of false positive noise. Moreover, different types of biomolecules in a living cell cooperate to form a union interaction network. Because previous computational methods focus only on PPIs ignoring other types of biomolecule interactions, their predicted protein complexes often contain many false positive proteins. In this study, we develop a novel computational method idenPC-CAP to identify protein complexes from the RNA-protein heterogeneous interaction network consisting of RNA-RNA interactions, RNA-protein interactions and PPIs. By considering interactions among proteins and RNAs, the new method reduces the ratio of false positive proteins in predicted protein complexes. The experimental results demonstrate that idenPC-CAP outperforms the other state-of-the-art methods in this field.
Collapse
Affiliation(s)
- Zhourun Wu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Qing Liao
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Shixi Fan
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
| |
Collapse
|
30
|
Xu L, Liang G, Chen B, Tan X, Xiang H, Liao C. A Computational Method for the Identification of Endolysins and Autolysins. Protein Pept Lett 2020; 27:329-336. [PMID: 31577192 DOI: 10.2174/0929866526666191002104735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/27/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cell lytic enzyme is a kind of highly evolved protein, which can destroy the cell structure and kill the bacteria. Compared with antibiotics, cell lytic enzyme will not cause serious problem of drug resistance of pathogenic bacteria. Thus, the study of cell wall lytic enzymes aims at finding an efficient way for curing bacteria infectious. Compared with using antibiotics, the problem of drug resistance becomes more serious. Therefore, it is a good choice for curing bacterial infections by using cell lytic enzymes. Cell lytic enzyme includes endolysin and autolysin and the difference between them is the purpose of the break of cell wall. The identification of the type of cell lytic enzymes is meaningful for the study of cell wall enzymes. OBJECTIVE In this article, our motivation is to predict the type of cell lytic enzyme. Cell lytic enzyme is helpful for killing bacteria, so it is meaningful for study the type of cell lytic enzyme. However, it is time consuming to detect the type of cell lytic enzyme by experimental methods. Thus, an efficient computational method for the type of cell lytic enzyme prediction is proposed in our work. METHODS We propose a computational method for the prediction of endolysin and autolysin. First, a data set containing 27 endolysins and 41 autolysins is built. Then the protein is represented by tripeptides composition. The features are selected with larger confidence degree. At last, the classifier is trained by the labeled vectors based on support vector machine. The learned classifier is used to predict the type of cell lytic enzyme. RESULTS Following the proposed method, the experimental results show that the overall accuracy can attain 97.06%, when 44 features are selected. Compared with Ding's method, our method improves the overall accuracy by nearly 4.5% ((97.06-92.9)/92.9%). The performance of our proposed method is stable, when the selected feature number is from 40 to 70. The overall accuracy of tripeptides optimal feature set is 94.12%, and the overall accuracy of Chou's amphiphilic PseAAC method is 76.2%. The experimental results also demonstrate that the overall accuracy is improved by nearly 18% when using the tripeptides optimal feature set. CONCLUSION The paper proposed an efficient method for identifying endolysin and autolysin. In this paper, support vector machine is used to predict the type of cell lytic enzyme. The experimental results show that the overall accuracy of the proposed method is 94.12%, which is better than some existing methods. In conclusion, the selected 44 features can improve the overall accuracy for identification of the type of cell lytic enzyme. Support vector machine performs better than other classifiers when using the selected feature set on the benchmark data set.
Collapse
Affiliation(s)
- Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Guangmin Liang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Baowen Chen
- School of Software, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Xu Tan
- School of Software, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Huaikun Xiang
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Changrui Liao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
31
|
Computational Drug Repositioning: Current Progress and Challenges. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novel drug discovery is time-consuming, costly, and a high-investment process due to the high attrition rate. Therefore, many trials are conducted to reuse existing drugs to treat pressing conditions and diseases, since their safety profiles and pharmacokinetics are already available. Drug repositioning is a strategy to identify a new indication of existing or already approved drugs, beyond the scope of their original use. Various computational and experimental approaches to incorporate available resources have been suggested for gaining a better understanding of disease mechanisms and the identification of repurposed drug candidates for personalized pharmacotherapy. In this review, we introduce publicly available databases for drug repositioning and summarize the approaches taken for drug repositioning. We also highlight and compare their characteristics and challenges, which should be addressed for the future realization of drug repositioning.
Collapse
|
32
|
Yu L, Shi Y, Zou Q, Wang S, Zheng L, Gao L. Exploring Drug Treatment Patterns Based on the Action of Drug and Multilayer Network Model. Int J Mol Sci 2020; 21:E5014. [PMID: 32708644 PMCID: PMC7404256 DOI: 10.3390/ijms21145014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/01/2023] Open
Abstract
Some drugs can be used to treat multiple diseases, suggesting potential patterns in drug treatment. Determination of drug treatment patterns can improve our understanding of the mechanisms of drug action, enabling drug repurposing. A drug can be associated with a multilayer tissue-specific protein-protein interaction (TSPPI) network for the diseases it is used to treat. Proteins usually interact with other proteins to achieve functions that cause diseases. Hence, studying drug treatment patterns is similar to studying common module structures in multilayer TSPPI networks. Therefore, we propose a network-based model to study the treatment patterns of drugs. The method was designated SDTP (studying drug treatment pattern) and was based on drug effects and a multilayer network model. To demonstrate the application of the SDTP method, we focused on analysis of trichostatin A (TSA) in leukemia, breast cancer, and prostate cancer. We constructed a TSPPI multilayer network and obtained candidate drug-target modules from the network. Gene ontology analysis provided insights into the significance of the drug-target modules and co-expression networks. Finally, two modules were obtained as potential treatment patterns for TSA. Through analysis of the significance, composition, and functions of the selected drug-target modules, we validated the feasibility and rationality of our proposed SDTP method for identifying drug treatment patterns. In summary, our novel approach used a multilayer network model to overcome the shortcomings of single-layer networks and combined the network with information on drug activity. Based on the discovered drug treatment patterns, we can predict the potential diseases that the drug can treat. That is, if a disease-related protein module has a similar structure, then the drug is likely to be a potential drug for the treatment of the disease.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Y.S.); (L.G.)
| | - Yayong Shi
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Y.S.); (L.G.)
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology, Chengdu 650004, China;
| | - Shuhang Wang
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Liping Zheng
- School of Computer Science and Technology, Liaocheng University, Liaocheng 252000, China;
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (Y.S.); (L.G.)
| |
Collapse
|
33
|
Skeletal muscle enhancer interactions identify genes controlling whole-body metabolism. Nat Commun 2020; 11:2695. [PMID: 32483258 PMCID: PMC7264154 DOI: 10.1038/s41467-020-16537-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity and type 2 diabetes (T2D) are metabolic disorders influenced by lifestyle and genetic factors that are characterized by insulin resistance in skeletal muscle, a prominent site of glucose disposal. Numerous genetic variants have been associated with obesity and T2D, of which the majority are located in non-coding DNA regions. This suggests that most variants mediate their effect by altering the activity of gene-regulatory elements, including enhancers. Here, we map skeletal muscle genomic enhancer elements that are dynamically regulated after exposure to the free fatty acid palmitate or the inflammatory cytokine TNFα. By overlapping enhancer positions with the location of disease-associated genetic variants, and resolving long-range chromatin interactions between enhancers and gene promoters, we identify target genes involved in metabolic dysfunction in skeletal muscle. The majority of these genes also associate with altered whole-body metabolic phenotypes in the murine BXD genetic reference population. Thus, our combined genomic investigations identified genes that are involved in skeletal muscle metabolism. Obesity and type 2 diabetes (T2D) are metabolic disorders characterized by insulin resistance in skeletal muscle. Here, the authors map skeletal muscle enhancer elements dynamically regulated after exposure to free fatty acid palmitate or inflammatory cytokine TNFα and identify target genes involved in metabolic dysfunction in skeletal muscle.
Collapse
|
34
|
Yuan L, Guo F, Wang L, Zou Q. Prediction of tumor metastasis from sequencing data in the era of genome sequencing. Brief Funct Genomics 2020; 18:412-418. [PMID: 31204784 DOI: 10.1093/bfgp/elz010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/22/2019] [Accepted: 04/26/2019] [Indexed: 02/01/2023] Open
Abstract
Tumor metastasis is the key reason for the high mortality rate of tumor. Growing number of scholars have begun to pay attention to the research on tumor metastasis and have achieved satisfactory results in this field. The advent of the era of sequencing has enabled us to study cancer metastasis at the molecular level, which is essential for understanding the molecular mechanism of metastasis, identifying diagnostic markers and therapeutic targets and guiding clinical decision-making. We reviewed the metastasis-related studies using sequencing data, covering detection of metastasis origin sites, determination of metastasis potential and identification of distal metastasis sites. These findings include the discovery of relevant markers and the presentation of prediction tools. Finally, we discussed the challenge of studying metastasis considering the difficulty of obtaining metastatic cancer data, the complexity of tumor heterogeneity and the uncertainty of sample labels.
Collapse
Affiliation(s)
- Linlin Yuan
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Lei Wang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
35
|
Lai J, Hu J, Wang Y, Zhou X, Li Y, Zhang L, Liu Z. Privileged Scaffold Analysis of Natural Products with Deep Learning-based Indication Prediction Model. Mol Inform 2020; 39:e2000057. [PMID: 32406179 DOI: 10.1002/minf.202000057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/05/2020] [Indexed: 11/11/2022]
Abstract
Natural products play a vital role in the drug discovery and development process as an important source of reliable and novel lead structures. But the existing criteria for drug leads were usually developed for synthetic compounds and cannot be directly applied to identify lead scaffolds from natural products. To solve this problem, we propose a method to predict indications and identify privileged scaffolds of natural products for drug design. A deep learning model was built to predict indications for natural products. Entropy-based information metrics were used to identify the privileged scaffolds for each indication and a Privileged Scaffold Dataset (PSD) of natural products was constructed. The PSD could serve as a novel source of lead compounds and circumvent existing drug patents. This method could be generalized by replacing the training set, the prediction algorithm, and the compound set, to obtain more personalized-PSDs.
Collapse
Affiliation(s)
- Junyong Lai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Jianxing Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Yanxing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Xin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Yibo Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100191, P. R. China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| |
Collapse
|
36
|
Hou R, Wang L, Wu YJ. Predicting ATP-Binding Cassette Transporters Using the Random Forest Method. Front Genet 2020; 11:156. [PMID: 32269586 PMCID: PMC7109328 DOI: 10.3389/fgene.2020.00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) proteins play important roles in a wide variety of species. These proteins are involved in absorbing nutrients, exporting toxic substances, and regulating potassium channels, and they contribute to drug resistance in cancer cells. Therefore, the identification of ABC transporters is an urgent task. The present study used 188D as the feature extraction method, which is based on sequence information and physicochemical properties. We also visualized the feature extracted by t-Distributed Stochastic Neighbor Embedding (t-SNE). The sample based on the features extracted by 188D may be separated. Further, random forest (RF) is an efficient classifier to identify proteins. Under the 10-fold cross-validation of the model proposed here for a training set, the average accuracy rate of 10 training sets was 89.54%. We obtained values of 0.87 for specificity, 0.92 for sensitivity, and 0.79 for MCC. In the testing set, the accuracy achieved was 89%. These results suggest that the model combining 188D with RF is an optimal tool to identify ABC transporters.
Collapse
Affiliation(s)
- Ruiyan Hou
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lida Wang
- Department of Scientific Research, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Lv Z, Zhang J, Ding H, Zou Q. RF-PseU: A Random Forest Predictor for RNA Pseudouridine Sites. Front Bioeng Biotechnol 2020; 8:134. [PMID: 32175316 PMCID: PMC7054385 DOI: 10.3389/fbioe.2020.00134] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
One of the ubiquitous chemical modifications in RNA, pseudouridine modification is crucial for various cellular biological and physiological processes. To gain more insight into the functional mechanisms involved, it is of fundamental importance to precisely identify pseudouridine sites in RNA. Several useful machine learning approaches have become available recently, with the increasing progress of next-generation sequencing technology; however, existing methods cannot predict sites with high accuracy. Thus, a more accurate predictor is required. In this study, a random forest-based predictor named RF-PseU is proposed for prediction of pseudouridylation sites. To optimize feature representation and obtain a better model, the light gradient boosting machine algorithm and incremental feature selection strategy were used to select the optimum feature space vector for training the random forest model RF-PseU. Compared with previous state-of-the-art predictors, the results on the same benchmark data sets of three species demonstrate that RF-PseU performs better overall. The integrated average leave-one-out cross-validation and independent testing accuracy scores were 71.4% and 74.7%, respectively, representing increments of 3.63% and 4.77% versus the best existing predictor. Moreover, the final RF-PseU model for prediction was built on leave-one-out cross-validation and provides a reliable and robust tool for identifying pseudouridine sites. A web server with a user-friendly interface is accessible at http://148.70.81.170:10228/rfpseu.
Collapse
Affiliation(s)
- Zhibin Lv
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Zhang
- Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Hui Ding
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
38
|
Ru X, Wang L, Li L, Ding H, Ye X, Zou Q. Exploration of the correlation between GPCRs and drugs based on a learning to rank algorithm. Comput Biol Med 2020; 119:103660. [PMID: 32090901 DOI: 10.1016/j.compbiomed.2020.103660] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 02/01/2023]
Abstract
Exploring the protein - drug correlation can not only solve the problem of selecting candidate compounds but also solve related problems such as drug redirection and finding potential drug targets. Therefore, many researchers have proposed different machine learning methods for prediction of protein-drug correlations. However, many existing models simply divide the protein-drug relationship into related or irrelevant categories and do not deeply explore the most relevant target (or drug) for a given drug (or target). In order to solve this problem, this paper applies the ranking concept to the prediction of the GPCR (G Protein-Coupled Receptors)-drug correlation. This study uses two different types of data sets to explore candidate compound and potential target problems, and both sets achieved good results. In addition, this study also found that the family to which a protein belongs is not an inherent factor that affects the ranking of GPCR-drug correlations; however, if the drug affects other family members of the protein, then the protein is likely to be a potential target of the drug. This study showed that the learning to rank algorithm is a good tool for exploring protein-drug correlations.
Collapse
Affiliation(s)
- Xiaoqing Ru
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China; School of Information and Electrical Engineering, Hebei University of Engineering, Handan, China
| | - Lida Wang
- Scientific Research Department, Heilongjiang Agricultural Recalmation General Hospital, Harbin, China.
| | - Lihong Li
- School of Information and Electrical Engineering, Hebei University of Engineering, Handan, China
| | - Hui Ding
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba Science City, Japan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
39
|
Yu L, Xu F, Gao L. Predict New Therapeutic Drugs for Hepatocellular Carcinoma Based on Gene Mutation and Expression. Front Bioeng Biotechnol 2020; 8:8. [PMID: 32047745 PMCID: PMC6997129 DOI: 10.3389/fbioe.2020.00008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/07/2020] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common primary liver tumor and is an important medical problem worldwide. However, the use of current therapies for HCC is no possible to be cured, and despite numerous attempts and clinical trials, there are not so many approved targeted treatments for HCC. So, it is necessary to identify additional treatment strategies to prevent the growth of HCC tumors. We are looking for a systematic drug repositioning bioinformatics method to identify new drug candidates for the treatment of HCC, which considers not only aberrant genomic information, but also the changes of transcriptional landscapes. First, we screen the collection of HCC feature genes, i.e., kernel genes, which frequently mutated in most samples of HCC based on human mutation data. Then, the gene expression data of HCC in TCGA are combined to classify the kernel genes of HCC. Finally, the therapeutic score (TS) of each drug is calculated based on the kolmogorov-smirnov statistical method. Using this strategy, we identify five drugs that associated with HCC, including three drugs that could treat HCC and two drugs that might have side-effect on HCC. In addition, we also make Connectivity Map (CMap) profiles similarity analysis and KEGG enrichment analysis on drug targets. All these findings suggest that our approach is effective for accurate predicting novel therapeutic options for HCC and easily to be extended to other tumors.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Fengdan Xu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
40
|
Song X, Zhuang Y, Lan Y, Lin Y, Min X. Comprehensive Review and Comparison for Anticancer Peptides Identification Models. Curr Protein Pept Sci 2020; 22:CPPS-EPUB-103745. [PMID: 31957608 DOI: 10.2174/1389203721666200117162958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 11/22/2022]
Abstract
Anticancer peptides (ACPs) eliminate pathogenic bacteria and kill tumor cells, showing no hemolysis and no damages to normal human cells. This unique ability explores the possibility of ACPs as therapeutic delivery and its potential applications in clinical therapy. Identifying ACPs is one of the most fundamental and central problems in new antitumor drug research. During the past decades, a number of machine learning-based prediction tools have been developed to solve this important task. However, the predictions produced by various tools are difficult to quantify and compare. Therefore, in this article, we provide a comprehensive review of existing machine learning methods for ACPs prediction and fair comparison of the predictors. To evaluate current prediction tools, we conducted a comparative study and analyzed the existing ACPs predictor from 10 public literatures. The comparative results obtained suggest that Support Vector Machine-based model with features combination provided significant improvement in the overall performance, when compared to the other machine learning method-based prediction models.
Collapse
|
41
|
Li Z, Huang Q, Chen X, Wang Y, Li J, Xie Y, Dai Z, Zou X. Identification of Drug-Disease Associations Using Information of Molecular Structures and Clinical Symptoms via Deep Convolutional Neural Network. Front Chem 2020; 7:924. [PMID: 31998700 PMCID: PMC6966717 DOI: 10.3389/fchem.2019.00924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/18/2019] [Indexed: 02/02/2023] Open
Abstract
Identifying drug-disease associations is helpful for not only predicting new drug indications and recognizing lead compounds, but also preventing, diagnosing, treating diseases. Traditional experimental methods are time consuming, laborious and expensive. Therefore, it is urgent to develop computational method for predicting potential drug-disease associations on a large scale. Herein, a novel method was proposed to identify drug-disease associations based on the deep learning technique. Molecular structure and clinical symptom information were used to characterize drugs and diseases. Then, a novel two-dimensional matrix was constructed and mapped to a gray-scale image for representing drug-disease association. Finally, deep convolution neural network was introduced to build model for identifying potential drug-disease associations. The performance of current method was evaluated based on the training set and test set, and accuracies of 89.90 and 86.51% were obtained. Prediction ability for recognizing new drug indications, lead compounds and true drug-disease associations was also investigated and verified by performing various experiments. Additionally, 3,620,516 potential drug-disease associations were identified and some of them were further validated through docking modeling. It is anticipated that the proposed method may be a powerful large scale virtual screening tool for drug research and development. The source code of MATLAB is freely available on request from the authors.
Collapse
Affiliation(s)
- Zhanchao Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China.,School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Qixing Huang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xingyu Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangzhou, China
| | - Jinlong Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yun Xie
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zong Dai
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaoyong Zou
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
42
|
Taxonomy dimension reduction for colorectal cancer prediction. Comput Biol Chem 2019; 83:107160. [DOI: 10.1016/j.compbiolchem.2019.107160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 02/01/2023]
|
43
|
Kumar R, Harilal S, Gupta SV, Jose J, Thomas Parambi DG, Uddin MS, Shah MA, Mathew B. Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart work. Eur J Med Chem 2019; 182:111602. [PMID: 31421629 PMCID: PMC7127402 DOI: 10.1016/j.ejmech.2019.111602] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Drug discovery and development are long and financially taxing processes. On an average it takes 12-15 years and costs 1.2 billion USD for successful drug discovery and approval for clinical use. Many lead molecules are not developed further and their potential is not tapped to the fullest due to lack of resources or time constraints. In order for a drug to be approved by FDA for clinical use, it must have excellent therapeutic potential in the desired area of target with minimal toxicities as supported by both pre-clinical and clinical studies. The targeted clinical evaluations fail to explore other potential therapeutic applications of the candidate drug. Drug repurposing or repositioning is a fast and relatively cheap alternative to the lengthy and expensive de novo drug discovery and development. Drug repositioning utilizes the already available clinical trials data for toxicity and adverse effects, at the same time explores the drug's therapeutic potential for a different disease. This review addresses recent developments and future scope of drug repositioning strategy.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Sheeba Varghese Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE Deemed to be University, Manglore, 575018, India
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, 2014, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Muhammad Ajmal Shah
- Department of Pharmacogonosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, 678557, Kerala, India.
| |
Collapse
|
44
|
Xuan P, Cui H, Shen T, Sheng N, Zhang T. HeteroDualNet: A Dual Convolutional Neural Network With Heterogeneous Layers for Drug-Disease Association Prediction via Chou's Five-Step Rule. Front Pharmacol 2019; 10:1301. [PMID: 31780934 PMCID: PMC6856670 DOI: 10.3389/fphar.2019.01301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/11/2019] [Indexed: 11/14/2022] Open
Abstract
Identifying new treatments for existing drugs can help reduce drug development costs and explore novel indications of drugs. The prediction of associations between drugs and diseases is challenging because their similarities and relations are complicated and non-linear. We propose a HeteroDualNet model to address this issue. Firstly, three types of matrices are extracted to represent intra-drug similarities, intra-disease similarity and drug-disease associations. The intra-drug similarities consider three drug features and a newly introduced drug-related disease correlation. Secondly, an embedding mechanism is proposed to integrate these matrices in a heterogenous drug-disease association layer (hetero-layer). Further, a neighbouring heterogeneous layer (hetero-layer-N) is constructed to incorporate the biological premise that similar drugs can often treat related diseases. Finally, a dual convolutional neural network is built with hetero-layer and hetero-layer-N as two branches to learn from characteristics of drug-disease and the relations of their neighbours simultaneously. HeteroDualNet outperformed the other four methods in comparison over a public dataset of 763 drugs and 681 diseases in terms of Areas Under the Curves of Receiver Operating Characteristics and Precision-Recall, and recall rate at top k. Case study of five drugs further proved the capacity of HeteroDualNet in finding reliable disease candidates of drugs as validated by database records or literature. Our findings show that the embedded heterogenous layers of original and neighbouring drug-disease representations in a dual neural network improved the association prediction performance.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Bundoora, VIC, Australia
| | - Tonghui Shen
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Nan Sheng
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin, China
| |
Collapse
|
45
|
Abstract
Protein methylation is an important and reversible post-translational modification
that regulates many biological processes in cells. It occurs mainly on lysine and arginine
residues and involves many important biological processes, including transcriptional
activity, signal transduction, and the regulation of gene expression. Protein methylation
and its regulatory enzymes are related to a variety of human diseases, so improved identification
of methylation sites is useful for designing drugs for a variety of related diseases.
In this review, we systematically summarize and analyze the tools used for the prediction
of protein methylation sites on arginine and lysine residues over the last decade.
Collapse
Affiliation(s)
- Chunyan Ao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shunshan Jin
- Department of Neurology, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Yuan Lin
- Department of System Integration, Sparebanken Vest, Bergen, Norway
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
46
|
Cheng L, Zhao H, Wang P, Zhou W, Luo M, Li T, Han J, Liu S, Jiang Q. Computational Methods for Identifying Similar Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:590-604. [PMID: 31678735 PMCID: PMC6838934 DOI: 10.1016/j.omtn.2019.09.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/01/2023]
Abstract
Although our knowledge of human diseases has increased dramatically, the molecular basis, phenotypic traits, and therapeutic targets of most diseases still remain unclear. An increasing number of studies have observed that similar diseases often are caused by similar molecules, can be diagnosed by similar markers or phenotypes, or can be cured by similar drugs. Thus, the identification of diseases similar to known ones has attracted considerable attention worldwide. To this end, the associations between diseases at the molecular, phenotypic, and taxonomic levels were used to measure the pairwise similarity in diseases. The corresponding performance assessment strategies for these methods involving the terms “category-based,” “simulated-patient-based,” and “benchmark-data-based” were thus further emphasized. Then, frequently used methods were evaluated using a benchmark-data-based strategy. To facilitate the assessment of disease similarity scores, researchers have designed dozens of tools that implement these methods for calculating disease similarity. Currently, disease similarity has been advantageous in predicting noncoding RNA (ncRNA) function and therapeutic drugs for diseases. In this article, we review disease similarity methods, evaluation strategies, tools, and their applications in the biomedical community. We further evaluate the performance of these methods and discuss the current limitations and future trends for calculating disease similarity.
Collapse
Affiliation(s)
- Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hengqiang Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Tianxin Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Shulin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, Heilongjiang, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| |
Collapse
|
47
|
Xuan P, Song Y, Zhang T, Jia L. Prediction of Potential Drug-Disease Associations through Deep Integration of Diversity and Projections of Various Drug Features. Int J Mol Sci 2019; 20:ijms20174102. [PMID: 31443472 PMCID: PMC6747548 DOI: 10.3390/ijms20174102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 11/17/2022] Open
Abstract
Identifying new indications for existing drugs may reduce costs and expedites drug development. Drug-related disease predictions typically combined heterogeneous drug-related and disease-related data to derive the associations between drugs and diseases, while recently developed approaches integrate multiple kinds of drug features, but fail to take the diversity implied by these features into account. We developed a method based on non-negative matrix factorization, DivePred, for predicting potential drug–disease associations. DivePred integrated disease similarity, drug–disease associations, and various drug features derived from drug chemical substructures, drug target protein domains, drug target annotations, and drug-related diseases. Diverse drug features reflect the characteristics of drugs from different perspectives, and utilizing the diversity of multiple kinds of features is critical for association prediction. The various drug features had higher dimensions and sparse characteristics, whereas DivePred projected high-dimensional drug features into the low-dimensional feature space to generate dense feature representations of drugs. Furthermore, DivePred’s optimization term enhanced diversity and reduced redundancy of multiple kinds of drug features. The neighbor information was exploited to infer the likelihood of drug–disease associations. Experiments indicated that DivePred was superior to several state-of-the-art methods for prediction drug-disease association. During the validation process, DivePred identified more drug-disease associations in the top part of prediction result than other methods, benefitting further biological validation. Case studies of acetaminophen, ciprofloxacin, doxorubicin, hydrocortisone, and ampicillin demonstrated that DivePred has the ability to discover potential candidate disease indications for drugs.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Yingying Song
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China.
| | - Lan Jia
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
48
|
Wang C, Guo J, Zhao N, Liu Y, Liu X, Liu G, Guo M. A Cancer Survival Prediction Method Based on Graph Convolutional Network. IEEE Trans Nanobioscience 2019; 19:117-126. [PMID: 31443039 DOI: 10.1109/tnb.2019.2936398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Cancer, as the most challenging part in the human disease history, has always been one of the main threats to human life and health. The high mortality of cancer is largely due to the complexity of cancer and the significant differences in clinical outcomes. Therefore, it will be significant to improve accuracy of cancer survival prediction, which has become one of the main fields of cancer research. Many calculation models for cancer survival prediction have been proposed at present, but most of them generate prediction models only by using single genomic data or clinical data. Multiple genomic data and clinical data have not been integrated yet to take a comprehensive consideration of cancers and predict their survival. METHOD In order to effectively integrate multiple genomic data (including genetic expression, copy number alteration, DNA methylation and exon expression) and clinical data and apply them to predictive studies on cancer survival, similar network fusion algorithm (SNF) was proposed in this paper to integrate multiple genomic data and clinical data so as to generate sample similarity matrix, min-redundancy and max-relevance algorithm (mRMR) was used to conduct feature selection of multiple genomic data and clinical data of cancer samples and generate sample feature matrix, and finally two matrixes were used for semi-supervised training through graph convolutional network (GCN) so as to obtain a cancer survival prediction method integrating multiple genomic data and clinical data based on graph convolutional network (GCGCN). RESULT Performance indexes of GCGCN model indicate that both multiple genomic data and clinical data play significant roles in the accurate survival time prediction of cancer patients. It is compared with existing survival prediction methods, and results show that cancer survival prediction method GCGCN which integrates multiple genomic data and clinical data has obviously superior prediction effect than existing survival prediction methods. CONCLUSION All study results in this paper have verified effectiveness and superiority of GCGCN in the aspect of cancer survival prediction.
Collapse
|
49
|
Meng C, Wei L, Zou Q. SecProMTB: Support Vector Machine‐Based Classifier for Secretory Proteins Using Imbalanced Data Sets Applied toMycobacterium tuberculosis. Proteomics 2019; 19:e1900007. [DOI: 10.1002/pmic.201900007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/25/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Chaolu Meng
- College of Intelligence and ComputingTianjin University 300350 Tianjin China
- College of Computer and Information EngineeringInner Mongolia Agricultural University 010018 Hohhot China
| | - Leyi Wei
- College of Intelligence and ComputingTianjin University 300350 Tianjin China
| | - Quan Zou
- College of Intelligence and ComputingTianjin University 300350 Tianjin China
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of China 610054 Chengdu China
- Center for Informational BiologyUniversity of Electronic Science and Technology of China 610054 Chengdu China
| |
Collapse
|
50
|
Xuan P, Sun C, Zhang T, Ye Y, Shen T, Dong Y. Gradient Boosting Decision Tree-Based Method for Predicting Interactions Between Target Genes and Drugs. Front Genet 2019; 10:459. [PMID: 31214240 PMCID: PMC6555260 DOI: 10.3389/fgene.2019.00459] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/30/2019] [Indexed: 02/01/2023] Open
Abstract
Determining the target genes that interact with drugs—drug–target interactions—plays an important role in drug discovery. Identification of drug–target interactions through biological experiments is time consuming, laborious, and costly. Therefore, using computational approaches to predict candidate targets is a good way to reduce the cost of wet-lab experiments. However, the known interactions (positive samples) and the unknown interactions (negative samples) display a serious class imbalance, which has an adverse effect on the accuracy of the prediction results. To mitigate the impact of class imbalance and completely exploit the negative samples, we proposed a new method, named DTIGBDT, based on gradient boosting decision trees, for predicting candidate drug–target interactions. We constructed a drug–target heterogeneous network that contains the drug similarities based on the chemical structures of drugs, the target similarities based on target sequences, and the known drug–target interactions. The topological information of the network was captured by random walks to update the similarities between drugs or targets. The paths between drugs and targets could be divided into multiple categories, and the features of each category of paths were extracted. We constructed a prediction model based on gradient boosting decision trees. The model establishes multiple decision trees with the extracted features and obtains the interaction scores between drugs and targets. DTIGBDT is a method of ensemble learning, and it effectively reduces the impact of class imbalance. The experimental results indicate that DTIGBDT outperforms several state-of-the-art methods for drug–target interaction prediction. In addition, case studies on Quetiapine, Clozapine, Olanzapine, Aripiprazole, and Ziprasidone demonstrate the ability of DTIGBDT to discover potential drug–target interactions.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Chang Sun
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin, China
| | - Yilin Ye
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Tonghui Shen
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Yihua Dong
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| |
Collapse
|