1
|
Zhou Y, Qi T, Yang Y, Li Z, Hou Z, Zhao X, Ge Q, Lu Z. Effect of Different Staining Methods on Brain Cryosections. ACS Chem Neurosci 2024; 15:2243-2252. [PMID: 38779816 DOI: 10.1021/acschemneuro.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Staining frozen sections is often required to distinguish cell types for spatial transcriptomic studies of the brain. The impact of the staining methods on the RNA integrity of the cells becomes one of the limitations of spatial transcriptome technology with microdissection. However, there is a lack of systematic comparisons of different staining modalities for the pretreatment of frozen sections of brain tissue as well as their effects on transcriptome sequencing results. In this study, four different staining methods were analyzed for their effect on RNA integrity in frozen sections of brain tissue. Subsequently, differences in RNA quality in frozen sections under different staining conditions and their impact on transcriptome sequencing results were assessed by RNA-seq. As one of the most commonly used methods for staining pathological sections, HE staining seriously affects the RNA quality of frozen sections of brain tissue. In contrast, the homemade cresyl violet staining method developed in this study has the advantages of short staining time, low cost, and less RNA degradation. The homemade cresyl violet staining proposed in this study can be applied instead of HE staining as an advance staining step for transcriptome studies in frozen sections of brain tissue. In the future, this staining method may be suitable for wide application in brain-related studies of frozen tissue sections. Moreover, it is expected to become a routine step for staining cells before sampling in brain science.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ting Qi
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuwei Yang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhihui Li
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhuoran Hou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
2
|
Zannini G, Tedesco I, Cozzolino I, Montella M, Clery E, Della Corte CM, Morgillo F, Accardo M, Franco R, Zito Marino F. A Critical Issue in Lung Cancer Cytology and Small Biopsies: DNA and RNA Extraction from Archival Stained Slides for Biomarker Detection through Real Time PCR and NGS-The Experience in Pathological Anatomy Unit. Diagnostics (Basel) 2023; 13:diagnostics13091637. [PMID: 37175028 PMCID: PMC10178763 DOI: 10.3390/diagnostics13091637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The handling of biomaterials is crucial for precision medicine in advanced-stage lung patients with only cytology or small biopsies available. The main purpose of the study was to evaluate the quantity and quality of nucleic acids extracted from mixed stained slides (MSSs), including H&E, IHC and FISH, compared to the extraction from unstained slides (USs). A series of 35 lung adenocarcinoma surgical samples was selected to set up the method and the technical approach was validated in a series of 15 small biopsies and 38 cytological samples. DNA extracted from MSSs was adequate in all samples and the Real Time PCR was successful in 30/35 surgical samples (86%), 14/15 small biopsies (93%), and 33/38 cytological samples (87%). NGS using DNA extracted from MSSs was successful in 18/35 surgical samples (51%), 11/15 small biopsies (73%), and 26/38 cytological samples (68%). RNA extracted from MSSs was unsatisfactory in all cases showing an inadequate degree of fragmentation. Our technical approach based on the recovery of stained slides could represent a strategic way forward for DNA-based biomarker testing in lung cancer cases without biomaterials. The RNA extracted from MSSs did not represent a successful approach.
Collapse
Affiliation(s)
- Giuseppa Zannini
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| | - Ilaria Tedesco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| | - Immacolata Cozzolino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| | - Marco Montella
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| | - Eduardo Clery
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| | - Carminia Maria Della Corte
- Medical Oncology, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131 Naples, Italy
| | - Floriana Morgillo
- Medical Oncology, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via S. Pansini 5, 80131 Naples, Italy
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, 80138 Naples, Italy
| |
Collapse
|
3
|
Köhler SA, Brandl L, Strissel PL, Gloßner L, Ekici AB, Angeloni M, Ferrazzi F, Bahlinger V, Hartmann A, Beckmann MW, Eckstein M, Strick R. Improved Bladder Tumor RNA Isolation from Archived Tissues Using Methylene Blue for Normalization, Multiplex RNA Hybridization, Sequencing and Subtyping. Int J Mol Sci 2022; 23:ijms231810267. [PMID: 36142180 PMCID: PMC9499321 DOI: 10.3390/ijms231810267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Methylene blue (MB) is a dye used for histology with clinical importance and intercalates into nucleic acids. After MB staining of formalin fixed paraffin embedded (FFPE) muscle invasive bladder cancer (MIBC) and normal urothelium, specific regions could be microdissected. It is not known if MB influences RNA used for gene expression studies. Therefore, we analyzed MIBC using five different RNA isolation methods comparing patient matched FFPE and fresh frozen (FF) tissues pre-stained with or without MB. We demonstrate a positive impact of MB on RNA integrity with FF tissues using real time PCR with no interference of its chemical properties. FFPE tissues showed no improvement of RNA integrity, which we propose is due to formalin induced nucleotide crosslinks. Using direct multiplex RNA hybridization the best genes for normalization of MIBC and control tissues were identified from 34 reference genes. In addition, 5SrRNA and 5.8SrRNA were distinctive reference genes detecting <200 bp fragments important for mRNA analyses. Using these normalized RNAs from MB stained MIBC and applying multiplex RNA hybridization and mRNA sequencing, a minimal gene expression panel precisely identified luminal and basal MIBC tumor subtypes, important for diagnosis, prognosis and chemotherapy response.
Collapse
Affiliation(s)
- Stefanie A. Köhler
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
| | - Lisa Brandl
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Pamela L. Strissel
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Laura Gloßner
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Arif B. Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Miriam Angeloni
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Fulvia Ferrazzi
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Veronika Bahlinger
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Matthias W. Beckmann
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany
| | - Reiner Strick
- Laboratory for Molecular Medicine, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Universitaetsstrasse 21-23, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), University Hospital Erlangen, Östliche Stadtmauerstrasse 30, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-91318536671
| |
Collapse
|
4
|
Pote A, Boghenco O, Marques-Ramos A. Molecular analysis of H&E- and Papanicolau-stained samples-systematic review. Histochem Cell Biol 2020; 154:7-20. [PMID: 32372108 DOI: 10.1007/s00418-020-01882-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2020] [Indexed: 12/12/2022]
Abstract
Molecular pathology allows the identification of causative agents in infectious diseases and detection of biomarkers important for prediction of disease susceptibility, diagnosis and personalized therapy. Accordingly, nucleic acid-based methods have gained a special role in clinical laboratories particularly to evaluate solid and hematological tumors. Extraction of nucleic acids is commonly performed in microdissected formalin-fixed paraffin-embedded (FFPE) or cytological samples that had been previously evaluated through the use of hematoxylin and eosin (H&E) or Papanicolau (Pap) stains, respectively. Although the effect of both stains on nucleic acids integrity has been explored by several authors, the results are not consistent and require further examination. Accordingly, the goal of this review was to assess the influence of H&E and Pap stains on DNA and RNA integrity and to address the mechanism by which each staining compromises molecular based-analysis. The analyzed studies demonstrate that H&E- and Pap-staining result in low DNA recovery and some degree of DNA fragmentation. Additionally, it is concluded that hemalum inhibits PCR by interfering with DNA extraction, preventing DNA polymerase attachment and possibly by rescuing divalent cations. Accordingly, proper sample purification and adjustment of PCR conditions are of key importance to achieve satisfactory results by PCR in H&E- and Pap-stained samples. Furthermore, although H&E results in RNA fragmentation, it is possible to perform expression analysis in H&E-stained frozen sections, using RNase-free conditions, low amounts of hematoxylin and a rapid protocol from sample collection to RNA analysis. It The effect of Pap-staining on RNA integrity remains to be determined.
Collapse
Affiliation(s)
- Alexandra Pote
- ESTeSL, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096, Lisboa, Portugal
| | - Otília Boghenco
- ESTeSL, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096, Lisboa, Portugal
| | - Ana Marques-Ramos
- ESTeSL, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096, Lisboa, Portugal.
- H&TRC, Health and Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisboa, Portugal.
| |
Collapse
|
5
|
Wang K, Donnarumma F, Herke SW, Dong C, Herke PF, Murray KK. RNA sampling from tissue sections using infrared laser ablation. Anal Chim Acta 2019; 1063:91-98. [PMID: 30967191 DOI: 10.1016/j.aca.2019.02.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/17/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
Abstract
RNA was obtained from discrete locations of frozen rat brain tissue sections through infrared (IR) laser ablation using a 3-μm wavelength in transmission geometry. The ablated plume was captured in a microcentrifuge tube containing RNAse-free buffer and processed using a commercial RNA purification kit. RNA transfer efficiency and integrity were evaluated based on automated electrophoresis in microfluidic chips. Reproducible IR-laser ablation of intact RNA was demonstrated with purified RNA at laser fluences of 3-5 kJ/m2 (72 ± 12% transfer efficiency) and with tissue sections at a laser fluence of 13 kJ/m2 (79 ± 14% transfer efficiency); laser energies were attenuated ∼20% by the soda-lime glass slides used to support the samples. RNA integrity from tissue ablation was >90% of its original RIN value (∼7) and the purified RNA was sufficiently intact for conversion to cDNA and subsequent qPCR assay.
Collapse
Affiliation(s)
- Kelin Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Scott W Herke
- Genomics Facility, College of Science, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Chao Dong
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Patrick F Herke
- Genomics Facility, College of Science, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States.
| |
Collapse
|
6
|
Kinguchi S, Wakui H, Azushima K, Haruhara K, Koguchi T, Ohki K, Uneda K, Matsuda M, Haku S, Yamaji T, Yamada T, Kobayashi R, Minegishi S, Ishigami T, Yamashita A, Fujikawa T, Tamura K. Effects of ATRAP in Renal Proximal Tubules on Angiotensin-Dependent Hypertension. J Am Heart Assoc 2019; 8:e012395. [PMID: 30977419 PMCID: PMC6507205 DOI: 10.1161/jaha.119.012395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background We have previously shown that ATRAP (angiotensin II receptor-associated protein; Agtrap) interacts with AT1R (angiotensin II type 1 receptor) and promotes constitutive internalization of AT 1R so as to inhibit hyperactivation of its downstream signaling. In response to angiotensin II , systemic ATRAP deficiency exacerbates angiotensin II -mediated hypertension via hyperactivation of renal tubular AT 1R. Although ATRAP expression is abundant in renal proximal tubules, little is known about the actual function of renal proximal tubule ATRAP in angiotensin-mediated hypertension. Methods and Results In this study, we examined the in vivo functional role of renal proximal tubule ATRAP in angiotensin-dependent hypertension. We succeeded in generating proximal tubule-specific ATRAP knockout ( PT - KO ) mice for the first time using the Cre/loxP system with Pepck-Cre. Detailed analysis of renal ATRAP expression in PT - KO mice estimated by immunohistochemical and laser-capture microdissection analysis revealed that ATRAP mRNA expression decreased by ≈80% in proximal regions of the nephron in PT - KO mice compared with wild-type ( WT ) mice. We compared blood pressure of PT - KO and WT mice using both tail-cuff and radiotelemetric methods. Blood pressure of PT - KO mice was comparable with that of WT mice at baseline. Moreover, no significant differences were noted in pressor response to angiotensin II (600 ng/kg per min or 1000 ng/kg per minute) infusion between PT - KO and WT mice. In addition, angiotensin II -mediated cardiac hypertrophy was identical between PT - KO and WT mice. Conclusions ATRAP deficiency in proximal tubules did not exacerbate angiotensin-dependent hypertension in vivo. The results indicate that renal proximal tubule ATRAP has a minor role in angiotensin-dependent hypertension in vivo.
Collapse
Affiliation(s)
- Sho Kinguchi
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Hiromichi Wakui
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Kengo Azushima
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan.,2 Cardiovascular and Metabolic Disorders Program Duke-NUS Medical School Singapore Singapore
| | - Kotaro Haruhara
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Tomoyuki Koguchi
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Kohji Ohki
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Kazushi Uneda
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Miyuki Matsuda
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Sona Haku
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Takahiro Yamaji
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Takayuki Yamada
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Ryu Kobayashi
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Shintaro Minegishi
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Tomoaki Ishigami
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Akio Yamashita
- 3 Department of Molecular Biology Yokohama City University Graduate School of Medicine Yokohama Japan
| | - Tetsuya Fujikawa
- 4 Center for Health Service Sciences Yokohama National University Yokohama Japan
| | - Kouichi Tamura
- 1 Department of Medical Science and Cardiorenal Medicine Yokohama City University Graduate School of Medicine Yokohama Japan
| |
Collapse
|
7
|
Sharma D, Gondaliya P, Tiwari V, Kalia K. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling. Biomed Pharmacother 2018; 109:1610-1619. [PMID: 30551415 DOI: 10.1016/j.biopha.2018.10.195] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022] Open
Abstract
RhoA/Rho-associated coiled-coil forming protein serine/threonine kinase (ROCK) has appeared as a potential therapeutic target in numerous diseases, because of its preventing action on various enzymes providing antioxidant and cytoprotective action. Progression and pathophysiology of diabetic nephropathy have also shown potential involvement of oxidative stress and inflammatory pathways. In the present study, we investigated the effect of kaempferol on hyperglycemia-induced activation of RhoA kinase and associated inflammatory signaling cascade. Currently there is only small literature available on the mechanism of anti-diabetic and nephroprotective action of this compound, which creates a void. Therefore, we focused here on the investigation of molecular mechanisms for kaempferol by means of in vitro testing, using rat (NRK-52E) and human renal tubular epithelial cells (RPTEC). Our findings suggest that kaempferol inhibits hyperglycemia-induced activation of RhoA and decreased oxidative stress, pro-inflammatory cytokines (TNF-α and IL-1β) and fibrosis (TGF-β1 expression, extracellular matrix protein expression) in NRK-52E and RPTEC cells. Therefore, kaempferol can be used as a potential therapeutic for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Dilip Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Vinod Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
8
|
Chasles M, Chesneau D, Moussu C, Poissenot K, Beltramo M, Delgadillo JA, Chemineau P, Keller M. Sexually active bucks are a critical social cue that activates the gonadotrope axis and early puberty onset in does. Horm Behav 2018; 106:81-92. [PMID: 30308180 DOI: 10.1016/j.yhbeh.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 10/28/2022]
Abstract
In rodents, early exposure to adult male is well known to induce an early puberty in females (Vandenbergh effect). This phenomenon has been less studied in other mammals. In goats, despite our extensive knowledge about the "male-effect" phenomenon in adults (i.e. ovulation induced by the introduction of the male during the anestrous), there are few data on the consequences of an early exposure of females to males. Here, we evaluated the puberty onset of young alpine goats when raised since weaning with intact bucks (INT), with castrated bucks (CAS) or isolated from bucks (ISOL). The INT group had the first ovulation 1.5 month before the two other groups. Despite the earlier puberty the INT group of females had normal and regular ovarian cycles. Morphological study of the genital tract showed that at 6 months, uterus of INT goats was 40% heavier than CAS and ISOL goats. Moreover, INT females had a myometrium significantly thicker and INT was the only group having corpora lutea. In our study, INT females were pubescent in the month following the entry of bucks into the breeding season, suggesting that only sexually active bucks provide the signal responsible for puberty acceleration. By removing direct contact with the bucks, we showed that somatosensory interactions were dispensable for an early puberty induction. Finally, no difference in the GnRH network (fiber density and number of synaptic appositions) can be detected between pubescent and non-pubescent females, suggesting that the male stimulations triggering puberty onset act probably on upstream neuronal networks, potentially on kisspeptin neurons.
Collapse
Affiliation(s)
- Manon Chasles
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Didier Chesneau
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Chantal Moussu
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Kevin Poissenot
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Massimiliano Beltramo
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - José Alberto Delgadillo
- Centro de Investigacíon en Reproducción Caprina, Universidad Autónoma Agraria Antonio Narro, Torreón, Coahuila, Mexico
| | - Philippe Chemineau
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Matthieu Keller
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France.
| |
Collapse
|
9
|
Laser capture microdissection for transcriptomic profiles in human skin biopsies. BMC Mol Biol 2018; 19:7. [PMID: 29921228 PMCID: PMC6009967 DOI: 10.1186/s12867-018-0108-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
Background The acquisition of reliable tissue-specific RNA sequencing data from human skin biopsy represents a major advance in research. However, the complexity of the process of isolation of specific layers from fresh-frozen human specimen by laser capture microdissection, the abundant presence of skin nucleases and RNA instability remain relevant methodological challenges. We developed and optimized a protocol to extract RNA from layers of human skin biopsies and to provide satisfactory quality and amount of mRNA sequencing data. Results The protocol includes steps of collection, embedding, freezing, histological coloration and relative optimization to preserve RNA extracted from specific components of fresh-frozen human skin biopsy of 14 subjects. Optimization of the protocol includes a preservation step in RNALater® Solution, the control of specimen temperature, the use of RNase Inhibitors and the time reduction of the staining procedure. The quality of extracted RNA was measured using the percentage of fragments longer than 200 nucleotides (DV200), a more suitable measurement for successful library preparation than the RNA Integrity Number (RIN). RNA was then enriched using the TruSeq® RNA Access Library Prep Kit (Illumina®) and sequenced on HiSeq® 2500 platform (Illumina®). Quality control on RNA sequencing data was adequate to get reliable data for downstream analysis. Conclusions The described implemented and optimized protocol can be used for generating transcriptomics data on skin tissues, and it is potentially applicable to other tissues. It can be extended to multicenter studies, due to the introduction of an initial step of preservation of the specimen that allowed the shipment of biological samples. Electronic supplementary material The online version of this article (10.1186/s12867-018-0108-5) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Wang N, Liu ZH, Zou H, Pang LJ, Gu WY, Hu JM, Li DM, Zhao J, Zhang J, Liu CX, Zhang WJ, Qi Y, Li F. Laser capture microdissection for detecting the expression of epithelial-mesenchymal transition-related genes in epithelial and spindle cells of paraffin-embedded formalin-fixed biphasic synovial sarcoma. Clin Exp Pharmacol Physiol 2018; 45:675-682. [PMID: 29575169 DOI: 10.1111/1440-1681.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 02/11/2018] [Accepted: 03/01/2018] [Indexed: 11/26/2022]
Abstract
Synovial sarcoma (SS) is a mesenchymal malignant neoplasm showing characteristics of epithelial-mesenchymal biphasic differentiation. SS is of uncertain cellular origin; however, studies have suggested that SS originates from a somatic stem cell population. In this study, we aim to determine whether differential morphological features of the epithelial-mesenchymal transition (EMT) contributed to the tumourigenesis of SS invasion and metastasis. Twelve paraffin-embedded formalin-fixed tissue (FFPE) SS tissue specimens were obtained, and laser capture microdissection (LCM) with the ArcturusXT system and small chip method (SCM) were used to isolate and purify spindle and epithelial cells from SS specimens. The TRIzol method was used to extract RNA, and the mRNA levels of EMT-related genes in epithelial and spindle cells of SS specimens were measured using real-time fluorescent quantitative reverse transcription polymerase chain reaction (qRT-PCR). The results show that collection of about 2 × 104 cells from FFPE samples using LCM was sufficient for qRT-PCR, with an efficiency of 75%. Compared with LCM, 72.2% (13 of 18) RNA samples were successfully extracted using SCM to isolate cells from FFPE SS tissues. In the 16 samples (11 spindle cell samples and 5 epithelial cell samples), Snail mRNA was significantly upregulated in spindle cell areas compared with that in epithelial cell areas (P = .001). Expression levels of the epithelial marker E-cadherin and the mesenchymal marker N-cadherin were not significantly different between epithelial and spindle cell areas. In spindle cells of recurrent SS samples, the mRNA levels of E-cadherin, N-cadherin, Snail, and Slug were higher in primary SS samples than in recurrent samples. Taken together, our results indicated that in SS samples, Snail mRNA was upregulated in spindle cell areas compared with that in epithelial cell areas and that the expression of EMT-related genes was increased in primary SS. LCM could be used to isolate and purify RNA from FFPE samples.
Collapse
Affiliation(s)
- Ning Wang
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, China
| | - Zi-Han Liu
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, China
| | - Hong Zou
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, China
| | - Li-Juan Pang
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, China
| | - Wen-Yi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), St Lucia, Brisbane, QLD, Australia
| | - Jian-Ming Hu
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, China
| | - Dong-Mei Li
- Department of Biochemistry and Molecular Biology, Shihezi University School of Medicine, Shihezi, China
| | - Jin Zhao
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, China
| | - Jun Zhang
- Department of Medical Genetics, Shihezi University School of Medicine, Shihezi, China
| | - Chun-Xia Liu
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, China
| | - Wen-Jie Zhang
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, China
| | - Yan Qi
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, China
| | - Feng Li
- Department of Pathology and Key Laboratories for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Garrido-Gil P, Fernandez-Rodríguez P, Rodríguez-Pallares J, Labandeira-Garcia JL. Laser capture microdissection protocol for gene expression analysis in the brain. Histochem Cell Biol 2017; 148:299-311. [PMID: 28560490 DOI: 10.1007/s00418-017-1585-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 01/18/2023]
Abstract
Laser capture microdissection (LCM) allows the isolation of specific cell populations from complex tissues that can be then used for gene expression studies. However, there are no reproducible protocols to study RNA in the brain and, particularly, in the substantia nigra. RNA is a very labile biomolecule that is easily degraded during manipulation. LCM studies use low amounts of material and special precautions must be taken to preserve RNA yield and integrity, which are decisive for PCR analysis. The RNA yield and/or integrity can be affected negatively by tissue manipulation, LCM process and RNA extraction. We have optimized these three critical steps using nigral tissue sections, and developed a LCM protocol to obtain high-quality RNA for gene expression analysis. The optimal LCM protocol requires the use of 20 µm-thick tissue sections mounted on glass slides and processed for rapid tyrosine hydroxylase immunofluorescence. Additionally, a total microdissected tissue area of 1 mm2 and a column-based RNA extraction method were used to obtain a high RNA yield and integrity. In the rat substantia nigra, we demonstrated the expression of RNA for the angiotensin type 1 and type 2 receptors using this optimized LCM protocol. In conclusion, the LCM protocol reported here can be used to study the expression of both scarcely or abundantly expressed genes in the different brain regions of mammals under both physiological and pathological conditions.
Collapse
Affiliation(s)
- P Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, 15782, Santiago De Compostela, Spain.,Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - P Fernandez-Rodríguez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, 15782, Santiago De Compostela, Spain
| | - J Rodríguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, 15782, Santiago De Compostela, Spain.,Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, 15782, Santiago De Compostela, Spain. .,Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
12
|
Landolt L, Marti HP, Beisland C, Flatberg A, Eikrem OS. RNA extraction for RNA sequencing of archival renal tissues. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 76:426-34. [PMID: 27173776 DOI: 10.1080/00365513.2016.1177660] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Next generation sequencing (NGS) and especially ribonucleic acid (RNA) sequencing is a powerful tool to acquire insights into molecular disease mechanisms. Therefore, it is of interest to optimize methods for RNA extraction from archival, formalin fixed and paraffin embedded (FFPE) tissues. This is challenging due to RNA degradation and chemical modifications. The aim of this study was to find the most appropriate method to extract RNA from FFPE renal tissue to enable NGS. METHOD We evaluated seven commercially available RNA extraction kits: High Pure FFPE RNA Isolation (Roche), ExpressArt Clear FFPE RNAready (Amsbio), miRNeasy FFPE, RNeasy FFPE (Qiagen), PureLink FFPE Total RNA (Invitrogen), RecoverAll Total Nucleic Acid Isolation (Ambion) and Absolutely RNA FFPE Kit (Agilent). RNA was obtained from tissue blocks of two healthy, male Wistar rats and from normal renal tissue of patients undergoing nephrectomy. Yield and quality of RNA extracted from rat whole kidney sections, human kidney core biopsies and laser capture microdissected (LCM) glomerular cross-sections were assessed: Analyses of RNA quantity were performed using NanoDrop and Qubit. RNA quality is reflected by DV200 values (% of RNA fragments >200 nucleotides) utilizing the Agilent 2100 BioAnalyzer. RNA of human LCM samples was subsequently sequenced using the Illumina TruSeq(®) RNA Access Library Preparation Kit. CONCLUSION Total RNA can be extracted from archival renal biopsies in sufficient quality and quantity from one human kidney biopsy section and from around 100 LCM glomerular cross-sections to enable successful RNA library preparation and sequencing using commercially available RNA extraction kits.
Collapse
Affiliation(s)
- Lea Landolt
- a Department of Clinical Medicine , University of Bergen
| | | | - Christian Beisland
- a Department of Clinical Medicine , University of Bergen ;,b Department of Urology , Haukeland University Hospital , Bergen
| | - Arnar Flatberg
- c Department of Cancer Research and Molecular Medicine , Norwegian University of Science and Technology , Trondheim , Norway
| | | |
Collapse
|
13
|
Zlotina A, Kulikova T, Kosyakova N, Liehr T, Krasikova A. Microdissection of lampbrush chromosomes as an approach for generation of locus-specific FISH-probes and samples for high-throughput sequencing. BMC Genomics 2016; 17:126. [PMID: 26897606 PMCID: PMC4761191 DOI: 10.1186/s12864-016-2437-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/05/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Over the past two decades, chromosome microdissection has been widely used in diagnostics and research enabling analysis of chromosomes and their regions through probe generation and establishing of chromosome- and chromosome region-specific DNA libraries. However, relatively small physical size of mitotic chromosomes limited the use of the conventional chromosome microdissection for investigation of tiny chromosomal regions. RESULTS In the present study, we developed a workflow for mechanical microdissection of giant transcriptionally active lampbrush chromosomes followed by the preparation of whole-chromosome and locus-specific fluorescent in situ hybridization (FISH)-probes and high-throughput sequencing. In particular, chicken (Gallus g. domesticus) lampbrush chromosome regions as small as single chromomeres, individual lateral loops and marker structures were successfully microdissected. The dissected fragments were mapped with high resolution to target regions of the corresponding lampbrush chromosomes. For investigation of RNA-content of lampbrush chromosome structures, samples retrieved by microdissection were subjected to reverse transcription. Using high-throughput sequencing, the isolated regions were successfully assigned to chicken genome coordinates. As a result, we defined precisely the loci for marker structures formation on chicken lampbrush chromosomes 2 and 3. Additionally, our data suggest that large DAPI-positive chromomeres of chicken lampbrush chromosome arms are characterized by low gene density and high repeat content. CONCLUSIONS The developed technical approach allows to obtain DNA and RNA samples from particular lampbrush chromosome loci, to define precisely the genomic position, extent and sequence content of the dissected regions. The data obtained demonstrate that lampbrush chromosome microdissection provides a unique opportunity to correlate a particular transcriptional domain or a cytological structure with a known DNA sequence. This approach offers great prospects for detailed exploration of functionally significant chromosomal regions.
Collapse
Affiliation(s)
- Anna Zlotina
- Department of Cytology and Histology, Saint Petersburg State University, Saint Petersburg, Russia.
| | - Tatiana Kulikova
- Department of Cytology and Histology, Saint Petersburg State University, Saint Petersburg, Russia.
| | - Nadezda Kosyakova
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| | - Alla Krasikova
- Department of Cytology and Histology, Saint Petersburg State University, Saint Petersburg, Russia.
| |
Collapse
|
14
|
Budd WT, Seashols-Williams SJ, Clark GC, Weaver D, Calvert V, Petricoin E, Dragoescu EA, O’Hanlon K, Zehner ZE. Dual Action of miR-125b As a Tumor Suppressor and OncomiR-22 Promotes Prostate Cancer Tumorigenesis. PLoS One 2015; 10:e0142373. [PMID: 26544868 PMCID: PMC4636224 DOI: 10.1371/journal.pone.0142373] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRs) are a novel class of small RNA molecules, the dysregulation of which can contribute to cancer. A combinatorial approach was used to identify miRs that promote prostate cancer progression in a unique set of prostate cancer cell lines, which originate from the parental p69 cell line and extend to a highly tumorigenic/metastatic M12 subline. Together, these cell lines are thought to mimic prostate cancer progression in vivo. Previous network analysis and miR arrays suggested that the loss of hsa-miR-125b together with the overexpression of hsa-miR-22 could contribute to prostate tumorigenesis. The dysregulation of these two miRs was confirmed in human prostate tumor samples as compared to adjacent benign glandular epithelium collected through laser capture microdissection from radical prostatectomies. In fact, alterations in hsa-miR-125b expression appeared to be an early event in tumorigenesis. Reverse phase microarray proteomic analysis revealed ErbB2/3 and downstream members of the PI3K/AKT and MAPK/ERK pathways as well as PTEN to be protein targets differentially expressed in the M12 tumor cell compared to its parental p69 cell. Relevant luciferase+3’-UTR expression studies confirmed a direct interaction between hsa-miR-125b and ErbB2 and between hsa-miR-22 and PTEN. Restoration of hsa-miR-125b or inhibition of hsa-miR-22 expression via an antagomiR resulted in an alteration of M12 tumor cell behavior in vitro. Thus, the dual action of hsa-miR-125b as a tumor suppressor and hsa-miR-22 as an oncomiR contributed to prostate tumorigenesis by modulations in PI3K/AKT and MAPK/ERK signaling pathways, key pathways known to influence prostate cancer progression.
Collapse
Affiliation(s)
- William T. Budd
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sarah J. Seashols-Williams
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Forensic Science, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gene C. Clark
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Danielle Weaver
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Ema A. Dragoescu
- Department of Pathology, VCU Medical Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Katherine O’Hanlon
- American International Biotechnology, Richmond, Virginia, United States of America
| | - Zendra E. Zehner
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Koo SH, Lo YL, Yee JY, Lee EJD. Genetic and/or non-genetic causes for inter-individual and inter-cellular variability in transporter protein expression: implications for understanding drug efficacy and toxicity. Expert Opin Drug Metab Toxicol 2015; 11:1821-37. [DOI: 10.1517/17425255.2015.1104298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|