1
|
Schoonover KE, Kennedy WM, Roberts RC. Cortical copper transporter expression in schizophrenia: interactions of risk gene dysbindin-1. J Neural Transm (Vienna) 2021; 128:701-709. [PMID: 33890175 PMCID: PMC11000637 DOI: 10.1007/s00702-021-02333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Schizophrenia susceptibility factor dysbindin-1 is associated with cognitive processes. Downregulated dysbindin-1 expression is associated with lower expression of copper transporters ATP7A and CTR1, required for copper transport to the central nervous system. We measured dysbindin-1 isoforms-1A and -1BC, CTR1, and ATP7A via Western blots of the postmortem dorsolateral prefrontal cortex (DLPFC) of schizophrenia subjects (n = 28) and matched controls (n = 14). In addition, we subdivided the schizophrenia group by treatment status and comorbidity of alcohol use disorder (AUD) and assessed the relationships between proteins. Schizophrenia subjects exhibited similar protein levels to that of controls, with no effect of antipsychotic treatment. We observed a shift towards more dysbindin-1A expression in schizophrenia, as revealed by the ratio of dysbindin-1 isoforms. Dysbindin-1A expression was negatively correlated with ATP7A in schizophrenia, with no correlation present in controls. AUD subjects exhibited less dysbindin-1BC and CTR1 than those without AUD. Our results, taken together with previous data, suggest that alterations in dysbindin-1 and copper transporters are brain-region specific. For example, protein levels of ATP7A, dysbindin 1BC, and CTR1 are lower in the substantia nigra in schizophrenia subjects. AUD in the DLPFC was associated with lower protein levels of dysbindin-1 and CTR1. Changes in dysbindin-1 isoform ratio and relationships appear to be prevalent in the disease, potentially impacting symptomology.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Department of Psychology and Behavioral Neuroscience, The University of Alabama at Birmingham, 3811 O'Hara Street BST W1651, Pittsburgh, PA, 15213, USA.
| | - William M Kennedy
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Pittsburgh, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Pittsburgh, USA
| |
Collapse
|
2
|
O'Tuathaigh CMP, Desbonnet L, Payne C, Petit E, Cox R, Loftus S, Clarke G, Cryan JF, Tighe O, Wilson S, Kirby BP, Dinan TG, Waddington JL. Ethologically based behavioural and neurochemical characterisation of mice with isoform-specific loss of dysbindin-1A in the context of schizophrenia. Neurosci Lett 2020; 736:135218. [PMID: 32615248 DOI: 10.1016/j.neulet.2020.135218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 10/24/2022]
Abstract
Dysbindin-1 is implicated in several aspects of schizophrenia, including cognition and both glutamatergic and dopaminergic neurotransmission. Targeted knockout of dysbindin-1A (Dys-1A KO), the most abundant and widely expressed isoform in the brain, is associated with deficits in delay/interference-dependent working memory. Using an ethologically based approach, the following behavioural phenotypes were examined in Dys-1A KO mice: exploratory activity, social interaction, anxiety and problem-solving ability. Levels of monoamines and their metabolites were measured in striatum, hippocampus and prefrontal cortex using high-performance liquid chromatography with electrochemical detection. The ethogram of initial exploration in Dys-1A KO mice was characterised by increased rearing from a seated position; over subsequent habituation, stillness was decreased relative to wildtype. In a test of dyadic social interaction with an unfamiliar conspecific in a novel environment, female KO mice showed an increase in investigative social behaviours. Marble burying behaviour was unchanged. Using the puzzle-box test to measure general problem-solving performance, no effect of genotype was observed across nine trials of increasing complexity. Dys-1A KO demonstrated lower levels of 5-HT in ratio to its metabolite 5-HIAA in the prefrontal cortex. These studies elaborate the behavioural and neurochemical phenotype of Dys-1A KO mice, revealing subtle genotype-related differences in non-social and social exploratory behaviours and habituation of exploration in a novel environment, as well as changes in 5-HT activity in brain areas related to schizophrenia.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Medical Education Unit, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland.
| | - Lieve Desbonnet
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Psychology, National University of Ireland, Galway, Galway, Ireland
| | - Christina Payne
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emilie Petit
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rachel Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Samim Loftus
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - Orna Tighe
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Steve Wilson
- In Vivo Science and Delivery, GlaxoSmithKline, Stevenage, UK
| | - Brian P Kirby
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Exploratory analyses of postanesthetic effects of desflurane using behavioral test battery of mice. Behav Pharmacol 2020; 31:597-609. [PMID: 32459695 DOI: 10.1097/fbp.0000000000000567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Halogenated ethers, such as desflurane, sevoflurane, and isoflurane, are known to exert an array of effects besides sedation. However, the postanesthetic effects of desflurane remain undiscovered as no study has explored these effects systematically. Phenotypic screening using behavioral test batteries is a powerful method to identify such effects. In the present study, we behaviorally phenotyped desflurane-treated mice to investigate postanesthetic effects. We applied comprehensive behavioral test batteries measuring sensorimotor functions, anxiety, depression, sociability, attention, and learning abilities, starting 7 days after anesthesia performed with 8.0% desflurane for 6 h. Although our previous study revealed postanesthetic effects of isoflurane in adult mice, in the current study, desflurane-treated mice exhibited no such effects in any behavioral test. To further examine whether desflurane affect behavior in more early time point, we built up a new additional test battery, which carried out 1 day or 3 days after exposure to desflurane. Mice treated with desflurane 1 day before testing showed more slips than other two groups in the first trial, suggesting mild acute side effects of desflurane on motor coordination. These results suggest the safety of desflurane in clinical settings and imply that postanesthetic effects are unique to each halogenated ether.
Collapse
|
4
|
Maes MS, Lu JY, Tiwari AK, Freeman N, de Luca V, Müller DJ, Voineskos AN, Potkin SG, Lieberman JA, Meltzer HY, Remington G, Kennedy JL, Zai CC. Schizophrenia-associated gene dysbindin-1 and tardive dyskinesia. Drug Dev Res 2020; 82:678-684. [PMID: 32394511 DOI: 10.1002/ddr.21681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
Tardive dyskinesia (TD) is a potentially irreversible movement disorder observed following long-term antipsychotic exposure. Its cause is unknown; however, a genetic component has been supported by studies of affected families. Dysbindin-1, encoded by the dystrobrevin-binding protein 1 DTNBP1 gene, has been associated with schizophrenia and is potentially involved in dopamine neurotransmission through its regulation of dopamine release and dopamine D2 receptor recycling, making it a candidate for investigation in TD. We investigated common variants across the DTNBP1 gene in our schizophrenia/patients with schizoaffective disorder of European ancestry. We found a number of DTNBP1 three-marker haplotypes to be associated with TD occurrence and TD severity (p < 0.05). These preliminary findings, if replicated in larger independent samples, would suggest that drugs targeting dysbindin-1 may be an option in the prevention and treatment of TD.
Collapse
Affiliation(s)
- Miriam S Maes
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Justin Y Lu
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Arun K Tiwari
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Natalie Freeman
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Vincenzo de Luca
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Müller
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle N Voineskos
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, Long Beach Veterans Administration Health Care System, University of California, Irvine, California, USA
| | - Jeffrey A Lieberman
- New York State Psychiatric Institute, Columbia University, New York City, New York, USA
| | - Herbert Y Meltzer
- Psychiatry and Behavioral Sciences, Pharmacology and Physiology, Chemistry of Life Processes Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gary Remington
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Waddington JL, Zhen X, O'Tuathaigh CMP. Developmental Genes and Regulatory Proteins, Domains of Cognitive Impairment in Schizophrenia Spectrum Psychosis and Implications for Antipsychotic Drug Discovery: The Example of Dysbindin-1 Isoforms and Beyond. Front Pharmacol 2020; 10:1638. [PMID: 32063853 PMCID: PMC7000454 DOI: 10.3389/fphar.2019.01638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Alongside positive and negative symptomatology, deficits in working memory, attention, selective learning processes, and executive function have been widely documented in schizophrenia spectrum psychosis. These cognitive abnormalities are strongly associated with impairment across multiple function domains and are generally treatment-resistant. The DTNBP1 (dystrobrevin-binding protein-1) gene, encoding dysbindin, is considered a risk factor for schizophrenia and is associated with variation in cognitive function in both clinical and nonclinical samples. Downregulation of DTNBP1 expression in dorsolateral prefrontal cortex and hippocampal formation of patients with schizophrenia has been suggested to serve as a primary pathophysiological process. Described as a "hub," dysbindin is an important regulatory protein that is linked with multiple complexes in the brain and is involved in a wide variety of functions implicated in neurodevelopment and neuroplasticity. The expression pattern of the various dysbindin isoforms (-1A, -1B, -1C) changes depending upon stage of brain development, tissue areas and subcellular localizations, and can involve interaction with different protein partners. We review evidence describing how sequence variation in DTNBP1 isoforms has been differentially associated with schizophrenia-associated symptoms. We discuss results linking these isoform proteins, and their interacting molecular partners, with cognitive dysfunction in schizophrenia, including evidence from drosophila through to genetic mouse models of dysbindin function. Finally, we discuss preclinical evidence investigating the antipsychotic potential of molecules that influence dysbindin expression and functionality. These studies, and other recent work that has extended this approach to other developmental regulators, may facilitate identification of novel molecular pathways leading to improved antipsychotic treatments.
Collapse
Affiliation(s)
- John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Colm M P O'Tuathaigh
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Medical Education Unit, School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Tatsukawa T, Raveau M, Ogiwara I, Hattori S, Miyamoto H, Mazaki E, Itohara S, Miyakawa T, Montal M, Yamakawa K. Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, memory flexibility and ampakine CX516 rescues their hyperactivity. Mol Autism 2019; 10:15. [PMID: 30962870 PMCID: PMC6437867 DOI: 10.1186/s13229-019-0265-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/06/2019] [Indexed: 01/13/2023] Open
Abstract
Background Mutations of the SCN2A gene encoding a voltage-gated sodium channel alpha-II subunit Nav1.2 are associated with neurological disorders such as epilepsy, autism spectrum disorders, intellectual disability, and schizophrenia. However, causal relationships and pathogenic mechanisms underlying these neurological defects, especially social and psychiatric features, remain to be elucidated. Methods We investigated the behavior of mice with a conventional or conditional deletion of Scn2a in a comprehensive test battery including open field, elevated plus maze, light-dark box, three chambers, social dominance tube, resident-intruder, ultrasonic vocalization, and fear conditioning tests. We further monitored the effects of the positive allosteric modulator of AMPA receptors CX516 on these model mice. Results Conventional heterozygous Scn2a knockout mice (Scn2aKO/+) displayed novelty-induced exploratory hyperactivity and increased rearing. The increased vertical activity was reproduced by heterozygous inactivation of Scn2a in dorsal-telencephalic excitatory neurons but not in inhibitory neurons. Moreover, these phenotypes were rescued by treating Scn2aKO/+ mice with CX516. Additionally, Scn2aKO/+ mice displayed mild social behavior impairment, enhanced fear conditioning, and deficient fear extinction. Neuronal activity was intensified in the medial prefrontal cortex of Scn2aKO/+ mice, with an increase in the gamma band. Conclusions Scn2aKO/+ mice exhibit a spectrum of phenotypes commonly observed in models of schizophrenia and autism spectrum disorder. Treatment with the CX516 ampakine, which ameliorates hyperactivity in these mice, could be a potential therapeutic strategy to rescue some of the disease phenotypes. Electronic supplementary material The online version of this article (10.1186/s13229-019-0265-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tetsuya Tatsukawa
- 1Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Matthieu Raveau
- 1Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Ikuo Ogiwara
- 1Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan.,2Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Satoko Hattori
- 3Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake-shi, Aichi 470-1192 Japan
| | - Hiroyuki Miyamoto
- 1Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Emi Mazaki
- 1Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Shigeyoshi Itohara
- 4Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan.,5FIRST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 Japan
| | - Tsuyoshi Miyakawa
- 3Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake-shi, Aichi 470-1192 Japan
| | - Mauricio Montal
- 6Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Kazuhiro Yamakawa
- 1Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| |
Collapse
|
7
|
Katano T, Takao K, Abe M, Yamazaki M, Watanabe M, Miyakawa T, Sakimura K, Ito S. Distribution of Caskin1 protein and phenotypic characterization of its knockout mice using a comprehensive behavioral test battery. Mol Brain 2018; 11:63. [PMID: 30359304 PMCID: PMC6202847 DOI: 10.1186/s13041-018-0407-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/14/2018] [Indexed: 01/17/2023] Open
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK)-interacting protein 1 (Caskin1) is a direct binding partner of the synaptic adaptor protein CASK. Because Caskin1 forms homo-multimers and binds not only CASK but also other neuronal proteins in vitro, it is anticipated to have neural functions; but its exact role in mammals remains unclear. Previously, we showed that the concentration of Caskin1 in the spinal dorsal horn increases under chronic pain. To characterize this protein, we generated Caskin1-knockout (Caskin1-KO) mice and specific anti-Caskin1 antibodies. Biochemical and immunohistochemical analyses demonstrated that Caskin1 was broadly distributed in the whole brain and spinal cord, and that it primarily localized at synapses. To elucidate the neural function of Caskin1 in vivo, we subjected Caskin1-KO mice to comprehensive behavioral analysis. The mutant mice exhibited differences in gait, enhanced nociception, and anxiety-like behavior relative to their wild-type littermates. In addition, the knockouts exhibited strong freezing responses, with or without a cue tone, in contextual and cued-fear conditioning tests as well as low memory retention in the Barnes Maze test. Taken together, these results suggest that Caskin1 contributes to a wide spectrum of behavioral phenotypes, including gait, nociception, memory, and stress response, in broad regions of the central nervous system.
Collapse
Affiliation(s)
- Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010 Japan
| | - Keizo Takao
- Section of Behavior Patterns, National Institute of Physiological Sciences NINS, Okazaki, Aichi 444-8585 Japan
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194 Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
- Department of Neurology, University of California, San Francisco, 94158 USA
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-8638 Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, National Institute of Physiological Sciences NINS, Okazaki, Aichi 444-8585 Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010 Japan
| |
Collapse
|
8
|
Zhou JJ, Li DP, Chen SR, Luo Y, Pan HL. The α2δ-1-NMDA receptor coupling is essential for corticostriatal long-term potentiation and is involved in learning and memory. J Biol Chem 2018; 293:19354-19364. [PMID: 30355732 DOI: 10.1074/jbc.ra118.003977] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/18/2018] [Indexed: 11/06/2022] Open
Abstract
The striatum receives extensive cortical input and plays a prominent role in motor learning and habit formation. Glutamate N-methyl-d-aspartate (NMDA) receptor (NMDAR)-mediated long-term potentiation (LTP) is a major synaptic plasticity involved in learning and memory. However, the molecular mechanism underlying NMDAR plasticity in corticostriatal LTP is unclear. Here, we show that theta-burst stimulation (TBS) consistently induced corticostriatal LTP and increased the coincident presynaptic and postsynaptic NMDAR activity of medium spiny neurons. We also found that α2δ-1 (previously known as a subunit of voltage-gated calcium channels; encoded by the Cacna2d1 gene) physically interacted with NMDARs in the striatum of mice and humans, indicating that this cross-talk is conserved across species. Strikingly, inhibiting α2δ-1 trafficking with gabapentin or disrupting the α2δ-1-NMDAR interaction with an α2δ-1 C terminus-interfering peptide abolished TBS-induced LTP. In Cacna2d1-knockout mice, TBS failed to induce corticostriatal LTP and the associated increases in presynaptic and postsynaptic NMDAR activities. Moreover, systemic gabapentin treatment, microinjection of α2δ-1 C terminus-interfering peptide into the dorsomedial striatum, or Cacna2d1 ablation impaired the alternation T-maze task and rotarod performance in mice. Our findings indicate that the interaction between α2δ-1 and NMDARs is of high physiological relevance and that a TBS-induced switch from α2δ-1-free to α2δ-1-bound NMDARs is critically involved in corticostriatal LTP and LTP-associated learning and memory. Gabapentinoids at high doses may adversely affect cognitive function by targeting α2δ-1-NMDAR complexes.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| | - De-Pei Li
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Shao-Rui Chen
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Yi Luo
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and.,the Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Hui-Lin Pan
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| |
Collapse
|
9
|
Ito A, Fukaya M, Saegusa S, Kobayashi E, Sugawara T, Hara Y, Yamauchi J, Okamoto H, Sakagami H. Pallidin is a novel interacting protein for cytohesin-2 and regulates the early endosomal pathway and dendritic formation in neurons. J Neurochem 2018; 147:153-177. [PMID: 30151872 DOI: 10.1111/jnc.14579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/25/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Cytohesin-2 is a member of the guanine nucleotide exchange factors for ADP ribosylation factor 1 (Arf1) and Arf6, which are small GTPases that regulate membrane traffic and actin dynamics. In this study, we first demonstrated that cytohesin-2 localized to the plasma membrane and vesicles in various subcellular compartment in hippocampal neurons by immunoelectron microscopy. Next, to understand the molecular network of cytohesin-2 in neurons, we conducted yeast two-hybrid screening of brain cDNA libraries using cytohesin-2 as bait and isolated pallidin, a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1) involved in endosomal trafficking. Pallidin interacted specifically with cytohesin-2 among cytohesin family members. Glutathione S-transferase pull-down and immunoprecipitation assays further confirmed the formation of a protein complex between cytohesin-2 and pallidin. Immunofluorescence demonstrated that cytohesin-2 and pallidin partially colocalized in various subsets of endosomes immunopositive for EEA1, syntaxin 12, and LAMP2 in hippocampal neurons. Knockdown of pallidin or cytohesin-2 reduced cytoplasmic EEA1-positive early endosomes. Furthermore, knockdown of pallidin increased the total dendritic length of cultured hippocampal neurons, which was rescued by co-expression of wild-type pallidin but not a mutant lacking the ability to interact with cytohesin-2. In contrast, knockdown of cytohesin-2 had the opposite effect on total dendritic length. The present results suggested that the interaction between pallidin and cytohesin-2 may participate in various neuronal functions such as endosomal trafficking and dendritic formation in hippocampal neurons. Cover Image for this issue: doi: 10.1111/jnc.14197.
Collapse
Affiliation(s)
- Akiko Ito
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shintaro Saegusa
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Emi Kobayashi
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
10
|
Andoh C, Nishitani N, Hashimoto E, Nagai Y, Takao K, Miyakawa T, Nakagawa T, Mori Y, Nagayasu K, Shirakawa H, Kaneko S. TRPM2 confers susceptibility to social stress but is essential for behavioral flexibility. Brain Res 2018; 1704:68-77. [PMID: 30273551 DOI: 10.1016/j.brainres.2018.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable, nonselective cation channel and a member of the TRP channel superfamily that acts as a sensor of intracellular redox states. TRPM2 is widely distributed in many tissues and highly expressed in the brain, but the physiological roles of TRPM2 in the central nervous system remain unclear. In this study, TRPM2-deficient mice were examined in a series of behavioral tests. TRPM2-deficient mice did not significantly differ from wild-type littermates in muscle strength, light/dark transition test, rotarod, elevated plus maze, social interaction, prepulse inhibition, Y-maze, forced swim test, cued and contextual fear conditioning, and tail suspension test. In the Barnes circular maze, TRPM2-deficient mice learned the fixed escape box position at similar extent to wild-type littermates, suggesting normal reference memory. However, performance of the first reversal trial and probe test were significantly impaired in TRPM2-deficient mice. In the T-maze delayed alternation task, TRPM2 deficiency significantly reduced choice accuracy. These results indicate that TRPM2-deficient mice shows behavioral inflexibility. Meanwhile, social avoidance induced by repeated social defeat stress was significantly attenuated in TRPM2-deficient mice, suggesting that TRPM2 deficiency confers stress resiliency. Our findings indicate that TRPM2 plays an essential role in maintaining behavioral flexibility but it increases susceptibility to stress.
Collapse
Affiliation(s)
- Chihiro Andoh
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Naoya Nishitani
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Emina Hashimoto
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuma Nagai
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Keizo Takao
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan; Life Science Research Center, University of Toyama, Toyama, Japan
| | - Tsuyoshi Miyakawa
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan; Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Nikiforuk A. Assessment of cognitive functions in animal models of schizophrenia. Pharmacol Rep 2018; 70:639-649. [DOI: 10.1016/j.pharep.2018.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022]
|
12
|
Palumbo ML, Di Rosso ME, Simon EH, Gonzalez Murano MR, Genaro AM. Altered interferon-γ expression in lymphocytes as a potential peripheral marker of chronic stress-induced cognitive deficit. Cytokine 2018; 107:26-34. [DOI: 10.1016/j.cyto.2017.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 01/08/2023]
|
13
|
Okuda K, Takao K, Watanabe A, Miyakawa T, Mizuguchi M, Tanaka T. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory. PLoS One 2018; 13:e0196587. [PMID: 29702698 PMCID: PMC5922552 DOI: 10.1371/journal.pone.0196587] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be paid to the specific mechanisms of these deficits in the CDKL5 deficiency disorder.
Collapse
Affiliation(s)
- Kosuke Okuda
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Aya Watanabe
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
14
|
Chang EH, Fernando K, Yeung LWE, Barbari K, Chandon TSS, Malhotra AK. Single point mutation on the gene encoding dysbindin results in recognition deficits. GENES BRAIN AND BEHAVIOR 2018; 17:e12449. [PMID: 29227583 DOI: 10.1111/gbb.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/14/2017] [Accepted: 12/07/2017] [Indexed: 11/30/2022]
Abstract
The dystrobrevin-binding protein 1 (DTNBP1) gene is a candidate risk factor for schizophrenia and has been associated with cognitive ability in both patient populations and healthy controls. DTNBP1 encodes dysbindin protein, which is localized to synaptic sites and is reduced in the prefrontal cortex and hippocampus of patients with schizophrenia, indicating a potential role in schizophrenia etiology. Most studies of dysbindin function have focused on the sandy (sdy) mice that lack dysbindin protein and have a wide range of abnormalities. In this study, we examined dysbindin salt and pepper (spp) mice that possess a single point mutation on the Dtnbp1 gene predicted to reduce, but not eliminate, dysbindin expression. By western blot analysis, we found that spp homozygous (spp -/-) mutants had reduced dysbindin and synaptosomal-associated protein 25 (SNAP-25) in the prefrontal cortex, but unaltered levels in hippocampus. Behaviorally, spp mutants performed comparably to controls on a wide range of tasks assessing locomotion, anxiety, spatial recognition and working memory. However, spp -/- mice had selective deficits in tasks measuring novel object recognition and social novelty recognition. Our results indicate that reduced dysbindin and SNAP-25 protein in the prefrontal cortex of spp -/- is associated with selective impairments in recognition processing. These spp mice may prove useful as a novel mouse model to study cognitive deficits linked to dysbindin alterations. Our findings also suggest that aspects of recognition memory may be specifically influenced by DTNBP1 single nucleotide polymorphisms or risk haplotypes in humans and this connection should be further investigated.
Collapse
Affiliation(s)
- E H Chang
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York.,Department of Psychiatry, Hofstra Northwell School of Medicine, Hofstra University, Hempstead, New York.,Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hofstra University, Hempstead, New York
| | - K Fernando
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
| | - L W E Yeung
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
| | - K Barbari
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
| | - T-S S Chandon
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
| | - A K Malhotra
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York.,Department of Psychiatry, Hofstra Northwell School of Medicine, Hofstra University, Hempstead, New York.,Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hofstra University, Hempstead, New York
| |
Collapse
|
15
|
Dysbindin-1 Involvement in the Etiology of Schizophrenia. Int J Mol Sci 2017; 18:ijms18102044. [PMID: 28937620 PMCID: PMC5666726 DOI: 10.3390/ijms18102044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a major psychiatric disorder that afflicts about 1% of the world’s population, falling into the top 10 medical disorders causing disability. Existing therapeutic strategies have had limited success on cognitive impairment and long-term disability and are burdened by side effects. Although new antipsychotic medications have been launched in the past decades, there has been a general lack of significant innovation. This lack of significant progress in the pharmacotherapy of schizophrenia is a reflection of the complexity and heterogeneity of the disease. To date, many susceptibility genes have been identified to be associated with schizophrenia. DTNBP1 gene, which encodes dysbindin-1, has been linked to schizophrenia in multiple populations. Studies on genetic variations show that DTNBP1 modulate prefrontal brain functions and psychiatric phenotypes. Dysbindin-1 is enriched in the dorsolateral prefrontal cortex and hippocampus, while postmortem brain studies of individuals with schizophrenia show decreased levels of dysbindin-1 mRNA and protein in these brain regions. These studies proposed a strong connection between dysbindin-1 function and the pathogenesis of disease. Dysbindin-1 protein was localized at both pre- and post-synaptic sites, where it regulates neurotransmitter release and receptors signaling. Moreover, dysbindin-1 has also been found to be involved in neuronal development. Reduced expression levels of dysbindin-1 mRNA and protein appear to be common in dysfunctional brain areas of schizophrenic patients. The present review addresses our current knowledge of dysbindin-1 with emphasis on its potential role in the schizophrenia pathology. We propose that dysbindin-1 and its signaling pathways may constitute potential therapeutic targets in the therapy of schizophrenia.
Collapse
|
16
|
O'Tuathaigh CMP, Moran PM, Zhen XC, Waddington JL. Translating advances in the molecular basis of schizophrenia into novel cognitive treatment strategies. Br J Pharmacol 2017; 174:3173-3190. [PMID: 28667666 DOI: 10.1111/bph.13938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023] Open
Abstract
The presence and severity of cognitive symptoms, including working memory, executive dysfunction and attentional impairment, contributes materially to functional impairment in schizophrenia. Cognitive symptoms have proved to be resistant to both first- and second-generation antipsychotic drugs. Efforts to develop a consensus set of cognitive domains that are both disrupted in schizophrenia and are amenable to cross-species validation (e.g. the National Institute of Mental Health Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia and Research Domain Criteria initiatives) are an important step towards standardization of outcome measures that can be used in preclinical testing of new drugs. While causative genetic mutations have not been identified, new technologies have identified novel genes as well as hitherto candidate genes previously implicated in the pathophysiology of schizophrenia and/or mechanisms of antipsychotic efficacy. This review comprises a selective summary of these developments, particularly phenotypic data arising from preclinical genetic models for cognitive dysfunction in schizophrenia, with the aim of indicating potential new directions for pro-cognitive therapeutics. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- School of Medicine, University College Cork, Brookfield Health Sciences Complex, Cork, Ireland
| | - Paula M Moran
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Xuechu C Zhen
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - John L Waddington
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
17
|
Suzuki Y, Imayoshi I. Network analysis of exploratory behaviors of mice in a spatial learning and memory task. PLoS One 2017; 12:e0180789. [PMID: 28700627 PMCID: PMC5507260 DOI: 10.1371/journal.pone.0180789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 06/21/2017] [Indexed: 11/19/2022] Open
Abstract
The Barnes maze is one of the main behavioral tasks used to study spatial learning and memory. The Barnes maze is a task conducted on "dry land" in which animals try to escape from a brightly lit exposed circular open arena to a small dark escape box located under one of several holes at the periphery of the arena. In comparison with another classical spatial learning and memory task, the Morris water maze, the negative reinforcements that motivate animals in the Barnes maze are less severe and less stressful. Furthermore, the Barnes maze is more compatible with recently developed cutting-edge techniques in neural circuit research, such as the miniature brain endoscope or optogenetics. For this study, we developed a lift-type task start system and equipped the Barnes maze with it. The subject mouse is raised up by the lift and released into the maze automatically so that it can start navigating the maze smoothly from exactly the same start position across repeated trials. We believe that a Barnes maze test with a lift-type task start system may be useful for behavioral experiments when combined with head-mounted or wire-connected devices for online imaging and intervention in neural circuits. Furthermore, we introduced a network analysis method for the analysis of the Barnes maze data. Each animal's exploratory behavior in the maze was visualized as a network of nodes and their links, and spatial learning in the maze is described by systematic changes in network structures of search behavior. Network analysis was capable of visualizing and quantitatively analyzing subtle but significant differences in an animal's exploratory behavior in the maze.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Medical Innovation Center/SK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Imayoshi
- Medical Innovation Center/SK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- The Hakubi Center, Kyoto University, Kyoto, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- World Premier International Research Initiative–Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Saitama, Japan
| |
Collapse
|
18
|
Petit EI, Michalak Z, Cox R, O'Tuathaigh CMP, Clarke N, Tighe O, Talbot K, Blake D, Joel J, Shaw A, Sheardown SA, Morrison AD, Wilson S, Shapland EM, Henshall DC, Kew JN, Kirby BP, Waddington JL. Dysregulation of Specialized Delay/Interference-Dependent Working Memory Following Loss of Dysbindin-1A in Schizophrenia-Related Phenotypes. Neuropsychopharmacology 2017; 42:1349-1360. [PMID: 27986973 PMCID: PMC5437891 DOI: 10.1038/npp.2016.282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/28/2016] [Accepted: 12/11/2016] [Indexed: 01/12/2023]
Abstract
Dysbindin-1, a protein that regulates aspects of early and late brain development, has been implicated in the pathobiology of schizophrenia. As the functional roles of the three major isoforms of dysbindin-1, (A, B, and C) remain unknown, we generated a novel mutant mouse, dys-1A-/-, with selective loss of dysbindin-1A and investigated schizophrenia-related phenotypes in both males and females. Loss of dysbindin-1A resulted in heightened initial exploration and disruption in subsequent habituation to a novel environment, together with heightened anxiety-related behavior in a stressful environment. Loss of dysbindin-1A was not associated with disruption of either long-term (olfactory) memory or spontaneous alternation behavior. However, dys-1A-/- showed enhancement in delay-dependent working memory under high levels of interference relative to controls, ie, impairment in sensitivity to the disruptive effect of such interference. These findings in dys-1A-/- provide the first evidence for differential functional roles for dysbindin-1A vs dysbindin-1C isoforms among phenotypes relevant to the pathobiology of schizophrenia. Future studies should investigate putative sex differences in these phenotypic effects.
Collapse
Affiliation(s)
- Emilie I Petit
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zuzanna Michalak
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Rachel Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Niamh Clarke
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Office of Research and Innovation, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Orna Tighe
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Konrad Talbot
- Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Derek Blake
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Josephine Joel
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Horizon Discovery, Cambridge, UK
| | - Alexander Shaw
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Steven A Sheardown
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Takeda Cambridge, Cambridge, UK
| | - Alastair D Morrison
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Worldwide Business Development, GlaxoSmithKline, Stevenage, UK
| | - Stephen Wilson
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, UK
| | - Ellen M Shapland
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James N Kew
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Brian P Kirby
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Fujita Y, Masuda K, Bando M, Nakato R, Katou Y, Tanaka T, Nakayama M, Takao K, Miyakawa T, Tanaka T, Ago Y, Hashimoto H, Shirahige K, Yamashita T. Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior. J Exp Med 2017; 214:1431-1452. [PMID: 28408410 PMCID: PMC5413336 DOI: 10.1084/jem.20161517] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/14/2017] [Accepted: 03/03/2017] [Indexed: 11/21/2022] Open
Abstract
Abnormal epigenetic regulation can cause the nervous system to develop abnormally. Here, we sought to understand the mechanism by which this occurs by investigating the protein complex cohesin, which is considered to regulate gene expression and, when defective, is associated with higher-level brain dysfunction and the developmental disorder Cornelia de Lange syndrome (CdLS). We generated conditional Smc3-knockout mice and observed greater dendritic complexity and larger numbers of immature synapses in the cerebral cortex of Smc3+/- mice. Smc3+/- mice also exhibited more anxiety-related behavior, which is a symptom of CdLS. Further, a gene ontology analysis after RNA-sequencing suggested the enrichment of immune processes, particularly the response to interferons, in the Smc3+/- mice. Indeed, fewer synapses formed in their cortical neurons, and this phenotype was rescued by STAT1 knockdown. Thus, low levels of cohesin expression in the developing brain lead to changes in gene expression that in turn lead to a specific and abnormal neuronal and behavioral phenotype.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Koji Masuda
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Masashige Bando
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ryuichiro Nakato
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuki Katou
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takashi Tanaka
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masahiro Nakayama
- Department of Pathology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka 594-1101, Japan
| | - Keizo Takao
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Tsuyoshi Miyakawa
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Aichi 470-1192, Japan
| | - Tatsunori Tanaka
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, Osaka 565-0871, Japan
- iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Ishimoto T, Ninomiya K, Inoue R, Koike M, Uchiyama Y, Mori H. Mice lacking BCAS1, a novel myelin-associated protein, display hypomyelination, schizophrenia-like abnormal behaviors, and upregulation of inflammatory genes in the brain. Glia 2017; 65:727-739. [PMID: 28230289 DOI: 10.1002/glia.23129] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/22/2022]
Abstract
The abnormal expression and function of myelin-related proteins contribute to nervous system dysfunction associated with neuropsychiatric disorders; however, the underlying mechanism of this remains unclear. We found here that breast carcinoma amplified sequence 1 (BCAS1), a basic protein abundant in the brain, was expressed specifically in oligodendrocytes and Schwann cells, and that its expression level was decreased by demyelination. This suggests that BCAS1 is a novel myelin-associated protein. BCAS1 knockout mice displayed schizophrenia-like behavioral abnormalities and a tendency toward reduced anxiety-like behaviors. Moreover, we found that the loss of BCAS1 specifically induced hypomyelination and the expression of inflammation-related genes in the brain. These observations provide a novel insight into the functional link between oligodendrocytes and inflammation and/or abnormal behaviors.
Collapse
Affiliation(s)
- Tetsuya Ishimoto
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kensuke Ninomiya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ran Inoue
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasuo Uchiyama
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
21
|
Bakanidze G, Brandl EJ, Hutzler C, Aurass F, Onken S, Rapp MA, Puls I. Association of Dystrobrevin-Binding Protein 1 Polymorphisms with Sustained Attention and Set-Shifting in Schizophrenia Patients. Neuropsychobiology 2017; 74:41-47. [PMID: 27798936 DOI: 10.1159/000450550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Despite extensive research in the past decades, the influence of genetics on cognitive functions in schizophrenia remains unclear. Dystrobrevin-binding protein 1 (DTNBP1) is one of the most promising candidate genes in schizophrenia. An association of DTNBP1 with cognitive dysfunction, particularly memory impairment, has been reported in a number of studies. However, the results remain inconsistent. The aim of this study was to measure the association between DTNBP1 polymorphisms and cognitive domains in a well-characterized sample. METHODS Ninety-one clinically stable schizophrenia outpatients underwent a battery of cognitive tests. Six single nucleotide polymorphisms (SNPs) of DTNBP1 were genotyped in all participants. Statistical and multivariate analyses were performed. RESULTS Factor analysis revealed 4 factors corresponding to distinct cognitive domains, namely sustained attention, set-shifting, executive functioning, and memory. We found a significant association of the rs909706 polymorphism with attention (p = 0.030) and a nonsignificant trend for set-shifting (p = 0.060). The other SNPs and haplotypes were not associated with cognitive function. DISCUSSION Replication of this finding in a larger sample is needed in order to confirm the importance of this particular polymorphism in the genetics of schizophrenia, particularly the distinct cognitive domains. In conclusion, the present study supports the involvement of DTNBP1 in the regulation of cognitive processes and demonstrates association in particular with sustained attention and set-shifting in schizophrenia patients.
Collapse
Affiliation(s)
- George Bakanidze
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models. Neural Plast 2016; 2016:2173748. [PMID: 27725886 PMCID: PMC5048038 DOI: 10.1155/2016/2173748] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/20/2016] [Accepted: 08/21/2016] [Indexed: 02/06/2023] Open
Abstract
The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.
Collapse
|
23
|
O'Tuathaigh CMP, Desbonnet L, Moran PM, Kirby BP, Waddington JL. Molecular genetic models related to schizophrenia and psychotic illness: heuristics and challenges. Curr Top Behav Neurosci 2016; 7:87-119. [PMID: 21298380 DOI: 10.1007/7854_2010_111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a heritable disorder that may involve several common genes of small effect and/or rare copy number variation, with phenotypic heterogeneity across patients. Furthermore, any boundaries vis-à-vis other psychotic disorders are far from clear. Consequently, identification of informative animal models for this disorder, which typically relate to pharmacological and putative pathophysiological processes of uncertain validity, faces considerable challenges. In juxtaposition, the majority of mutant models for schizophrenia relate to the functional roles of a diverse set of genes associated with risk for the disorder or with such putative pathophysiological processes. This chapter seeks to outline the evidence from phenotypic studies in mutant models related to schizophrenia. These have commonly assessed the degree to which mutation of a schizophrenia-related gene is associated with the expression of several aspects of the schizophrenia phenotype or more circumscribed, schizophrenia-related endophenotypes; typically, they place specific emphasis on positive and negative symptoms and cognitive deficits, and extend to structural and other pathological features. We first consider the primary technological approaches to the generation of such mutants, to include their relative merits and demerits, and then highlight the diverse phenotypic approaches that have been developed for their assessment. The chapter then considers the application of mutant phenotypes to study pathobiological and pharmacological mechanisms thought to be relevant for schizophrenia, particularly in terms of dopaminergic and glutamatergic dysfunction, and to an increasing range of candidate susceptibility genes and copy number variants. Finally, we discuss several pertinent issues and challenges within the field which relate to both phenotypic evaluation and a growing appreciation of the functional genomics of schizophrenia and the involvement of gene × environment interactions.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland,
| | | | | | | | | |
Collapse
|
24
|
Ageta-Ishihara N, Yamazaki M, Konno K, Nakayama H, Abe M, Hashimoto K, Nishioka T, Kaibuchi K, Hattori S, Miyakawa T, Tanaka K, Huda F, Hirai H, Hashimoto K, Watanabe M, Sakimura K, Kinoshita M. A CDC42EP4/septin-based perisynaptic glial scaffold facilitates glutamate clearance. Nat Commun 2015; 6:10090. [PMID: 26657011 PMCID: PMC4682051 DOI: 10.1038/ncomms10090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/30/2015] [Indexed: 12/31/2022] Open
Abstract
The small GTPase-effector proteins CDC42EP1-5/BORG1–5 interact reciprocally with CDC42 or the septin cytoskeleton. Here we show that, in the cerebellum, CDC42EP4 is exclusively expressed in Bergmann glia and localizes beneath specific membrane domains enwrapping dendritic spines of Purkinje cells. CDC42EP4 forms complexes with septin hetero-oligomers, which interact with a subset of glutamate transporter GLAST/EAAT1. In Cdc42ep4−/− mice, GLAST is dissociated from septins and is delocalized away from the parallel fibre-Purkinje cell synapses. The excitatory postsynaptic current exhibits a protracted decay time constant, reduced sensitivity to a competitive inhibitor of the AMPA-type glutamate receptors (γDGG) and excessive baseline inward current in response to a subthreshold dose of a nonselective inhibitor of the glutamate transporters/EAAT1–5 (DL-TBOA). Insufficient glutamate-buffering/clearance capacity in these mice manifests as motor coordination/learning defects, which are aggravated with subthreshold DL-TBOA. We propose that the CDC42EP4/septin-based glial scaffold facilitates perisynaptic localization of GLAST and optimizes the efficiency of glutamate-buffering and clearance. Glutamate transporters mediate neurotransmitter reuptake at glutamatergic synapses. Here the authors show that CDC42 effector protein CDC42EP4 supports efficient glutamate clearance by promoting the tethering of a glutamate transporter GLAST to perisynaptic clusters of septins in Bergmann glia.
Collapse
Affiliation(s)
- Natsumi Ageta-Ishihara
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya 464-8602, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hisako Nakayama
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya 466-8560, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya 466-8560, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan.,Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Fathul Huda
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Makoto Kinoshita
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya 464-8602, Japan
| |
Collapse
|
25
|
Abbas MG, Shoji H, Soya S, Hondo M, Miyakawa T, Sakurai T. Comprehensive Behavioral Analysis of Male Ox1r (-/-) Mice Showed Implication of Orexin Receptor-1 in Mood, Anxiety, and Social Behavior. Front Behav Neurosci 2015; 9:324. [PMID: 26696848 PMCID: PMC4674555 DOI: 10.3389/fnbeh.2015.00324] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/12/2015] [Indexed: 11/13/2022] Open
Abstract
Neuropeptides orexin A and orexin B, which are exclusively produced by neurons in the lateral hypothalamic area, play an important role in the regulation of a wide range of behaviors and homeostatic processes, including regulation of sleep/wakefulness states and energy homeostasis. The orexin system has close anatomical and functional relationships with systems that regulate the autonomic nervous system, emotion, mood, the reward system, and sleep/wakefulness states. Recent pharmacological studies using selective antagonists have suggested that orexin receptor-1 (OX1R) is involved in physiological processes that regulate emotion, the reward system, and autonomic nervous system. Here, we examined Ox1r (-/-) mice with a comprehensive behavioral test battery to screen additional OX1R functions. Ox1r (-/-) mice showed increased anxiety-like behavior, altered depression-like behavior, slightly decreased spontaneous locomotor activity, reduced social interaction, increased startle response, and decreased prepulse inhibition. These results suggest that OX1R plays roles in social behavior and sensory motor gating in addition to roles in mood and anxiety.
Collapse
Affiliation(s)
- Md G Abbas
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University Kanazawa, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan
| | - Shingo Soya
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University Kanazawa, Japan
| | - Mari Hondo
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University Kanazawa, Japan ; International Institute for Integrative Sleep Medicine, University of Tsukuba Tsukuba, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan ; Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences Okazaki, Japan
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University Kanazawa, Japan ; International Institute for Integrative Sleep Medicine, University of Tsukuba Tsukuba, Japan
| |
Collapse
|
26
|
White RS, Siegel SJ. Cellular and circuit models of increased resting-state network gamma activity in schizophrenia. Neuroscience 2015; 321:66-76. [PMID: 26577758 DOI: 10.1016/j.neuroscience.2015.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/27/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023]
Abstract
Schizophrenia (SCZ) is a disorder characterized by positive symptoms (hallucinations, delusions), negative symptoms (blunted affect, alogia, reduced sociability, and anhedonia), as well as persistent cognitive deficits (memory, concentration, and learning). While the biology underlying subjective experiences is difficult to study, abnormalities in electroencephalographic (EEG) measures offer a means to dissect potential circuit and cellular changes in brain function. EEG is indispensable for studying cerebral information processing due to the introduction of techniques for the decomposition of event-related activity into its frequency components. Specifically, brain activity in the gamma frequency range (30-80Hz) is thought to underlie cognitive function and may be used as an endophenotype to aid in diagnosis and treatment of SCZ. In this review we address evidence indicating that there is increased resting-state gamma power in SCZ. We address how modeling this aspect of the illness in animals may help treatment development as well as providing insights into the etiology of SCZ.
Collapse
Affiliation(s)
- R S White
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - S J Siegel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
27
|
Spiegel S, Chiu A, James AS, Jentsch JD, Karlsgodt KH. Recognition deficits in mice carrying mutations of genes encoding BLOC-1 subunits pallidin or dysbindin. GENES BRAIN AND BEHAVIOR 2015; 14:618-24. [PMID: 26294018 DOI: 10.1111/gbb.12240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 08/04/2015] [Accepted: 08/14/2015] [Indexed: 01/31/2023]
Abstract
Numerous studies have implicated DTNBP1, the gene encoding dystrobrevin-binding protein or dysbindin, as a candidate risk gene for schizophrenia, though this relationship remains somewhat controversial. Variation in dysbindin, and its location on chromosome 6p, has been associated with cognitive processes, including those relying on a complex system of glutamatergic and dopaminergic interactions. Dysbindin is one of the seven protein subunits that comprise the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Dysbindin protein levels are lower in mice with null mutations in pallidin, another gene in the BLOC-1, and pallidin levels are lower in mice with null mutations in the dysbindin gene, suggesting that multiple subunit proteins must be present to form a functional oligomeric complex. Furthermore, pallidin and dysbindin have similar distribution patterns in a mouse and human brain. Here, we investigated whether the apparent correspondence of pallid and dysbindin at the level of gene expression is also found at the level of behavior. Hypothesizing a mutation leading to underexpression of either of these proteins should show similar phenotypic effects, we studied recognition memory in both strains using the novel object recognition task (NORT) and social novelty recognition task (SNRT). We found that mice with a null mutation in either gene are impaired on SNRT and NORT when compared with wild-type controls. These results support the conclusion that deficits consistent with recognition memory impairment, a cognitive function that is impaired in schizophrenia, result from either pallidin or dysbindin mutations, possibly through degradation of BLOC-1 expression and/or function.
Collapse
Affiliation(s)
- S Spiegel
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - A Chiu
- Department of Pharmacology, University of California Irvine, Irvine
| | - A S James
- Department of Psychology, UCLA, Los Angeles, CA
| | - J D Jentsch
- Department of Psychology, UCLA, Los Angeles, CA.,Department of Psychiatry, UCLA, Los Angeles, CA
| | - K H Karlsgodt
- Psychiatry Research Division, Zucker Hillside Hospital, Glen Oaks.,Psychiatry Research Division, Feinstein Institute for Medical Research, Manhasset.,Department of Psychiatry, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| |
Collapse
|
28
|
Fu C, Chen D, Chen R, Hu Q, Wang G. The Schizophrenia-Related Protein Dysbindin-1A Is Degraded and Facilitates NF-Kappa B Activity in the Nucleus. PLoS One 2015; 10:e0132639. [PMID: 26171858 PMCID: PMC4501731 DOI: 10.1371/journal.pone.0132639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/16/2015] [Indexed: 12/12/2022] Open
Abstract
Dystrobrevin-binding protein 1 (DTNBP1), a gene encoding dysbindin-1, has been identified as a susceptibility gene for schizophrenia. Functioning with partners in synapses or the cytoplasm, this gene regulates neurite outgrowth and neurotransmitter release. Loss of dysbindin-1 affects schizophrenia pathology. Dysbindin-1 is also found in the nucleus, however, the characteristics of dysbindin in the nucleus are not fully understood. Here, we found that dysbindin-1A is degraded in the nucleus via the ubiquitin-proteasome system and that amino acids 2-41 at the N-terminus are required for this process. By interacting with p65, dysbindin-1A promotes the transcriptional activity of NF-kappa B in the nucleus and positively regulates MMP-9 expression. Taken together, the data obtained in this study demonstrate that dysbindin-1A protein levels are highly regulated in the nucleus and that dysbindin-1A regulates transcription factor NF-kappa B activity to promote the expression of MMP-9 and TNF-α.
Collapse
Affiliation(s)
- Cheng Fu
- Laboratory of Molecular Neuropathology, Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences. Hefei, Anhui, China
| | - Dong Chen
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ruijie Chen
- Department of Clinical Pharmacy and Pharmacology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingsong Hu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences. Hefei, Anhui, China
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- * E-mail:
| |
Collapse
|
29
|
Furuta M, Ninomiya-Baba M, Chiba S, Funabashi T, Akema T, Kunugi H. Exposure to social defeat stress in adolescence improves the working memory and anxiety-like behavior of adult female rats with intrauterine growth restriction, independently of hippocampal neurogenesis. Horm Behav 2015; 70:30-7. [PMID: 25725425 DOI: 10.1016/j.yhbeh.2015.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 11/26/2022]
Abstract
Intrauterine growth restriction (IUGR) is a risk factor for memory impairment and emotional disturbance during growth and adulthood. However, this risk might be modulated by environmental factors during development. Here we examined whether exposing adolescent male and female rats with thromboxane A2-induced IUGR to social defeat stress (SDS) affected their working memory and anxiety-like behavior in adulthood. We also used BrdU staining to investigate hippocampal cellular proliferation and BrdU and NeuN double staining to investigate neural differentiation in female IUGR rats. In the absence of adolescent stress, IUGR female rats, but not male rats, scored significantly lower in the T-maze test of working memory and exhibited higher anxiety-like behavior in the elevated-plus maze test compared with controls. Adolescent exposure to SDS abolished these behavioral impairments in IUGR females. In the absence of adolescent stress, hippocampal cellular proliferation was significantly higher in IUGR females than in non-IUGR female controls and was not influenced by adolescent exposure to SDS. Hippocampal neural differentiation was equivalent in non-stressed control and IUGR females. Neural differentiation was significantly increased by adolescent exposure to SDS in controls but not in IUGR females. There was no significant difference in the serum corticosterone concentrations between non-stressed control and IUGR females; however, adolescent exposure to SDS significantly increased serum corticosterone concentration in control females but not in IUGR females. These results demonstrate that adolescent exposure to SDS improves behavioral impairment independent of hippocampal neurogenesis in adult rats with IUGR.
Collapse
Affiliation(s)
- Miyako Furuta
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Japan; Department of Mental Disorder, National Center of Psychiatry and Neuroscience, Tokyo, Japan.
| | - Midori Ninomiya-Baba
- Department of Mental Disorder, National Center of Psychiatry and Neuroscience, Tokyo, Japan
| | - Shuichi Chiba
- Department of Mental Disorder, National Center of Psychiatry and Neuroscience, Tokyo, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder, National Center of Psychiatry and Neuroscience, Tokyo, Japan
| |
Collapse
|
30
|
Yonezaki K, Uchimoto K, Miyazaki T, Asakura A, Kobayashi A, Takase K, Goto T. Postanesthetic effects of isoflurane on behavioral phenotypes of adult male C57BL/6J mice. PLoS One 2015; 10:e0122118. [PMID: 25806517 PMCID: PMC4373903 DOI: 10.1371/journal.pone.0122118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/19/2015] [Indexed: 11/19/2022] Open
Abstract
Isoflurane was previously the major clinical anesthetic agent but is now mainly used for veterinary anesthesia. Studies have reported widespread sites of action of isoflurane, suggesting a wide array of side effects besides sedation. In the present study, we phenotyped isoflurane-treated mice to investigate the postanesthetic behavioral effects of isoflurane. We applied comprehensive behavioral test batteries comprising sensory test battery, motor test battery, anxiety test battery, depression test battery, sociability test battery, attention test battery, and learning test battery, which were started 7 days after anesthesia with 1.8% isoflurane. In addition to the control group, we included a yoked control group that was exposed to the same stress of handling as the isoflurane-treated animals before being anesthetized. Our comprehensive behavioral test batteries revealed impaired latent inhibition in the isoflurane-treated group, but the concentration of residual isoflurane in the brain was presumably negligible. The yoked control group and isoflurane-treated group exhibited higher anxiety in the elevated plus-maze test and impaired learning function in the cued fear conditioning test. No influences were observed in sensory functions, motor functions, antidepressant behaviors, and social behaviors. A number of papers have reported an effect of isoflurane on animal behaviors, but no systematic investigation has been performed. To the best of our knowledge, this study is the first to systematically investigate the general health, neurological reflexes, sensory functions, motor functions, and higher behavioral functions of mice exposed to isoflurane as adults. Our results suggest that the postanesthetic effect of isoflurane causes attention deficit in mice. Therefore, isoflurane must be used with great care in the clinical setting and veterinary anesthesia.
Collapse
Affiliation(s)
- Kumiko Yonezaki
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Uchimoto
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoyuki Miyazaki
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayako Asakura
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayako Kobayashi
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenkichi Takase
- Laboratory of Psychology, Jichi Medical University, Tochigi, Japan
| | - Takahisa Goto
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
31
|
Yuan Y, Wang H, Wei Z, Li W. Impaired autophagy in hilar mossy cells of the dentate gyrus and its implication in schizophrenia. J Genet Genomics 2014; 42:1-8. [PMID: 25619597 DOI: 10.1016/j.jgg.2014.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/08/2014] [Accepted: 12/12/2014] [Indexed: 01/08/2023]
Abstract
Schizophrenia (SCZ) is a complex disease that has been regarded as a neurodevelopmental, synaptic or epigenetic disorder. Here we provide evidence that neurodegeneration is implicated in SCZ. The DTNBP1 (dystrobrevin-binding protein 1) gene encodes dysbindin-1 and is a leading susceptibility gene of SCZ. We previously reported that the dysbindin-1C isoform regulates the survival of the hilar glutamatergic mossy cells in the dentate gyrus, which controls the adult hippocampal neurogenesis. However, the underlying mechanism of hilar mossy cell loss in the dysbindin-1-deficient sandy (sdy) mice (a mouse model of SCZ) is unknown. In this study, we did not observe the apoptotic signals in the hilar mossy cells of the sdy mice by using the TUNEL assay and immunostaining of cleaved caspase-3 or necdin, a dysbindin-1- and p53-interacting protein required for neuronal survival. However, we found that the steady-state level of LC3-II, a marker of autophagosomes, was decreased in the hippocampal formation in the mice lacking dysbindin-1C. Furthermore, we observed a significant reduction of the cytosolic LC3-II puncta in the mossy cells of sdy mice. In addition, overexpression of dysbindin-1C, but not 1A, in cultured cells increased LC3-II level and the LC3 puncta in the transfected cells. These results suggest that dysbindin-1C deficiency causes impaired autophagy, which is likely implicated in the pathogenesis of SCZ.
Collapse
Affiliation(s)
- Yefeng Yuan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongbo Wei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China.
| |
Collapse
|
32
|
Shintani N, Onaka Y, Hashimoto R, Takamura H, Nagata T, Umeda-Yano S, Mouri A, Mamiya T, Haba R, Matsuzaki S, Katayama T, Yamamori H, Nakazawa T, Nagayasu K, Ago Y, Yagasaki Y, Nabeshima T, Takeda M, Hashimoto H. Behavioral characterization of mice overexpressing human dysbindin-1. Mol Brain 2014; 7:74. [PMID: 25298178 PMCID: PMC4201722 DOI: 10.1186/s13041-014-0074-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/25/2014] [Indexed: 11/30/2022] Open
Abstract
Background The dysbindin-1 gene (DTNBP1: dystrobrevin binding protein 1) is a promising schizophrenia susceptibility gene, known to localize almost exclusively to neurons in the brain, and participates in the regulation of neurotransmitter release, membrane-surface receptor expression, and synaptic plasticity. Sandy mice, with spontaneous Dtnbp1 deletion, display behavioral abnormalities relevant to symptoms of schizophrenia. However, it remains unknown if dysbindin-1 gain-of-function is beneficial or detrimental. Results To answer this question and gain further insight into the pathophysiology and therapeutic potential of dysbindin-1, we developed transgenic mice expressing human DTNBP1 (Dys1A-Tg) and analyzed their behavioral phenotypes. Dys1A-Tg mice were born viable in the expected Mendelian ratios, apparently normal and fertile. Primary screening of behavior and function showed a marginal change in limb grasping in Dys1A-Tg mice. In addition, Dys1A-Tg mice exhibited increased hyperlocomotion after methamphetamine injection. Transcriptomic analysis identified several up- and down-regulated genes, including the immediate-early genes Arc and Egr2, in the prefrontal cortex of Dys1A-Tg mice. Conclusions The present findings in Dys1A-Tg mice support the role of dysbindin-1 in psychiatric disorders. The fact that either overexpression (Dys1A-Tg) or underexpression (Sandy) of dysbindin-1 leads to behavioral alterations in mice highlights the functional importance of dysbindin-1 in vivo.
Collapse
Affiliation(s)
- Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yusuke Onaka
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Psychiatry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hironori Takamura
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tsuyoshi Nagata
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Satomi Umeda-Yano
- Department of Molecular Neuropsychiatry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akihiro Mouri
- Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan.
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan.
| | - Ryota Haba
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shinsuke Matsuzaki
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Taiichi Katayama
- Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hidenaga Yamamori
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Molecular Neuropsychiatry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takanobu Nakazawa
- iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kazuki Nagayasu
- iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yuki Yagasaki
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashicho, Kodaira, Tokyo, 187-8502, Japan.
| | - Toshitaka Nabeshima
- Department of Regional Pharmaceutical Care & Sciences, Graduate School of Pharmaceutical Sciences, Meijo University, 150 Yagotoyama, Tenpaku-ku, Nagoya, 468-8503, Japan.
| | - Masatoshi Takeda
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Psychiatry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
33
|
Soma M, Wang M, Suo S, Ishiura S. Dysbindin-1, a schizophrenia-related protein, interacts with HDAC3. Neurosci Lett 2014; 582:120-4. [DOI: 10.1016/j.neulet.2014.08.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/13/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
34
|
Wang H, Yuan Y, Zhang Z, Yan H, Feng Y, Li W. Dysbindin-1C is required for the survival of hilar mossy cells and the maturation of adult newborn neurons in dentate gyrus. J Biol Chem 2014; 289:29060-72. [PMID: 25157109 DOI: 10.1074/jbc.m114.590927] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DTNBP1 (dystrobrevin-binding protein 1), which encodes dysbindin-1, is one of the leading susceptibility genes for schizophrenia. Both dysbindin-1B and -1C isoforms are decreased, but the dysbindin-1A isoform is unchanged in schizophrenic hippocampal formation, suggesting dysbindin-1 isoforms may have distinct roles in schizophrenia. We found that mouse dysbindin-1C, but not dysbindin-1A, is localized in the hilar glutamatergic mossy cells of the dentate gyrus. The maturation rate of newborn neurons in sandy (sdy) mice, in which both dysbindin-1A and -1C are deleted, is significantly delayed when compared with that in wild-type mice or with that in muted (mu) mice in which dysbindin-1A is destabilized but dysbindin-1C is unaltered. Dysbindin-1C deficiency leads to a decrease in mossy cells, which causes the delayed maturation of newborn neurons. This suggests that dysbindin-1C, rather than dysbindin-1A, regulates adult hippocampal neurogenesis in a non-cell autonomous manner.
Collapse
Affiliation(s)
- Hao Wang
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100039
| | - Yefeng Yuan
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100039
| | - Zhao Zhang
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100039
| | - Hui Yan
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the Department of Histology and Embryology, Shanxi Medical University, Taiyuan 030001, and
| | - Yaqin Feng
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the Department of Histology and Embryology, Shanxi Medical University, Taiyuan 030001, and
| | - Wei Li
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China
| |
Collapse
|
35
|
Lipina TV, Roder JC. Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehav Rev 2014; 45:271-94. [PMID: 25016072 DOI: 10.1016/j.neubiorev.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Disrupted-In-Schizophrenia-1 (DISC1) has captured much attention because it predisposes individuals to a wide range of mental illnesses. Notably, a number of genes encoding proteins interacting with DISC1 are also considered to be relevant risk factors of mental disorders. We reasoned that the understanding of DISC1-associated mental disorders in the context of network principles will help to address fundamental properties of DISC1 as a disease gene. Systematic integration of behavioural phenotypes of genetic mouse lines carrying perturbation in DISC1 interacting proteins would contribute to a better resolution of neurobiological mechanisms of mental disorders associated with the impaired DISC1 interactome and lead to a development of network medicine. This review also makes specific recommendations of how to assess DISC1 associated mental disorders in mouse models and discuss future directions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Departments of Medical Biophysics and Molecular & Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Moran PM, O'Tuathaigh CM, Papaleo F, Waddington JL. Dopaminergic function in relation to genes associated with risk for schizophrenia. PROGRESS IN BRAIN RESEARCH 2014; 211:79-112. [DOI: 10.1016/b978-0-444-63425-2.00004-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Orozco IJ, Koppensteiner P, Ninan I, Arancio O. The schizophrenia susceptibility gene DTNBP1 modulates AMPAR synaptic transmission and plasticity in the hippocampus of juvenile DBA/2J mice. Mol Cell Neurosci 2013; 58:76-84. [PMID: 24321452 DOI: 10.1016/j.mcn.2013.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/31/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022] Open
Abstract
The dystrobrevin binding protein (DTNBP) 1 gene has emerged over the last decade as a potential susceptibility locus for schizophrenia. While no causative mutations have been found, reduced expression of the encoded protein, dysbindin, was reported in patients. Dysbindin likely plays a role in the neuronal trafficking of proteins including receptors. One important pathway suspected to be affected in schizophrenia is the fast excitatory glutamatergic transmission mediated by AMPA receptors. Here, we investigated excitatory synaptic transmission and plasticity in hippocampal neurons from dysbindin-deficient sandy mice bred on the DBA/2J strain. In cultured neurons an enhancement of AMPAR responses was observed. The enhancement of AMPAR-mediated transmission was confirmed in hippocampal CA3-CA1 synapses, and was not associated with changes in the expression of GluA1-4 subunits or an increase in GluR2-lacking receptor complexes. Lastly, an enhancement in LTP was also found in these mice. These data provide compelling evidence that dysbindin, a widely suspected susceptibility protein in schizophrenia, is important for AMPAR-mediated synaptic transmission and plasticity in the developing hippocampus.
Collapse
Affiliation(s)
- Ian J Orozco
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| | - Peter Koppensteiner
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Ipe Ninan
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| |
Collapse
|
38
|
Glen WB, Horowitz B, Carlson GC, Cannon TD, Talbot K, Jentsch JD, Lavin A. Dysbindin-1 loss compromises NMDAR-dependent synaptic plasticity and contextual fear conditioning. Hippocampus 2013; 24:204-13. [PMID: 24446171 DOI: 10.1002/hipo.22215] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/19/2023]
Abstract
Genetic variants in DTNBP1 encoding the protein dysbindin-1 have often been associated with schizophrenia and with the cognitive deficits prominent in that disorder. Because impaired function of the hippocampus is thought to play a role in these memory deficits and because NMDAR-dependent synaptic plasticity in this region is a proposed biological substrate for some hippocampal-dependent memory functions in schizophrenia, we hypothesized that reduced dysbindin-1 expression would lead to impairments in NMDAR-dependent synaptic plasticity and in contextual fear conditioning. Acute slices from male mice carrying 0, 1, or 2 null mutant alleles of the Dtnbp1 gene were prepared, and field recordings from the CA1 striatum radiatum were obtained before and after tetanization of Schaffer collaterals of CA3 pyramidal cells. Mice homozygous for the null mutation in Dtnbp1 exhibited significantly reduced NMDAR-dependent synaptic potentiation compared to wild type mice, an effect that could be rescued by bath application of the NMDA receptor coagonist glycine (10 μM). Behavioral testing in adult mice revealed deficits in hippocampal memory processes. Homozygous null mice exhibited lower conditional freezing, without a change in the response to shock itself, indicative of a learning and memory deficit. Taken together, these results indicate that a loss of dysbindin-1 impairs hippocampal plasticity which may, in part, explain the role dysbindin-1 plays in the cognitive impairments of schizophrenia.
Collapse
Affiliation(s)
- W Bailey Glen
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | | | | | | | | | | | | |
Collapse
|
39
|
Kitaichi Y, Hashimoto R, Inoue T, Abekawa T, Kakuta A, Hattori S, Koyama T. Abnormalities in extracellular glycine and glutamate levels in the striatum of sandy mice. Acta Neuropsychiatr 2013; 25:215-20. [PMID: 25287634 DOI: 10.1111/acn.12018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Glycine regulates glutamatergic neurotransmission, and several papers have reported the relationship between glycine and schizophrenia. The dysbindin-1 (DTNBP1: dystrobrevin-binding protein 1) gene is related to glutamatergic neurotransmission and has been found to be a strong candidate gene for schizophrenia. In this study, we clarified the relationship between dysbindin, glutamate, and glycine with in vivo microdialysis methods. METHODS We measured extracellular glycine and glutamate levels in the striatum of sandy (sdy) mice using in vivo microdialysis methods. Sdy mice express no dysbindin protein owing to a deletion in the dysbindin-1 gene. In addition, we measured changes in those amino acids after methamphetamine (METH) administration. RESULTS The basal levels of extracellular glycine and glutamate in the striatum of sdy mice were elevated. These extracellular glutamate levels decreased gradually after METH administration and were not subsequently different from those of wild-type mice. CONCLUSIONS These results suggest that dysbindin might modulate glycine and glutamate release in vivo.
Collapse
Affiliation(s)
- Yuji Kitaichi
- 1 Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Ryota Hashimoto
- 2 Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Takeshi Inoue
- 1 Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Tomohiro Abekawa
- 1 Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Aya Kakuta
- 1 Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Satoko Hattori
- 4 Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tsukasa Koyama
- 1 Department of Psychiatry, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| |
Collapse
|
40
|
Takao K, Kobayashi K, Hagihara H, Ohira K, Shoji H, Hattori S, Koshimizu H, Umemori J, Toyama K, Nakamura HK, Kuroiwa M, Maeda J, Atsuzawa K, Esaki K, Yamaguchi S, Furuya S, Takagi T, Walton NM, Hayashi N, Suzuki H, Higuchi M, Usuda N, Suhara T, Nishi A, Matsumoto M, Ishii S, Miyakawa T. Deficiency of schnurri-2, an MHC enhancer binding protein, induces mild chronic inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes related to schizophrenia. Neuropsychopharmacology 2013; 38:1409-25. [PMID: 23389689 PMCID: PMC3682135 DOI: 10.1038/npp.2013.38] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Schnurri-2 (Shn-2), an nuclear factor-κB site-binding protein, tightly binds to the enhancers of major histocompatibility complex class I genes and inflammatory cytokines, which have been shown to harbor common variant single-nucleotide polymorphisms associated with schizophrenia. Although genes related to immunity are implicated in schizophrenia, there has been no study showing that their mutation or knockout (KO) results in schizophrenia. Here, we show that Shn-2 KO mice have behavioral abnormalities that resemble those of schizophrenics. The mutant brain demonstrated multiple schizophrenia-related phenotypes, including transcriptome/proteome changes similar to those of postmortem schizophrenia patients, decreased parvalbumin and GAD67 levels, increased theta power on electroencephalograms, and a thinner cortex. Dentate gyrus granule cells failed to mature in mutants, a previously proposed endophenotype of schizophrenia. Shn-2 KO mice also exhibited mild chronic inflammation of the brain, as evidenced by increased inflammation markers (including GFAP and NADH/NADPH oxidase p22 phox), and genome-wide gene expression patterns similar to various inflammatory conditions. Chronic administration of anti-inflammatory drugs reduced hippocampal GFAP expression, and reversed deficits in working memory and nest-building behaviors in Shn-2 KO mice. These results suggest that genetically induced changes in immune system can be a predisposing factor in schizophrenia.
Collapse
Affiliation(s)
- Keizo Takao
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Katsunori Kobayashi
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan,Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Koji Ohira
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Hisatsugu Koshimizu
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Juzoh Umemori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Keiko Toyama
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Hironori K Nakamura
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan
| | - Mahomi Kuroiwa
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan,Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Jun Maeda
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Kimie Atsuzawa
- Department of Anatomy II, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kayoko Esaki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Shun Yamaguchi
- Division of Morphological Neuroscience, Gifu University Graduate School of Medicine, Gifu, Japan,Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Tsuyoshi Takagi
- RIKEN Tsukuba Institute, Tsukuba, Japan,Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Noah M Walton
- Astellas Research Institute of America LLC, Skokie, IL, USA
| | - Nobuhiro Hayashi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hidenori Suzuki
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan,Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Makoto Higuchi
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Nobuteru Usuda
- Department of Anatomy II, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsuya Suhara
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Akinori Nishi
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan,Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | | | - Shunsuke Ishii
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan,Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan,Japan Science and Technology Agency, CREST, Kawaguchi, Japan,Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan. Tel: +81 562 93 9375, Fax: +81 562 92 5328, E-mail:
| |
Collapse
|
41
|
Ahn SH, Jang EH, Choi JH, Lee HR, Bakes J, Kong YY, Kaang BK. Basal anxiety during an open field test is correlated with individual differences in contextually conditioned fear in mice. Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.790840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
42
|
Carr GV, Jenkins KA, Weinberger DR, Papaleo F. Loss of dysbindin-1 in mice impairs reward-based operant learning by increasing impulsive and compulsive behavior. Behav Brain Res 2013; 241:173-84. [PMID: 23261874 PMCID: PMC3556458 DOI: 10.1016/j.bbr.2012.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/08/2012] [Accepted: 12/12/2012] [Indexed: 12/30/2022]
Abstract
The dystrobrevin-binding protein 1 (DTNBP1) gene, which encodes the dysbindin-1 protein, is a potential schizophrenia susceptibility gene. Polymorphisms in the DTNBP1 gene have been associated with altered cognitive abilities. In the present study, dysbindin-1 null mutant (dys-/-), heterozygous (dys+/-), and wild-type (dys+/+) mice, on a C57BL/6J genetic background, were tested in either a match to sample or nonmatch to sample visual discrimination task. This visual discrimination task was designed to measure rule learning and detect any changes in response timing over the course of testing. Dys-/- mice displayed significant learning deficits and required more trials to acquire this task. However, once criterion was reached, there were no differences between the genotypes on any behavioral measures. Dys-/- mice exhibited increased compulsive and impulsive behaviors compared to control littermates suggesting the inability to suppress incorrectly-timed responses underlies their increased time to acquisition. Indeed, group comparisons of behavior differences between the first and last day of testing showed that only dys-/- mice consistently decreased measures of perseverative, premature, timeout, and total responses. These findings illustrate how some aspects of altered cognitive performance in dys-/- mice might be related to increased impulsive and compulsive behaviors, analogous to cognitive deficits in some individuals with psychiatric disorders.
Collapse
Affiliation(s)
- Gregory V. Carr
- Clinical Brain Disorders Branch; Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Kimberly A. Jenkins
- Clinical Brain Disorders Branch; Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Daniel R. Weinberger
- Clinical Brain Disorders Branch; Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry, Neurology, and Neuroscience and the Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Francesco Papaleo
- Clinical Brain Disorders Branch; Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, MD, USA
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Dipartimento di Scienze del Farmaco, Universita’ degli Studi di Padova, Largo Meneghetti, 2, 35131 Padova, Italy
| |
Collapse
|
43
|
Ohira K, Kobayashi K, Toyama K, Nakamura HK, Shoji H, Takao K, Takeuchi R, Yamaguchi S, Kataoka M, Otsuka S, Takahashi M, Miyakawa T. Synaptosomal-associated protein 25 mutation induces immaturity of the dentate granule cells of adult mice. Mol Brain 2013; 6:12. [PMID: 23497716 PMCID: PMC3605216 DOI: 10.1186/1756-6606-6-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/21/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Synaptosomal-associated protein, 25 kDa (SNAP-25) regulates the exocytosis of neurotransmitters. Growing evidence suggests that SNAP-25 is involved in neuropsychiatric disorders, such as schizophrenia, attention-deficit/hyperactivity disorder, and epilepsy. Recently, increases in anxiety-related behaviors and epilepsy have been observed in SNAP-25 knock-in (KI) mice, which have a single amino acid substitution of Ala for Ser187. However, the molecular and cellular mechanisms underlying the abnormalities in this mutant remain unknown. RESULTS In this study, we found that a significant number of dentate gyrus (DG) granule cells was histologically and electrophysiologically similar to immature DG neurons in the dentate gyrus of the adult mutants, a phenomenon termed the "immature DG" (iDG). SNAP-25 KI mice and other mice possessing the iDG phenotype, i.e., alpha-calcium/calmodulin-dependent protein kinase II heterozygous mice, Schnurri-2 knockout mice, and mice treated with the antidepressant fluoxetine, showed similar molecular expression patterns, with over 100 genes similarly altered. A working memory deficit was also identified in mutant mice during a spontaneous forced alternation task using a modified T-maze, a behavioral task known to be dependent on hippocampal function. Chronic treatments with the antiepileptic drug valproate abolished the iDG phenotype and the working memory deficit in mutants. CONCLUSIONS These findings suggest that the substitution of Ala for Ser187 in SNAP-25 induces the iDG phenotype, which can also be caused by epilepsy, and led to a severe working memory deficit. In addition, the iDG phenotype in adulthood is likely an endophenotype for at least a part of some common psychiatric disorders.
Collapse
Affiliation(s)
- Koji Ohira
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
| | - Katsunori Kobayashi
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Keiko Toyama
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
| | - Hironori K Nakamura
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
| | - Keizo Takao
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Rika Takeuchi
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
| | - Shun Yamaguchi
- Division of Morphological Neuroscience, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
- JST, PRESTO, Kawaguchi, 332-0012, Japan
| | - Masakazu Kataoka
- Department of Environmental Science and Technology, Faculty of Engineering, Shinshu University, Nagano, 380-8553, Japan
| | - Shintaro Otsuka
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, 228-8555, Japan
| | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, 228-8555, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| |
Collapse
|
44
|
Hattori S, Takao K, Tanda K, Toyama K, Shintani N, Baba A, Hashimoto H, Miyakawa T. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice. Front Behav Neurosci 2012; 6:58. [PMID: 23060763 PMCID: PMC3462416 DOI: 10.3389/fnbeh.2012.00058] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/22/2012] [Indexed: 12/05/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC(1)). Recent studies reveal that genetic variants of the PACAP and PAC(1) genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO) mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J × 129SvEv) for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage (HC) activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition (PPI) and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction (SI) in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased SI in Crawley's three-chamber social approach test, although PACAP KO had no significant impact on SI in a HC. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze (RM) and the T-maze (TM), while they did not show any significant abnormalities in the left-right discrimination task in the TM. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially, working memory.
Collapse
Affiliation(s)
- Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Aichi, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Saitama, Japan
| | - Keizo Takao
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Saitama, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological SciencesOkazaki, Aichi, Japan
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto UniversityKyoto, Kyoto, Japan
| | - Koichi Tanda
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto UniversityKyoto, Kyoto, Japan
- Department of Pediatrics, Kyoto Prefectural University of MedicineKyoto, Kyoto, Japan
| | - Keiko Toyama
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Aichi, Japan
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto UniversityKyoto, Kyoto, Japan
| | - Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Osaka, Japan
| | - Akemichi Baba
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Osaka, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of MedicineSuita, Osaka, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Aichi, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Saitama, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological SciencesOkazaki, Aichi, Japan
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto UniversityKyoto, Kyoto, Japan
| |
Collapse
|
45
|
Baek JH, Kim JS, Ryu S, Oh S, Noh J, Lee WK, Park T, Lee YS, Lee D, Kwon JS, Hong KS. Association of genetic variations in DTNBP1 with cognitive function in schizophrenia patients and healthy subjects. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:841-9. [PMID: 22911901 DOI: 10.1002/ajmg.b.32091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/12/2012] [Indexed: 12/13/2022]
Abstract
The dystrobrevin-binding protein 1 gene (DTNBP1) has been regarded as a susceptibility gene for schizophrenia. Recent studies have investigated its role on cognitive function that is frequently impaired in schizophrenia patients, and generated inconsistent results. The present study was performed to elucidate effects of genetic variations in DTNBP1 on various cognitive domains in both schizophrenia patients and healthy subjects. Comprehensive neuropsychological tests were administered to 122 clinically stable schizophrenia patients and 119 healthy subjects. Based on positive findings reported in previous association studies, six SNPs were selected and genotyped. Compared to healthy subjects, schizophrenia patients showed expected lower performance for all of the cognitive domains. After adjusting for age, gender, and educational level, four SNPs showed a nominally significant association with cognitive domains. The association of rs760761 and rs1018381 with the attention and vigilance domain remained significant after applying the correction for multiple testing (P < 0.001). Similar association patterns were observed both, in patients and healthy subjects. The observed results suggest the involvement of DTNBP1 not only in the development of attention deficit of schizophrenia, but also in the inter-individual variability of this cognitive domain within the normal functional range.
Collapse
Affiliation(s)
- Ji Hyun Baek
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, Winiger E, Breier A, Shekhar A, Amdur R, Koller D, Nurnberger JI, Corvin A, Geyer M, Tsuang MT, Salomon D, Schork NJ, Fanous AH, O'Donovan MC, Niculescu AB. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17:887-905. [PMID: 22584867 PMCID: PMC3427857 DOI: 10.1038/mp.2012.37] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology.
Collapse
Affiliation(s)
- M Ayalew
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D F Levey
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N Jain
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - B Changala
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Winiger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Amdur
- Washington DC VA Medical Center, Washington, DC, USA
| | - D Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Corvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - M Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - M T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - D Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - N J Schork
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - A H Fanous
- Washington DC VA Medical Center, Washington, DC, USA
| | - M C O'Donovan
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
47
|
Schizophrenia. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
48
|
Koshimizu H, Leiter LM, Miyakawa T. M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition. Mol Brain 2012; 5:10. [PMID: 22463818 PMCID: PMC3361477 DOI: 10.1186/1756-6606-5-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the central nervous system (CNS), the muscarinic system plays key roles in learning and memory, as well as in the regulation of many sensory, motor, and autonomic processes, and is thought to be involved in the pathophysiology of several major diseases of the CNS, such as Alzheimer's disease, depression, and schizophrenia. Previous studies reveal that M4 muscarinic receptor knockout (M4R KO) mice displayed an increase in basal locomotor activity, an increase in sensitivity to the prepulse inhibition (PPI)-disrupting effect of psychotomimetics, and normal basal PPI. However, other behaviorally significant roles of M4R remain unclear. RESULTS In this study, to further investigate precise functional roles of M4R in the CNS, M4R KO mice were subjected to a battery of behavioral tests. M4R KO mice showed no significant impairments in nociception, neuromuscular strength, or motor coordination/learning. In open field, light/dark transition, and social interaction tests, consistent with previous studies, M4R KO mice displayed enhanced locomotor activity compared to their wild-type littermates. In the open field test, M4R KO mice exhibited novelty-induced locomotor hyperactivity. In the social interaction test, contacts between pairs of M4R KO mice lasted shorter than those of wild-type mice. In the sensorimotor gating test, M4R KO mice showed a decrease in PPI, whereas in the startle response test, in contrast to a previous study, M4R KO mice demonstrated normal startle response. M4R KO mice also displayed normal performance in the Morris water maze test. CONCLUSIONS These findings indicate that M4R is involved in regulation of locomotor activity, social behavior, and sensorimotor gating in mice. Together with decreased PPI, abnormal social behavior, which was newly identified in the present study, may represent a behavioral abnormality related to psychiatric disorders including schizophrenia.
Collapse
Affiliation(s)
- Hisatsugu Koshimizu
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Lorene M Leiter
- Howard Hughes Medical Institute, The Picower Center for Learning and Memory and RIKEN/Massachusetts Institute of Technology Neuroscience Research Center, Departments of Biology and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
- Howard Hughes Medical Institute, The Picower Center for Learning and Memory and RIKEN/Massachusetts Institute of Technology Neuroscience Research Center, Departments of Biology and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
49
|
Shoji H, Hagihara H, Takao K, Hattori S, Miyakawa T. T-maze forced alternation and left-right discrimination tasks for assessing working and reference memory in mice. J Vis Exp 2012:3300. [PMID: 22395674 PMCID: PMC3399492 DOI: 10.3791/3300] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Forced alternation and left-right discrimination tasks using the T-maze have been widely used to assess working and reference memory, respectively, in rodents. In our laboratory, we evaluated the two types of memory in more than 30 strains of genetically engineered mice using the automated version of this apparatus. Here, we present the modified T-maze apparatus operated by a computer with a video-tracking system and our protocols in a movie format. The T-maze apparatus consists of runways partitioned off by sliding doors that can automatically open downward, each with a start box, a T-shaped alley, two boxes with automatic pellet dispensers at one side of the box, and two L-shaped alleys. Each L-shaped alley is connected to the start box so that mice can return to the start box, which excludes the effects of experimenter handling on mouse behavior. This apparatus also has an advantage that in vivo microdialysis, in vivo electrophysiology, and optogenetics techniques can be performed during T-maze performance because the doors are designed to go down into the floor. In this movie article, we describe T-maze tasks using the automated apparatus and the T-maze performance of α-CaMKII+/- mice, which are reported to show working memory deficits in the eight-arm radial maze task. Our data indicated that α-CaMKII+/- mice showed a working memory deficit, but no impairment of reference memory, and are consistent with previous findings using the eight-arm radial maze task, which supports the validity of our protocol. In addition, our data indicate that mutants tended to exhibit reversal learning deficits, suggesting that α-CaMKII deficiency causes reduced behavioral flexibility. Thus, the T-maze test using the modified automatic apparatus is useful for assessing working and reference memory and behavioral flexibility in mice.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University
| | | | | | | | | |
Collapse
|
50
|
Shoji H, Toyama K, Takamiya Y, Wakana S, Gondo Y, Miyakawa T. Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and -L100P mutant mice. BMC Res Notes 2012; 5:108. [PMID: 22348257 PMCID: PMC3392730 DOI: 10.1186/1756-0500-5-108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/20/2012] [Indexed: 11/10/2022] Open
Abstract
Background Disrupted-in-Schizophrenia 1 (DISC1) is considered to be a candidate susceptibility gene for psychiatric disorders, including schizophrenia, bipolar disorder, and major depression. A recent study reported that N-ethyl-N-nitrosourea (ENU)-induced mutations in exon 2 of the mouse Disc1 gene, which resulted in the amino acid exchange of Q31L and L100P, caused an increase in depression-like behavior in 31 L mutant mice and schizophrenia-like behavior in 100P mutant mice; thus, these are potential animal models of psychiatric disorders. However, remaining heterozygous mutations that possibly occur in flanking genes other than Disc1 itself might induce behavioral abnormalities in the mutant mice. Here, to confirm the effects of Disc1-Q31L and Disc1-L100P mutations on behavioral phenotypes and to investigate the behaviors of the mutant mice in more detail, the mutant lines were backcrossed to C57BL/6JJcl through an additional two generations and the behaviors were analyzed using a comprehensive behavioral test battery. Results Contrary to expectations, 31 L mutant mice showed no significant behavioral differences when compared with wild-type control mice in any of the behavioral tests, including the Porsolt forced swim and tail suspension tests, commonly used tests for depression-like behavior. Also, 100P mutant mice exhibited no differences in almost all of the behavioral tests, including the prepulse inhibition test for measuring sensorimotor gating, which is known to be impaired in schizophrenia patients; however, 100P mutant mice showed higher locomotor activity compared with wild-type control mice in the light/dark transition test. Conclusions Although these results are partially consistent with the previous study in that there was hyperactivity in 100P mutant mice, the vast majority of the results are inconsistent with those of the previous study; this discrepancy may be explained by differences in the genetic background of the mice, the laboratory environment, experimental protocols, and more. Further behavioral studies under various experimental conditions are necessary to determine whether these Disc1 mutant mouse lines are suitable animal models of schizophrenia and major depression.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | | | | | | | | | | |
Collapse
|