1
|
Larivee R, Johnson N, Freedgood NR, Cameron HA, Schoenfeld TJ. Inhibition of Hippocampal Neurogenesis Starting in Adolescence Increases Anxiodepressive Behaviors Amid Stress. Front Behav Neurosci 2022; 16:940125. [PMID: 35864848 PMCID: PMC9294378 DOI: 10.3389/fnbeh.2022.940125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Stressors during the adolescent period can affect development of the brain and have long-lasting impacts on behavior. Specifically, adolescent stress impairs hippocampal neurogenesis and can increase risk for anxiety, depression, and a dysregulated stress response in adulthood. In order to model the functional effects of reduced hippocampal neurogenesis during adolescence, a transgenic neurogenesis ablation rat model was used to suppress neurogenesis during the adolescent period and test anxiodepressive behaviors and stress physiology during adulthood. Wildtype and transgenic (TK) rats were given valganciclovir during the first two weeks of adolescence (4-6 weeks old) to knock down neurogenesis in TK rats. Starting in young adulthood (13 weeks old), blood was sampled for corticosterone at several time points following acute restraint stress to measure negative feedback of the stress response, and rats were tested on a battery of anxiodepressive tests at baseline and following acute restraint stress. Although TK rats had large reductions in both cell proliferation during adolescence, as measured by bromodeoxyuridine (BrdU), and ongoing neurogenesis in adulthood (by doublecortin), resulting in decreased volume of the dentate gyrus, negative feedback of the stress response following acute restraint was similar across all rats. Despite similar stress responses, TK rats showed higher anxiety-like behavior at baseline. In addition, only TK rats had increased depressive-like behavior when tested after acute stress. Together, these results suggest that long-term neurogenesis ablation starting in adolescence produces hippocampal atrophy and increases behavioral caution and despair amid stressful environments.
Collapse
Affiliation(s)
- Rachelle Larivee
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, United States
| | - Natalie Johnson
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, United States
| | - Natalie R. Freedgood
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Heather A. Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Timothy J. Schoenfeld
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, TN, United States
- *Correspondence: Timothy J. Schoenfeld,
| |
Collapse
|
2
|
Saw G, Tang FR. Epigenetic Regulation of the Hippocampus, with Special Reference to Radiation Exposure. Int J Mol Sci 2020; 21:ijms21249514. [PMID: 33327654 PMCID: PMC7765140 DOI: 10.3390/ijms21249514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
The hippocampus is crucial in learning, memory and emotion processing, and is involved in the development of different neurological and neuropsychological disorders. Several epigenetic factors, including DNA methylation, histone modifications and non-coding RNAs, have been shown to regulate the development and function of the hippocampus, and the alteration of epigenetic regulation may play important roles in the development of neurocognitive and neurodegenerative diseases. This review summarizes the epigenetic modifications of various cell types and processes within the hippocampus and their resulting effects on cognition, memory and overall hippocampal function. In addition, the effects of exposure to radiation that may induce a myriad of epigenetic changes in the hippocampus are reviewed. By assessing and evaluating the current literature, we hope to prompt a more thorough understanding of the molecular mechanisms that underlie radiation-induced epigenetic changes, an area which can be further explored.
Collapse
|
3
|
Sarkar A, Balogun K, Guzman Lenis MS, Acosta S, Mount HT, Serghides L. In utero exposure to protease inhibitor-based antiretroviral regimens delays growth and developmental milestones in mice. PLoS One 2020; 15:e0242513. [PMID: 33211746 PMCID: PMC7676697 DOI: 10.1371/journal.pone.0242513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022] Open
Abstract
Antiretroviral therapy (ART) in pregnancy has dramatically reduced HIV vertical transmission rates. Consequently, there is a growing number of children that are HIV exposed uninfected (CHEUs). Studies suggest that CHEUs exposed in utero to ART may experience developmental delays compared to their peers. We investigated the effects of in utero ART exposure on perinatal neurodevelopment in mice, through assessment of developmental milestones. Developmental milestone tests (parallel to reflex testing in human infants) are reflective of brain maturity and useful in predicting later behavioral outcomes. We hypothesized that ART in pregnancy alters the in utero environment and thereby alters developmental milestone outcomes in pups. Throughout pregnancy, dams were treated with boosted-atazanavir combined with either abacavir/lamivudine (ATV/r/ABC/3TC), or tenofovir/emtricitabine (ATV/r/TDF/FTC), or water as control. Pups were assessed daily for general somatic growth and on a battery of tests for primitive reflexes including surface-righting, negative-geotaxis, cliff-aversion, rooting, ear-twitch, auditory-reflex, forelimb-grasp, air-righting, behaviors in the neonatal open field, and olfactory test. In utero exposure to either ART regimen delayed somatic growth in offspring and evoked significant delays in the development of negative geotaxis, cliff-aversion, and ear-twitch reflexes. Exposure to ATV/r/ABC/3TC was also associated with olfactory deficits in male and forelimb grasp deficits in female pups. To explore whether delays persisted into adulthood we assessed performance in the open field test. We observed no significant differences between treatment arm for males. In females, ATV/r/TDF/FTC exposure was associated with lower total distance travelled and less ambulatory time in the centre, while ATV/r/ABC/3TC exposure was associated with higher resting times compared to controls. In utero PI-based ART exposure delays the appearance of primitive reflexes that involve vestibular and sensory-motor pathways in a mouse model. Our findings suggest that ART could be disrupting the normal progress/maturation of the underlying neurocircuits and encourage further investigation for underlying mechanisms.
Collapse
Affiliation(s)
- Ambalika Sarkar
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kayode Balogun
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Monica S. Guzman Lenis
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sebastian Acosta
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Howard T. Mount
- Departments of Psychiatry & Physiology, Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Women’s College Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
4
|
Terranova JI, Ogawa SK, Kitamura T. Adult hippocampal neurogenesis for systems consolidation of memory. Behav Brain Res 2019; 372:112035. [DOI: 10.1016/j.bbr.2019.112035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
|
5
|
Liu SC, Hu WY, Zhang WY, Yang L, Li Y, Xiao ZC, Zhang M, He ZY. Paeoniflorin attenuates impairment of spatial learning and hippocampal long-term potentiation in mice subjected to chronic unpredictable mild stress. Psychopharmacology (Berl) 2019; 236:2823-2834. [PMID: 31115613 DOI: 10.1007/s00213-019-05257-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 04/24/2019] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVE Paeoniflorin has been reported to exhibit antidepressant-like effects in several animal model depression; and it also exerts a neuroprotective effect. In the present study, we investigated the effects of paeoniflorin administration on depression-like behaviors and cognitive abilities in mice subjected to chronic unpredictable mild stress (CUMS), an animal model associated with depressive disorders and cognitive deficits. METHODS We administered paeoniflorin (20 mg/kg), which is the main active constituent extracted from Paeonia lactiflora Pall. and exerts multiple pharmacological actions, to CUMS mice. Subsequently, animals were subjected to tests of depression-like behavior including the sucrose preference test, the forced swimming test and the tail suspension test. The Morris water maze (MWM) task was applied to evaluate learning and memory capacity. Hippocampal CA1 long-term potentiation (LTP) was recorded. Dendritic spine density and the expression levels of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95) in the hippocampus were also investigated. RESULTS The administration of paeoniflorin protected against CUMS-induced depression-like behavior. Paeoniflorin also improved the performance of CUMS mice in the MWM. The impairment of hippocampal CA1 LTP caused by CUMS was also reversed. Furthermore, paeoniflorin administration prevented decreases in dendritic spine density and in the expression of BDNF and PSD95 in the hippocampus of CUMS mice. CONCLUSION Our observations suggest that paeoniflorin is a potential antidepressant that protects against cognitive impairment in depression.
Collapse
Affiliation(s)
- Si-Cheng Liu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China.,Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Wei-Yan Hu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, 3800, Australia.,School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Wei-Yuan Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lu Yang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yan Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China
| | - Zhi-Cheng Xiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, 3800, Australia
| | - Ming Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China.
| | - Zhi-Yong He
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650500, China. .,Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, 3800, Australia.
| |
Collapse
|
6
|
Boldrini M, Galfalvy H, Dwork AJ, Rosoklija GB, Trencevska-Ivanovska I, Pavlovski G, Hen R, Arango V, Mann JJ. Resilience Is Associated With Larger Dentate Gyrus, While Suicide Decedents With Major Depressive Disorder Have Fewer Granule Neurons. Biol Psychiatry 2019; 85:850-862. [PMID: 30819514 PMCID: PMC6830307 DOI: 10.1016/j.biopsych.2018.12.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Early life adversity (ELA) increases major depressive disorder (MDD) and suicide risk and potentially affects dentate gyrus (DG) plasticity. We reported smaller DG and fewer granular neurons (GNs) in MDD. ELA effects on DG plasticity in suicide decedents with MDD (MDDSui) and resilient subjects (ELA history without MDD or suicide) are unknown. METHODS We quantified neural progenitor cells (NPCs), GNs, glia, and DG volume in whole hippocampus postmortem in four groups of drug-free, neuropathology-free subjects (N = 52 total): psychological autopsy-defined MDDSui and control subjects with and without ELA (before 15 years of age). RESULTS ELA was associated with larger DG (p < .0001) and trending fewer NPCs (p = .0190) only in control subjects in whole DG, showing no effect on NPCs and DG volume in MDDSui. ELA exposure was associated with more GNs (p = .0003) and a trend for more glia (p = .0160) in whole DG in MDDSui and control subjects. MDDSui without ELA had fewer anterior and mid DG GNs (p < .0001), fewer anterior DG NPCs (p < .0001), and smaller whole DG volume (p = .0005) compared with control subjects without ELA. In MDDSui, lower Global Assessment Scale score correlated with fewer GNs and smaller DG. CONCLUSIONS Resilience to ELA involves a larger DG, perhaps related to more neurogenesis depleting NPCs, and because mature GNs and glia numbers do not differ in the resilient group, perhaps there are effects on process extension and synaptic load that can be examined in future studies. In MDDSui without ELA, smaller DG volume, with fewer GNs and NPCs, suggests less neurogenesis and/or more apoptosis and dendrite changes.
Collapse
Affiliation(s)
- Maura Boldrini
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, New York; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York.
| | - Hanga Galfalvy
- Department of Psychiatry, New York State Psychiatric Institute, New York, New York; Department of Biostatistics, New York State Psychiatric Institute, New York
| | - Andrew J. Dwork
- Department of Psychiatry, New York State Psychiatric Institute, New York, New York; Department of Pathology and Cell Biology, New York State Psychiatric Institute, New York, New York; Columbia University, Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Gorazd B. Rosoklija
- Department of Psychiatry, New York State Psychiatric Institute, New York, New York; Columbia University, Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York; Macedonian Academy of Sciences and Arts, Ss. Cyril and Methodius University, Skopje, Macedonia
| | | | - Goran Pavlovski
- Institute for Forensic Medicine, Ss. Cyril and Methodius University, Skopje, Macedonia
| | - René Hen
- Department of Psychiatry, New York State Psychiatric Institute, New York, New York; Department of Neuroscience, New York State Psychiatric Institute, New York, New York; Department of Pharmacology, New York State Psychiatric Institute, New York, New York; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Victoria Arango
- Department of Psychiatry, New York State Psychiatric Institute, New York, New York; Columbia University, Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York
| | - J. John Mann
- Department of Psychiatry, New York State Psychiatric Institute, New York, New York; Columbia University, Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York
| |
Collapse
|
7
|
Zhang X, Chu X, Chen L, Fu J, Wang S, Song J, Kan G, Jiang W, He G, Chen X, Li W. Simulated weightlessness procedure, head-down bed rest impairs adult neurogenesis in the hippocampus of rhesus macaque. Mol Brain 2019; 12:46. [PMID: 31072406 PMCID: PMC6509794 DOI: 10.1186/s13041-019-0459-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/16/2019] [Indexed: 11/10/2022] Open
Abstract
The microgravity environment in space can impact astronauts' cognitive and behavioral activities. However, due to the limitations of research conditions, studies of biological changes in the primate brain, such as neurogenesis, have been comparatively few. We take advantage of - 6° head-down bed rest (HDBR), one of the most implemented space analogue on the ground, to investigate the effects of weightlessness on neurogenesis of non-human primate brain. Rhesus Macaque monkeys were subjected to HDBR for 42 days to simulate weightlessness. BrdU (5-bromodeoxyuridin) and IdU (iododeoxyuridine) were intraperitoneally injected separately before or after HDBR to label the survival and proliferation of newborn neurons. Immunohistochemistry was performed to study the effect of simulated weightlessness on neurogenesis. BrdU staining showed that survival of newborn neurons was reduced, while there were fewer BrdU-positive neurons in the HDBR group compared with the control. Furthermore, IdU-positive neurons also decreased in the HDBR group suggesting a reduced proliferation capacity for these newborn neurons. Our results demonstrate the definite neurogenesis in the adult rhesus macaque hippocampus, and simulated weightlessness HDBR procedure impairs the adult neurogenesis.
Collapse
Affiliation(s)
- Xu Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xixia Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lei Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Juan Fu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinjing Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guanghan Kan
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Weizhong Jiang
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoping Chen
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
8
|
Peng S, Yang B, Duan MY, Liu ZW, Wang WF, Zhang XZ, Ren BX, Tang FR. The Disparity of Impairment of Neurogenesis and Cognition After Acute or Fractionated Radiation Exposure in Adolescent BALB/c Mice. Dose Response 2019; 17:1559325818822574. [PMID: 30670940 PMCID: PMC6327339 DOI: 10.1177/1559325818822574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022] Open
Abstract
The effect of acute X-ray irradiation with 2 Gy or fractionated exposure with 0.2 Gy continuously for 10 days (0.2 Gy × 10 = 2 Gy) was evaluated in the postnatal day 21 (P21) BALB/c mouse model. Both acute and fractionated irradiation induced impairment of cell proliferation and neurogenesis in the subgranular zone of the dentate gyrus labeled by Ki67 and doublecortin, respectively. Parvalbumin immunopositive interneurons in the subgranular zone were also reduced significantly. However, the 2 patterns of irradiation did not affect animal weight gain when measured at ages of P90 and P180 or 69 and 159 days after irradiation. Behavioral tests indicated that neither acute nor fractionated irradiation with a total dose of 2 Gy induced deficits in the contextual fear or spatial memory and memory for novel object recognition. Animal motor activity was also not affected in the open-field test. The disparity of the impairment of neurogenesis and unaffected cognition suggests that the severity of impairment of neurogenesis induced by acute or fractionated irradiation with a total dose of 2 Gy at P21 may not be worse enough to induce the deficit of cognition.
Collapse
Affiliation(s)
- Shuang Peng
- Health Center of Yangtze University, Jingzhou, Hubei, China
| | - Bo Yang
- Department of Medical Imaging Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Meng Yun Duan
- Health Center of Yangtze University, Jingzhou, Hubei, China
| | - Zi Wei Liu
- Health Center of Yangtze University, Jingzhou, Hubei, China
| | - Wei Feng Wang
- Health Center of Yangtze University, Jingzhou, Hubei, China
| | - Xiang Zhi Zhang
- Affiliated Hospital of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Bo Xu Ren
- Health Center of Yangtze University, Jingzhou, Hubei, China
| | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| |
Collapse
|
9
|
Green A, Esser MJ, Perrot TS. Developmental expression of anxiety and depressive behaviours after prenatal predator exposure and early life homecage enhancement. Behav Brain Res 2017; 346:122-136. [PMID: 29183765 DOI: 10.1016/j.bbr.2017.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/25/2023]
Abstract
Stressful events during gestation can have sex-specific effects on brain and behaviour, and may contribute to some of the differences observed in adult stress responding and psychopathology. We investigated the impact of a novel repeated prenatal psychological stress (prenatal predator exposure - PPS) during the last week of gestation in rats on offspring behaviours related to social interaction (play behaviour), open field test (OFT), forced swim test (FST) and sucrose preference test (SP) during the juvenile period and in adulthood. We further examined the role of postnatal environmental, using an enhanced housing condition (EHC), to prevent/rescue any changes. Some effects on anxiety, anhedonia, and stress-related coping behaviours (e.g., OFT, SP and OFT) did not emerge until adulthood. PPS increased OFT anxiety behaviours in adult males, and some OFT and SP behaviours in adult females. Contrary to this, EHC had few independent effects; most were apparent only when combined with PPS. In keeping with age-group differences, juvenile behaviours did not necessarily predict the same adult behaviours although juvenile OFT rearing and freezing, and juvenile FST immobility did predict adult FST immobility and sucrose preference, suggesting that some aspects of depressive behaviours may emerge early and predict adult vulnerability or coping behaviours. Together, these results suggest an important, though complex, role for early life psychological stressors and early life behaviours in creating an adult vulnerability to anxiety or depressive disorders and that environmental factors further modulate the effects of the prenatal stressors.
Collapse
Affiliation(s)
- Amanda Green
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Michael J Esser
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tara S Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Tang FR, Loke WK, Wong P, Khoo BC. Radioprotective effect of ursolic acid in radiation-induced impairment of neurogenesis, learning and memory in adolescent BALB/c mouse. Physiol Behav 2017; 175:37-46. [PMID: 28341234 DOI: 10.1016/j.physbeh.2017.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
Abstract
The effect of acute irradiation with 5Gy or fractionated exposure with 0.5Gy continuously for 10days (a total dose of 5Gy) was evaluated in an immature BALB/c mouse model. Radioprotective effect of ursolic acid (at 25mg/kg/daily administered 1h after acute or each of fractionated irradiations, and continuously for 30days) was also investigated. We found that both acute and fractionated irradiation at a total dose of 5Gy did not induce any mortality within 30days after exposure to postnatal day 26 (P26) BALB/c mice, but reduced animal weigh gain in the first few weeks. At 90days after irradiation, the weight of animals with acute irradiation was still significantly lower than the control group; no significant difference though was observed for those fractionatedly exposed mice compared to the control group. Behavioral tests indicated that acute irradiation at 5Gy induced deficits in learning and memory in the contextual fear conditioning test. The memory for novel object recognition was also impaired. Similar changes were not observed in mice with fractionated irradiation. Immunohistochemical study demonstrated clearly that acute and fractionated irradiations induced impairment of neurogenesis in the subgranular zone (SGZ) of the dentate gyrus although fractionated exposure induced much lesser loss of newly generated neurons. Ursolic acid administered at 25mg/kg/daily for 30days after irradiation greatly improved acute irradiation-induced deficits in contextual learning and memory and in novel object recognition memory although it exacerbated radiation-induced reduction of neurogenesis in SGZ.
Collapse
Affiliation(s)
- Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety initiative, National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, 138602, Singapore.
| | - Weng Keong Loke
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 11 Stockport Road, 11760, Singapore
| | - Peiyan Wong
- Neuroscience Phenotyping Core, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Boo Cheong Khoo
- Temasek Laboratories, National University of Singapore, 5A, Engineering Drive 1, 117411, Singapore
| |
Collapse
|
11
|
Tang FR, Loke WK, Khoo BC. Postnatal irradiation-induced hippocampal neuropathology, cognitive impairment and aging. Brain Dev 2017; 39:277-293. [PMID: 27876394 DOI: 10.1016/j.braindev.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 12/26/2022]
Abstract
Irradiation of the brain in early human life may set abnormal developmental events into motion that last a lifetime, leading to a poor quality of life for affected individuals. While the effect of irradiation at different early developmental stages on the late human life has not been investigated systematically, animal experimental studies suggest that acute postnatal irradiation with ⩾0.1Gy may significantly reduce neurogenesis in the dentate gyrus and endotheliogenesis in cerebral vessels and induce cognitive impairment and aging. Fractionated irradiation also reduces neurogenesis. Furthermore, irradiation induces hippocampal neuronal loss in CA1 and CA3 areas, neuroinflammation and reduces gliogenesis. The hippocampal neurovascular niche and the total number of microvessels are also changed after radiation exposures. Each or combination of these pathological changes may cause cognitive impairment and aging. Interestingly, acute irradiation of aged brain with a certain amount of radiation has also been reported to induce brain hormesis or neurogenesis. At molecular levels, inflammatory cytokines, chemokines, neural growth factors, neurotransmitters, their receptors and signal transduction systems, reactive oxygen species are involved in radiation-induced adverse effect on brain development and functions. Further study at different omics levels after low dose/dose rate irradiation may not only unravel the mechanisms of radiation-induced adverse brain effect or hormesis, but also provide clues for detection or diagnosis of radiation exposure and for therapeutic approaches to effectively prevent radiation-induced cognitive impairment and aging. Investigation focusing on radiation-induced changes of critical brain development events may reveal many previously unknown adverse effects.
Collapse
Affiliation(s)
- Feng Ru Tang
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore.
| | - Weng Keong Loke
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 11 Stockport Road, Singapore 11760, Singapore
| | - Boo Cheong Khoo
- Temasek Laboratories, National University of Singapore, 5A, Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
12
|
Li M, Liu J, Tsien JZ. Theory of Connectivity: Nature and Nurture of Cell Assemblies and Cognitive Computation. Front Neural Circuits 2016; 10:34. [PMID: 27199674 PMCID: PMC4850152 DOI: 10.3389/fncir.2016.00034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022] Open
Abstract
Richard Semon and Donald Hebb are among the firsts to put forth the notion of cell assembly—a group of coherently or sequentially-activated neurons—to represent percept, memory, or concept. Despite the rekindled interest in this century-old idea, the concept of cell assembly still remains ill-defined and its operational principle is poorly understood. What is the size of a cell assembly? How should a cell assembly be organized? What is the computational logic underlying Hebbian cell assemblies? How might Nature vs. Nurture interact at the level of a cell assembly? In contrast to the widely assumed randomness within the mature but naïve cell assembly, the Theory of Connectivity postulates that the brain consists of the developmentally pre-programmed cell assemblies known as the functional connectivity motif (FCM). Principal cells within such FCM is organized by the power-of-two-based mathematical principle that guides the construction of specific-to-general combinatorial connectivity patterns in neuronal circuits, giving rise to a full range of specific features, various relational patterns, and generalized knowledge. This pre-configured canonical computation is predicted to be evolutionarily conserved across many circuits, ranging from these encoding memory engrams and imagination to decision-making and motor control. Although the power-of-two-based wiring and computational logic places a mathematical boundary on an individual’s cognitive capacity, the fullest intellectual potential can be brought about by optimized nature and nurture. This theory may also open up a new avenue to examining how genetic mutations and various drugs might impair or improve the computational logic of brain circuits.
Collapse
Affiliation(s)
- Meng Li
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta UniversityAugusta, GA, USA; The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan, China
| | - Jun Liu
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University Augusta, GA, USA
| | - Joe Z Tsien
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University Augusta, GA, USA
| |
Collapse
|
13
|
Adult Hippocampal Neurogenesis Modulates Fear Learning through Associative and Nonassociative Mechanisms. J Neurosci 2015; 35:11330-45. [PMID: 26269640 DOI: 10.1523/jneurosci.0483-15.2015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Adult hippocampal neurogenesis is believed to support hippocampus-dependent learning and emotional regulation. These putative functions of adult neurogenesis have typically been studied in isolation, and little is known about how they interact to produce adaptive behavior. We used trace fear conditioning as a model system to elucidate mechanisms through which adult hippocampal neurogenesis modulates processing of aversive experience. To achieve a specific ablation of neurogenesis, we generated transgenic mice that express herpes simplex virus thymidine kinase specifically in neural progenitors and immature neurons. Intracerebroventricular injection of the prodrug ganciclovir caused a robust suppression of neurogenesis without suppressing gliogenesis. Neurogenesis ablation via this method or targeted x-irradiation caused an increase in context conditioning in trace but not delay fear conditioning. Data suggest that this phenotype represents opposing effects of neurogenesis ablation on associative and nonassociative components of fear learning. Arrest of neurogenesis sensitizes mice to nonassociative effects of fear conditioning, as evidenced by increased anxiety-like behavior in the open field after (but not in the absence of) fear conditioning. In addition, arrest of neurogenesis impairs associative trace conditioning, but this impairment can be masked by nonassociative fear. The results suggest that adult neurogenesis modulates emotional learning via two distinct but opposing mechanisms: it supports associative trace conditioning while also buffering against the generalized fear and anxiety caused by fear conditioning. SIGNIFICANCE STATEMENT The role of adult hippocampal neurogenesis in fear learning is controversial, with some studies suggesting neurogenesis is needed for aspects of fear learning and others suggesting it is dispensable. We generated transgenic mice in which neural progenitors can be selectively and inducibly ablated. Our data suggest that adult neurogenesis supports fear learning through two distinct mechanisms: it supports the ability to learn associations between traumatic events (unconditioned stimuli) and predictors (conditioned stimuli) while also buffering against nonassociative, anxiogenic effects of a traumatic experience. As a result, arrest of neurogenesis can enhance or impair learned fear depending on intensity of the traumatic experience and the extent to which it recruits associative versus nonassociative learning.
Collapse
|
14
|
Knibbe-Hollinger JS, Fields NR, Chaudoin TR, Epstein AA, Makarov E, Akhter SP, Gorantla S, Bonasera SJ, Gendelman HE, Poluektova LY. Influence of age, irradiation and humanization on NSG mouse phenotypes. Biol Open 2015; 4:1243-52. [PMID: 26353862 PMCID: PMC4610222 DOI: 10.1242/bio.013201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Humanized mice are frequently utilized in bench to bedside therapeutic tests to combat human infectious, cancerous and degenerative diseases. For the fields of hematology-oncology, regenerative medicine, and infectious diseases, the immune deficient mice have been used commonly in basic research efforts. Obstacles in true translational efforts abound, as the relationship between mouse and human cells in disease pathogenesis and therapeutic studies requires lengthy investigations. The interplay between human immunity and mouse biology proves ever more complicated when aging, irradiation, and human immune reconstitution are considered. All can affect a range of biochemical and behavioral functions. To such ends, we show age- and irradiation-dependent influences for the development of macrocytic hyper chromic anemia, myelodysplasia, blood protein reductions and body composition changes. Humanization contributes to hematologic abnormalities. Home cage behavior revealed day and dark cycle locomotion also influenced by human cell reconstitutions. Significant age-related day-to-day variability in movement, feeding and drinking behaviors were observed. We posit that this data serves to enable researchers to better design translational studies in this rapidly emerging field of mouse humanization.
Collapse
Affiliation(s)
- Jaclyn S Knibbe-Hollinger
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Natasha R Fields
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Tammy R Chaudoin
- Department of Internal Medicine, Geriatrics Division, 986155 Nebraska Medical Center, Omaha, NE 68198-6155, USA
| | - Adrian A Epstein
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Sidra P Akhter
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Stephen J Bonasera
- Department of Internal Medicine, Geriatrics Division, 986155 Nebraska Medical Center, Omaha, NE 68198-6155, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
15
|
Bennett GA, Palliser HK, Shaw JC, Walker D, Hirst JJ. Prenatal Stress Alters Hippocampal Neuroglia and Increases Anxiety in Childhood. Dev Neurosci 2015; 37:533-45. [DOI: 10.1159/000437302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/30/2015] [Indexed: 11/19/2022] Open
Abstract
Prenatal stress has been associated with detrimental outcomes of pregnancy, including altered brain development leading to behavioural pathologies. The neurosteroid allopregnanolone has been implicated in mediating some of these adverse outcomes following prenatal stress due to its potent inhibitory and anxiolytic effects on the brain. The aims of the current study were to characterise key markers for brain development as well as behavioural parameters, adrenocortical responses to handling and possible neurosteroid influences towards outcomes in guinea pig offspring in childhood. Pregnant guinea pig dams were exposed to strobe light for 2 h (9-11 a.m.) on gestational days 50, 55, 60, and 65 and were left to deliver spontaneously at term and care for their litter. Behavioural testing (open-field test, object exploration test) of the offspring was performed at postnatal day 18 (with salivary cortisol and DHEA measured), and brains were collected at post-mortem on day 21. Markers of brain development myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) were assessed via immunohistochemistry, and the neurosteroid allopregnanolone and its rate-limiting enzymes 5α-reductase types 1 and 2 (5αR1/2) were measured in neonatal brains by radioimmunoassay, reverse transcriptase polymerase chain reaction (RT-PCR), and Western blot, respectively. Brain-derived neurotrophic factor protein was measured as a marker of synaptic plasticity, and GABAA receptor subunit expression was also assessed using RT-PCR. Neonates born from mothers stressed during late pregnancy showed a reduction in both MBP (p < 0.01) and GFAP (p < 0.05) expression in the CA1 region of the hippocampus at 21 days of age. Pups of prenatally stressed pregnancies also showed higher levels of anxiety and neophobic behaviours at the equivalent of childhood (p < 0.05). There were no significant changes observed in allopregnanolone levels, 5αR1/2 expression, or GABAA receptor subunit expression in prenatally stressed neonates compared to controls. This study shows alterations in markers of myelination and reactive astrocytes in the hippocampus of offspring exposed to prenatal stress. These changes are also observed in offspring that show increased anxiety behaviours at the equivalent of childhood, which indicates ongoing structural and functional postnatal changes after prenatal stress exposure.
Collapse
|
16
|
Coutellier L, Gilbert V, Shepard R. Npas4 deficiency increases vulnerability to juvenile stress in mice. Behav Brain Res 2015; 295:17-25. [PMID: 25911220 DOI: 10.1016/j.bbr.2015.04.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/30/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
During specific windows of postnatal brain development, individuals are particularly susceptible to developing mental illnesses in adulthood. Adolescence is such a window during which environmental stress can have long-lasting consequences on social and cognitive functions. In individuals, highly vulnerable to stress, a relatively mild stressful situation can trigger the onset of psychiatric conditions. The genetic factors and mechanisms underlying vulnerability to stress are not well understood. Here, we show that variations in expression of the brain-specific transcription factor Npas4 contributes to the long-term consequences of juvenile stress on cognitive abilities. We observed that transgenic Npas4-deficient mice exposed to chronic mild stress during adolescence (but not during adulthood) develop prefrontal cortex-dependent cognitive deficits in adulthood, while the same stress did not affect Npas4 wild-type mice. These cognitive deficits were accompanied by fewer neuroblasts in the subventricular zone, and reduced ability of these immature neuronal cells to migrate away from this neurogenic zone toward cortical regions. These findings suggest for the first time that the transcription factor Npas4 could play a significant role in coping with juvenile stress. They also suggest that Npas4 could modulate resilience or vulnerability to stress by mediating the effects of stress on neurogenesis.
Collapse
Affiliation(s)
- Laurence Coutellier
- Department of Psychology and Neuroscience, The Ohio State University, Columbus, OH, USA.
| | - Valerie Gilbert
- Department of Psychology and Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Ryan Shepard
- Department of Psychology and Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Xiang J, Yan S, Li SH, Li XJ. Postnatal loss of hap1 reduces hippocampal neurogenesis and causes adult depressive-like behavior in mice. PLoS Genet 2015; 11:e1005175. [PMID: 25875952 PMCID: PMC4398408 DOI: 10.1371/journal.pgen.1005175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/25/2015] [Indexed: 12/11/2022] Open
Abstract
Depression is a serious mental disorder that affects a person’s mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression. Although the majority of the neurons in the brain are generated during embryonic stage, new neurons are continuously being produced postnatally, and at a much lower rate in adulthood. As postnatal neurogenesis is a key component of the brain maturation process that creates dynamic ‘wirings’ in the brain necessary for an individual to grow, learn, and cope with the external world, attenuated postnatal neurogenesis may affect an individual’s mental stability, rendering a higher susceptibility to depression later in life. In the current study, we genetically ablated the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions, and found that early loss of Hap1 significantly reduces postnatal hippocampal neurogenesis, and leads to adult depressive-like behavior. We also found c-kit as an effector to mediate the neurogenesis defect and adult depressive-like phenotype in mice lacking Hap1. The results provide the first genetic evidence to demonstrate the importance of postnatal neurogenesis in adult depression, and may offer new avenues in the prevention and treatment of depression. Our study also has potential implications to other adult-onset mental disorders.
Collapse
Affiliation(s)
- Jianxing Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sen Yan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shi-Hua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (SHL); (XJL)
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SHL); (XJL)
| |
Collapse
|
18
|
Influences of prenatal and postnatal stress on adult hippocampal neurogenesis: the double neurogenic niche hypothesis. Behav Brain Res 2014; 281:309-17. [PMID: 25546722 DOI: 10.1016/j.bbr.2014.12.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 01/07/2023]
Abstract
Adult hippocampal neurogenesis (AHN) is involved in learning, memory, and stress, and plays a significant role in neurodegenerative and psychiatric disorders. As an age-dependent process, AHN is largely influenced by changes that occur during the pre- and postnatal stages of brain development, and constitutes an important field of research. This review examines the current knowledge regarding the regulators of AHN and the influence of prenatal and postnatal stress on later AHN. In addition, a hypothesis is presented suggesting that each kind of stress influences a specific neurogenic pool, developmental or postnatal, that later becomes a precursor with important repercussions for AHN. This hypothesis is referred to as "the double neurogenic niche hypothesis." Discovering what receptors, transcription factors, or genes are specifically activated by different stressors is proposed as an essential line of future research in the field. Such knowledge shall constitute an important starting point toward the goal of modifying AHN in neurodegenerative or psychiatric diseases.
Collapse
|
19
|
Antonova E, Kumari V. Where will insights into hippocampal activity in schizophrenia lead us? Expert Rev Neurother 2014; 10:1-4. [DOI: 10.1586/ern.09.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Bennett GA, Palliser HK, Saxby B, Walker DW, Hirst JJ. Effects of prenatal stress on fetal neurodevelopment and responses to maternal neurosteroid treatment in Guinea pigs. Dev Neurosci 2013; 35:416-26. [PMID: 24051896 DOI: 10.1159/000354176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/03/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Maternal psychosocial stress during pregnancy is associated with adverse neonatal outcomes. These outcomes result from changes in fetal brain development and lead to disrupted cognitive, behavioural and emotional development. The neurosteroid allopregnanolone has been shown to reduce neural excitability and aid in protecting the fetal brain from excitotoxic insults. The objectives of this study were to assess the effect of prenatal maternal stress on fetal brain development with and without maternal allopregnanolone treatment. METHODS Pregnant guinea pigs were subjected to stress induced by exposure to a strobe light at 50, 55, 60 and 65 days gestation. Salivary cortisol levels were measured before and after each exposure. Fetal brains were assessed for markers of brain development using immunohistochemistry and plasma allopregnanolone was measured by radioimmunoassay. RESULTS Female, but not male prenatal stress-exposed fetuses demonstrated higher brain-to-liver ratios (BLR). Male fetuses showed significantly reduced expression of myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and both males and females showed reduced expression of microtubule-associated protein 2 (MAP2). These markers were not affected by maternal allopregnanolone treatment. However, maternal allopregnanolone treatment resulted in an increase in fetal plasma allopregnanolone concentrations in control pregnancies but concentrations were not raised after prenatal stress exposure. CONCLUSIONS These findings indicate that the effects of prenatal stress on fetal brain development are sexually dimorphic with more pronounced negative effects seen on male neurodevelopment. Allopregnanolone treatment was not effective in raising fetal plasma concentrations after prenatal stress suggesting a stress-induced dysregulation of neurosteroid pathways during gestation. Interestingly, this study directly implicates prenatal stress in the disruption of fetal neurosteroid levels, such that it may mediate some of the deleterious effects on fetal neurodevelopment by facilitating a deficit in normal endogenous neuroprotective mechanisms.
Collapse
Affiliation(s)
- Greer A Bennett
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, N.S.W., Australia
| | | | | | | | | |
Collapse
|
21
|
A sensitive period for GABAergic interneurons in the dentate gyrus in modulating sensorimotor gating. J Neurosci 2013; 33:6691-704. [PMID: 23575865 DOI: 10.1523/jneurosci.0032-12.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Developmental perturbations during adolescence have been hypothesized to be a risk factor for the onset of several neuropsychiatric diseases. However the physiological alterations that result from such insults are incompletely understood. We investigated whether a defined perturbation during adolescence affected hippocampus-dependent sensorimotor gating functions, a proposed endophenotype in several psychiatric diseases, most notably schizophrenia. The developmental perturbation was induced during adolescence in mice using an antimitotic agent, methylazoxymethanol acetate (MAM), during postnatal weeks (PW) 4-6. MAM-treated mice showed a decrease in hippocampal neurogenesis immediately after treatment, which was restored by PW10 in adulthood. However, the mice treated with MAM during adolescent stages exhibited a persistent sensorimotor gating deficiency and a reduction in prepulse inhibition-related activation of hippocampal and prefrontal neurons in adulthood. Cellular analyses found a reduction of GABAergic inhibitory neurons and abnormal dendritic morphology of immature neurons in the dentate gyrus (DG). Interestingly, bilateral infusion of muscimol, a GABAA receptor agonist, into the DG region reversed the prepulse inhibition abnormality in MAM-treated mice. Furthermore, the behavioral deficits together with the decrease in the number of GABAergic neurons in this MAM model were rescued by exposure to an enriched environment during a defined critical adolescent period. These observations suggest a possible role for GABAergic interneurons in the DG during adolescence. This role may be related to the establishment of neural circuitry required for sensorimotor gating. It is plausible that changes in neurogenesis during this window may affect the survival of GABAergic interneurons, although this link needs to be causally addressed.
Collapse
|
22
|
Garrett L, Lie DC, Hrabé de Angelis M, Wurst W, Hölter SM. Voluntary wheel running in mice increases the rate of neurogenesis without affecting anxiety-related behaviour in single tests. BMC Neurosci 2012; 13:61. [PMID: 22682077 PMCID: PMC3504529 DOI: 10.1186/1471-2202-13-61] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 06/08/2012] [Indexed: 11/21/2022] Open
Abstract
Background The role played by adult neurogenesis in anxiety is not clear. A recent study revealed a surprising positive correlation between increased anxiety and elevated neurogenesis following chronic voluntary wheel running and multiple behavioural testing in mice, suggesting that adult hippocampal neurogenesis is involved in the genesis of anxiety. To exclude the possible confounding effect of multiple testing that may have occurred in the aforementioned study, we assessed (1) the effects of mouse voluntary wheel running (14 vs. 28 days) on anxiety in just one behavioural test; the open field, and (2), using different markers, proliferation, differentiation, survival and maturation of newly born neurons in the dentate gyrus immediately afterwards. Effects of wheel running on anxiety-related behaviour were confirmed in a separate batch of animals tested in another test of anxiety, the light/dark box test. Results Running altered measures of locomotion and exploration, but not anxiety-related behaviour in either test. 14 days running significantly increased proliferation, and differentiation and survival were increased after both running durations. 28 day running mice also exhibited an increased rate of maturation. Furthermore, there was a significant positive correlation between the amount of proliferation, but not maturation, and anxiety measures in the open field of the 28 day running mice. Conclusions Overall, this evidence suggests that without repeated testing, newly born mature neurons may not be involved in the genesis of anxiety per se.
Collapse
Affiliation(s)
- Lillian Garrett
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg/Munich, Germany
| | | | | | | | | |
Collapse
|
23
|
Haerich P, Eggers C, Pecaut MJ. Investigation of the Effects of Head Irradiation with Gamma Rays and Protons on Startle and Pre-Pulse Inhibition Behavior in Mice. Radiat Res 2012; 177:685-92. [DOI: 10.1667/rr2712.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Kitamura T, Okubo-Suzuki R, Takashima N, Murayama A, Hino T, Nishizono H, Kida S, Inokuchi K. Hippocampal function is not required for the precision of remote place memory. Mol Brain 2012; 5:5. [PMID: 22296713 PMCID: PMC3317849 DOI: 10.1186/1756-6606-5-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During permanent memory formation, recall of acquired place memories initially depends on the hippocampus and eventually become hippocampus-independent with time. It has been suggested that the quality of original place memories also transforms from a precise form to a less precise form with similar time course. The question arises of whether the quality of original place memories is determined by brain regions on which the memory depends. RESULTS To directly test this idea, we introduced a new procedure: a non-associative place recognition memory test in mice. Combined with genetic and pharmacological approaches, our analyses revealed that place memory is precisely maintained for 28 days, although the recall of place memory shifts from hippocampus-dependent to hippocampus-independent with time. Moreover, the inactivation of the hippocampal function does not inhibit the precision of remote place memory. CONCLUSION These results indicate that the quality of place memories is not determined by brain regions on which the memory depends.
Collapse
Affiliation(s)
- Takashi Kitamura
- Department of Biochemistry, Faculty of Medicine, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Castilla-Ortega E, Hoyo-Becerra C, Pedraza C, Chun J, Rodríguez De Fonseca F, Estivill-Torrús G, Santín LJ. Aggravation of chronic stress effects on hippocampal neurogenesis and spatial memory in LPA₁ receptor knockout mice. PLoS One 2011; 6:e25522. [PMID: 21980482 PMCID: PMC3183048 DOI: 10.1371/journal.pone.0025522] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/07/2011] [Indexed: 11/19/2022] Open
Abstract
Background The lysophosphatidic acid LPA1 receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPA1 receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory. Methodology/Principal Findings Male LPA1-null (NULL) and wild-type (WT) mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day). Immunohistochemistry for bromodeoxyuridine and endogenous markers was performed to examine hippocampal cell proliferation, survival, number and maturation of young neurons, hippocampal structure and apoptosis in the hippocampus. Corticosterone levels were measured in another a separate cohort of mice. Finally, the hole-board test assessed spatial reference and working memory. Under control conditions, NULL mice showed reduced cell proliferation, a defective population of young neurons, reduced hippocampal volume and moderate spatial memory deficits. However, the primary result is that chronic stress impaired hippocampal neurogenesis in NULLs more severely than in WT mice in terms of cell proliferation; apoptosis; the number and maturation of young neurons; and both the volume and neuronal density in the granular zone. Only stressed NULLs presented hypocortisolemia. Moreover, a dramatic deficit in spatial reference memory consolidation was observed in chronically stressed NULL mice, which was in contrast to the minor effect observed in stressed WT mice. Conclusions/Significance These results reveal that the absence of the LPA1 receptor aggravates the chronic stress-induced impairment to hippocampal neurogenesis and its dependent functions. Thus, modulation of the LPA1 receptor pathway may be of interest with respect to the treatment of stress-induced hippocampal pathology.
Collapse
Affiliation(s)
- Estela Castilla-Ortega
- Departamento de Psicobiología y Metodología de las CC, Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Carolina Hoyo-Becerra
- Unidad de Investigación, Fundación IMABIS, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las CC, Universidad de Málaga, Campus de Teatinos, Málaga, Spain
| | - Jerold Chun
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | | | - Guillermo Estivill-Torrús
- Unidad de Investigación, Fundación IMABIS, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - Luis J. Santín
- Departamento de Psicobiología y Metodología de las CC, Universidad de Málaga, Campus de Teatinos, Málaga, Spain
- * E-mail:
| |
Collapse
|
26
|
Kitamura T, Saitoh Y, Murayama A, Sugiyama H, Inokuchi K. LTP induction within a narrow critical period of immature stages enhances the survival of newly generated neurons in the adult rat dentate gyrus. Mol Brain 2010; 3:13. [PMID: 20426820 PMCID: PMC2868842 DOI: 10.1186/1756-6606-3-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 04/28/2010] [Indexed: 01/18/2023] Open
Abstract
Neurogenesis occurs in the adult hippocampus of various animal species. A substantial fraction of newly generated neurons die before they mature, and the survival rate of new neurons are regulated in an experience-dependent manner. Previous study showed that high-frequency stimulation (HFS) of perforant path fibers to the hippocampal dentate gyrus (DG) induces the long-term potentiation (LTP) in the DG, and enhances the survival of newly generated neurons in the DG. In this study, we addressed whether a time period exists during which the survival of new neurons is maximally sensitive to the HFS. We found that the enhancement of cell survival by HFS was exclusively restricted to the specific narrow period during immature stages of new neurons (7-10 days after birth). Furthermore, the pharmacological blockade of LTP induction suppressed the enhancement of cell survival by the HFS. These results suggest that the LTP induction within a narrow critical period of immature stages enhances the survival of newly generated neurons in rat DG.
Collapse
Affiliation(s)
- Takashi Kitamura
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo, 194-8511, Japan
| | | | | | | | | |
Collapse
|