1
|
Huang E, Xu K, Gu X, Zhu Q. PinX1 Depletion Improves Liver Injury in a Mouse Model of Nonalcoholic Fatty Liver Disease via Increasing Telomerase Activity and Inhibiting Apoptosis. Cytogenet Genome Res 2021; 161:449-462. [PMID: 34657040 DOI: 10.1159/000518284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022] Open
Abstract
PIN2/TRF1-interacting telomerase inhibitor 1 (PinX1) can inhibit tumor growth by inhibiting telomerase activity. However, only few studies investigated the expression and function of PinX1 in nonalcoholic fatty liver disease (NAFLD). Thus, here we aimed to explore the roles of PinX1 in high-fat diet (HFD)-induced NAFLD in mice and in isolated hepatocytes. The mRNA expression of PinX1 and mTERT as well as telomere length were analyzed by RT-PCR. Pathological changes were detected by HE staining and oil red O staining. Triglyceride, cholesterol, alanine aminotransferase, aspartic aminotransferase, and telomerase activity were detected by ELISA. Hepatocyte apoptosis was determined by TUNEL and flow cytometry, and protein expression was analyzed by western blotting. We found that the expression of PinX1 was upregulated in the HFD group compared with the WT group. PinX1 knockout improved HFD-induced liver injury in mice and exhibited less lipid accumulation in hepatocytes. Moreover, telomere length, telomerase activity, and mTERT expression were significantly reduced in liver tissues of HFD-induced mice and palmitic acid-induced hepatocytes, while PinX1 knockout attenuated the effect. Furthermore, HFD-induced PinX1-/- mice exhibited less hepatocyte apoptosis than HFD-induced WT mice. Besides, PinX1 knockout inhibited the increase of cleaved caspase-3 and cleaved PARP expression in vivo and in vitro. Moreover, inhibition of mTERT reversed the effect of PinX1 knockout in hepatocytes. Taken together, our findings indicate that PinX1 promotes hepatocyte apoptosis and lipid accumulation by decreasing telomere length and telomerase activity in the development of NAFLD. PinX1 might be a target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Erjiong Huang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuemei Gu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qihan Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Liu Y, Gong P, Zhou N, Zhang J, He C, Wang S, Peng H. Insufficient PINX1 expression stimulates telomerase activation by direct inhibition of EBV LMP1-NF-κB axis during nasopharyngeal carcinoma development. Biochem Biophys Res Commun 2019; 514:127-133. [PMID: 31027734 DOI: 10.1016/j.bbrc.2019.04.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Early malignant transformation of nasopharyngeal carcinoma(NPC) is associated with Epstein-Barr virus(EBV) infection and telomerase activation. The EBV latent membrane protein 1(LMP1) regulates expression of various genes by triggering NF-κB signaling pathway. PINX1 is a well-identified tumor suppressor gene by inhibiting telomerase activity and cancer cell growth. However, whether and how EBV inhibit PINX1 expression and activate telomerase in NPC is still incompletely elucidated. METHODS Immunohistochemistry, real-time PCR and Western blotting were utilized to explore the expression of PINX1. Chromatin immunoprecipitation(ChIP) and Dual-luciferase reporter assay were used to elucidate the regulatory mechanism between NF-κB and PINX1. TRAP-SYBR Green assay and Southern blotting were utilized to detect telomerase activity and telomere length. CCK8 and EdU tests were conducted to measure proliferation ability. RESULTS We demonstrated that PINX1 is down-regulated in NPC for the first time. Mechanistically, we found that LMP1 could inhibit the transcriptional activity of PINX1 by promoting the binding of p65 to three specific sites in PINX1 promoter, significantly, two(-1698/-1689, tgcaatttcc; -206/-197, cgggctttac) of which have not been reported. In addition, we also observed that LMP1 overexpression resulted in increased telomerase activity, prolonged telomere length and enhanced proliferation. CONCLUSION We first discovered EBV led to reduced PINX1 expression through LMP1-NF-κB-PINX1 axis, which up-regulated telomerase activity in NPC. And hence, the tumor cells acquired the ability to proliferate more exuberantly. This signaling pathway illustrates the relationship between EBV latent infection and telomerase activation, and further provides new thinking for early diagnosis and treatment in NPC.
Collapse
Affiliation(s)
- Yunyi Liu
- Guangdong Provincial Second People's Hospital, Southern Medical University, Guangzhou, 510317, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Pinggui Gong
- Guangdong Provincial Second People's Hospital, Southern Medical University, Guangzhou, 510317, Guangdong, China
| | - Ni Zhou
- Guangdong Provincial Second People's Hospital, Southern Medical University, Guangzhou, 510317, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Junjun Zhang
- Guangdong Provincial Second People's Hospital, Southern Medical University, Guangzhou, 510317, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Cui He
- Guangdong Provincial Second People's Hospital, Southern Medical University, Guangzhou, 510317, Guangdong, China
| | - Shuilian Wang
- Guangdong Provincial Second People's Hospital, Southern Medical University, Guangzhou, 510317, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Hong Peng
- Guangdong Provincial Second People's Hospital, Southern Medical University, Guangzhou, 510317, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
3
|
Prognostic and Clinicopathological Value of PINX1 in Various Human Tumors: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4621015. [PMID: 30079348 PMCID: PMC6069698 DOI: 10.1155/2018/4621015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/30/2018] [Accepted: 06/27/2018] [Indexed: 01/11/2023]
Abstract
PINX1 (Pin2/TRF1 interacting protein X1, an intrinsic telomerase inhibitor and putative tumor suppressor gene) may represent a novel prognostic tumor biomarker. However, the results of previous studies are inconsistent and the prognostic value of PINX1 remains controversial. Therefore, we conducted a meta-analysis to determine whether PINX1 expression is associated with overall survival (OS), disease-specific survival (DSS), disease-free survival (DFS), recurrence-free survival (RFS), and clinicopathological characteristics in patients with malignant tumors. A systematic search was performed in the PubMed, Web of Science, and Embase databases in April 2018. Quality assessment was performed according to the modified Newcastle-Ottawa Scale. Pooled odds ratios (ORs) and hazard ratios (HRs) with 95.0% confidence intervals (CIs) were calculated to determine the relationship between PINX1 expression and OS, DSS, DFS/RFS, and clinicopathological characteristics. Due to the heterogeneity across the included studies, subgroup and sensitivity analyses were performed. Fixed-effects models were used when the heterogeneity was not significant and random-effects models were used when the heterogeneity was significant. Fourteen studies of 16 cohorts including 2,624 patients were enrolled. Low PINX1 expression was associated with poor OS (HR: 1.51, 95.0% CI: 1.03-2.20; P = 0.035) and DFS/RFS (HR: 1.78, 95.0% CI: 1.28-2.47; P = 0.001) but not DSS (HR: 0.80, 95.0% CI: 0.38-1.67; P = 0.548). Low PINX1 expression was also associated with lymphatic invasion (OR: 2.23, 95.0% CI: 1.35-3.70; P = 0.002) and advanced tumor-node-metastasis stage (OR: 2.43, 95.0% CI: 1.29-4.57; P = 0.006). No significant associations were observed between low PINX1 expression and sex, depth of invasion, grade of differentiation, and distant metastasis. Low PINX1 expression was associated with poor OS and DFS/RFS and lymphatic invasion and advanced tumor-node-metastasis stage, suggesting that PINX1 expression may be a useful predictor of prognosis in patients with malignant tumors.
Collapse
|
4
|
Barczak W, Sobecka A, Golusinski P, Masternak MM, Rubis B, Suchorska WM, Golusinski W. hTERT gene knockdown enhances response to radio- and chemotherapy in head and neck cancer cell lines through a DNA damage pathway modification. Sci Rep 2018; 8:5949. [PMID: 29654294 PMCID: PMC5899166 DOI: 10.1038/s41598-018-24503-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to analyze the effect of hTERT gene knockdown in HNSCC cells by using novel in vitro models of head and neck cancer (HNSCC), as well as improving its personalized therapy. To obtain the most efficient knockdown siRNA, shRNA-bearing lentiviral vectors were used. The efficiency of hTERT silencing was verified with qPCR, Western blot, and immunofluorescence staining. Subsequently, the type of cell death and DNA repair mechanism induction after hTERT knockdown was assessed with the same methods, followed by flow cytometry. The effect of a combined treatment with hTERT gene knockdown on Double-Strand Breaks levels was also evaluated by flow cytometry. Results showed that the designed siRNAs and shRNAs were effective in hTERT knockdown in HNSCC cells. Depending on a cell line, hTERT knockdown led to a cell cycle arrest either in phase G1 or phase S/G2. Induction of apoptosis after hTERT downregulation with siRNA was observed. Additionally, hTERT targeting with lentiviruses, followed by cytostatics administration, led to induction of apoptosis. Interestingly, an increase in Double-Strand Breaks accompanied by activation of the main DNA repair mechanism, NER, was also observed. Altogether, we conclude that hTERT knockdown significantly contributes to the efficacy of HNSCC treatment.
Collapse
Affiliation(s)
- Wojciech Barczak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland. .,Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.
| | - Agnieszka Sobecka
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland
| | - Pawel Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,Head and Neck Cancer Biology Lab, Department of Biology and Environmental Studies, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal M Masternak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,University of Central Florida, Burnett School of Biomedical Sciences, College of Medicine, FL, 32827, Orlando, USA
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 Str., 60-355, Poznan, Poland
| | - Wiktoria M Suchorska
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15 Str., 61-866, Poznan, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland
| |
Collapse
|
5
|
Li HL, Song J, Yong HM, Hou PF, Chen YS, Song WB, Bai J, Zheng JN. PinX1: structure, regulation and its functions in cancer. Oncotarget 2018; 7:66267-66275. [PMID: 27556185 PMCID: PMC5323232 DOI: 10.18632/oncotarget.11411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
PIN2/TRF1-interacting telomerase inhibitor 1 (PinX1) is a novel cloned gene located at human chromosome 8p23, playing a vital role in maintaining telomeres length and chromosome stability. It has been demonstrated to be involved in tumor genesis and progression in most malignancies. However, some researches showed opposing molecular status of PinX1 gene and its expression patterns in several other types of tumors. The pathogenic mechanism of PinX1 expression in human malignancy is not yet clear. Moreover, emerging evidence suggest that PinX1 (especially its TID domain) might be a potential new target cancer treatment. Therefore, PinX1 may be a new potential diagnostic biomarker and therapeutic target for human cancers, and may play different roles in different human cancers. The functions and the mechanisms of PinX1 in various human cancers remain unclear, suggesting the necessity of further extensive works of its role in tumor genesis and progression.
Collapse
Affiliation(s)
- Hai-Long Li
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jun Song
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hong-Mei Yong
- Department of Medical Oncology, Huai'an Hospital to Xuzhou Medical College, Huai'an, Jiangsu, China
| | - Ping-Fu Hou
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yan-Su Chen
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wen-Bo Song
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jin Bai
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
Mazur J, Roy K, Kanwar JR. Recent advances in nanomedicine and survivin targeting in brain cancers. Nanomedicine (Lond) 2017; 13:105-137. [PMID: 29161215 DOI: 10.2217/nnm-2017-0286] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain cancer is a highly lethal disease, especially devastating toward both the elderly and children. This cancer has no therapeutics available to combat it, predominately due to the blood-brain barrier (BBB) preventing treatments from maintaining therapeutic levels within the brain. Recently, nanoparticle technology has entered the forefront of cancer therapy due to its ability to deliver therapeutic effects while potentially passing physiological barriers. Key nanoparticles for brain cancer treatment include glutathione targeted PEGylated liposomes, gold nanoparticles, superparamagnetic iron oxide nanoparticles and nanoparticle-albumin bound drugs, with these being discussed throughout this review. Recently, the survivin protein has gained attention as it is over-expressed in a majority of tumors. This review will briefly discuss the properties of survivin, while focusing on how both nanoparticles and survivin-targeting treatments hold potential as brain cancer therapies. This review may provide useful insight into new brain cancer treatment options, particularly survivin inhibition and nanomedicine.
Collapse
Affiliation(s)
- Jake Mazur
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| | - Kislay Roy
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| | - Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research, Centre for Molecular and Medical Research (CMMR), School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong VIC 3217, Australia
| |
Collapse
|
7
|
Feng YZ, Zhang QY, Fu MT, Zhang ZF, Wei M, Zhou JY, Shi R. Low expression of PinX1 is associated with malignant behavior in basal-like breast cancer. Oncol Rep 2017; 38:109-119. [PMID: 28586040 PMCID: PMC5492774 DOI: 10.3892/or.2017.5696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Human Pinx1 protein, associated with shelterin proteins, is widely revealed as a haploinsufficient tumor suppressor. Growing evidence has manifested the deregulation of PinX1 in distinct cancers. Nonetheless, the loss status of PinX1 and its diagnostic, prognostic and clinicopathological significance in Basal-like breast cancer are still unclear. In the present study, the PinX1 expression levels of breast cancer tissues were investigated by qRT-PCR and immunoblotting assays. Then immunohistochemistry (IHC) was performed to detect PinX1 expression on a tissue microarray. The optimal threshold for PinX1 positivity was determined by receiver operating characteristic (ROC) curve analysis. To clarify the probable role of PinX1 in BLBC, the PinX1 knockout and stably over-expressed MDA-MB-231 cell lines were constructed by the CRISPR-Cas9 system and gene transfection. The association of PinX1 expression with cell proliferation, migration and apoptosis of MDA-MB-231 cells were observed by CCK-8 assay, wound healing assay, Transwell assay, flow cytometric analysis and immunoblotting of the cleaved caspase-3 protein level. Our results showed that both PinX1 mRNA and protein expression were downregulated in breast cancer tissues (P<0.05). In IHC analysis, the optimal cut-off parameter for PinX1 positive expression was 62.5% (the AUC was 0.749, P<0.01). PinX1 positivity was 76.9% (10/14) in luminal subtypes, 50% (5/10) in Her2-enriched breast cancer and 27.3% (9/33) in basal-like subtypes. Besides, in 59 invasive ductal breast carcinomas, PinX1 expression was inversely related to histology grade (P<0.05) while it was positively associated with PR status (P<0.05) and ER status (P<0.05). These results indicated that low expression of PinX1 correlated with aggressive clinicopathological significance of breast cancer, especially in the basal-like subtype. Besides, we identified that overexpression of PinX1 inhibited the proliferation rates and migration ability and increased the apoptosis rates of BLBC. Our findings demonstrated that low expression of PinX1 was associated with malignant behaviors in basal-like subtype of breast cancer. PinX1 is likely a feasible biomarker and molecular target of BLBC.
Collapse
Affiliation(s)
- Yu-Zhen Feng
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qing-Yan Zhang
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Mei-Ting Fu
- The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhen-Fei Zhang
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Min Wei
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jue-Yu Zhou
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Rong Shi
- Institute of Genetic Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
8
|
Zhao H, Cao Y, Wang G, Luo Z. Expression of FOXC2, PinX1, Ki-67 and Cyclin D1 in cutaneous cell carcinoma. Oncol Lett 2017; 14:635-638. [PMID: 28693215 PMCID: PMC5494719 DOI: 10.3892/ol.2017.6244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022] Open
Abstract
We investigated the expression of FOXC2, PinX1, Ki-67 and Cyclin D1 in cutaneous cell carcinoma. We collected 30 cutaneous squamous cell carcinoma (SCC), 30 cutaneous basal cell carcinoma (BCC) and 30 normal skin tissues. The protein expression and gene expression of FOXC2, endogenous telomerase-inhibiting gene PinX1, Ki-67 and Cyclin D1 was measured by immunohistochemistry (IHC) and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), respectively. In SCC and BCC tissues, the positive rate of protein expression and mRNA level of PinX1 were both significantly lower than those in normal tissues. However, the positive rate of protein expression and mRNA level of FOXC2, Ki-67 and Cyclin D1 were significantly higher than those in normal tissues (p<0.05). There was no significant difference between SCC and BCC (p>0.05). In conclusion, FOXC2 may participate in the carcinogenesis process of SCC and BCC. It may also correlate with the expression PinX, Ki-67 and Cyclin D1. However, FOXC2 alone cannot be used as a diagnostic indicator of SCC.
Collapse
Affiliation(s)
- Haiying Zhao
- Department of Dermatology and Sexually Transmitted Disease, Binzhou City Center Hospital, Binzhou, Shandong 251700, P.R. China
| | - Yunfeng Cao
- Department of Oncology, Binzhou City Center Hospital, Binzhou, Shandong 251700, P.R. China
| | - Guoqiang Wang
- Department of Oncology, Binzhou City Center Hospital, Binzhou, Shandong 251700, P.R. China
| | - Zengxiang Luo
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
9
|
Chen Y, Zhang Y. Functional and mechanistic analysis of telomerase: An antitumor drug target. Pharmacol Ther 2016; 163:24-47. [DOI: 10.1016/j.pharmthera.2016.03.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/29/2016] [Indexed: 01/26/2023]
|
10
|
Li HL, Han L, Chen HR, Meng F, Liu QH, Pan ZQ, Bai J, Zheng JN. PinX1 serves as a potential prognostic indicator for clear cell renal cell carcinoma and inhibits its invasion and metastasis by suppressing MMP-2 via NF-κB-dependent transcription. Oncotarget 2016; 6:21406-20. [PMID: 26033551 PMCID: PMC4673274 DOI: 10.18632/oncotarget.4011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/14/2015] [Indexed: 12/19/2022] Open
Abstract
PIN2/TRF1-interacting telomerase inhibitor 1 (PinX1) is a novel cloned gene which has been identified as a major haploinsufficient tumor suppressor essential for maintaining telomerase activity, the length of telomerase and chromosome stability. This study explored the clinical significance and biological function of PinX1 in human clear cell renal cell carcinoma (ccRCC). The clinical relevance of PinX1 in ccRCC was evaluated using tissue microarray and immunohistochemical staining in two independent human ccRCC cohorts. Our data demonstrated that PinX1 expression was dramatically decreased in ccRCC tissues compared with normal renal tissues and paired adjacent non-tumor tissues. Low PinX1 expression was significantly correlated with depth of invasion, lymph node metastasis and advanced TNM stage in patients, as well as with worse overall and disease-specific survival. Cox regression analysis revealed that PinX1 expression was an independent prognostic factor for ccRCC patients. Moreover, PinX1 inhibited the migration and invasion of ccRCC by suppressing MMP-2 expression and activity via NF-κB-dependent transcription in vitro. In vivo studies confirmed that PinX1 negatively regulated ccRCC metastasis and the expression of MMP-2 and NF-κB-p65. These findings indicate that PinX1 suppresses ccRCC metastasis and may serve as a ccRCC candidate clinical prognostic marker and a potential therapeutic target.
Collapse
Affiliation(s)
- Hai-Long Li
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Li Han
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hai-Rong Chen
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fei Meng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Qing-Hua Liu
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhen-Qiang Pan
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jin Bai
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun-Nian Zheng
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Department of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
11
|
Shi M, Cao M, Song J, Liu Q, Li H, Meng F, Pan Z, Bai J, Zheng J. PinX1 inhibits the invasion and metastasis of human breast cancer via suppressing NF-κB/MMP-9 signaling pathway. Mol Cancer 2015; 14:66. [PMID: 25888829 PMCID: PMC4404090 DOI: 10.1186/s12943-015-0332-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/03/2015] [Indexed: 12/31/2022] Open
Abstract
Background PinX1 (PIN2/TRF1-interacting telomerase inhibitor 1) was suggested to be correlated with tumor progression. This study was designed to evaluate the role of PinX1 in human breast cancer. Methods To evaluate the function of PinX1 in breast cancer, we used a tissue microarray (TMA) of 405 human breast cancer patients and immunohistochemistry to analyze the correlation between PinX1 expression and clinicopathologic variables and patient survival. We also detected the abilities of cell migration and invasion in breast cancer by performing cell migration and invasion assay, gelatin zymography and western blot analysis. Lastly, we set up the nude mice model by Tail vein assay to exam the functional role of PinX1 in breast cancer metastasis. Results We found that low PinX1 expression was associated with lymph node metastasis (P = 0.002) and histology grade (P = 0.001) in patients, as well as with poorer overall and disease-specific survival (P = 0.010 and P = 0.003, respectively). Moreover, we identified that PinX1 inhibited the migration and invasion of breast cancer by suppressing MMP-9 expression and activity via NF-κB-dependent transcription in vitro. Finally, our mice model confirmed that PinX1 suppressed breast cancer metastasis in vivo. Conclusions Our data revealed that low PinX1 expression was an independent negative prognostic factor for breast cancer patients. These findings suggested that PinX1 might be function as a tumor metastasis suppressor in the development and progression of breast cancer by regulating the NF-κB/MMP-9 signaling pathway, and might be a prognostic marker as well as a therapeutic target for breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0332-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meilin Shi
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China. .,School of Medical Imaging, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Menghan Cao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China.
| | - Jun Song
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China.
| | - Qinghua Liu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China. .,Department of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Hailong Li
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China. .,Department of Urology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Fei Meng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China.
| | - Zhenqiang Pan
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jin Bai
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu Province, China. .,Department of Urology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| |
Collapse
|
12
|
Zhu X, Xu JJ, Hu SS, Feng JG, Jiang LH, Hou XX, Cao J, Han J, Ling ZQ, Ge MH. Pim-1 acts as an oncogene in human salivary gland adenoid cystic carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:114. [PMID: 25551195 PMCID: PMC4304190 DOI: 10.1186/s13046-014-0114-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022]
Abstract
Background Pim-1 (Provirus integration site for Moloney murine leukemia virus 1) belongs to the Ser/Thr kinase family and plays a pivotal role in occurrence and development of oncogenesis. Recent studies have demonstrated that Pim-1 phosphorylates RUNX3 and alters its subcellular localization. However, few studies have concerned the implications of Pim-1 in the salivary gland adenoid cystic carcinoma (ACC). In this study, we aimed to clarify the function of Pim-1 in ACC in vitro. Meanwhile, we measured the levels of Pim-1 and RUNX3 in the ACC tissues. The correlations between Pim-1/RUNX3 levels and clinical parameters were also analyzed. Methods SACC-83 and SACC-LM cells were transfected with the Pim-1 siRNA. Pim-1 mRNA and protein expression were measured using real-time PCR and immnuoblot, respectively. Cell proliferation was analyzed by CCK-8 assay. Cell cycle, apoptosis, and mitochondrial membrane potential were detected by flow cytometry. Effects of Pim-1 on cells’ invasion were evaluated by transwell migration assay. Pim-1 and RUNX3 levels in ACC tissues were examined by immunohistochemistry. Results Pim-1 siRNA reduces cell proliferation, induces apoptosis, causes cell cycle arrest through cell cycle related proteins (Cyclin D1 and CDK4), mitochondrial depolarization, and decreases invasive ability in SACC-83 and SACC-LM cells. Pim-1 and RUNX3 levels are significantly relevant and associated with T-stage and nerve invasion in the ACC tissues. Conclusions This study demonstrates the oncogenic role of Pim-1 in ACC. The findings also suggest that Pim-1 may serve as a neoteric therapeutic target and potential prognostic marker for ACC cancer.
Collapse
Affiliation(s)
- Xin Zhu
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, 310022, Hangzhou, China.
| | - Jia-jie Xu
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, 310022, Hangzhou, China.
| | - Si-si Hu
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, 310022, Hangzhou, China.
| | - Jian-guo Feng
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, 310022, Hangzhou, China.
| | - Lie-hao Jiang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, 310022, Hangzhou, China.
| | - Xiu-xiu Hou
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, 310022, Hangzhou, China.
| | - Jun Cao
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, 310022, Hangzhou, China.
| | - Jing Han
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, 310022, Hangzhou, China.
| | - Zhi-qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, 310022, Hangzhou, China.
| | - Ming-hua Ge
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, 310022, Hangzhou, China.
| |
Collapse
|
13
|
Li J, Liu J, Li P, Mao X, Li W, Yang J, Liu P. Loss of LKB1 disrupts breast epithelial cell polarity and promotes breast cancer metastasis and invasion. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:70. [PMID: 25178656 PMCID: PMC4431490 DOI: 10.1186/s13046-014-0070-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022]
Abstract
Background LKB1, also known as STK11, is a master kinase that serves as an energy metabolic sensor and is involved in cell polarity regulation. Recent studies have indicated that LKB1 is related to breast tumorigenesis and breast cancer progression. However, little work has been done on the roles of LKB1 in cell polarity and epithelial-mesenchymal transition in breast cancer. In this study, we tried to prove that loss of LKB1 disrupts breast epithelial cell polarity and causes tumor metastasis and invasion. Methods The relationships of LKB1 expression to clinic-pathological parameters and epithelial markers E-cadherin and high-molecular-weight -cytokeratin (HMW-CK) were investigated in 80 clinical breast cancer tissue samples and their paired normal control breast tissue samples by using immunohistochemistry. Then, the LKB1 expressions in metastatic and non-metastatic breast cancer cell lines were compared. The roles of LKB1 in cell polarity and epithelial-mesenchymal transition in breast cancer were determined by using immunofluorescence, western blot assay, and cell migration and invasive assays. Finally, the non-transformed human breast cell line MCF-10A was cultured in three dimensions to further reveal the role of LKB1 in breast epithelial cell polarity maintenance. Results Histopathological analysis showed that LKB1 expression level was significantly negatively correlated with breast cancer TNM stage, and positively correlated with ER/PR status and expression levels of E-cadherin and HMW-CK. Immunofluorescence staining showed that LKB1 was co-localized with E-cadherin at adheren junctions. In vitro analysis revealed that loss of LKB1 expression enhanced migration, invasion and the acquisition of mesenchymal phenotype, while LKB1 overexpression in MDA-MB-435 s cells, which have a low basal level of LKB1 expression, promoted the acquisition of epithelial phenotype. Finally, it was found for the first time that endogenous LKB1 knockdown resulted in abnormal cell polarity in acini formed by non-transformed breast epithelial cells grown in 3D culture. Conclusion Our data indicated that low expression of LKB1 was significantly associated with established markers of unfavorable breast cancer prognosis, such as loss of ER/PR, E-cadherin and HMW-CK. Knockdown of endogenous LKB1 gave rise to dysregulation of cell polarity and invasive phenotype of breast cancer cells.
Collapse
Affiliation(s)
- Juan Li
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Pingping Li
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Xiaona Mao
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Wenjie Li
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Jin Yang
- Department of Oncology, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
14
|
Shi R, Zhao Z, Zhou H, Wei M, Ma WL, Zhou JY, Tan WL. Reduced expression of PinX1 correlates to progressive features in patients with prostate cancer. Cancer Cell Int 2014; 14:46. [PMID: 24936151 PMCID: PMC4059453 DOI: 10.1186/1475-2867-14-46] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 06/04/2014] [Indexed: 11/24/2022] Open
Abstract
Background Pin2/TRF1 binding protein X1 (PinX1) has been identified as an endogenous telomerase inhibitor and a major haploinsufficient tumor suppressor gene. Increasing evidence suggests that reduced expression of PinX1 plays a key role in tumorigenesis. However, the PinX1 expression status and its correlation with the clinicopathological features in prostate cancer (PCa) have not been investigated. Methods PinX1 mRNA and protein expression in PCa and adjacent normal prostate tissues were evaluated by real-time quantitative RT-PCR (qRT-PCR) and western blotting. The clinicopathological significance of PinX1 was investigated by immunohistochemistry (IHC) analysis on a PCa tissue microarray (TMA). The cut-off score for positive expression of PinX1 was determined by the receiver operating characteristic (ROC) analysis. The correlation between PinX1 expression and clinicopathological features of PCa was analyzed by Chi-square test. Results Reduced expression of PinX1 mRNA and protein was observed in the majority of PCa, compared with their paired adjacent normal prostate tissues. When PinX1 positive expression percentage was determined to be above 60% (area under ROC curve = 0.833, P = 0.000), positive expression of PinX1 was observed in 100% (8/8) of normal prostate tissues and 32.5% (13/40) of PCa tissues by IHC. Reduced expression of PinX1 in patients was correlated with advanced clinical stage (χ2 = 10.230, p = 0.017), high Gleason score (χ2 = 4.019, p = 0.045), positive regional lymph node metastasis (χ2 = 10.852, p = 0.004) and distant metastasis (χ2 = 7.965, p = 0.005). Conclusions Our findings suggest that reduced expression of PinX1 is correlates to progressive features in patients with PCa and may serve as a potential marker for diagnosis.
Collapse
Affiliation(s)
- Rong Shi
- Institute of Genetic Engineering, Southern Medical University, Guangzhou 510515, China
| | - Zhen Zhao
- Department of Urinary Surgery, Nanfang Hosptial, Southern Medical University, Guangzhou 510515, China
| | - Hui Zhou
- Institute of Genetic Engineering, Southern Medical University, Guangzhou 510515, China
| | - Min Wei
- Institute of Genetic Engineering, Southern Medical University, Guangzhou 510515, China
| | - Wen-Li Ma
- Institute of Genetic Engineering, Southern Medical University, Guangzhou 510515, China
| | - Jue-Yu Zhou
- Institute of Genetic Engineering, Southern Medical University, Guangzhou 510515, China
| | - Wan-Long Tan
- Department of Urinary Surgery, Nanfang Hosptial, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
ZHANG RUI, ZHAO JIAN, WANG XU, WANG LILI, XU JIAN, SONG CHUN. PinX1 without the G-patch motif suppresses proliferation, induces senescence, but does not inhibit telomerase activity in colorectal cancer SW480 cells. Oncol Rep 2014; 32:286-92. [DOI: 10.3892/or.2014.3199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/11/2014] [Indexed: 11/05/2022] Open
|
16
|
Long L, Wang W, Cai XD, Cheng DU, Shuai X, Peng Y. PinX1-siRNA/mPEG-PEI-SPION combined with doxorubicin enhances the inhibition of glioma growth. Exp Ther Med 2014; 7:1170-1176. [PMID: 24940406 PMCID: PMC3991531 DOI: 10.3892/etm.2014.1586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/19/2014] [Indexed: 01/08/2023] Open
Abstract
Resistance to chemotherapy and the side effects of anticancer drugs are the major obstacles for glioma treatment. The aim of the present study was to develop a novel approach for the treatment of gliomas that improved the therapeutic effect; the anticancer drug, doxorubicin (DOX), was combined with short interfering (si)RNA and monomethoxy polyethylene glycol polyethylenimine superparamagnetic iron oxide nanoparticle (mPEG-PEI-SPION), a magnetic resonance imaging (MRI)-visible nanoparticle. Specific siRNA molecules, delivered by mPEG-PEI-SPION, were employed to knockdown the PIN2-interacting protein 1 (PinX1) gene in C6 glioma cells. PinX1 is a nucleolar protein associated with telomere and telomerase. C6 cells were treated with DOX and/or PinX1-siRNA. The results of the transfection experiments revealed that siRNA/mPEG-PEI-SPION was transfected into C6 cells with high efficiency. PinX1-siRNA was unable to inhibit C6 cells, while in the PinX1-siRNA + DOX group, the same dose of DOX caused an increased loss of cell viability. Therefore, mPEG-PEI-SPION was shown to be viable for siRNA delivery into C6 cells and coadministration of DOX with PinX1-siRNA may be a potential therapeutic method for inhibiting gliomas.
Collapse
Affiliation(s)
- Ling Long
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China ; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Weiwei Wang
- Center of Biomedical Engineering, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Xia-Dong Cai
- Department of Neurology, The Sixth Affiliated Hospital (Guangdong Gastrointestinal and Anal Hospital), Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - DU Cheng
- Center of Biomedical Engineering, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Xintao Shuai
- Center of Biomedical Engineering, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
17
|
Deng GH, Liu J, Zhang J, Wang Y, Peng XC, Wei YQ, Jiang Y. Exogenous norepinephrine attenuates the efficacy of sunitinib in a mouse cancer model. J Exp Clin Cancer Res 2014; 33:21. [PMID: 24555849 PMCID: PMC3940302 DOI: 10.1186/1756-9966-33-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/18/2014] [Indexed: 02/05/2023] Open
Abstract
Background Sunitinib alone exhibits satisfactory efficacy in several mouse homografts and xenografts but unsatisfactory efficacy in many kinds of solid tumors in clinic. Different from animals, receiving a diagnosis of cancer impacts chronic stress on patients. Here, we examine whether norepinephrine (NE), one of the most potent stress related hormones, leads to the difference in the efficacy of sunitinib between clinical and preclinical trials. Methods The influence of NE on mouse melanoma B16F1 cells under sunitinib was evaluated in vitro and in vivo. The β-AR/cAMP/PKA (β-adrenoceptor/cyclic adenosine monophosphate/protein kinase A) signaling pathway was also evaluated in human lung adenocarcinoma cells. Results We found that NE upregulated the expression of VEGF, IL-8 and IL-6 in vitro and stimulated tumor growth in vivo, which was mediated by β-AR/cAMP/PKA signaling pathway and could be inhibited by propranolol, a β-blocker for hypertension for decades. Conclusions This research indicates exogenous norepinephrine attenuates the efficacy of sunitinib, and a combination of sunitinib and propranolol might be suggested as a new strategy in solid tumor in clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu Jiang
- Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
18
|
The role of PinX1 in growth control of breast cancer cells and its potential molecular mechanism by mRNA and lncRNA expression profiles screening. BIOMED RESEARCH INTERNATIONAL 2014; 2014:978984. [PMID: 24672800 PMCID: PMC3929369 DOI: 10.1155/2014/978984] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 11/12/2013] [Accepted: 12/03/2013] [Indexed: 01/07/2023]
Abstract
As a major tumor suppressor gene, the role of PinX1 in breast cancer and its molecular mechanism remain unclear. In this study, overexpression of PinX1 was generated in 3 breast cancer cell lines, and knockdown of PinX1 was performed in a nontumorigenic breast cell line. The regulation of PinX1 on cell proliferation and cell cycle was observed. A microarray-based lncRNA and mRNA expression profile screening was also performed. We found a lower growth rate, G0/G1 phase arrest, and S phase inhibition in the PinX1 overexpressed breast cancer cells, while a higher growth rate, decreased G0/G1 phase, and increased S phase rate in the PinX1 knocked-down nontumorigenic breast cell. A total of 977 mRNAs and 631 lncRNAs were identified as differentially expressed transcripts between PinX1 overexpressed and control MCF-7 cells. Further analysis identified the involvement of these mRNAs in 52 cancer related pathways and various other biological processes. 11 enhancer-like lncRNAs and 25 lincRNAs with their adjacent mRNA pairs were identified as coregulated transcripts. Our results confirmed the role of PinX1 as a major tumor suppressor gene in breast cancer cell lines and provided information for further research on the molecular mechanisms of PinX1 in tumorigenesis.
Collapse
|
19
|
PinX1, a novel target gene of p53, is suppressed by HPV16 E6 in cervical cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:88-96. [PMID: 24412852 DOI: 10.1016/j.bbagrm.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 01/14/2023]
|
20
|
Iachettini S, Stevens MF, Frigerio M, Hummersone MG, Hutchinson I, Garner TP, Searle MS, Wilson DW, Munde M, Nanjunda R, D'Angelo C, Zizza P, Rizzo A, Cingolani C, De Cicco F, Porru M, D'Incalci M, Leonetti C, Biroccio A, Salvati E. On and off-target effects of telomere uncapping G-quadruplex selective ligands based on pentacyclic acridinium salts. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:68. [PMID: 24330541 PMCID: PMC3849007 DOI: 10.1186/1756-9966-32-68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/29/2013] [Indexed: 02/03/2023]
Abstract
Quadruplexes DNA are present in telomeric DNA as well as in several cancer-related gene promoters and hence affect gene expression and subsequent biological processes. The conformations of G4 provide selective recognition sites for small molecules and thus these structures have become important drug-design targets for cancer treatment. The DNA G-quadruplex binding pentacyclic acridinium salt RHPS4 (1) has many pharmacological attributes of an ideal telomere-targeting agent but has undesirable off-target liabilities. Notably a cardiovascular effect was evident in a guinea pig model, manifested by a marked and sustained increase in QTcB interval. In accordance with this, significant interaction with the human recombinant β2 adrenergic receptor, and M1, M2 and M3 muscarinic receptors was observed, together with a high inhibition of the hERG tail current tested in a patch clamp assay. Two related pentacyclic structures, the acetylamines (2) and (3), both show a modest interaction with β2 adrenergic receptor, and do not significatively inhibit the hERG tail current while demonstrating potent telomere on-target properties comparing closely with 1. Of the two isomers, the 2-acetyl-aminopentacycle (2) more closely mimics the overall biological profile of 1 and this information will be used to guide further synthetic efforts to identify novel variants of this chemotype, to maximize on-target and minimize off-target activities. Consequently, the improvement of toxicological profile of these compounds could therefore lead to the obtainment of suitable molecules for clinical development offering new pharmacological strategies in cancer treatment.
Collapse
|
21
|
El Idrissi M, Hervieu V, Merle P, Mortreux F, Wattel E. Cause-specific telomere factors deregulation in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:64. [PMID: 24020493 PMCID: PMC3850108 DOI: 10.1186/1756-9966-32-64] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/22/2013] [Indexed: 12/25/2022]
Abstract
Background Among the numerous genetic defects associated with hepatocarcinogenesis, telomere abnormalities appear to play a role both in tumor promotion and maintenance. Telomeres, the chromosome extremities, are protected by specific proteins, the shelterin complex and by additional factors. Besides telomerase dysregulation, expression changes of these telomere factors have been observed in cancers. Methods Here, we tested the hypothesis that such dysregulation might occur in hepatocellular carcinoma (HCC) with specific patterns depending on the cause of HCC. We compared telomere length, telomerase activity (TA), hTERT and telomere genes expression using PCR and Western-blot analyses between non-cirrhotic liver, peritumoral cirrhotic tissue (40 samples) and cancerous tissue (40 samples) derived from 40 patients with HBV-, HCV-, or alcohol-related HCC. Results Alterations in TA, hTERT expression and telomere length between non-cirrhotic, cirrhotic, and tumor samples were not significantly influenced by the cause of HCC. In contrast, the expression pattern of hTR, shelterin, and non-shelterin telomere protective factors clearly distinguished the 3 causes of cirrhosis and HCC. For patients with HBV diseased liver, when compared with non-cirrhotic liver, the cirrhotic tissue underexpressed all shelterin and all but HMRE11A and RAD50 non-shelterin telomere factors. For HCV the expression level of POT1, RAP1, Ku80, and RAD50 was higher in cirrhotic than in non-cirrhotic liver samples without evidence for significant transcriptional change for the remaining genes. For alcohol-related liver diseases, the expression level of POT1, RAP1, TIN2, hMRE11A, hMRE11B, Ku70, Ku80, RAD50, TANK1, and PINX1 was higher in cirrhotic than in non-cirrhotic liver samples. For the 3 causes of HCC, there was no significant change in shelterin and non-shelterin gene expression between cirrhosis and HCC samples. Conclusions These results validate our hypotheses and demonstrate that cirrhosis and HCC add-up numerous telomere dysfunctions including numerous cause-specific changes that appear to occur early during the course of the disease.
Collapse
Affiliation(s)
- Manale El Idrissi
- UMR5239 Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Université Lyon 1, CNRS, Pierre Bénite, France.
| | | | | | | | | |
Collapse
|
22
|
Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci 2013; 38:426-34. [PMID: 23932019 DOI: 10.1016/j.tibs.2013.07.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 12/13/2022]
Abstract
The hallmarks of cancer described by Hanahan and Weinberg are properties that cancer cells must possess for successful transformation. It is believed that each of these hallmarks is independently driven. Although elongation of telomeres is thought to be the prime function of reactivated telomerase reverse transcriptase, this activity does not account for all its effects, such as increasing cell proliferation, resistance to apoptosis, and invasion. Recent studies suggest that the telomerase subunit telomerase reverse transcriptase (TERT) has novel molecular functions including transcriptional regulation and metabolic reprogramming. We summarize these functions and discuss how they could directly regulate the various hallmarks of cancer. Finally, we suggest that therapeutics targeting noncanonical telomerase functions may work better than those that target its role in telomere extension.
Collapse
|
23
|
Zuo J, Wang DH, Zhang YJ, Liu L, Liu FL, Liu W. Expression and mechanism of PinX1 and telomerase activity in the carcinogenesis of esophageal epithelial cells. Oncol Rep 2013; 30:1823-31. [PMID: 23912465 DOI: 10.3892/or.2013.2649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/19/2013] [Indexed: 11/05/2022] Open
Abstract
Esophageal tissues were collected from an esophageal carcinoma high-risk area of China and were used to detect the telomere length and the expression of human telomerase reverse transcriptase (hTERT) by immuhistochemistry and fluorescence in situ hybridization; esophageal carcinoma tissues, paired-adjacent mucosa and paired normal mucosa were obtained from resected surgical specimens of esophageal squamous cell carcinoma in order to determine telomerase activity and expression of hTERT and Pin2/TRF1 interacting protein X1 (PinX1) by telomeric repeat amplification protocol-silver staining, RT-PCR and flow cytometry (FCM). The cell proliferation and apoptosis of Eca109 cells were analyzed by FCM and MTT assay. We found that the length of telomere DNA decreased and hTERT protein expression increased in the carcinogenesis of esophageal epithelial cells; telomerase activity was significantly upregulated followed by a decrease of PinX1 expression in esophageal carcinoma compared with dysplasia and normal patients, which notably correlated with grade and lymph node metastasis. Overexpression of PinX1 inhibited cell growth, arrested cells at the G0/G1 stage and induced cell apoptosis in Eca109 cells. In addition, PinX1 overexpression significantly inhibited telomerase activity. In conclusion, the length shortening of telomere was an important characteristic in the carcinogenesis of esophageal epithelial cells, followed by increase of telomerase activity and downregulation of PinX1. Overexpression of PinX1 blocked Eca109 cell proliferation and induced cell apoptosis by downregulating telomerase activity.
Collapse
Affiliation(s)
- Jing Zuo
- Department of Oncology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050012, P.R. China
| | | | | | | | | | | |
Collapse
|
24
|
Petronzi C, Festa M, Peduto A, Castellano M, Marinello J, Massa A, Capasso A, Capranico G, La Gatta A, De Rosa M, Caraglia M, Filosa R. Cyclohexa-2,5-diene-1,4-dione-based antiproliferative agents: design, synthesis, and cytotoxic evaluation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:24. [PMID: 23631805 PMCID: PMC3666920 DOI: 10.1186/1756-9966-32-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/12/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND Tumors are diseases characterized by uncontrolled cell growth and, in spite of the progress of medicine over the years, continue to represent a major threat to the health, requiring new therapies. Several synthetic compounds, such as those derived from natural sources, have been identified as anticancer drugs; among these compounds quinone represent the second largest class of anticancer agents in use. Several studies have shown that these act on tumor cells through several mechanisms. An important objective of this work is to develop quinoidscompounds showing antitumor activity, but with fewer side effects. The parachinone cannabinol HU-331, is a small molecule that with its core 4-hydroxy-1,4-benzoquinone, exhibits a potent and selective cytotoxic activity on different tumor cell lines. A series of derivatives 3-hydroxy-1,4-benzochinoni were thus developed through HU-331 chemical modifications. The purpose of the work is to test the ability of the compounds to induce proliferative inhibition and study the mechanisms of cell death. METHODS The antitumor activities were evaluated in vitro by examining their cytotoxic effects against different human cancer cell lines. All cell lines tested were plated in 96-multiwell and treated with HU-100-V at different concentrations and cell viability was evaluated byMTT assay. Subsequently via flow cytometry (FACS) it was possible to assess apoptosis by the system of double labeling with PI and Annexin-V, and the effect of the compounds on ROS formation by measuring the dichlorofluorescein fluorescence. RESULTS The substitution by n-hexyl chain considerably enhanced the bioactivity of the compounds. In details, 2-hexyl-5-hydroxycyclohexa-2,5-diene-1,4-dione (V), 2,5-Dimethoxy-3-hexyl-2,5-cyclohexadiene-1,4-dione (XII) and 2-hydroxy-5-methoxy-3-hexyl-cyclohexa-2,5-diene-1,4-dione (XIII) showed most prominent cytotoxicity against almost human tumour cell lines. Compound V was further subjected to downstream apoptotic analysis, demostrating a time-dependent pro-apoptotic activity on human melanoma M14 cell line mediated by caspases activation and poly-(ADP-ribose)-polymerase (PARP) protein cleavage. CONCLUSIONS These findings indicate that 2-hexyl-5-idrossicicloesa-2,5-diene-1,4-dione can be a promising compound for the design of a new class of antineoplastic derivatives.Carmen Petronzi, Michela Festa, Antonella Peduto and Maria Castellano: equally contributed equally to this work.
Collapse
Affiliation(s)
- Carmen Petronzi
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, via Ponte Don Melillo, Fisciano, SA, 84084, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|