1
|
Zhao C, Jiang B, Yan W, Wang X, Ding H, Xia C. Changes in adiponectin levels of subclinical ketosis cows and their effects on steroid hormone secretion and proliferation in follicular granulosa cells. Reprod Biol 2024; 24:100898. [PMID: 38889545 DOI: 10.1016/j.repbio.2024.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
In dairy cows, the occurrence of subclinical ketosis (SCK) is particularly high during early lactation. Previously, we documented alterations in the abundance of adiponectin (ADPN) in anestrus cows with SCK in comparison to cows in estrus. In the present study, 60 cows were divided into two groups: control (C, n = 30) and SCK (n = 30). Based on cow's estrus situation in two group at 55-60 days postpartum, 15 anestrus SCK cows and estrus cows were designated the SCK-A group and C-E group, respectively. The SCK-A group had downregulated serum and follicular fluid ADPN levels compared with the C-E group. The serum ADPN level was positively correlated with the insulin level and follicle growth rate, and there was a positive correlation between ADPN and glucose in the follicular fluid. Primary culture of dairy cow granulosa cells (GCs) was established to observe the effect of low glucose (Glu) and/or ADPN on GCs cyclins and proteins important for steroid synthesis. The results showed that the addition of 1 µg/mL ADPN alleviated the negative effects of low Glu treatment on the proliferation of GCs and the expression of steroid secretion related protein proteins. Treatment with LY294002 (PI3K inhibitor) four experimental GCs groups: control (0 µg/mL ADPN), 1 µg/mL ADPN, LY294002 inhibitor, and 1 µg/mL ADPN+LY294002. The results showed that ADPN promotes the secretion of steroid hormones by GCs through the PI3K-AKT. In summary, ADPN plays a crucial role in ameliorating postpartum anestrus in dairy cows with SCK.
Collapse
Affiliation(s)
- Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - BenZheng Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Weizhe Yan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hongyan Ding
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China.
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
2
|
Zhang J, Sun J, Ou M, Ouyang Y, Shi D, Lu F. Testosterone Supplementation Promotes Estrogen Synthesis of Buffalo Cumulus Cells Surrounding In Vitro-Matured Oocytes. Cell Reprogram 2024; 26:79-84. [PMID: 38579133 DOI: 10.1089/cell.2023.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Cumulus cells (CCs) synthesize estrogens that are essential for follicular development. However, the effects of androgen on estrogen production in buffalo CCs remain unknown. In the present study, the impacts of testosterone on estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes were investigated. The results showed that testosterone supplementation improved both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 17β-HSD) and the secretion levels of estradiol in buffalo CCs surrounding in vitro-matured oocytes. Furthermore, testosterone treatment enhanced the sensitivity of buffalo CCs surrounding in vitro-matured oocytes to follicle-stimulating hormone (FSH). This study indicated that testosterone supplementation promoted the estrogen synthesis of buffalo CCs surrounding in vitro-matured oocytes mainly through strengthening the responsiveness of CCs to FSH. The present study serves as a foundation of acquiring high-quality recipient oocytes for buffalo somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Meizhen Ou
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Zhang J, Sun J, Xiao L, Ouyang Y, Shi D, Lu F. Testosterone supplementation improves estrogen synthesis of buffalo (Bubalus bubalis) granulosa cells. Reprod Domest Anim 2023; 58:1628-1635. [PMID: 37668268 DOI: 10.1111/rda.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
Granulosa cells (GCs) synthesize estrogens needed for follicular growth. However, the effects of androgen on estrogen production in buffalo GCs remain unclear. In this study, the impacts of testosterone on estrogen synthesis in buffalo GCs were examined. The results showed that testosterone that was added to cell medium at a concentration of 10-7 mol/L and applied to GCs for 48 or 72 h enhanced the estrogen synthesis of buffalo GCs. This study provides a theoretical basis for further exploration of ovarian endocrine mechanism for steroidogenesis.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Linlin Xiao
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Zhang Y, Zhang J, Sun J, Ouyang Y, Shi D, Lu F. Hypoxia enhances steroidogenic competence of buffalo (Bubalus bubalis) granulosa cells. Theriogenology 2023; 210:214-220. [PMID: 37527623 DOI: 10.1016/j.theriogenology.2023.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Granulosa cells (GCs) synthesize estrogens needed for follicular growth. However, the effects of hypoxia on steroidogenesis in buffalo GCs remain unclear. In this study, the impacts of hypoxic conditions (5% oxygen) on estrogen synthesis in buffalo GCs were examined. The results showed that hypoxia improved both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 3β-HSD) and the secretion levels of estradiol in buffalo GCs. Hypoxic conditions promoted the sensitivity of buffalo GCs to FSH. Furthermore, inhibition of cAMP/PKA signaling pathway (H89, a cAMP/PKA signaling pathway inhibitor) reduced both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 3β-HSD) and the secretion levels of estradiol in hypoxia-cultured buffalo GCs. Besides, inhibition of cAMP/PKA signaling pathway lowered the responsiveness of buffalo GCs to FSH under hypoxic conditions. The present study indicated that hypoxia enhanced the steroidogenic competence of buffalo GCs principal by affecting cAMP/PKA signaling pathway and subsequent sensitivity of GCs to FSH.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Jun Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Deshun Shi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Fenghua Lu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
5
|
Liu W, Du C, Nan L, Li C, Wang H, Fan Y, Zhou A, Zhang S. Influence of Estrus on Dairy Cow Milk Exosomal miRNAs and Their Role in Hormone Secretion by Granulosa Cells. Int J Mol Sci 2023; 24:ijms24119608. [PMID: 37298559 DOI: 10.3390/ijms24119608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Estrus is crucial for cow fertility in modern dairy farms, but almost 50% of cows do not show the behavioral signs of estrus due to silent estrus and lack of suitable and high-accuracy methods to detect estrus. MiRNA and exosomes play essential roles in reproductive function and may be developed as novel biomarkers in estrus detection. Thus, we analyzed the miRNA expression patterns in milk exosomes during estrus and the effect of milk exosomes on hormone secretion in cultured bovine granulosa cells in vitro. We found that the number of exosomes and the exosome protein concentration in estrous cow milk were significantly lower than in non-estrous cow milk. Moreover, 133 differentially expressed exosomal miRNAs were identified in estrous cow milk vs. non-estrous cow milk. Functional enrichment analyses indicated that exosomal miRNAs were involved in reproduction and hormone-synthesis-related pathways, such as cholesterol metabolism, FoxO signaling pathway, Hippo signaling pathway, mTOR signaling pathway, steroid hormone biosynthesis, Wnt signaling pathway and GnRH signaling pathway. Consistent with the enrichment signaling pathways, exosomes derived from estrous and non-estrous cow milk both could promote the secretion of estradiol and progesterone in cultured bovine granulosa cells. Furthermore, genes related to hormonal synthesis (CYP19A1, CYP11A1, HSD3B1 and RUNX2) were up-regulated after exosome treatment, while exosomes inhibited the expression of StAR. Moreover, estrous and non-estrous cow-milk-derived exosomes both could increase the expression of bcl2 and decrease the expression of p53, and did not influence the expression of caspase-3. To our knowledge, this is the first study to investigate exosomal miRNA expression patterns during dairy cow estrus and the role of exosomes in hormone secretion by bovine granulosa cells. Our findings provide a theoretical basis for further investigating milk-derived exosomes and exosomal miRNA effects on ovary function and reproduction. Moreover, bovine milk exosomes may have effects on the ovaries of human consumers of pasteurized cow milk. These differential miRNAs might provide candidate biomarkers for the diagnosis of dairy cow estrus and will assist in developing new therapeutic targets for cow infertility.
Collapse
Affiliation(s)
- Wenju Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Chao Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangkang Nan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunfang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitong Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yikai Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shujun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Gareis NC, Rodríguez FM, Cattaneo Moreyra ML, Stassi AF, Angeli E, Etchevers L, Salvetti NR, Ortega HH, Hein GJ, Rey F. Contribution of key elements of nutritional metabolism to the development of cystic ovarian disease in dairy cattle. Theriogenology 2023; 197:209-223. [PMID: 36525860 DOI: 10.1016/j.theriogenology.2022.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The alteration of signaling molecules involved in the general metabolism of animals can negatively influence reproduction. In dairy cattle, the development of follicular cysts and the subsequent appearance of ovarian cystic disease (COD) often lead to decreased reproductive efficiency in the herd. The objective of this review is to summarize the contribution of relevant metabolic and nutritional sensors to the development of COD in dairy cows. In particular, we focus on the study of alterations of the insulin signaling pathway, adiponectin, and other sensors and metabolites relevant to ovarian functionality, which may be related to the development of follicular persistence and follicular formation of cysts in dairy cattle. The results of these studies support the hypothesis that systemic factors could alter the local scenario in the follicle, generating an adverse microenvironment for the resumption of ovarian activity and possibly leading to the persistence of follicles and to the development and recurrence of COD.
Collapse
Affiliation(s)
- N C Gareis
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - F M Rodríguez
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - M L Cattaneo Moreyra
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina
| | - A F Stassi
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - E Angeli
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - L Etchevers
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - N R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - G J Hein
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Centro Universitario Gálvez (CUG-UNL), Gálvez, Santa Fe, Argentina
| | - F Rey
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina.
| |
Collapse
|
7
|
Nguyen AT, Damsteegt EL, Chia JHZ, Kazeto Y, Lokman PM. Effects of gonadotropins, 11-ketotestosterone, and insulin-like growth factor-1 on target gene expression and growth of previtellogenic oocytes from shortfinned eels, Anguilla australis, in vitro. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:853-867. [PMID: 35652992 DOI: 10.1007/s10695-022-01090-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Pituitary gonadotropins, metabolic hormones, and sex steroids are known factors affecting the advanced stages of ovarian development in teleost fish. However, the effects of these hormones and of the interactions between them on the growth of previtellogenic ovarian follicles are not known. In order to address this void in understanding, previtellogenic ovarian fragments from eel, Anguilla australis, were incubated in vitro with recombinant Japanese eel follicle-stimulating hormone (rec-Fsh), human chorionic gonadotropin (hCG), or 11-ketotestosterone (11-KT) in the presence or absence of recombinant human insulin-like growth factor-1 (IGF1). The results of long-term in vitro culture (21 days) demonstrated that rec-Fsh and 11-KT, rather than hCG, caused significant increases in the diameter of previtellogenic oocytes. Meanwhile, only 11-KT induced a significant increase in lipid accumulation. Moreover, a greater effect on oocyte growth was observed when IGF1 supplementation was combined with 11-KT rather than with rec-Fsh or hCG. For short-term culture (24 h), treatment with 11-KT in the presence or absence of IGF1 had no significant effects on mRNA levels of target genes (lhr, cyp19, cyp11b, lpl, and ldr) except for upregulation of fshr. There were no significant effects of rec-Fsh on expression of any target gene, whereas hCG downregulated the expression of these genes. There was no evidence for any interaction between the gonadotropins and IGF1 that resulted in growth of previtellogenic oocytes. Taken together, these results suggest that hormones from both the reproductive and the metabolic axes regulate the growth of previtellogenic oocytes in Anguilla australis.
Collapse
Affiliation(s)
- Anh Tuan Nguyen
- University of Agriculture and Forestry, Hue University, 6 Le Loi Street, Hue, Vietnam.
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin, 9054, New Zealand.
| | - Erin L Damsteegt
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin, 9054, New Zealand
| | - Jolyn H Z Chia
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin, 9054, New Zealand
| | - Yukinori Kazeto
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 183-2 Minamiizu, Kamo, Shizuoka, 415-0156, Japan
| | - P Mark Lokman
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
8
|
Sun C, Yang X, Wang T, Cheng M, Han Y. Ovarian Biomechanics: From Health to Disease. Front Oncol 2022; 11:744257. [PMID: 35070963 PMCID: PMC8776636 DOI: 10.3389/fonc.2021.744257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Biomechanics is a physical phenomenon which mainly related with deformation and movement of life forms. As a mechanical signal, it participates in the growth and development of many tissues and organs, including ovary. Mechanical signals not only participate in multiple processes in the ovary but also play a critical role in ovarian growth and normal physiological functions. Additionally, the involvement of mechanical signals has been found in ovarian cancer and other ovarian diseases, prompting us to focus on the roles of mechanical signals in the process of ovarian health to disease. This review mainly discusses the effects and signal transduction of biomechanics (including elastic force, shear force, compressive stress and tensile stress) in ovarian development as a regulatory signal, as well as in the pathological process of normal ovarian diseases and cancer. This review also aims to provide new research ideas for the further research and treatment of ovarian-related diseases.
Collapse
Affiliation(s)
- Chenchen Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xiaoxu Yang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Tianxiao Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, China
| | - Yangyang Han
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
Gudelska M, Dobrzyn K, Kiezun M, Kisielewska K, Rytelewska E, Kaminski T, Smolinska N. Chemerin Affects P 4 and E 2 Synthesis in the Porcine Endometrium during Early Pregnancy. Int J Mol Sci 2022; 23:945. [PMID: 35055130 PMCID: PMC8781843 DOI: 10.3390/ijms23020945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Chemerin, belonging to the adipokine family, exhibits pleiotropic activity. We hypothesised that the adipokine could be involved in the regulation of steroidogenesis in the porcine endometrium. Thus, the aim of this study was to determine the effect of chemerin on the key steroidogenic enzyme proteins' abundance (Western blot), as well as on P4 and E2 secretion (radioimmunoassay) by the porcine endometrium during early pregnancy and the mid-luteal phase of the oestrous cycle. Moreover, we investigated the hormone impact on Erk and Akt signalling pathway activation (Western blot). Chemerin stimulated E2 production on days 10 to 11 of pregnancy. On days 10 to 11 and 15 to 16 of gestation, and on days 10 to 11 of the cycle, chemerin enhanced the expression of StAR and all steroidogenic enzyme proteins. On days 12 to 13 of pregnancy, chemerin decreased StAR and most of the steroidogenic enzyme proteins' abundance, whereas the P450C17 abundance was increased. On days 27 to 28 of pregnancy, chemerin increased StAR and P450C17 protein contents and decreased 3βHSD protein amounts. It was noted that the adipokine inhibited Erk1/2 and stimulated Akt phosphorylation. The obtained results indicate that chemerin affected P4 and E2 synthesis through the Erk1/2 and Akt signalling pathways.
Collapse
Affiliation(s)
- Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland; (M.G.); (M.K.); (K.K.); (E.R.); (T.K.)
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 5, 10-718 Olsztyn, Poland;
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland; (M.G.); (M.K.); (K.K.); (E.R.); (T.K.)
| | - Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland; (M.G.); (M.K.); (K.K.); (E.R.); (T.K.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland; (M.G.); (M.K.); (K.K.); (E.R.); (T.K.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland; (M.G.); (M.K.); (K.K.); (E.R.); (T.K.)
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland; (M.G.); (M.K.); (K.K.); (E.R.); (T.K.)
| |
Collapse
|
10
|
de Ávila ACFCM, Bridi A, Andrade GM, Del Collado M, Sangalli JR, Nociti RP, da Silva Junior WA, Bastien A, Robert C, Meirelles FV, Perecin F, da Silveira JC. Estrous cycle impacts microRNA content in extracellular vesicles that modulate bovine cumulus cell transcripts during in vitro maturation†. Biol Reprod 2021; 102:362-375. [PMID: 31504242 DOI: 10.1093/biolre/ioz177] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/19/2019] [Accepted: 07/04/2019] [Indexed: 01/02/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles secreted by ovarian follicle cells. Extracellular vesicles are an important form of intercellular communication, since they carry bioactive contents, such as microRNAs (miRNAs), mRNAs, and proteins. MicroRNAs are small noncoding RNA capable of modulating mRNA translation. Thus, EVs can play a role in follicle and oocyte development. However, it is not clear if EV contents vary with the estrous cycle stage. The aim of this study was to investigate the bovine miRNA content in EVs obtained from follicles at different estrous cycle stages, which are associated with different progesterone (P4) levels in the follicular fluid (FF). We collected FF from 3 to 6 mm follicles and evaluated the miRNA profile of the EVs and their effects on cumulus-oocyte complexes during in vitro maturation. We observed that EVs from low P4 group have a higher abundance of miRNAs predicted to modulate pathways, such as MAPK, RNA transport, Hippo, Cell cycle, FoxO, oocyte meiosis, and TGF-beta. Additionally, EVs were taken up by cumulus cells and, thus, affected the RNA global profile 9 h after EV supplementation. Cumulus cells supplemented with EVs from low P4 presented upregulated genes that could modulate biological processes, such as oocyte development, immune responses, and Notch signaling compared with genes of cumulus cells in the EV free media or with EVs from high P4 follicles. In conclusion, our results demonstrate that EV miRNA contents are distinct in follicles exposed to different estrous cycle stage. Supplementation with EVs impacts gene expression and biological processes in cumulus cells.
Collapse
Affiliation(s)
| | - Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Gabriella Mamede Andrade
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Maite Del Collado
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano Rodrigues Sangalli
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Ricardo Perecin Nociti
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Alexandre Bastien
- Animal Science Department, Research Center in Reproductive Biology, Institute on Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - Claude Robert
- Animal Science Department, Research Center in Reproductive Biology, Institute on Nutrition and Functional Foods, Laval University, Québec, Québec, Canada
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
11
|
Current Understandings of Core Pathways for the Activation of Mammalian Primordial Follicles. Cells 2021; 10:cells10061491. [PMID: 34199299 PMCID: PMC8231864 DOI: 10.3390/cells10061491] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
The mammalian ovary has two main functions-producing mature oocytes for fertilization and secreting hormones for maintaining the ovarian endocrine functions. Both functions are vital for female reproduction. Primordial follicles are composed of flattened pre-granulosa cells and a primary oocyte, and activation of primordial follicles is the first step in follicular development and is the key factor in determining the reproductive capacity of females. The recent identification of the phosphatidylinositol 3 kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling pathway as the key controller for follicular activation has made the study of primordial follicle activation a hot research topic in the field of reproduction. This review systematically summarizes the roles of the PI3K/PTEN signaling pathway in primordial follicle activation and discusses how the pathway interacts with various other molecular networks to control follicular activation. Studies on the activation of primordial follicles have led to the development of methods for the in vitro activation of primordial follicles as a treatment for infertility in women with premature ovarian insufficiency or poor ovarian response, and these are also discussed along with some practical applications of our current knowledge of follicular activation.
Collapse
|
12
|
Pan B, Liu C, Zhan X, Li J. Protegrin-1 Regulates Porcine Granulosa Cell Proliferation via the EGFR-ERK1/2/p38 Signaling Pathway in vitro. Front Physiol 2021; 12:673777. [PMID: 34093234 PMCID: PMC8176212 DOI: 10.3389/fphys.2021.673777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are traditionally known to be essential components in host defense via their broad activities against bacteria, fungi, viruses, and protozoa. Their immunomodulatory properties have also recently received considerable attention in mammalian somatic tissues of various species. However, little is known regarding the role of AMPs in the development and maturation of ovarian follicles. Protegrin-1 (PG-1) is an antimicrobial peptide which is known to have potent antimicrobial activity against both gram positive and negative bacteria. Here we report that the PG-1 is present in the porcine ovarian follicular fluid. Treatment of granulosa cell with PG-1 enhanced granulosa cell proliferation in a dose-dependent manner. This is accompanied by increased expression of cell-cycle progression-related genes such as cyclin D1(CCND1), cyclin D2 (CCND2), and cyclin B1(CCNB1). Additionally, Western blot analysis showed that PG-1 increased phosphorylated epidermal growth factor receptor (EGFR), and the phosphorylated-/total extracellular signal-regulated kinase (ERK)1/2 ratio. Pretreatment with either U0126, a specific ERK1/2 phosphorylation inhibitor, or EGFR kinase inhibitor, AG1478, blocked the PG-1 induced proliferation. Moreover, luciferase reporter assay revealed that ETS domain-containing protein-1 (Elk1) C/EBP homologous protein (CHOP), and the transcription activators downstream of the MAPK pathway, were activated by PG-1. These data collectively suggest that PG-1 may regulate pig granulosa cell proliferation via EGFR-MAPK pathway., Hence, our finding offers insights into the role of antimicrobial peptides on follicular development regulation.
Collapse
Affiliation(s)
- Bo Pan
- Department of Animal BioSciences, University of Guelph, Guelph, ON, Canada
| | - Canying Liu
- Department of Animal BioSciences, University of Guelph, Guelph, ON, Canada.,Department of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaoshu Zhan
- Department of Animal BioSciences, University of Guelph, Guelph, ON, Canada.,Department of Life Science and Engineering, Foshan University, Foshan, China
| | - Julang Li
- Department of Animal BioSciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
13
|
Grosbois J, Devos M, Demeestere I. Implications of Nonphysiological Ovarian Primordial Follicle Activation for Fertility Preservation. Endocr Rev 2020; 41:5882019. [PMID: 32761180 DOI: 10.1210/endrev/bnaa020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
In recent years, ovarian tissue cryopreservation has rapidly developed as a successful method for preserving the fertility of girls and young women with cancer or benign conditions requiring gonadotoxic therapy, and is now becoming widely recognized as an effective alternative to oocyte and embryo freezing when not feasible. Primordial follicles are the most abundant population of follicles in the ovary, and their relatively quiescent metabolism makes them more resistant to cryoinjury. This dormant pool represents a key target for fertility preservation strategies as a resource for generating high-quality oocytes. However, development of mature, competent oocytes derived from primordial follicles is challenging, particularly in larger mammals. One of the main barriers is the substantial knowledge gap regarding the regulation of the balance between dormancy and activation of primordial follicles to initiate their growing phase. In addition, experimental and clinical factors also affect dormant follicle demise, while the mechanisms involved remain largely to be elucidated. Moreover, most of our basic knowledge of these processes comes from rodent studies and should be extrapolated to humans with caution, considering the differences between species in the reproductive field. Overcoming these obstacles is essential to improving both the quantity and the quality of mature oocytes available for further fertilization, and may have valuable biological and clinical applications, especially in fertility preservation procedures. This review provides an update on current knowledge of mammalian primordial follicle activation under both physiological and nonphysiological conditions, and discusses implications for fertility preservation and priorities for future research.
Collapse
Affiliation(s)
- Johanne Grosbois
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Melody Devos
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Demeestere
- Research Laboratory in Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium.,Obstetrics and Gynecology Department, Erasme Hospital, Brussels, Belgium
| |
Collapse
|
14
|
Ekizceli G, Inan S, Oktem G, Onur E, Ozbilgin K. Immunohistochemical determination of mTOR pathway molecules in ovaries and uterus in rat estrous cycle stages. Histol Histopathol 2020; 35:1337-1351. [PMID: 32940340 DOI: 10.14670/hh-18-258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
mTOR is a member of the PI3K/Akt/mTOR signaling pathway that participates in cell growth, proliferation, protein synthesis, transcription, angiogenesis, apoptosis and autophagy. mTOR and MAPK pahways are two important key signal pathways which are related to each other. We investigated the role of mTOR and other signaling molecules in rat ovaries and uteruses in stages of the estrous cycle. Young adult female rats were divided into four groups as proestrous, estrous, metestrous and diestrous according to vaginal smears. Immunohistochemical staining of mTORC1, IGF1, PI3K, pAKT1/2/3, ERK1 and pERK1/2 was performed and pAKT1/2/3 and ERK1 were also analyzed using western blotting on ovarian and uterine tissue samples. According to our results, PI3K/Akt/mTOR and ERK/pERK showed an increase in the rat ovulation period. When all the groups were evaluated the immunoreactivities for all of the antibodies were detected in the oocytes, granulosa and theca cells, corpus luteum and stroma of ovary and lamina propria, surface and glandular epithelium of uterus with the strongest observed with anti-ERK1 antibody and then with a decreasing trend with anti-mTORC1, anti-pAkt1/2/3, anti-IGF1, anti-PI3K and anti-pERK1/2 antibodies in the proestrus and estrus stages. Differently from other parts of the ovary, highest antibody expression in the corpus luteum was observed in the metestrous stage. Moreover, the existence of pAKT1/2/3 and ERK1 proteins was confirmed with the Western blotting technique. We suggest that mTOR and mTOR-related ERK signaling molecules may participate in the rat ovulation process.
Collapse
Affiliation(s)
- Gulcin Ekizceli
- Department of Histology and Embryology, Faculty of Medicine, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Sevinc Inan
- Department of Histology and Embryology, Izmir Economy University, School of Medicine, Izmir, Turkey
| | - Gulperi Oktem
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey
| | - Ece Onur
- Department of Medical Biochemistry, Manisa Celal Bayar University, School of Medicine, Manisa, Turkey
| | - Kemal Ozbilgin
- Department of Histology and Embryology, Manisa Celal Bayar University, School of Medicine, Manisa, Turkey
| |
Collapse
|
15
|
Wang P, Liu S, Zhu C, Duan Q, Jiang Y, Gao K, Bu Q, Cao B, An X. MiR-29 regulates the function of goat granulosa cell by targeting PTX3 via the PI3K/AKT/mTOR and Erk1/2 signaling pathways. J Steroid Biochem Mol Biol 2020; 202:105722. [PMID: 32565247 DOI: 10.1016/j.jsbmb.2020.105722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/19/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
PTX3, a member of the pentraxin protein family, plays important roles in ovulation as a marker of cumulus cell-oocyte complex expansion. However, the expression and function of PTX3 in goat ovarian GCs remain unclear. We isolated GCs from small and large follicles and found that PTX3 expression was significantly decreased and miR-29 mRNA expression was significantly increased during the growth of antral follicles. MiR-29 decreased PTX3 expression by targeting its 3' untranslated. Furthermore, miR-29 promoted GC proliferation, suppressed steroidogenesis and apoptosis by targeting PTX3 via the activation of the PI3K/AKT/mTOR and Erk1/2 signaling pathways. Treatment with inhibitors also verified these results. Meanwhile, we found that PI3K/AKT/mTOR and Erk1/2 signaling pathways had different role in secretion of E2 and P4 by regulating differently various steroidogenic enzyme (CYP19A1, CYP11A1, StAR and HSD3B) expression. These outcomes indicate the potential role of PTX3 in goat follicular growth and atresia.
Collapse
Affiliation(s)
- Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Quyu Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yue Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Kexin Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qiqi Bu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
16
|
Zhang J, Deng Y, Li J, Zi Y, Shi D, Lu F. Theca cell-conditioned medium enhances steroidogenesis competence of buffalo (Bubalus bubalis) granulosa cells. Reprod Domest Anim 2020; 56:254-262. [PMID: 32748525 DOI: 10.1111/rda.13792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023]
Abstract
Theca cells (TCs) play a crucial role in follicular development and atresia. TCs synthesize androgens that act as substrate for granulosa cells (GCs) aromatization to oestrogens needed for follicular growth. However, the effects of TCs in the form of conditioned medium on steroidogenesis in buffalo GCs remain unclear. In the present study, the impacts of TC-conditioned medium (TCCM) on oestrogen synthesis in buffalo GCs were examined. The results showed that TCs secreted principally testosterone, but almost no androstenedione or oestradiol into TCCM. TCs at passage 3 had a stronger secretion capacity of testosterone in TCCM. Furthermore, TCCM collected at 72 hr improved both the expression levels of oestrogen synthesis-related genes (CYP11A1, CYP19A1, 3β-HSD and 17β-HSD) and the secretion levels of estradiol in GCs. The treatment of 72 hr in TCCM promoted both the expression levels of oestrogen synthesis-related genes (CYP11A1, CYP19A1 and 3β-HSD) and the secretion levels of estradiol in GCs. Besides, TCCM that was collected at 72 hr and applied to GCs for 72 hr (72 & 72 hr) improved the sensitivity of buffalo GCs to FSH. This study indicates that TCCM (72 & 72 hr) enhances the steroidogenesis competence of GCs mainly through facilitating the responsiveness of GCs to FSH in buffalo.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Jiaojiao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yonghong Zi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
17
|
Liu C, Pan B, Yang L, Wang B, Li J. Beta defensin 3 enhances ovarian granulosa cell proliferation and migration via ERK1/2 pathway in vitro†. Biol Reprod 2020; 100:1057-1065. [PMID: 30445521 DOI: 10.1093/biolre/ioy246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/26/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) are regarded as host defense peptides that possess bactericidal activity as well as immunomodulatory function. However, the role of AMP in the mammalian ovary is unknown. In the present study, porcine granulosa cells were utilized in a cell model to study the role of porcine beta defensin 2 (pBD2; pDEFB4B) and 3 (pBD3; pDEFB103A) during ovarian follicular development. Granulosa cells were cultured in the absence and presence of 1, 10, and 50 μg/ml of pDEFB4B or pDEFB103A. After 24 h of treatment, pDEFB103A but not pDEFB4B stimulated granulosa cell proliferation in a concentration-dependent manner (P < 0.05). This effect was dependent on the stage of follicular development. In addition, transwell cell migration assay showed that in the presence of pDEFB103A (10 μg/ml), a 2.5-fold increase in cell migration was achieved. Furthermore, further study revealed that pDEFB103A increased the mRNA levels of cyclin D1 (CCND1) and proliferating cell nuclear antigen (PCNA), both associated with cell proliferation. To study the potential pathway involved in pDEFB103A-induced cell proliferation and migration, western blots were performed. It was found that pDEFB103A significantly increased the phosphorylated-ERK1/2 to nonphosphorylated ratio. Moreover, pretreatment with the U0126, a specific ERK1/2 phosphorylation inhibitor, suppressed PDEFB103A inducing GCs ERK1/2 phosphorylation, as well as proliferation and migration, suggesting that PDEFB103A may act via activating the ERK1/2 pathway. Furthermore, using a signal transduction pathway Elk-1 trans-reporting system, the activation of ERK1/2 pathway by PDEFB103A was further confirmed. Our data suggest that AMP may play a physiological role in the mammalian ovary.
Collapse
Affiliation(s)
- Canying Liu
- Department of Life Science and Engineering, Foshan University, Foshan, China
- Department of Animal and Poultry Science, University of Guelph, Guelph, Canada
| | - Bo Pan
- Department of Animal and Poultry Science, University of Guelph, Guelph, Canada
| | - Lu Yang
- Shanghai Academy of Agriculture Sciences, Shanghai, China
| | - Bingyun Wang
- Department of Life Science and Engineering, Foshan University, Foshan, China
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Guelph, Canada
| |
Collapse
|
18
|
Cheong SH, Fortune JE, Allen JJ, Butler WR, Gilbert RO. Androgen production in response to LH is impaired in theca cells from nonovulatory dominant follicles in early-postpartum dairy cows. Domest Anim Endocrinol 2020; 71:106385. [PMID: 31726391 DOI: 10.1016/j.domaniend.2019.106385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/27/2019] [Accepted: 08/03/2019] [Indexed: 11/29/2022]
Abstract
Most dairy cows develop a dominant follicle within two weeks postpartum, but 60% of these follicles fail to ovulate. In a previous study, we determined that cows destined to ovulate have higher LH pulse frequency and circulating estradiol. The latter characteristic provided a method for distinguishing ovulatory from nonovulatory follicles during development and we found that nonovulatory follicles have lower estradiol and androstenedione in their follicular fluid. We hypothesized that lower LH pulse frequency impairs androgen production by theca cells of nonovulatory cows, reducing their ability to make estradiol. In the present study, we applied our method for predicting follicle fate to collect dominant follicles from predicted ovulatory (n = 7) and nonovulatory (n = 3) follicles. Theca and granulosa cells were separated and cultured in the absence or presence of LH, FSH, and/or testosterone for three days, with daily collection of culture medium for steroid RIAs. Estradiol and progesterone production by granulosa cells were not different between ovulatory and nonovulatory follicles. By contrast, overall androstenedione production by theca cells from ovulatory follicles was significantly higher compared with nonovulatory follicles on all three days of culture and, as culture progressed, theca from nonovulatory follicles had increasingly poorer responses to LH. In the same cultures, the progesterone production by theca cells was similar in ovulatory and nonovulatory groups. In support of our hypothesis, the results show that estradiol production by granulosa cells from nonovulatory follicles is robust when androgen substrate is present, but that thecal androgen production in response to LH is impaired. This suggests that the initial defect in steroidogenesis in dominant follicles that fail to ovulate postpartum is lower production of androgen by theca cells.
Collapse
Affiliation(s)
- S H Cheong
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA.
| | - J E Fortune
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - J J Allen
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - W R Butler
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - R O Gilbert
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
19
|
The Expression of ERK1/2 in Female Yak ( Bos grunniens) Reproductive Organs. Animals (Basel) 2020; 10:ani10020334. [PMID: 32093255 PMCID: PMC7070411 DOI: 10.3390/ani10020334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 11/16/2022] Open
Abstract
The main reproductive organs undergo different histological appearances and physiological processes under different reproductive statuses. The variation of these organs depends on a delicate regulation of cell proliferation, differentiation, and apoptosis. Extracellular signal-regulated kinases1/2 (ERK1/2) are members of the mitogen-activated protein kinase (MAPK) super family. They have important roles in regulating various biological processes of different cells, tissues, and organ types. Activated ERK1/2 generally promotes cell survival, but under certain conditions, ERK1/2 also have the function of inducing apoptosis. It is widely believed that ERK1/2 play a significant role in regulating the reproductive processes of mammals. The goal of our research is to investigate the expression and distribution of ERK1/2 in the yak's main reproductive organs during different stages. In the present study, samples of the ovary, oviduct, and uterus of 15 adult female yak were collected and used in the experiment. The ERK1/2 proteins, localization, and quantitative expression of their mRNA were investigated using immunohistochemistry (IHC), western blot (WB) and relative quantitative real-time polymerase chain reaction (RT-PCR). The results indicated that ERK1/2 proteins and their mRNA were highly expressed in the ovary of the luteal phase and gestation period, in the oviduct of the luteal phase, and in the uterus of the luteal phase and gestation period. Immunohistochemical analysis revealed a strong distribution of ERK1/2 proteins in follicular granulosa cells, granular luteal cells, villous epithelial cells of the oviduct, endometrial glandular epithelium, and luminal epithelium. These results demonstrated that the expression of ERK1 and ERK2 proteins and their mRNA in the yak's ovary, oviduct, and uterus varies with the stage of the reproductive cycle. The variation character of ERK1 and ERK 2 expression in the yak's main reproductive organs during different stages implies that they play an important role in regulating the reproductive function under different physiological statuses.
Collapse
|
20
|
Kurowska P, Mlyczyńska E, Dawid M, Opydo-Chanek M, Dupont J, Rak A. In Vitro Effects of Vaspin on Porcine Granulosa Cell Proliferation, Cell Cycle Progression, and Apoptosis by Activation of GRP78 Receptor and Several Kinase Signaling Pathways Including MAP3/1, AKT, and STAT3. Int J Mol Sci 2019; 20:E5816. [PMID: 31752432 PMCID: PMC6888539 DOI: 10.3390/ijms20225816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/30/2022] Open
Abstract
Vaspin, a visceral adipose tissue-derived serine protease inhibitor, is expressed in the porcine ovary; it induces the activation of various kinases and steroidogenesis. The aim of this study was to examine the effect of vaspin on granulosa (Gc) proliferation, cell cycle regulation, and apoptosis. Porcine Gc was incubated with vaspin (0.01-10 ng/mL) for 24 to 72 h, proliferation was measured using alamarBlue assay, cell cycle progression was assessed using flow cytometry, and cyclin (D, E, and A) protein expression was measured using immunoblotting. Apoptosis was assessed by measuring caspase activity using Caspase-glo 3/7 assay. Furthermore, histone-associated DNA fragments levels were measured using a cell-death detection ELISA; BAX (bcl-2-like protein 4), BCL2 (B-cell lymphoma 2), caspases (-3, -8, and -9), p53 mRNA, and protein expression were assessed using real time PCR and immunoblotting. We found that vaspin significantly enhanced Gc proliferation and cell cycle progression into the S and G2/M phases and decreased apoptosis. We observed that siRNA silencing of the glucose-regulated protein (GRP78) receptor and pharmacological inhibitors of mitogen-activated kinase (MAP3/1/ERK1/2), Janus kinase (STAT3) and protein kinase B (AKT) blocked the ability of vaspin cell proliferation and enhanced caspase-3/7 activities. These results suggest that vaspin via mitogenic effect on porcine Gc acts as a new regulator of ovarian growth, development, or folliculogenesis.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.); (M.D.)
| | - Ewa Mlyczyńska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.); (M.D.)
| | - Monika Dawid
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.); (M.D.)
| | - Małgorzata Opydo-Chanek
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland;
| | - Joelle Dupont
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F37380 Nouzilly, France;
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.); (M.D.)
| |
Collapse
|
21
|
Bezerra MÉS, Barberino RS, Menezes VG, Gouveia BB, Macedo TJS, Santos JMS, Monte APO, Barros VRP, Matos MHT. Insulin-like growth factor-1 (IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway. Reprod Fertil Dev 2019; 30:1503-1513. [PMID: 29843892 DOI: 10.1071/rd17332] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/18/2018] [Indexed: 11/23/2022] Open
Abstract
We investigated the effects of insulin-like growth factor 1 (IGF-1) on the morphology and follicular activation of ovine preantral follicles cultured in situ and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway is involved in IGF-1 action in the sheep ovary. Ovine ovarian fragments were fixed for histological and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) analyses (fresh control) or cultured in supplemented alpha-minimum essential medium (α-MEM+; control) or α-MEM+ with IGF-1 (1, 10, 50, 100 or 200ngmL-1) for 7 days. Follicles were classified as normal or atretic, primordial or growing and the oocyte and follicle diameters were measured. DNA fragmentation was evaluated by TUNEL assay. Proliferating cell nuclear antigen (PCNA) immunohistochemistry was performed on the fresh control, α-MEM+ and 100ngmL-1 IGF-1 samples. Inhibition of PI3K activity was performed through pretreatment with the PI3K inhibitor LY294002 and phosphorylated AKT (pAKT) expression was analysed after culture in the absence or presence of LY294002. IGF-1 at 100ngmL-1 increased (P<0.05) follicular activation compared with α-MEM+ and decreased TUNEL-positive cells (P<0.05) compared with other treatments. PCNA-positive cells also increased (P<0.05) in 100ngmL-1 IGF-1. LY294002 significantly inhibited follicular activation stimulated by α-MEM+ and 100ngmL-1 IGF-1 and reduced pAKT expression in follicles. Overall, IGF-1 at 100ngmL-1 promoted primordial follicle activation, cell proliferation and reduced DNA fragmentation after in situ culture through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Maria É S Bezerra
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Vanúzia G Menezes
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Bruna B Gouveia
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Taís J S Macedo
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Jamile M S Santos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Alane P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Vanessa R P Barros
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| | - Maria H T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Rodovia BR 407, Km 12, Lote 543, Projeto C1, CEP: 56300-990, Petrolina, PE, Brazil
| |
Collapse
|
22
|
Meng K, Wang X, He Y, Yang J, Wang H, Zhang Y, Quan F. The Wilms tumor gene (WT1) (+/−KTS) isoforms regulate steroidogenesis by modulating the PI3K/AKT and ERK1/2 pathways in bovine granulosa cells†. Biol Reprod 2019; 100:1344-1355. [DOI: 10.1093/biolre/ioz003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/02/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Kai Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Xiaomei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Yuanyuan He
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Jiashu Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hengqin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
23
|
Schuermann Y, Rovani MT, Gasperin B, Ferreira R, Ferst J, Madogwe E, Gonçalves PB, Bordignon V, Duggavathi R. ERK1/2-dependent gene expression in the bovine ovulating follicle. Sci Rep 2018; 8:16170. [PMID: 30385793 PMCID: PMC6212447 DOI: 10.1038/s41598-018-34015-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023] Open
Abstract
Ovulation is triggered by gonadotropin surge-induced signaling cascades. To study the role of extracellular signal-regulated kinase 1/2 (ERK1/2) in bovine ovulation, we administered the pharmacological inhibitor, PD0325901, into the preovulatory dominant follicle by intrafollicular injection. Four of five cows treated with 50 µM PD0325901 failed to ovulate. To uncover the molecular basis of anovulation in ERK1/2-inhibited cows, we collected granulosa and theca cells from Vehicle and PD0325901 treated follicles. Next-generation sequencing of granulosa cell RNA revealed 285 differentially expressed genes between Vehicle and PD0325901-treated granulosa cells at 6 h post-GnRH. Multiple inflammation-related pathways were enriched among the differentially expressed genes. The ERK1/2 dependent LH-induced genes in granulosa cells included EGR1, ADAMTS1, STAT3 and TNFAIP6. Surprisingly, PD0325901 treatment did not affect STAR expression in granulosa cells at 6 h post-GnRH. Granulosa cells had higher STAR protein and theca cells had higher levels of STAR mRNA in ERK1/2-inhibited follicles. Further, both granulosa and theca cells of ERK1/2-inhibited follicles had higher expression of SLC16A1, a monocarboxylate transporter, transporting substances including β-hydroxybutyrate across the plasma membrane. Taken together, ERK1/2 plays a significant role in mediating LH surge-induced gene expression in granulosa and theca cells of the ovulating follicle in cattle.
Collapse
Affiliation(s)
- Yasmin Schuermann
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Monique T Rovani
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Bernardo Gasperin
- Laboratory of Animal Reproduction-ReproPEL, Federal University of Pelotas, 96010-610, Capão do Leão, Brazil
| | - Rogério Ferreira
- Department of Animal Science, Santa Catarina State University, Santa Catarina, 88040-900, Brazil
| | - Juliana Ferst
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Ejimedo Madogwe
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Paulo B Gonçalves
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
24
|
Zhang C, Liu XR, Cao YC, Tian JL, Zhen D, Luo XF, Wang XM, Tian JH, Gao JM. Mammalian target of rapamycin/eukaryotic initiation factor 4F pathway regulates follicle growth and development of theca cells in mice. Reprod Fertil Dev 2018; 29:768-777. [PMID: 26748416 DOI: 10.1071/rd15230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/26/2015] [Indexed: 01/25/2023] Open
Abstract
The aim of the present study was to clarify the roles of the mammalian target of rapamycin (mTOR) signalling pathway in follicular growth and development of thecal cells. Using in vivo-grown and in vitro-cultured ovaries, histological changes were evaluated using haematoxylin and eosin (HE) staining. Differentially expressed genes (DEGs) from 0 day post partum (d.p.p.) to 8 d.p.p. ovaries were screened by microarray and verified by quantitative real-time polymerase chain reaction. Forty-two DEGs related to cell proliferation and differentiation were screened out, with most DEGs being related to the to mTOR signalling pathway. Then, 3 d.p.p. ovaries were retrieved and used to verify the role of mTOR signalling in follicle and thecal cell development using its activators (Ras homologue enriched in brain (Rheb) and GTP) and inhibitor (rapamycin). The development of follicles and thecal cells was significantly impaired in ovaries cultured in vitro Day 3 to Day 8. In in vitro-cultured ovaries, Rheb and GTP (is 100ngmL-1 Rheb and 500ngmL-1 GTP for 48h) significantly increased follicle diameter, the percentage of primary and secondary follicles and the umber of thecal cells, and upregulated expression of mTOR, phosphorylated eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), eukaryotic initiation factor (eIF) 4F and cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1). Rapamycin (10nM rapamycin for 24h) had opposite effects to those of Rheb and GTP, and partly abrogated (significant) the effects of Rheb and GTP when added to the culture in combination with these drugs. Thus, mTOR signalling plays an important role in follicle growth and thecal cell development.
Collapse
Affiliation(s)
- Chao Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiao-Ran Liu
- Galactophore Breast Clinic, Peking University School of Oncology, Beijing 100142, China
| | - Yong-Chun Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jin-Ling Tian
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Di Zhen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiao-Fei Luo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xin-Mei Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jian-Hui Tian
- College of Animal Science and Technology, China Agricultural University, Beijing 100083, China
| | - Jian-Ming Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
25
|
Gareis N, Huber E, Hein G, Rodríguez F, Salvetti N, Angeli E, Ortega H, Rey F. Impaired insulin signaling pathways affect ovarian steroidogenesis in cows with COD. Anim Reprod Sci 2018; 192:298-312. [DOI: 10.1016/j.anireprosci.2018.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 01/28/2023]
|
26
|
Maillard V, Desmarchais A, Durcin M, Uzbekova S, Elis S. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells. Reprod Biol Endocrinol 2018; 16:40. [PMID: 29699561 PMCID: PMC5918968 DOI: 10.1186/s12958-018-0357-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/18/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid (PUFA) belonging to a family of biologically active fatty acids (FA), which are known to have numerous health benefits. N-3 PUFAs affect reproduction in cattle, and notably directly affect follicular cells. In terms of reproduction in cattle, n-3 PUFA-enriched diets lead to increased follicle size or numbers. METHODS The objective of the present study was to analyze the effects of DHA (1, 10, 20 and 50 μM) on proliferation and steroidogenesis (parametric and/or non parametric (permutational) ANOVA) of bovine granulosa cells in vitro and mechanisms of action through protein expression (Kruskal-Wallis) and signaling pathways (non parametric ANOVA) and to investigate whether DHA could exert part of its action through the free fatty acid receptor 4 (FFAR4). RESULTS DHA (10 and 50 μM) increased granulosa cell proliferation and DHA 10 μM led to a corresponding increase in proliferating cell nuclear antigen (PCNA) expression level. DHA also increased progesterone secretion at 1, 20 and 50 μM, and estradiol secretion at 1, 10 and 20 μM. Consistent increases in protein levels were also reported for the steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (HSD3B1), and of the cholesterol transporter steroidogenic acute regulatory protein (StAR), which are necessary for production of progesterone or androstenedione. FFAR4 was expressed in all cellular types of bovine ovarian follicles, and in granulosa cells it was localized close to the cellular membrane. TUG-891 treatment (1 and 50 μM), a FFAR4 agonist, increased granulosa cell proliferation and MAPK14 phosphorylation in a similar way to that observed with DHA treatment. However, TUG-891 treatment (1, 10 and 50 μM) showed no effect on progesterone or estradiol secretion. CONCLUSIONS These data show that DHA stimulated proliferation and steroidogenesis of bovine granulosa cells and led to MAPK14 phosphorylation. FFAR4 involvement in DHA effects requires further investigation, even if our data might suggest FFAR4 role in DHA effects on granulosa cell proliferation. Other mechanisms of DHA action should be investigated as the steroidogenic effects seemed to be independent of FFAR4 activation.
Collapse
Affiliation(s)
- Virginie Maillard
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
- 0000 0004 0385 4036grid.464126.3INRA Centre Val de Loire, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Alice Desmarchais
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Maeva Durcin
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Svetlana Uzbekova
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| | - Sebastien Elis
- 0000 0001 2182 6141grid.12366.30UMR PRC, CNRS, IFCE, INRA, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
27
|
Effect of luteinizing hormone on goat theca cell apoptosis and steroidogenesis through activation of the PI3K/AKT pathway. Anim Reprod Sci 2018; 190:108-118. [PMID: 29422438 DOI: 10.1016/j.anireprosci.2018.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/20/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
Abstract
Luteinizing hormone (LH) is a glycoprotein that regulates the function of ovarian follicular cells. Theca cells (TCs) also have a key role in follicular growth and atresia. The effects and intracellular signaling mechanisms were investigated of LH on apoptosis and steroidogenesis in goat gonadotropin-independent follicular (1.0-4.0 mm) TCs. The results indicated that LH increased androstenedione secretion and relative abundance of CYP17A1 and BCL2 mRNA in the TCs, whereas LH in combination with LY294002, a PI3K/AKT inhibitor, decreased LH-induced function. The apoptosis ratio and expression of the BAX gene in TCs were less with LH treatment, and the extent of this inhibition was decreased by suppressing the PI3K/AKT pathway. In conclusion, results of the present study indicate LH regulates apoptosis and steroidogenesis in goat TCs by activating the PI3K/AKT pathway.
Collapse
|
28
|
Regan SLP, Knight PG, Yovich JL, Leung Y, Arfuso F, Dharmarajan A. Granulosa Cell Apoptosis in the Ovarian Follicle-A Changing View. Front Endocrinol (Lausanne) 2018; 9:61. [PMID: 29551992 PMCID: PMC5840209 DOI: 10.3389/fendo.2018.00061] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/12/2018] [Indexed: 12/25/2022] Open
Abstract
Recent studies challenge the previous view that apoptosis within the granulosa cells of the maturing ovarian follicle is a reflection of aging and consequently a marker for poor quality of the contained oocyte. On the contrary, apoptosis within the granulosa cells is an integral part of normal development and has limited predictive capability regarding oocyte quality or the ensuing pregnancy rate in in vitro fertilization programs. This review article covers our revised understanding of the process of apoptosis within the ovarian follicle, its three phenotypes, the major signaling pathways underlying apoptosis as well as the associated mitochondrial pathways.
Collapse
Affiliation(s)
- Sheena L. P. Regan
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- *Correspondence: Sheena L. P. Regan,
| | - Phil G. Knight
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - John L. Yovich
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- PIVET Medical Centre, Perth, WA, Australia
| | - Yee Leung
- Western Australian Gynaecologic Cancer Service, King Edward Memorial Hospital for Women, Perth, WA, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
29
|
Ahumada-Solórzano SM, Martínez-Moreno CG, Carranza M, Ávila-Mendoza J, Luna-Acosta JL, Harvey S, Luna M, Arámburo C. Autocrine/paracrine proliferative effect of ovarian GH and IGF-I in chicken granulosa cell cultures. Gen Comp Endocrinol 2016; 234:47-56. [PMID: 27174747 DOI: 10.1016/j.ygcen.2016.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
Abstract
It is known that growth hormone (GH) and its receptor (GHR) are expressed in granulosa cells (GC) and thecal cells during the follicular development in the hen ovary, which suggests GH is involved in autocrine/paracrine actions in the female reproductive system. In this work, we show that the knockdown of local ovarian GH with a specific cGH siRNA in GC cultures significantly decreased both cGH mRNA expression and GH secretion to the media, and also reduced their proliferative rate. Thus, we analyzed the effect of ovarian GH and recombinant chicken GH (rcGH) on the proliferation of pre-hierarchical GCs in primary cultures. Incubation of GCs with either rcGH or conditioned media, containing predominantly a 15-kDa GH isoform, showed that both significantly increased proliferation as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, proliferating cell nuclear antigen (PCNA) quantification and ((3)H)-thymidine incorporation ((3)H-T) assays in a dose response fashion. Both, locally produced GH and rcGH also induced the phosphorylation of Erk1/2 in GC cultures. Furthermore, GH increased IGF-I synthesis and its release into the GC culture incubation media. These results suggest that GH may act through local IGF-I to induce GC proliferation, since IGF-I immunoneutralization completely abolished the GH-induced proliferative effect. These data suggest that GH and IGF-I may play a role as autocrine/paracrine regulators during the follicular development in the hen ovary at the pre-hierarchical stage.
Collapse
Affiliation(s)
- S Marisela Ahumada-Solórzano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - José Luis Luna-Acosta
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Steve Harvey
- Dept. Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
| |
Collapse
|
30
|
Ilha GF, Rovani MT, Gasperin BG, Antoniazzi AQ, Gonçalves PBD, Bordignon V, Duggavathi R. Lack of FSH support enhances LIF-STAT3 signaling in granulosa cells of atretic follicles in cattle. Reproduction 2016; 150:395-403. [PMID: 26336147 DOI: 10.1530/rep-15-0026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Subordinate follicles (SFs) of bovine follicular waves undergo atresia due to declining FSH concentrations; however, the signalling mechanisms have not been fully deciphered. We used an FSH-induced co-dominance model to determine the effect of FSH on signalling pathways in granulosa cells of the second-largest follicles (SF in control cows and co-dominant follicle (co-DF2) in FSH-treated cows). The SF was smaller than DF in control cows while diameters of co-DF1 and co-DF2 in FSH-treated cows were similar. The presence of cleaved CASP3 protein confirmed that granulosa cells of SFs, but not of DFs and co-DFs, were apoptotic. To determine the effect of FSH on molecular characteristics of the second-largest follicles, we generated relative variables for the second largest follicle in each cow. For this, variables of SF or co-DF2 were divided by the variables of the largest follicle DF or co-DF1 in each cow. There was higher transcript abundance of MAPK1/3 and AKT1/2/3 but lower abundance of phosphorylated MAPK3/1 in SF than co-DF2 granulosa cells. Abundance of mRNA and phosphorylated protein of STAT3 was higher in granulosa cells of control SF than FSH-treated co-DF2. SF granulosa cells had higher levels of LIFR and IL6ST transcripts, the two receptors involved in STAT3 activation. Further, lower transcript abundance of interleukin 6 receptor (IL6R), another receptor involved in STAT3 activation, indicated that STAT3 activation in SF granulosa cells could be mainly due to leukemia inhibitory factor (LIF) signalling. These results indicate that atresia due to lack of FSH is associated with activated LIF-STAT3 signalling in SF granulosa cells, as FSH treatment reversed such activation.
Collapse
Affiliation(s)
- Gustavo Freitas Ilha
- Laboratory of Biotechnology and Animal Reproduction - BioRepVeterinary Hospital, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, BrazilLaboratory of Animal Reproduction - ReproPELFederal University of Pelotas, Capão do Leão, Rio Grande do Sul, BrazilDepartment of Animal ScienceMcGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Monique T Rovani
- Laboratory of Biotechnology and Animal Reproduction - BioRepVeterinary Hospital, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, BrazilLaboratory of Animal Reproduction - ReproPELFederal University of Pelotas, Capão do Leão, Rio Grande do Sul, BrazilDepartment of Animal ScienceMcGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Bernardo G Gasperin
- Laboratory of Biotechnology and Animal Reproduction - BioRepVeterinary Hospital, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, BrazilLaboratory of Animal Reproduction - ReproPELFederal University of Pelotas, Capão do Leão, Rio Grande do Sul, BrazilDepartment of Animal ScienceMcGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Alfredo Quites Antoniazzi
- Laboratory of Biotechnology and Animal Reproduction - BioRepVeterinary Hospital, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, BrazilLaboratory of Animal Reproduction - ReproPELFederal University of Pelotas, Capão do Leão, Rio Grande do Sul, BrazilDepartment of Animal ScienceMcGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Paulo Bayard Dias Gonçalves
- Laboratory of Biotechnology and Animal Reproduction - BioRepVeterinary Hospital, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, BrazilLaboratory of Animal Reproduction - ReproPELFederal University of Pelotas, Capão do Leão, Rio Grande do Sul, BrazilDepartment of Animal ScienceMcGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Vilceu Bordignon
- Laboratory of Biotechnology and Animal Reproduction - BioRepVeterinary Hospital, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, BrazilLaboratory of Animal Reproduction - ReproPELFederal University of Pelotas, Capão do Leão, Rio Grande do Sul, BrazilDepartment of Animal ScienceMcGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Raj Duggavathi
- Laboratory of Biotechnology and Animal Reproduction - BioRepVeterinary Hospital, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, BrazilLaboratory of Animal Reproduction - ReproPELFederal University of Pelotas, Capão do Leão, Rio Grande do Sul, BrazilDepartment of Animal ScienceMcGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, Quebec, Canada H9X 3V9
| |
Collapse
|
31
|
Tepekoy F, Akkoyunlu G. The effect of FSH and activin A on Akt and MAPK1/3 phosphorylation in cultured bovine ovarian cortical strips. J Ovarian Res 2016; 9:13. [PMID: 26969445 PMCID: PMC4788891 DOI: 10.1186/s13048-016-0222-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/24/2016] [Indexed: 01/11/2023] Open
Abstract
Background rhFSH and rhActA have been used in mammalian ovarian follicle culture systems for activation of follicular growth in vitro and suggested to be responsible for primordial follicle survival through MAPK and Akt pathways. The aim of our study was to determine the effects of rhFSH and rhActA on Akt, pAkt, MAPK1/3 and pMAPK1/3 protein levels in bovine ovarian cortical strips cultured in vitro. Methods Ovarian cortical strips from heifers were cultured in the presence of rhFSH (50 ng/mL), rhActA (100 ng/mL) or combination of these factors for 6 days. The strips were embedded in paraffin for histological observations and homogenized for western blot to determine Akt, pAkt, MAPK1/3 and pMAPK1/3 protein levels after the culture. Determination of primordial, primary and secondary follicle proportions at the end of culture as well as comparison of healthy follicle for each developmental stage after the culture was performed to quantify follicle survival and activation. Results pAkt protein levels were significantly lower in rhFSH + rhActA group among the other groups, whereas pMAPK1/3 levels were not significantly changed. Follicular activation and survival was measured to be significantly lower in rhFSH + rhActA group. Percentage of healthy primordial follicles was higher in control group whereas healthy secondary follicle proportion was higher in both rhActA and rhFSH groups. rhActA alone had a better impact on follicular activation, since the percentage of the secondary follicles was significantly higher than other treatment groups. Conclusions The use of rhActA and rhFSH alone or in the combined form results in differential levels of Akt and MAPK proteins. Both rhActA and rhFSH alone has a remarkable contribution in survival and activation of the follicles in accordance with higher levels of these proteins. Thus, the manipulation of Akt and MAPK pathways with appropriate activators might contribute to proper activation and development of ovarian follicles in vitro.
Collapse
Affiliation(s)
- Filiz Tepekoy
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, 07070 Campus, Antalya, Turkey
| | - Gokhan Akkoyunlu
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, 07070 Campus, Antalya, Turkey.
| |
Collapse
|
32
|
Casarini L, Riccetti L, De Pascali F, Nicoli A, Tagliavini S, Trenti T, La Sala GB, Simoni M. Follicle-stimulating hormone potentiates the steroidogenic activity of chorionic gonadotropin and the anti-apoptotic activity of luteinizing hormone in human granulosa-lutein cells in vitro. Mol Cell Endocrinol 2016; 422:103-114. [PMID: 26690776 DOI: 10.1016/j.mce.2015.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 01/15/2023]
Abstract
Luteinizing hormone (LH) and choriogonadotropin (hCG) are glycoprotein hormones regulating ovarian function and pregnancy, respectively. Since these molecules act on the same receptor (LHCGR), they were traditionally assumed as equivalent in assisted reproduction techniques (ART), although differences between LH and hCG were demonstrated at molecular and physiological level. In this study, we demonstrated for the first time that co-treatment with a follicle-stimulating hormone (FSH) dose in the ART therapeutic range potentiates different LH- and hCG-dependent responses in vitro, measured in terms of cAMP, phospho-CREB, -ERK1/2 and -AKT activation, gene expression, progesterone and estradiol production in human granulosa-lutein cells (hGLC). We show that in the presence of FSH, hCG biopotency is about 5-fold increased, in the presence of FSH, in terms of cAMP activation. Accordingly, CREB phosphorylation and steroid production is increased under hCG and FSH co-treatment. LH effects, evaluated as steroidogenic cAMP/PKA pathway activation, do not change in the presence of FSH, which, however, increases LH-dependent ERK1/2 and AKT, but not CREB phosphorylation, resulting in anti-apoptotic effects. The different modulatory activity of FSH on LH and hCG action in vitro corresponds to their different physiological functions, reflecting proliferative effects exerted by LH during the follicular phase and before trophoblast development, and the high steroidogenic potential of hCG requested to sustain pregnancy from the luteal phase onwards.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for the Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.
| | - Laura Riccetti
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco De Pascali
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Nicoli
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | | | | | - Giovanni Battista La Sala
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy; Dept. of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for the Genomic Research, University of Modena and Reggio Emilia, Modena, Italy; Dept. of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda USL, Modena, Italy
| |
Collapse
|
33
|
Potter SJ, Kumar DL, DeFalco T. Origin and Differentiation of Androgen-Producing Cells in the Gonads. Results Probl Cell Differ 2016; 58:101-134. [PMID: 27300177 DOI: 10.1007/978-3-319-31973-5_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sexual reproduction is dependent on the activity of androgenic steroid hormones to promote gonadal development and gametogenesis. Leydig cells of the testis and theca cells of the ovary are critical cell types in the gonadal interstitium that carry out steroidogenesis and provide key androgens for reproductive organ function. In this chapter, we will discuss important aspects of interstitial androgenic cell development in the gonad, including: the potential cellular origins of interstitial steroidogenic cells and their progenitors; the molecular mechanisms involved in Leydig cell specification and differentiation (including Sertoli-cell-derived signaling pathways and Leydig-cell-related transcription factors and nuclear receptors); the interactions of Leydig cells with other cell types in the adult testis, such as Sertoli cells, germ cells, peritubular myoid cells, macrophages, and vascular endothelial cells; the process of steroidogenesis and its systemic regulation; and a brief discussion of the development of theca cells in the ovary relative to Leydig cells in the testis. Finally, we will describe the dynamics of steroidogenic cells in seasonal breeders and highlight unique aspects of steroidogenesis in diverse vertebrate species. Understanding the cellular origins of interstitial steroidogenic cells and the pathways directing their specification and differentiation has implications for the study of multiple aspects of development and will help us gain insights into the etiology of reproductive system birth defects and infertility.
Collapse
Affiliation(s)
- Sarah J Potter
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Deepti Lava Kumar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
34
|
The effect of angiotensin-converting enzyme inhibition throughout a superovulation protocol in ewes. Res Vet Sci 2015; 103:205-10. [DOI: 10.1016/j.rvsc.2015.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/17/2015] [Accepted: 10/25/2015] [Indexed: 01/22/2023]
|
35
|
Protein kinase B is required for follicle-stimulating hormone mediated beta-catenin accumulation and estradiol production in granulosa cells of cattle. Anim Reprod Sci 2015; 163:97-104. [PMID: 26515369 DOI: 10.1016/j.anireprosci.2015.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023]
Abstract
Follicle-stimulating hormone regulation of ovarian estradiol (E2) production requires involvement of beta-catenin (CTNNB1), a transcriptional co-factor. In cultured granulosa cells (GC) of cattle, FSH treatment increased protein abundance of CTNNB1 as well as protein kinase B (AKT), a molecule known to regulate components of the CTNNB1 degradation complex. However, whether FSH induction of CTNNB1 is through direct modulation of AKT remains to be determined. To investigate specific contributions of AKT to CTNNB1 accumulation, GC were treated with insulin-like growth factor-I (IGF-I), a well-established AKT activator, in the presence or absence of FSH. Granulosa cells treated with FSH, IGF-I, and IGF-I plus FSH had increased CTNNB1 accumulation compared with controls (P ≤ 0.02; n=6). E2 medium concentrations were greater (P=0.09; n=4) in FSH treated cells compared to controls (166 and 100 ± 28 pg/mL, respectively). Treatment with IGF-I and IGF-I plus FSH increased (P<0.01) E2 to comparable concentrations. Subsequently, GC treated with lithium chloride (LiCl), a pharmacological activator of AKT, provided a response consistent with IGF-I treated cells, as LiCl, FSH, and FSH plus LiCl increased CTNNB1 accumulation compared with non-treated controls (P ≤ 0.03; n=3). In contrast, inhibition of AKT signaling with LY294002 suppressed the ability of FSH and IGF-I to regulate CTNNB1. Additionally, LY294002 treatment reduced FSH and IGF-I mediated E2 medium concentrations (P ≤ 0.004). These results demonstrate that activation of AKT is required for gonadotropin regulation of CTNNB1 accumulation and subsequent ovarian E2 production.
Collapse
|
36
|
Paracrine Regulation of Steroidogenesis in Theca Cells by Granulosa Cells Derived from Mouse Preantral Follicles. BIOMED RESEARCH INTERNATIONAL 2015; 2015:925691. [PMID: 26357661 PMCID: PMC4556819 DOI: 10.1155/2015/925691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/14/2015] [Accepted: 06/28/2015] [Indexed: 12/11/2022]
Abstract
Interaction partners of follicular cells play a significant role in steroidogenesis, follicular formation, and development. Androgen secreted by theca cells (TCs) can initiate follicle development and ovulation and provide precursor materials for estrogen synthesis. Therefore, studies on ovarian microenvironment will not only lead to better understanding of the steroidogenesis but also have clinical significance for ovarian endocrine abnormalities such as hyperandrogenism in polycystic ovary syndrome (PCOS). This study applied the Transwell coculture model to investigate if the interaction between granulosa and theca cells may affect androgen production in theca cells. Concentrations of testosterone and androstenedione in the spent medium were measured by radioimmunoassay and enzyme linked immunosorbent assay, respectively. The results show that the coculture with granulosa cells (GCs) increases steroidogenesis in TCs. In addition, testosterone and androstenedione productions in response to LH stimulation were also increased in the coculture model. Significantly increased mRNA expressions of steroidogenic enzymes (Star, Cyp11a1, Cyp17a1, and Hsd3b2) were observed in the cocultured TCs. Thus, GCs were capable of promoting steroidogenesis and LH responsiveness in TCs. This study provided a basis for further exploration of ovarian endocrine mechanism and pathologies.
Collapse
|
37
|
Regan SLP, McFarlane JR, O'Shea T, Andronicos N, Arfuso F, Dharmarajan A, Almahbobi G. Flow cytometric analysis of FSHR, BMRR1B, LHR and apoptosis in granulosa cells and ovulation rate in merino sheep. Reproduction 2015; 150:151-63. [DOI: 10.1530/rep-14-0581] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/05/2015] [Indexed: 11/08/2022]
Abstract
The aim of the present study was to determine the direct cause of the mutation-induced, increased ovulation rate in Booroola Merino (BB) sheep. Granulosa cells were removed from antral follicles before ovulation and post-ovulation from BB (n=5) and WT (n=12) Merino ewes. Direct immunofluorescence measurement of mature cell surface receptors using flow cytometry demonstrated a significant up-regulation of FSH receptor (FSHR), transforming growth factor beta type 1, bone morphogenetic protein receptor (BMPR1B), and LH receptor (LHR) in BB sheep. The increased density of FSHR and LHR provide novel evidence of a mechanism for increasing the number of follicles that are recruited during dominant follicle selection. The compounding increase in receptors with increasing follicle size maintained the multiple follicles and reduced the apoptosis, which contributed to a high ovulation rate in BB sheep. In addition, we report a mutation-independent mechanism of down-regulation to reduce receptor density of the leading dominant follicle in sheep. The suppression of receptor density coincides with the cessation of mitogenic growth and steroidogenic differentiation as part of the luteinization of the follicle. The BB mutation-induced attenuation of BMPR1B signaling led to an increased density of the FSHR and LHR and a concurrent reduction in apoptosis to increase the ovulation rate. The role of BMPs in receptor modulation is implicated in the development of multiple ovulations.
Collapse
|
38
|
Gasperin BG, Rovani MT, Ferreira R, Ilha GF, Bordignon V, Gonçalves PB, Duggavathi R. Functional status of STAT3 and MAPK3/1 signaling pathways in granulosa cells during bovine follicular deviation. Theriogenology 2015; 83:353-9. [DOI: 10.1016/j.theriogenology.2014.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 01/02/2023]
|
39
|
Scaramuzzi RJ, Zouaïdi N, Menassol JB, Dupont J. The effects of intravenous, glucose versus saline on ovarian follicles and their levels of some mediators of insulin signalling. Reprod Biol Endocrinol 2015; 13:6. [PMID: 25604903 PMCID: PMC4417278 DOI: 10.1186/1477-7827-13-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/17/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND A short-term increase in food intake and specifically dietary energy can stimulate folliculogenesis and increase ovulation rate in ewes. The mechanism appears to involve the insulin-glucose metabolic system and its interaction with FSH signalling pathways in the granulosa cells of ovarian follicles. This experiment was designed to investigate the interaction between these two systems in the granulosa cells of ovarian follicles. METHODS Thirty six Ile-de-France ewes were used in this controlled experiment to study the effects of intravenous glucose on folliculogenesis. Eighteen ewes were infused with glucose (10 mM/h for 72 h) from day 8 of the oestrous cycle, while the others (controls) received saline. Ovaries were collected when the infusions ended (luteal phase) or 30 h later and after a luteolytic dose of a PGF2α analogue (follicular phase). Follicles were dissected and granulosa cells and follicular fluid harvested. The blood concentrations of glucose, insulin, oestradiol and FSH were monitored over the experiment. The levels of Aromatase P450 and of the phosphorylated and non-phosphorylated forms of Akt, AMPK and ERK in granulosa cells and the concentration of oestradiol in follicular fluid, were determined. RESULTS Glucose increased the circulating concentration of glucose (P < 0.05) and insulin (P < 0.05). It also increased the total number of follicles >1.0 mm in diameter (P < 0.05) and small (P < 0.05) follicles (>1.0 to 2.0 mm in diameter) but not medium (>2.0 to 3.5 mm in diameter) or large (>3.5 mm in diameter) follicles. Glucose decreased circulating oestradiol (P < 0.05) but not that of FSH or progesterone. Glucose reduced aromatase P450 (P < 0.05) and decreased the phosphorylation of Akt (P < 0.05), ERK (P < 0.05) and AMPK (P < 0.05) in granulosa cells from oestrogenic follicles. The level of Aromatase P450 was greatest in large oestrogenic follicles and the phosphorylation of Akt (P < 0.05), ERK (P < 0.05) and AMPK (P < 0.05) was lower in small follicles compared to medium and large follicles. CONCLUSIONS These data suggest that the effect of glucose in small follicles is a direct action of glucose that increases the number of small follicles while the effect of glucose in oestrogenic follicles is an indirect insulin-mediated action.
Collapse
Affiliation(s)
- Rex John Scaramuzzi
- L'Institut National de la Recherche Agronomique, Unité Mixte de Recherche 6175, Physiologie de la Reproduction et des Comportements, Nouzilly, 37380, France.
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mimms, Hertfordshire, AL9 7TA, UK.
| | - Nesrine Zouaïdi
- L'Institut National de la Recherche Agronomique, Unité Mixte de Recherche 6175, Physiologie de la Reproduction et des Comportements, Nouzilly, 37380, France.
| | - Jean-Baptiste Menassol
- L'Institut National de la Recherche Agronomique, Unité Mixte de Recherche 6175, Physiologie de la Reproduction et des Comportements, Nouzilly, 37380, France.
- L'Institut National de la Recherche Agronomique, UR 1213 URH Unité de Recherches sur les Herbivores, Centre de recherche de Clermont-Ferrand-Theix, Clermont-Ferrand, France.
| | - Joëlle Dupont
- L'Institut National de la Recherche Agronomique, Unité Mixte de Recherche 6175, Physiologie de la Reproduction et des Comportements, Nouzilly, 37380, France.
| |
Collapse
|
40
|
Makker A, Goel MM, Mahdi AA. PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility: an update. J Mol Endocrinol 2014; 53:R103-18. [PMID: 25312969 DOI: 10.1530/jme-14-0220] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abnormalities in ovarian function, including defective oogenesis and folliculogenesis, represent a key female reproductive deficiency. Accumulating evidence in the literature has shown that the PI3K/PTEN/Akt and TSC/mTOR signaling pathways are critical regulators of ovarian function including quiescence, activation, and survival of primordial follicles, granulosa cell proliferation and differentiation, and meiotic maturation of oocytes. Dysregulation of these signaling pathways may contribute to infertility caused by impaired follicular development, intrafollicular oocyte development, and ovulation. This article reviews the current state of knowledge of the functional role of the PI3K/PTEN/Akt and TSC/mTOR pathways during mammalian oogenesis and folliculogenesis and their association with female infertility.
Collapse
Affiliation(s)
- Annu Makker
- Post-Graduate Department of PathologyDepartment of BiochemistryKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Madhu Mati Goel
- Post-Graduate Department of PathologyDepartment of BiochemistryKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Post-Graduate Department of PathologyDepartment of BiochemistryKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
41
|
Casarini L, Lispi M, Longobardi S, Milosa F, La Marca A, Tagliasacchi D, Pignatti E, Simoni M. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS One 2012; 7:e46682. [PMID: 23071612 PMCID: PMC3465272 DOI: 10.1371/journal.pone.0046682] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/03/2012] [Indexed: 11/19/2022] Open
Abstract
Human luteinizing hormone (hLH) and chorionic gonadotropin (hCG) act on the same receptor (LHCGR) but it is not known whether they elicit the same cellular and molecular response. This study compares for the first time the activation of cell-signalling pathways and gene expression in response to hLH and hCG. Using recombinant hLH and recombinant hCG we evaluated the kinetics of cAMP production in COS-7 and hGL5 cells permanently expressing LHCGR (COS-7/LHCGR, hGL5/LHCGR), as well as cAMP, ERK1/2, AKT activation and progesterone production in primary human granulosa cells (hGLC). The expression of selected target genes was measured in the presence or absence of ERK- or AKT-pathways inhibitors. In COS-7/LHCGR cells, hCG is 5-fold more potent than hLH (cAMP ED50: 107.1±14.3 pM and 530.0±51.2 pM, respectively). hLH maximal effect was significantly faster (10 minutes by hLH; 1 hour by hCG). In hGLC continuous exposure to equipotent doses of gonadotropins up to 36 hours revealed that intracellular cAMP production is oscillating and significantly higher by hCG versus hLH. Conversely, phospho-ERK1/2 and -AKT activation was more potent and sustained by hLH versus hCG. ERK1/2 and AKT inhibition removed the inhibitory effect on NRG1 (neuregulin) expression by hLH but not by hCG; ERK1/2 inhibition significantly increased hLH- but not hCG-stimulated CYP19A1 (aromatase) expression. We conclude that: i) hCG is more potent on cAMP production, while hLH is more potent on ERK and AKT activation; ii) hGLC respond to equipotent, constant hLH or hCG stimulation with a fluctuating cAMP production and progressive progesterone secretion; and iii) the expression of hLH and hCG target genes partly involves the activation of different pathways depending on the ligand. Therefore, the LHCGR is able to differentiate the activity of hLH and hCG.
Collapse
Affiliation(s)
- Livio Casarini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Monica Lispi
- Medical Liaison Office, Merck Serono S.p.A., Rome, Italy
| | | | - Fabiola Milosa
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio La Marca
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University Hospital of Modena, Modena, Italy
| | - Daniela Tagliasacchi
- Mother-Infant Department, Institute of Obstetrics and Gynecology, University Hospital of Modena, Modena, Italy
| | - Elisa Pignatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Azienda USL di Modena, Modena, Italy
- * E-mail:
| |
Collapse
|
42
|
Gallet C, Dupont J, Campbell BK, Monniaux D, Guillaume D, Scaramuzzi RJ. The infusion of glucose in ewes during the luteal phase increases the number of follicles but reduces oestradiol production and some correlates of metabolic function in the large follicles. Anim Reprod Sci 2011; 127:154-63. [PMID: 21943503 DOI: 10.1016/j.anireprosci.2011.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/17/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
Short-term nutritional supplementation stimulates folliculogenesis in ewes probably by insulin-mediated actions of glucose in the follicle. The aim of this study was to determine the effect of glucose on follicle number and granulosa levels of Aromatase P450 and phosphorylated Akt and AMPK. Twelve Ile-de-France ewes were allocated to two groups; one (n=7) infused with saline and the other (n=5) with glucose (10mM/h) for 72h in the luteal phase. At the end of infusion, ovaries were collected and all follicles >1mm in diameter were dissected to recover granulosa cells. Aromatase P450 and phosphorylated Akt and AMPK were analysed by Western blotting of granulosa cell lysates. Blood plasmas collected before and during the infusions were analysed for progesterone, oestradiol, LH, FSH, glucose, insulin and IGF-I. The infusion of glucose significantly increased follicle number but, significantly reduced Aromatase P450 and phosphorylated Akt and AMPK in granulosa cells. The circulating concentration of glucose rose significantly 3h after the start of the glucose infusion and remained elevated until 27h then fell; the circulating concentration of insulin rose significantly by 3h and remained elevated. The circulating concentration of oestradiol fell significantly by 32h and remained low; the circulating concentrations of LH and FSH were unaffected. These data show that short-term infusion of glucose stimulated follicular growth but decreased Aromatase P450 in granulosa cells. The reduced levels of phosphorylated Akt and AMPK suggest that the phosphatidylinositol 3-kinase pathway has been inhibited by high concentrations of glucose. These data also suggest that there may be functional cross-talk between FSH and insulin signalling in granulosa cells.
Collapse
Affiliation(s)
- Claire Gallet
- UMR Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
43
|
Maillard V, Froment P, Ramé C, Uzbekova S, Elis S, Dupont J. Expression and effect of resistin on bovine and rat granulosa cell steroidogenesis and proliferation. Reproduction 2011; 141:467-79. [PMID: 21239528 DOI: 10.1530/rep-10-0419] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Resistin, initially identified in adipose tissue and macrophages, was implicated in insulin resistance. Recently, its mRNA was found in hypothalamo-pituitary axis and rat testis, leading us to hypothesize that resistin may be expressed in ovary. In this study, we determined in rats and cows 1) the characterization of resistin in ovary by RT-PCR, immunoblotting, and immunohistochemistry and 2) the effects of recombinant resistin (10, 100, 333, and 667 ng/ml) ± IGF1 (76 ng/ml) on steroidogenesis, proliferation, and signaling pathways of granulosa cells (GC) measured by enzyme immunoassay, [(3)H]thymidine incorporation, and immunoblotting respectively. We observed that resistin mRNA and protein were present in several bovine and rat ovarian cells. Nevertheless, only bovine GC abundantly expressed resistin mRNA and protein. Resistin treatment decreased basal but not IGF1-induced progesterone (P<0.05; whatever the dose) and estradiol (P<0.005; for 10 and 333 ng/ml) production by bovine GC. In rats, resistin (10 ng/ml) increased basal and IGF1-induced progesterone secretion (P<0.0001), without effect on estradiol release. We found no effect of resistin on rat GC proliferation. Conversely, in cows, resistin increased basal proliferation (P<0.0001; for 100-667 ng/ml) and decreased IGF1-induced proliferation of GC (P<0.0001; for 10-333 ng/ml) associated with a decrease in cyclin D2 protein level (P<0.0001). Finally, resistin stimulated AKT and p38-MAPK phosphorylation in both species, ERK1/2-MAPK phosphorylation in rats and had the opposite effect on the AMPK pathway (P<0.05). In conclusion, our results show that resistin is expressed in rat and bovine ovaries. Furthermore, it can modulate GC functions in basal state or in response to IGF1 in vitro.
Collapse
Affiliation(s)
- Virginie Maillard
- Unité de Physiologie de la Reproduction et des Comportements, UMR85, Equipe Métabolisme et Reproduction, Institut National de la Recherche Agronomique, F-37 380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
44
|
Gilbert I, Robert C, Dieleman S, Blondin P, Sirard MA. Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period. Reproduction 2010; 141:193-205. [PMID: 21123518 DOI: 10.1530/rep-10-0381] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The LH surge induces a multitude of events that are essential for ovulation and corpus luteum formation. The transcriptional responses to the LH surge of preovulatory granulosa cells (GCs) are complex and still poorly understood. In this study, a genome-wide bovine oligo array was used to determine how the gene expression profile of GCs is modulated by the LH surge. GCs from three different stages were used to assess the short- and long-term effects of this hormone on follicle differentiation: 1) 2 h before induction of the LH surge, 2) 6 h and 3) 22 h after the LH surge. The results obtained were a list of differentially expressed transcripts for each GC group. To provide a comprehensive understanding of the processes at play, biological annotations were used to reveal the different functions of transcripts, confirming that the LH surge acts in a temporal manner. The pre-LH group is involved in typical tasks such as cell division, development, and proliferation, while the early response to the LH surge included features such as response to stimulus, vascularization, and lipid synthesis, which are indicative of cells preparing for ovulation. The late response of GCs revealed terms associated with protein localization and intracellular transport, corresponding to the future secretion task that will be required for the transformation of GCs into corpus luteum. Overall, results described in this study provide new insights into the different transcriptional steps that GCs go through during ovulation and before luteinization.
Collapse
Affiliation(s)
- Isabelle Gilbert
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Université Laval, Sainte-Foy, Québec, G1K 7P4, Canada
| | | | | | | | | |
Collapse
|
45
|
Abstract
Theca cells function in a diverse range of necessary roles during folliculogenesis; to synthesize androgens, provide crosstalk with granulosa cells and oocytes during development, and provide structural support of the growing follicle as it progresses through the developmental stages to produce a mature and fertilizable oocyte. Thecal cells are thought to be recruited from surrounding stromal tissue by factors secreted from an activated primary follicle. The precise origin and identity of these recruiting factors are currently not clear, but it appears that thecal recruitment and/or differentiation involves not just one signal, but a complex and tightly controlled combination of multiple factors. It is clear that thecal cells are fundamental for follicular growth, providing all the androgens required by the developing follicle(s) for conversion into estrogens by the granulosa cells. Their function is enabled through the establishment of a vascular system providing communication with the pituitary axis throughout the reproductive cycle, and delivering essential nutrients to these highly active cells. During development, the majority of follicles undergo atresia, and the theca cells are often the final follicular cell type to die. For those follicles that do ovulate, the theca cells then undergo hormone-dependent differentiation into luteinized thecal cells of the corpus luteum. While the theca is an essential component of follicle development and ovulation, we do not yet fully understand the control of recruitment and function of theca cells, an important consideration since their function appears to be altered in certain causes of infertility.
Collapse
|
46
|
Mossa F, Jimenez-Krassel F, Folger JK, Ireland JLH, Smith GW, Lonergan P, Evans ACO, Ireland JJ. Evidence that high variation in antral follicle count during follicular waves is linked to alterations in ovarian androgen production in cattle. Reproduction 2010; 140:713-20. [PMID: 20699380 DOI: 10.1530/rep-10-0214] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Androgens have an important role in ovarian follicular growth and function, but circulating androgen concentrations are also associated with ovarian dysfunction, cardiovascular disease, and metabolic disorders in women. The extent and causes of the variation in androgen production in individuals, however, are unknown. Because thecal cells of follicles synthesize androstenedione and testosterone, variation in production of these androgens is hypothesized to be directly related to the inherently high variation in number of healthy growing follicles in ovaries of individuals. To test this hypothesis, we determined whether thecal CYP17A1 mRNA (codes for a cytochrome P450 enzyme involved in androgen synthesis), LH-induced thecal androstenedione production, androstenedione concentrations in follicular fluid, and circulating testosterone concentrations were lower in cattle with relatively low versus high number of follicles growing during follicular waves and whether ovariectomy reduced serum testosterone concentrations. Results demonstrated that cattle with a low follicle number had lower (P<0.05) abundance of CYP17A1 mRNA in thecal cells, reduced (P<0.01) capacity of thecal cells to produce androstenedione in response to LH, lower (P<0.01) androstenedione concentrations in ovulatory follicles, and lower (P<0.02) circulating testosterone concentrations during estrous cycles compared with animals with high follicle number. Also, serum testosterone in cattle with low or high follicle number was reduced by 63 and 70%, respectively, following ovariectomy. In conclusion, circulating androgen concentrations are lower in cattle with low versus high number of follicles growing during follicular waves, possibly because of a reduced responsiveness of thecal cells to LH.
Collapse
Affiliation(s)
- F Mossa
- School of Agriculture Food Science and Veterinary Medicine, and Conway Institute of Biomedical and Biomolecular Research, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Scaramuzzi RJ, Brown HM, Dupont J. Nutritional and Metabolic Mechanisms in the Ovary and Their Role in Mediating the Effects of Diet on Folliculogenesis: A Perspective. Reprod Domest Anim 2010; 45 Suppl 3:32-41. [DOI: 10.1111/j.1439-0531.2010.01662.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
The LH/hCG Axis in Endometrial Cancer: A New Target in the Treatment of Recurrent or Metastatic Disease. Obstet Gynecol Int 2010; 2010. [PMID: 20706654 PMCID: PMC2913851 DOI: 10.1155/2010/486164] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 05/26/2010] [Accepted: 06/16/2010] [Indexed: 11/17/2022] Open
Abstract
Endometrial cancer (EC) is a hormone-dependent cancer that currently represents the most frequent malignancy of the female reproductive tract. The involvement of steroid hormones in EC etiology and progression has been reported. More recently, gonadotropins, and, in particular LH/hCG, are emerging as novel regulators of tumor progression. In the present review, we discuss the role of the LH/hCG axis (i.e. LH/hCG and its receptors, LH/hCG-R) in both gonadal and nongonadal tissues, in physiological and neoplastic conditions. In cancer cells, LH/hCG mainly controls cell proliferation and apoptosis. In particular, in EC LH/hCG improves cell invasiveness, through a mechanism which involves the LH/hCG-R, which in turn activate protein kinase A and modulate integrin adhesion receptors. Indeed, the LH/hCG-R mRNA is expressed in primary ECs and this expression correlates with LH/hCG-induced cell invasiveness in vitro. These results lead to hypothesize that recurrent and metastatic ECs, which express LH/hCG-R, could benefit from therapies aimed at decreasing LH levels, through Gn-RH analogues. Hence, the LH/hCG axis could represent a prognostic factor and a new therapeutic target in EC.
Collapse
|
49
|
Maillard V, Uzbekova S, Guignot F, Perreau C, Ramé C, Coyral-Castel S, Dupont J. Effect of adiponectin on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development. Reprod Biol Endocrinol 2010; 8:23. [PMID: 20219117 PMCID: PMC2845137 DOI: 10.1186/1477-7827-8-23] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/10/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adiponectin is an adipokine, mainly produced by adipose tissue. It regulates several reproductive processes. The protein expression of the adiponectin system (adiponectin, its receptors, AdipoR1 and AdipoR2 and the APPL1 adaptor) in bovine ovary and its role on ovarian cells and embryo, remain however to be determined. METHODS Here, we identified the adiponectin system in bovine ovarian cells and embryo using RT-PCR, immunoblotting and immunohistochemistry. Furthermore, we investigated in vitro the effects of recombinant human adiponectin (10 micro g/mL) on proliferation of granulosa cells (GC) measured by [3H] thymidine incorporation, progesterone and estradiol secretions measured by radioimmunoassay in the culture medium of GC, nuclear oocyte maturation and early embryo development. RESULTS We show that the mRNAs and proteins for the adiponectin system are present in bovine ovary (small and large follicles and corpus luteum) and embryo. Adiponectin, AdipoR1 and AdipoR2 were more precisely localized in oocyte, GC and theca cells. Adiponectin increased IGF-1 10(-8) M-induced GC proliferation (P < 0.01) but not basal or insulin 10(-8) M-induced proliferation. Additionally, adiponectin decreased insulin 10(-8) M-induced, but not basal or IGF-1 10(-8) M-induced secretions of progesterone (P < 0.01) and estradiol (P < 0.05) by GC. This decrease in insulin-induced steroidogenesis was associated with a decrease in ERK1/2 MAPK phosphorylation in GC pre-treated with adiponectin. Finally, addition of adiponectin during in vitro maturation affected neither the percentage of oocyte in metaphase-II nor 48-h cleavage and blastocyst day 8 rates. CONCLUSIONS In bovine species, adiponectin decreased insulin-induced steroidogenesis and increased IGF-1-induced proliferation of cultured GC through a potential involvement of ERK1/2 MAPK pathway, whereas it did not modify oocyte maturation and embryo development in vitro.
Collapse
Affiliation(s)
- Virginie Maillard
- Unité de Physiologie de la Reproduction et des Comportements, UMR85, Equipe Métabolisme et Reproduction, INRA, F-37 380 Nouzilly, France
| | - Svetlana Uzbekova
- Unité de Physiologie de la Reproduction et des Comportements, UMR85, Equipe Métabolisme et Reproduction, INRA, F-37 380 Nouzilly, France
| | - Florence Guignot
- Unité de Physiologie de la Reproduction et des Comportements, UMR85, Equipe Métabolisme et Reproduction, INRA, F-37 380 Nouzilly, France
| | - Christine Perreau
- Unité de Physiologie de la Reproduction et des Comportements, UMR85, Equipe Métabolisme et Reproduction, INRA, F-37 380 Nouzilly, France
| | - Christelle Ramé
- Unité de Physiologie de la Reproduction et des Comportements, UMR85, Equipe Métabolisme et Reproduction, INRA, F-37 380 Nouzilly, France
| | - Stéphanie Coyral-Castel
- Unité de Physiologie de la Reproduction et des Comportements, UMR85, Equipe Métabolisme et Reproduction, INRA, F-37 380 Nouzilly, France
| | - Joëlle Dupont
- Unité de Physiologie de la Reproduction et des Comportements, UMR85, Equipe Métabolisme et Reproduction, INRA, F-37 380 Nouzilly, France
| |
Collapse
|
50
|
Mani AM, Fenwick MA, Cheng Z, Sharma MK, Singh D, Wathes DC. IGF1 induces up-regulation of steroidogenic and apoptotic regulatory genes via activation of phosphatidylinositol-dependent kinase/AKT in bovine granulosa cells. Reproduction 2010; 139:139-51. [PMID: 19819918 DOI: 10.1530/rep-09-0050] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
IGF1, a potent stimulator of cellular proliferation, differentiation and development, regulates granulosa cell steroidogenesis and apoptosis during follicular development. Depending upon species and stage of follicular growth, IGF1 acts on granulosa cell steroidogenesis either alone or together with FSH. We examined the mechanism of action of IGF1 in bovine granulosa cells in serum-free culture without insulin to determine its potential role in the regulation of steroidogenic and apoptotic regulatory gene expression and to investigate the interaction of FSH with IGF1 on this mechanism. Bovine granulosa cells treated with IGF1 demonstrated a significant increase in 17beta-oestradiol (OE(2)) production, cell number and in mRNA expression of CYP11A1, HSD3B1, CYP19A1, BAX, type 1 IGF receptor (IGF1R) and FSHR, while FSH alone had no significant effects. IGF1 or FSH alone or both together had no effect on BCL2 expression. IGF1 with FSH resulted in a synergistic increase in granulosa cell number and in mRNA expression of CYP19A1 and IGF1R without altering OE(2) production. IGF1 stimulated the phosphoinositide 3'-OH kinase (PI3K) but not the MAPK pathway in granulosa cells, as evidenced by increased phosphorylation of AKT but not extracellular-regulated kinase 1/2. Addition of the PI3K pathway inhibitor LY294002 (but not the MAPK pathway inhibitor PD98059) abrogated the increased expression of genes induced by IGF1. IGF1 therefore up-regulates the steroidogenic and apoptotic regulatory genes via activation of PI3K/AKT in bovine granulosa cells. The synergistic action of IGF1 with FSH is of likely key importance for the development of small antral follicles before selection; subsequently, other factors such as LH may also become necessary for continued cell survival.
Collapse
Affiliation(s)
- Arul Murugan Mani
- Reproduction Group, Department of Veterinary Basic Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | | | | | | | | | | |
Collapse
|