1
|
Śliwa A, Szczerba A, Pięta PP, Białas P, Lorek J, Nowak-Markwitz E, Jankowska A. A Recipe for Successful Metastasis: Transition and Migratory Modes of Ovarian Cancer Cells. Cancers (Basel) 2024; 16:783. [PMID: 38398174 PMCID: PMC10886816 DOI: 10.3390/cancers16040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
One of the characteristic features of ovarian cancer is its early dissemination. Metastasis and the invasiveness of ovarian cancer are strongly dependent on the phenotypical and molecular determinants of cancer cells. Invasive cancer cells, circulating tumor cells, and cancer stem cells, which are responsible for the metastatic process, may all undergo different modes of transition, giving rise to mesenchymal, amoeboid, and redifferentiated epithelial cells. Such variability is the result of the changing needs of cancer cells, which strive to survive and colonize new organs. This would not be possible if not for the variety of migration modes adopted by the transformed cells. The most common type of metastasis in ovarian cancer is dissemination through the transcoelomic route, but transitions in ovarian cancer cells contribute greatly to hematogenous and lymphatic dissemination. This review aims to outline the transition modes of ovarian cancer cells and discuss the migratory capabilities of those cells in light of the known ovarian cancer metastasis routes.
Collapse
Affiliation(s)
- Aleksandra Śliwa
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Anna Szczerba
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Paweł Piotr Pięta
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Piotr Białas
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Jakub Lorek
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Anna Jankowska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Imran K, Iqbal MJ, Abid R, Ahmad MM, Calina D, Sharifi-Rad J, Cho WC. Cellular signaling modulated by miRNA-3652 in ovarian cancer: unveiling mechanistic pathways for future therapeutic strategies. Cell Commun Signal 2023; 21:289. [PMID: 37845675 PMCID: PMC10577948 DOI: 10.1186/s12964-023-01330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play pivotal roles in regulating gene expression and have been implicated in the pathogenesis of numerous cancers. miRNA-3652, though relatively less explored, has recently emerged as a potential key player in ovarian cancer's molecular landscape. This review aims to delineate the functional significance and tumor progression role of miRNA-3652 in ovarian cancer, shedding light on its potential as both a diagnostic biomarker and therapeutic target. A comprehensive literature search was carried out using established databases, the focus was on articles that reported the role of miRNA-3652 in ovarian cancer, encompassing mechanistic insights, functional studies, and its association with clinical outcomes. This updated review highlighted that miRNA-3652 is intricately involved in ovarian cancer cell proliferation, migration, and invasion, its dysregulation was linked to altered expression of critical genes involved in tumor growth and metastasis; furthermore, miRNA-3652 expression levels were found to correlate with clinical stages, prognosis, and response to therapy in ovarian cancer patients. miRNA-3652 holds significant promise as a vital molecular player in ovarian cancer's pathophysiology. Its functional role and impact on tumor progression make it a potential candidate for diagnostic and therapeutic applications in ovarian cancer. Given the pivotal role of miRNA-3652 in ovarian cancer, future studies should emphasize in-depth mechanistic explorations, utilizing advanced genomic and proteomic tools. Collaboration between basic scientists and clinicians will be vital to translating these findings into innovative diagnostic and therapeutic strategies, ultimately benefiting ovarian cancer patients. Video Abstract.
Collapse
Affiliation(s)
- Komal Imran
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Rameesha Abid
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Mushtaq Ahmad
- Department of Allied Health Sciences, International Institute of Science, Art and Technology, Gujranwala, Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Tomas E, Shepherd TG. Insights into high-grade serous carcinoma pathobiology using three-dimensional culture model systems. J Ovarian Res 2023; 16:70. [PMID: 37038202 PMCID: PMC10088149 DOI: 10.1186/s13048-023-01145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
Epithelial ovarian cancer (EOC) research has become more complex as researchers try to fully understand the metastatic process. Especially as we delve into the concept of tumour dormancy, where cells transition between proliferative and dormant states to survive during disease progression. Thus, the in vitro models used to conduct this research need to reflect this vast biological complexity. The innovation behind the many three-dimensional (3D) spheroid models has been refined to easily generate reproducible spheroids so that we may understand the various molecular signaling changes of cells during metastasis and determine therapeutic efficacy of treatments. This ingenuity was then used to develop the 3D ex vivo patient-derived organoid model, as well as multiple co-culture model systems for EOC research. Although, researchers need to continue to push the boundaries of these current models for in vitro and even in vivo work in the future. In this review, we describe the 3D models already in use, where these models can be developed further and how we can use these models to gain the most knowledge on EOC pathogenesis and discover new targeted therapies.
Collapse
Affiliation(s)
- Emily Tomas
- London Regional Cancer Program, The Mary & John Knight Translational Ovarian Cancer Research Unit, 790 Commissioners Rd. E. Room A4-836, London, ON, N6A 4L6, Canada
- Department of Anatomy & Cell Biology, Western University, London, ON, Canada
| | - Trevor G Shepherd
- London Regional Cancer Program, The Mary & John Knight Translational Ovarian Cancer Research Unit, 790 Commissioners Rd. E. Room A4-836, London, ON, N6A 4L6, Canada.
- Department of Anatomy & Cell Biology, Western University, London, ON, Canada.
- Department of Obstetrics & Gynaecology, Western University, London, ON, Canada.
- Department of Oncology, Western University, London, ON, Canada.
| |
Collapse
|
4
|
Micek HM, Rosenstock L, Ma Y, Hielsberg C, Montemorano L, Gari MK, Ponik SM, Kreeger PK. Model of collective detachment in high-grade serous ovarian cancer demonstrates that tumor spheroids produce ECM to support metastatic processes. APL Bioeng 2023; 7:016111. [PMID: 36875739 PMCID: PMC9977464 DOI: 10.1063/5.0132254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) metastasizes through transcoelomic spread, with both single cells and spheroids of tumor cells observed in patient ascites. These spheroids may form through single cells that detach and aggregate (Sph-SC) or through collective detachment (Sph-CD). We developed an in vitro model to generate and separate Sph-SC from Sph-CD to enable study of Sph-CD in disease progression. In vitro-generated Sph-CD and spheroids isolated from ascites were similar in size (mean diameter 51 vs 55 μm, p > 0.05) and incorporated multiple ECM proteins. Using the in vitro model, nascent protein labeling, and qRT-PCR, we determined that ECM was produced after detachment. As fibronectin plays a key role in many cell adhesion events, we confirmed that inhibiting RGD-based adhesion or fibronectin assembly reduced Sph-CD-mesothelial adhesion strength under shear stress. Our model will enable future studies to determine factors that favor formation of Sph-CD, as well as allow investigators to manipulate Sph-CD to better study their effects on HGSOC progression.
Collapse
Affiliation(s)
- Hannah M. Micek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Lauren Rosenstock
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Yicheng Ma
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Caitlin Hielsberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Lauren Montemorano
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | | | | | - Pamela K. Kreeger
- Author to whom correspondence should be addressed:. Tel.: (608) 890–2915
| |
Collapse
|
5
|
Barbolina MV. Targeting Microtubule-Associated Protein Tau in Chemotherapy-Resistant Models of High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2022; 14:4535. [PMID: 36139693 PMCID: PMC9496900 DOI: 10.3390/cancers14184535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Relapsed, recurrent, chemotherapy-resistant high-grade serous ovarian carcinoma is the deadliest stage of this disease. Expression of microtubule-associated protein tau (tau) has been linked to resistance to paclitaxel treatment. Here, I used models of platinum-resistant and created models of platinum/paclitaxel-resistant high-grade serous ovarian carcinoma to examine the impact of reducing tau expression on cell survival and tumor burden in cell culture and xenograft and syngeneic models of the disease. Tau was overexpressed in platinum/paclitaxel-resistant models; expression of phosphoSer396 and phosphoThr181 species was also found. A treatment with leucomethylene blue reduced the levels of tau in treated cells, was cytotoxic in cell cultures, and efficiently reduced the tumor burden in xenograft models. Furthermore, a combination of leucomethylene blue and paclitaxel synergized in eliminating cancer cells in cell culture and xenograft models. These findings underscore the feasibility of targeting tau as a treatment option in terminal-stage high-grade serous ovarian cancer.
Collapse
Affiliation(s)
- Maria V Barbolina
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60091, USA
| |
Collapse
|
6
|
Russo A, Yang Z, Heyrman GM, Cain BP, Lopez Carrero A, Isenberg BC, Dean MJ, Coppeta J, Burdette JE. Versican secreted by the ovary links ovulation and migration in fallopian tube derived serous cancer. Cancer Lett 2022; 543:215779. [PMID: 35697329 PMCID: PMC10134877 DOI: 10.1016/j.canlet.2022.215779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
High grade serous ovarian cancers (HGSOC) predominantly arise in the fallopian tube epithelium (FTE) and colonize the ovary first, before further metastasis to the peritoneum. Ovarian cancer risk is directly related to the number of ovulations, suggesting that the ovary may secrete specific factors that act as chemoattractants for fallopian tube derived tumor cells during ovulation. We found that 3D ovarian organ culture produced a secreted factor that enhanced the migration of FTE non-tumorigenic cells as well as cells harboring specific pathway modifications commonly found in high grade serous cancers. Through size fractionation and a small molecule inhibitors screen, the secreted protein was determined to be 50-100kDa in size and acted through the Epidermal Growth Factor Receptor (EGFR). To correlate the candidates with ovulation, the PREDICT organ-on-chip system was optimized to support ovulation in a perfused microfluidic platform. Versican was found in the correct molecular weight range, contained EGF-like domains, and correlated with ovulation in the PREDICT system. Exogenous versican increased migration, invasion, and enhanced adhesion of both murine and human FTE cells to the ovary in an EGFR-dependent manner. The identification of a protein secreted during ovulation that impacts the ability of FTE cells to colonize the ovary provides new insights into the development of strategies for limiting primary ovarian metastasis.
Collapse
Affiliation(s)
- Angela Russo
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Zizhao Yang
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Brian P Cain
- Charles Stark Draper Laboratory, Cambridge, MA, 02139, USA
| | - Alfredo Lopez Carrero
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Matthew J Dean
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
7
|
Renner C, Gomez C, Visetsouk MR, Taha I, Khan A, McGregor SM, Weisman P, Naba A, Masters KS, Kreeger PK. Multi-modal Profiling of the Extracellular Matrix of Human Fallopian Tubes and Serous Tubal Intraepithelial Carcinomas. J Histochem Cytochem 2022; 70:151-168. [PMID: 34866441 PMCID: PMC8777377 DOI: 10.1369/00221554211061359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recent evidence supports the fimbriae of the fallopian tube as one origin site for high-grade serous ovarian cancer (HGSOC). The progression of many solid tumors is accompanied by changes in the microenvironment, including alterations of the extracellular matrix (ECM). Therefore, we sought to determine the ECM composition of the benign fallopian tube and changes associated with serous tubal intraepithelial carcinomas (STICs), precursors of HGSOC. The ECM composition of benign human fallopian tube was first defined from a meta-analysis of published proteomic datasets that identified 190 ECM proteins. We then conducted de novo proteomics using ECM enrichment and identified 88 proteins, 7 of which were not identified in prior studies (COL2A1, COL4A5, COL16A1, elastin, LAMA5, annexin A2, and PAI1). To enable future in vitro studies, we investigated the levels and localization of ECM components included in tissue-engineered models (type I, III, and IV collagens, fibronectin, laminin, versican, perlecan, and hyaluronic acid) using multispectral immunohistochemical staining of fimbriae from patients with benign conditions or STICs. Quantification revealed an increase in stromal fibronectin and a decrease in epithelial versican in STICs. Our results provide an in-depth picture of the ECM in the benign fallopian tube and identified ECM changes that accompany STIC formation. (J Histochem Cytochem XX: XXX-XXX, XXXX).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexandra Naba
- Alexandra Naba, Department of Physiology
and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Avenue,
Chicago, IL 60612, USA. E-mail:
| | | | | |
Collapse
|
8
|
Shehzad A, Ravinayagam V, AlRumaih H, Aljafary M, Almohazey D, Almofty S, Al-Rashid NA, Al-Suhaimi EA. Application of Three-dimensional (3D) Tumor Cell Culture Systems and Mechanism of Drug Resistance. Curr Pharm Des 2020; 25:3599-3607. [PMID: 31612821 DOI: 10.2174/1381612825666191014163923] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
The in-vitro experimental model for the development of cancer therapeutics has always been challenging. Recently, the scientific revolution has improved cell culturing techniques by applying three dimensional (3D) culture system, which provides a similar physiologically relevant in-vivo model for studying various diseases including cancer. In particular, cancer cells exhibiting in-vivo behavior in a model of 3D cell culture is a more accurate cell culture model to test the effectiveness of anticancer drugs or characterization of cancer cells in comparison with two dimensional (2D) monolayer. This study underpins various factors that cause resistance to anticancer drugs in forms of spheroids in 3D in-vitro cell culture and also outlines key challenges and possible solutions for the future development of these systems.
Collapse
Affiliation(s)
- Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Vijaya Ravinayagam
- Scientific Research & Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hamad AlRumaih
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Meneerah Aljafary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dana Almohazey
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sarah Almofty
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noor A Al-Rashid
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
9
|
VersicanV1 promotes proliferation and metastasis of hepatocellular carcinoma through the activation of EGFR-PI3K-AKT pathway. Oncogene 2019; 39:1213-1230. [PMID: 31605014 DOI: 10.1038/s41388-019-1052-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 01/02/2023]
Abstract
Versican has been reported to participate in carcinogenesis in several malignant tumors. However, the accurate role of VersicanV1, a predominant isoform of Versican in liver, remains an enigma in hepatocellular carcinoma (HCC). The expression of VersicanV1 in HCC tissues and adjacent tissues was detected by Reverse Transcription-Polymerase Chain Reaction (RT-PCR), Western Blot (WB) and inmumohistochemistry (IHC). Gain and loss of function assays were performed to examine the role of VersicanV1 in proliferation and metastasis of HCC. Measurement of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in vitro and PET-CT (positron emission tomography/computed tomography) analysis in vivo were applied to evaluate the effects of VersicanV1 on glycolysis. RNA sequencing, Co-IP (Co-immunoprecipitation) and MS (mass spectrometry) were utilized to investigate the molecular mechanisms. Our current study reveals that VersicanV1, regulated by direct interaction with Linc01225, is significantly upregulated in HCC tissues and correlates with poor prognosis. Both in vitro and in vivo experiments show that knockdown of VersicanV1 in HCC cells attenuates cancer cells malignancy. Further studies identify the positive role of VersicanV1 in aerobic glycolysis. Mechanistic investigation discovers the activation of EGFR-PI3K-AKT pathway in HCC cells expressing high VersicanV1. Moreover, EGF-like motif is indispensable for VersicanV1 to promote Warburg effect of HCC cells and subsequently, proliferation, invasion, and metastasis ability via activation of EGFR-PI3K-AKT axis. In sum, our research highlights a novel role of VersicanV1 in the progression of HCC, suggesting that VersicanV1 is an indicator for prognosis and a potential therapeutic target of HCC.
Collapse
|
10
|
Sacks Suarez J, Gurler Main H, Muralidhar GG, Elfituri O, Xu HL, Kajdacsy-Balla AA, Barbolina MV. CD44 Regulates Formation of Spheroids and Controls Organ-Specific Metastatic Colonization in Epithelial Ovarian Carcinoma. Mol Cancer Res 2019; 17:1801-1814. [PMID: 31147393 DOI: 10.1158/1541-7786.mcr-18-1205] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/27/2019] [Accepted: 05/23/2019] [Indexed: 11/16/2022]
Abstract
Disseminating epithelial ovarian cancer cells often become assembled into spheroids prior to their arrival at metastatic sites within the peritoneal cavity. Although epithelial ovarian carcinoma (EOC) is the deadliest gynecologic malignancy, the mechanisms regulating formation and metastatic potential of spheroids are poorly understood. We show that expression of a cell surface glycoprotein CD44 is an important contributing factor for spheroid formation and spheroid adhesion to mesothelial cells, and its loss impairs mesenteric metastasis. In contrast, loss of CD44 resulted in significant increase of tumor burden at several locoregional sites, including liver, and unleashed distant metastases to the thoracic cavity. Altogether our studies suggest that CD44 regulates metastatic progression of EOC in an organ-specific manner. IMPLICATIONS: Expression of CD44 promotes spheroid formation, mesothelial adhesion, and formation of mesenteric metastasis, but it suppresses development of metastasis to several peritoneal sites, including liver, and the thoracic cavity.
Collapse
Affiliation(s)
- Joelle Sacks Suarez
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Hilal Gurler Main
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Goda G Muralidhar
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Osama Elfituri
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Hao-Liang Xu
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Maria V Barbolina
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Barbolina MV. Molecular Mechanisms Regulating Organ-Specific Metastases in Epithelial Ovarian Carcinoma. Cancers (Basel) 2018; 10:cancers10110444. [PMID: 30445726 PMCID: PMC6266311 DOI: 10.3390/cancers10110444] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 01/04/2023] Open
Abstract
Epithelial ovarian carcinoma is the most predominant type of ovarian carcinoma, the deadliest gynecologic malignancy. It is typically diagnosed late when the cancer has already metastasized. Transcoelomic metastasis is the most predominant mechanism of dissemination from epithelial ovarian carcinoma, although both hematogenously and lymphogenously spread metastases also occur. In this review, we describe molecular mechanisms known to regulate organ-specific metastasis from epithelial ovarian carcinoma. We begin by discussing the sites colonized by metastatic ovarian carcinoma and rank them in the order of prevalence. Next, we review the mechanisms regulating the transcoelomic metastasis. Within this chapter, we specifically focus on the mechanisms that were demonstrated to regulate peritoneal adhesion—one of the first steps in the transcoelomic metastatic cascade. Furthermore, we describe mechanisms of the transcoelomic metastasis known to regulate colonization of specific sites within the peritoneal cavity, including the omentum. Mechanisms underlying hematogenous and lymphogenous metastatic spread are less comprehensively studied in ovarian cancer, and we summarize mechanisms that were identified to date. Lastly, we discuss the outcomes of the clinical trials that attempted to target some of the mechanisms described in this review.
Collapse
Affiliation(s)
- Maria V Barbolina
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
12
|
Versican silencing in BeWo cells and its implication in gestational trophoblastic diseases. Histochem Cell Biol 2018; 151:305-313. [DOI: 10.1007/s00418-018-1739-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
|
13
|
Gong L, Zheng Y, Liu S, Peng Z. Fibronectin Regulates the Dynamic Formation of Ovarian Cancer Multicellular Aggregates and the Expression of Integrin Receptors. Asian Pac J Cancer Prev 2018; 19:2493-2498. [PMID: 30256042 PMCID: PMC6249468 DOI: 10.22034/apjcp.2018.19.9.2493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective: To investigate the regulatory role of fibronectin (FN) in the formation of multicellular aggregate (MCA) in ovarian cancer SKOV3 and OVCAR-3 cells and integrin expression. Methods: The dynamic formation of MCA in SKOV3 and OVCAR-3 was determined using the liquid overlay technique in the presence or absence of FN, anti-FN, RGD peptide, control RGE. The expression of α3β1, α4β1 and α5β1 integrin in monolayer cells, MCA and FN-treated MCA were determined by flow cytometry and quantitative RT-PCR. Results: OVCAR-3 and SKOV3 MCA were formed on the 4th and 8th day and peaked on the 6th and 9th day, respectively. Treatment with different concentrations of FN, LN, type IV collagen and control RGE peptide promoted MCA growth, which was mitigated by anti-FN and RGD peptide. In comparison with monolayer cells, up-regulated α3β1, α4β1 and α5β1 expression were detected in MCA while treatment with FN in both cells. Conclusions: OVCAR-3 and SKOV3 cells had varying dynamic formation of MCA in our experimental system. FN enhanced MCA formation in both cells, which was associated with increased expression of 3β1, α4β1 and α5β1 in the MCA. Therefore, FN and these integrins may be new therapeutic targets for intervention of ovarian cancer metastasis.
Collapse
Affiliation(s)
- Lin Gong
- Department of Obstetrics and Gynecology, West China Second Hospital, West China Center of Medical Sciences, Sichuan University,Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children ,Sichuan University, Chengdu, China.
| | | | | | | |
Collapse
|
14
|
Salem M, O'Brien JA, Bernaudo S, Shawer H, Ye G, Brkić J, Amleh A, Vanderhyden BC, Refky B, Yang BB, Krylov SN, Peng C. miR-590-3p Promotes Ovarian Cancer Growth and Metastasis via a Novel FOXA2-Versican Pathway. Cancer Res 2018; 78:4175-4190. [PMID: 29748371 DOI: 10.1158/0008-5472.can-17-3014] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/23/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022]
Abstract
miRNAs play important roles in gene regulation, and their dysregulation is associated with many diseases, including epithelial ovarian cancer (EOC). In this study, we determined the expression and function of miR-590-3p in EOC. miR-590-3p levels were higher in high-grade carcinoma when compared with low-grade or tumors with low malignant potential. Interestingly, plasma levels of miR-590-3p were significantly higher in patients with EOC than in subjects with benign gynecologic disorders. Transient transfection of miR-590-3p mimics or stable transfection of mir-590 increased cell proliferation, migration, and invasion. In vivo studies revealed that mir-590 accelerated tumor growth and metastasis. Using a cDNA microarray, we identified forkhead box A2 (FOXA2) and versican (VCAN) as top downregulated and upregulated genes by mir-590, respectively. miR-590-3p targeted FOXA2 3' UTR to suppress its expression. In addition, knockdown or knockout of FOXA2 enhanced cell proliferation, migration, and invasion. Overexpression of FOXA2 decreased, whereas knockout of FOXA2 increased VCAN mRNA and protein levels, which was due to direct binding and regulation of the VCAN gene by FOXA2. Interrogation of the TCGA ovarian cancer database revealed a negative relationship between FOXA2 and VCAN mRNA levels in EOC tumors, and high FOXA2/low VCAN mRNA levels in tumors positively correlated with patient survival. Finally, overexpression of FOXA2 or silencing of VCAN reversed the effects of mir-590. These findings demonstrate that miR-590-3p promotes EOC development via a novel FOXA2-VCAN pathway.Significance: Low FOXA2/high VCAN levels mediate the tumor-promoting effects of miR-590-3p and negatively correlate with ovarian cancer survival. Cancer Res; 78(15); 4175-90. ©2018 AACR.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Biology, York University, Toronto, Canada
| | | | | | - Heba Shawer
- Department of Biology, American University in Cairo, New Cairo, Egypt
| | - Gang Ye
- Department of Biology, York University, Toronto, Canada
| | - Jelena Brkić
- Department of Biology, York University, Toronto, Canada
| | - Asma Amleh
- Department of Biology, American University in Cairo, New Cairo, Egypt
| | | | - Basel Refky
- Department of Surgical Oncology, Mansoura Oncology Center, Mansoura, Egypt
| | - Burton B Yang
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Sergey N Krylov
- Department of Chemistry, York University, Toronto, Canada.,Centre for Research on Molecular Interactions, York University, Toronto, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, Canada. .,Centre for Research on Molecular Interactions, York University, Toronto, Canada
| |
Collapse
|
15
|
Xie J, Gurler Main H, Sacks JD, Muralidhar GG, Barbolina MV. Regulation of DNA damage repair and lipid uptake by CX 3CR1 in epithelial ovarian carcinoma. Oncogenesis 2018; 7:37. [PMID: 29712888 PMCID: PMC5928120 DOI: 10.1038/s41389-018-0046-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/17/2018] [Accepted: 03/26/2018] [Indexed: 12/25/2022] Open
Abstract
Failure of currently used cytotoxic chemotherapy is one of the main reasons behind high mortality from metastatic high grade serous ovarian carcinoma. We found that high expression of a receptor for fractalkine (CX3CR1) significantly correlated with shorter survival of patients with serous ovarian carcinoma treated with cytotoxic DNA damage chemotherapies, and reduction of CX3CR1 expression resulted in sensitization to several DNA damaging modalities, including x-ray radiation and cisplatin. Here, we show that CX3CR1 plays a role in double-strand DNA break response and repair by regulating expression of RAD50 by a MYC-dependent mechanism. We demonstrate that downregulation of CX3CR1 alone and in a combination with irradiation affects peritoneal metastasis in an organ-specific manner; we show that CX3CR1 regulates lipid uptake which could control omental metastasis. This study identifies CX3CR1 as a novel potential target for sensitization of ovarian carcinoma to DNA damage therapies and reduction of peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Jia Xie
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hilal Gurler Main
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Joelle D Sacks
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Goda G Muralidhar
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Maria V Barbolina
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
16
|
Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions? Int J Mol Sci 2018; 19:ijms19010181. [PMID: 29346265 PMCID: PMC5796130 DOI: 10.3390/ijms19010181] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
An area that has come to be of tremendous interest in tumor research in the last decade is the role of the microenvironment in the biology of neoplastic diseases. The tumor microenvironment (TME) comprises various cells that are collectively important for normal tissue homeostasis as well as tumor progression or regression. Seminal studies have demonstrated the role of the dialogue between cancer cells (at many sites) and the cellular component of the microenvironment in tumor progression, metastasis, and resistance to treatment. Using an appropriate system of microenvironment and tumor culture is the first step towards a better understanding of the complex interaction between cancer cells and their surroundings. Three-dimensional (3D) models have been widely described recently. However, while it is claimed that they can bridge the gap between in vitro and in vivo, it is sometimes hard to decipher their advantage or limitation compared to classical two-dimensional (2D) cultures, especially given the broad number of techniques used. We present here a comprehensive review of the different 3D methods developed recently, and, secondly, we discuss the pros and cons of 3D culture compared to 2D when studying interactions between cancer cells and their microenvironment.
Collapse
Affiliation(s)
- Jessica Hoarau-Véchot
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha 24144, Qatar.
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha 24144, Qatar.
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Cyril Touboul
- UMR INSERM U965, Angiogenèse et Recherche Translationnelle, Hôpital Lariboisière, 49 bd de la Chapelle, 75010 Paris, France.
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, Faculté de Médecine de Créteil UPEC, Paris XII, 40 Avenue de Verdun, 94000 Créteil, France.
| | - Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha 24144, Qatar.
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
- INSERM U955, Equipe 7, 94000 Créteil, France.
| |
Collapse
|
17
|
Campo-Verde-Arbocco F, López-Laur JD, Romeo LR, Giorlando N, Bruna FA, Contador DE, López-Fontana G, Santiano FE, Sasso CV, Zyla LE, López-Fontana CM, Calvo JC, Carón RW, Pistone Creydt V. Human renal adipose tissue induces the invasion and progression of renal cell carcinoma. Oncotarget 2017; 8:94223-94234. [PMID: 29212223 PMCID: PMC5706869 DOI: 10.18632/oncotarget.21666] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
We evaluated the effects of conditioned media (CMs) of human adipose tissue from renal cell carcinoma located near the tumor (hRATnT) or farther away from the tumor (hRATfT), on proliferation, adhesion and migration of tumor (786-O and ACHN) and non-tumor (HK-2) human renal epithelial cell lines. Human adipose tissues were obtained from patients with renal cell carcinoma (RCC) and CMs from hRATnT and hRATfT incubation. Proliferation, adhesion and migration were quantified in 786-O, ACHN and HK-2 cell lines incubated with hRATnT-, hRATfT- or control-CMs. We evaluated versican, adiponectin and leptin expression in CMs from hRATnT and hRATfT. We evaluated AdipoR1/2, ObR, pERK, pAkt y pPI3K expression on cell lines incubated with CMs. No differences in proliferation of cell lines was found after 24 h of treatment with CMs. All cell lines showed a significant decrease in cell adhesion and increase in cell migration after incubation with hRATnT-CMs vs. hRATfT- or control-CMs. hRATnT-CMs showed increased levels of versican and leptin, compared to hRATfT-CMs. AdipoR2 in 786-O and ACHN cells decreased significantly after incubation with hRATfT- and hRATnT-CMs vs. control-CMs. We observed a decrease in the expression of pAkt in HK-2, 786-O and ACHN incubated with hRATnT-CMs. This result could partially explain the observed changes in migration and cell adhesion. We conclude that hRATnT released factors, such as leptin and versican, could enhance the invasive potential of renal epithelial cell lines and could modulate the progression of the disease.
Collapse
Affiliation(s)
- Fiorella Campo-Verde-Arbocco
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - José D López-Laur
- Clinica Andina de Urología, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Leonardo R Romeo
- Departamento de Urología y Transplante Renal, Hospital Español, Mendoza, Argentina
| | - Noelia Giorlando
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Flavia A Bruna
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - David E Contador
- Centro de Medicina Regenerativa, Facultad de Medicina, Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | | | - Flavia E Santiano
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Corina V Sasso
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Leila E Zyla
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Constanza M López-Fontana
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Juan C Calvo
- Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rubén W Carón
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Virginia Pistone Creydt
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| |
Collapse
|
18
|
OCT4 controls mitotic stability and inactivates the RB tumor suppressor pathway to enhance ovarian cancer aggressiveness. Oncogene 2017; 36:4253-4266. [DOI: 10.1038/onc.2017.20] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/05/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022]
|
19
|
Oliveira-Ferrer L, Legler K, Milde-Langosch K. Role of protein glycosylation in cancer metastasis. Semin Cancer Biol 2017; 44:141-152. [PMID: 28315783 DOI: 10.1016/j.semcancer.2017.03.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 02/06/2023]
Abstract
Although altered glycosylation has been detected in human cancer cells decades ago, only investigations in the last years have enormously increased our knowledge about the details of protein glycosylation and its role in tumour progression. Many proteins, which are heavily glycosylated, i.e. adhesion proteins or proteases, play an important role in cancer metastasis that represents the crucial and frequently life-threatening step in progression of most tumour types. Compared to normal tissue, tumour cells often show altered glycosylation patters with appearance of new tumour-specific antigens. In this review, we give an overview about the role of glycosylation in tumour metastasis, describing recent results about O-glycans, N-glycans and glycosaminoglycans. We show that glycan structures, glycosylated proteins and glycosylation enzymes have influence on different steps of the metastatic process, including epithelial-mesenchymal transition (EMT), migration, invasion/intravasation and extravasation of tumour cells. Regarding the important role of cancer metastasis for patients survival, further knowledge about the consequences of altered glycosylation patterns in tumour cells is needed which might eventually lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Karen Legler
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karin Milde-Langosch
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Emergent role of the fractalkine axis in dissemination of peritoneal metastasis from epithelial ovarian carcinoma. Oncogene 2016; 36:3025-3036. [PMID: 27941884 PMCID: PMC5444995 DOI: 10.1038/onc.2016.456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 01/21/2023]
Abstract
Epithelial ovarian carcinoma is the most common cause of death from gynecologic cancers largely due to advanced, relapsed, and chemotherapy-resistant peritoneal metastasis, which is refractory to the currently used treatment approaches. Mechanisms supporting advanced and relapsed peritoneal metastasis are largely unknown, precluding development of more effective targeted therapies. In this study we investigated the function of a potentially targetable fractalkine axis in the formation and the development of advanced and relapsed peritoneal metastasis and its impact on patients’ outcomes. Our mouse model studies support a role for the fractalkine receptor (CX3CR1) in the initiation of peritoneal adhesion important for recolonization of relapsed peritoneal metastasis. We show that downregulation of CX3CR1 results in reduction of metastatic burden at several peritoneal sites commonly colonized by advanced and relapsed metastatic ovarian carcinoma. We show that the chemokine fractalkine (CX3CL1), an activating ligand of CX3CR1, regulates organ-specific peritoneal colonization. High expression of CX3CR1 correlates with significantly shorter survival, specifically in post-menopausal patients with advanced and terminal stages of the disease. Taken together, our studies support a key regulatory role for the fractalkine axis in advanced and relapsed peritoneal metastasis in epithelial ovarian carcinoma.
Collapse
|
21
|
Binder MJ, McCoombe S, Williams ED, McCulloch DR, Ward AC. The extracellular matrix in cancer progression: Role of hyalectan proteoglycans and ADAMTS enzymes. Cancer Lett 2016; 385:55-64. [PMID: 27838414 DOI: 10.1016/j.canlet.2016.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023]
Abstract
Remodelling of the extracellular matrix (ECM) has emerged as a key factor in cancer progression. Proteoglycans, including versican and other hyalectans, represent major structural elements of the ECM where they interact with other important molecules, including the glycosaminoglycan hyaluronan and the CD44 cell surface receptor. The hyalectan proteoglycans are regulated through cleavage by the proteolytic actions of A Disintegrin-like And Metalloproteinase domain with Thrombospondin-1 motif (ADAMTS) family members. Alteration in the balance between hyalectan proteoglycans and ADAMTS enzymes has been proposed to be a crucial factor in cancer progression either in a positive or negative manner depending on the context. Further complexity arises due to the formation of bioactive cleavage products, such as versikine, which may also play a role, and non-enzymatic functions for ADAMTS proteins. This research is providing fresh insights into cancer biology and opportunities for the development of new diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Marley J Binder
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Scott McCoombe
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland 4000, Australia
| | - Daniel R McCulloch
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
22
|
Cell line and patient-derived xenograft models reveal elevated CDCP1 as a target in high-grade serous ovarian cancer. Br J Cancer 2016; 114:417-26. [PMID: 26882065 PMCID: PMC4815773 DOI: 10.1038/bjc.2015.471] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/10/2015] [Accepted: 12/08/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Development of targeted therapies for high-grade serous ovarian cancer (HGSC) remains challenging, as contributing molecular pathways are poorly defined or expressed heterogeneously. CUB-domain containing protein 1 (CDCP1) is a cell-surface protein elevated in lung, colorectal, pancreas, renal and clear cell ovarian cancer. METHODS CUB-domain containing protein 1 was examined by immunohistochemistry in HGSC and fallopian tube. The impact of targeting CDCP1 on cell growth and migration in vitro, and intraperitoneal xenograft growth in mice was examined. Three patient-derived xenograft (PDX) mouse models were developed and characterised for CDCP1 expression. The effect of a monoclonal anti-CDCP1 antibody on PDX growth was examined. Src activation was assessed by western blot analysis. RESULTS Elevated CDCP1 was observed in 77% of HGSC cases. Silencing of CDCP1 reduced migration and non-adherent cell growth in vitro and tumour burden in vivo. Expression of CDCP1 in patient samples was maintained in PDX models. Antibody blockade of CDCP1 significantly reduced growth of an HGSC PDX. The CDCP1-mediated activation of Src was observed in cultured cells and mouse xenografts. CONCLUSIONS CUB-domain containing protein 1 is over-expressed by the majority of HGSCs. In vitro and mouse model data indicate that CDCP1 has a role in HGSC and that it can be targeted to inhibit progression of this cancer.
Collapse
|
23
|
Keire PA, Bressler SL, Mulvihill ER, Starcher BC, Kang I, Wight TN. Inhibition of versican expression by siRNA facilitates tropoelastin synthesis and elastic fiber formation by human SK-LMS-1 leiomyosarcoma smooth muscle cells in vitro and in vivo. Matrix Biol 2015; 50:67-81. [PMID: 26723257 DOI: 10.1016/j.matbio.2015.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 12/23/2022]
Abstract
Versican is an extracellular matrix (ECM) molecule that interacts with other ECM components to influence ECM organization, stability, composition, and cell behavior. Versican is known to increase in a number of cancers, but little is known about how versican influences the amount and organization of the ECM components in the tumor microenvironment. In the present study, we modulated versican expression using siRNAs in the human leiomyosarcoma (LMS) smooth muscle cell line SK-LMS-1, and observed the formation of elastin and elastic fibers in vitro and also in vivo in a nude mouse tumor model. Constitutive siRNA-directed knockdown of versican in LMS cells resulted in increased levels of elastin, as shown by immunohistochemical staining of the cells in vitro, and by mRNA and protein analyses. Moreover, versican siRNA LMS cells, when injected into nude mice, generated smaller tumors that had significantly greater immunohistochemical and histochemical staining for elastin when compared to control tumors. Additionally, microarray analyses were used to determine the influence of versican isoform modulation on gene expression profiles, and to identify genes that influence and relate to the process of elastogenesis. cDNA microarray analysis and TaqMan low density array validation identified previously unreported genes associated with downregulation of versican and increased elastogenesis. These results highlight an important role for the proteoglycan versican in regulating the expression and assembly of elastin and the phenotype of LMS cells.
Collapse
Affiliation(s)
- Paul A Keire
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Steven L Bressler
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Eileen R Mulvihill
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Barry C Starcher
- Department of Biochemistry, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Expression and Function of CD44 in Epithelial Ovarian Carcinoma. Biomolecules 2015; 5:3051-66. [PMID: 26569327 PMCID: PMC4693269 DOI: 10.3390/biom5043051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022] Open
Abstract
CD44, a cell surface glycoprotein, has been increasingly implicated in the pathogenesis and progression of epithelial ovarian cancer, the deadliest gynecologic malignancy in women. Here, we review recent reports on the expression and function of CD44 in epithelial ovarian carcinoma. Further functional data for CD44 in peritoneal adhesion and metastatic progression and its association with stem cells is highlighted. Recent studies utilizing CD44 for therapeutic targeting are also discussed.
Collapse
|
25
|
Venning FA, Wullkopf L, Erler JT. Targeting ECM Disrupts Cancer Progression. Front Oncol 2015; 5:224. [PMID: 26539408 PMCID: PMC4611145 DOI: 10.3389/fonc.2015.00224] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/30/2015] [Indexed: 12/18/2022] Open
Abstract
Metastatic complications are responsible for more than 90% of cancer-related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multistep process, with each step involving intricate cross talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-)clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression.
Collapse
Affiliation(s)
- Freja A. Venning
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Lena Wullkopf
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Janine T. Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| |
Collapse
|
26
|
Althawadi H, Alfarsi H, Besbes S, Mirshahi S, Ducros E, Rafii A, Pocard M, Therwath A, Soria J, Mirshahi M. Activated protein C upregulates ovarian cancer cell migration and promotes unclottability of the cancer cell microenvironment. Oncol Rep 2015; 34:603-9. [PMID: 26082331 PMCID: PMC4487670 DOI: 10.3892/or.2015.4061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/11/2015] [Indexed: 01/23/2023] Open
Abstract
The objective of this study was to evaluate the role of activated protein C (aPC), known to be a physiological anticoagulant, in ovarian cancer cell activation as well as in loss of clotting of cancer ascitic fluid. The effect of aPC on an ovarian cancer cell line (OVCAR-3) was tested in regards to i) cell migration and adhesion with the use of adhesion and wound healing assays as well as a droplet test; ii) protein phosphorylation, evaluated by cyto-ELISA; iii) cell cycle modification assessed by flow cytometric DNA quantification; and iv) anticoagulant activity evaluated by the prolongation of partial thromboplastin time (aPTT) of normal plasma in the presence or absence of aPC-treated ovarian cancer cells. In addition, the soluble endothelial protein C receptor (sEPCR) was quantified by ELISA in ascitic fluid of patients with ovarian cancer. Our results showed that in the OVCAR-3 aPC-induced cells i) an increase in cell migration was noted, which was inhibited when anti-endothelial protein C receptor (EPCR) was added to the culture medium and which may act via MEK-ERK and Rho-GTPase pathways; ii) an increase in threonine, and to a lesser extent tyrosine phosphorylation; iii) cell cycle activation (G1 to S/G2); and iv) a 2-3-fold prolongation of aPTT of normal plasma. In the peritoneal fluid, the sEPCR concentration was 71±23 ng/ml. In conclusion, free aPC binds to membrane EPCR in ovarian cancer cells and induces cell migration via MEK-ERK and Rho-GTPase pathways. This binding could also explain the loss of clotting of peritoneal fluids.
Collapse
Affiliation(s)
- Hamda Althawadi
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - Halema Alfarsi
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - Samaher Besbes
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - Shahsoltan Mirshahi
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - Elodie Ducros
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - Arash Rafii
- Qatar Foundation, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Marc Pocard
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - Amu Therwath
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - Jeannette Soria
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - Massoud Mirshahi
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| |
Collapse
|