1
|
Shahnaij M, Amin MB, Hoque MM, Mondol AS, Rana KJ, Azmi IJ, Talukder KA. Characterization of Shigella flexneri Serotype 6 Strains Isolated from Bangladesh and Identification of a New Phylogenetic Cluster. J Bacteriol 2023; 205:e0040622. [PMID: 36927058 PMCID: PMC10127597 DOI: 10.1128/jb.00406-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
A significant cause of shigellosis in Bangladesh and other developing countries is Shigella flexneri serotype 6. This serotype has been subtyped, on the basis of the absence or presence of a group-specific antigen, E1037, into S. flexneri 6a and 6b, respectively. Here, we provided rationales for the subclassification, using several phenotypic and molecular tools. A set of S. flexneri 6a and 6b strains isolated between 1997 and 2015 were characterized by analyzing their biochemical properties, plasmid profiles, virulence markers, pulsed-field gel electrophoresis (PFGE) results, and ribotype. Additionally, the genomic relatedness of these subserotypes was investigated with global isolates of serotype 6 using publicly available genomes. Both subserotypes of S. flexneri 6 agglutinated with monoclonal antiserum against S. flexneri (MASF) B and type VI-specific antiserum (MASF VI) and were PCR positive for O-antigen flippase-specific genes and virulence markers (ipaH, ial, sen, and sigA). Unlike S. flexneri 6a strains, S. flexneri 6b strains seroagglutinated with anti-E1037 antibodies, MASF IV-I. Notably, these two antigenically distinct subserotypes were clonally diverse, showing two distinct PFGE patterns following the digestion of chromosomal DNA with either XbaI or IceuI. In addition, hybridization of a 16S rRNA gene probe with HindIII-digested genomic DNA yielded two distinguishing ribotypes. Genomic comparison of S. flexneri subserotype 6a and 6b strains from Bangladesh indicated that, although these strains were in genomic synteny, the majority of them formed a unique phylogroup (PG-4) that was missing for the global isolates. This study supports the subserotyping and emphasizes the need for global monitoring of the S. flexneri subserotypes 6a and 6b. IMPORTANCE Shigella flexneri serotype 6 is one of the predominant serotypes among shigellosis cases in Bangladesh. Characterization of a novel subserotype of S. flexneri 6 (VI:E1037), agglutinated with type 6-specific antibody and anti-E1037, indicates a unique evolutionary ancestry. PFGE genotyping supports the finding that these two antigenically distinct subserotypes are clonally diverse. A phylogenetic study based on single-nucleotide polymorphism (SNP) data revealed that these two subserotypes were in genomic synteny, although their genomes were reduced. Interestingly, a majority of the S. flexneri 6 strains isolated from Bangladesh form a novel phylogenetic cluster. Therefore, this report underpins the global monitoring and tracking of the novel subserotype.
Collapse
Affiliation(s)
- Mohammad Shahnaij
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mohammed Badrul Amin
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - M. Mozammel Hoque
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Abdus Salam Mondol
- Department of Public Health Nutrition, Primeasia University, Dhaka, Bangladesh
| | - Kazi Jewel Rana
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Ishrat J. Azmi
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Kaisar A. Talukder
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Bangladesh
| |
Collapse
|
2
|
Coipan CE, Dallman TJ, Brown D, Hartman H, van der Voort M, van den Berg RR, Palm D, Kotila S, van Wijk T, Franz E. Concordance of SNP- and allele-based typing workflows in the context of a large-scale international Salmonella Enteritidis outbreak investigation. Microb Genom 2020; 6:e000318. [PMID: 32101514 PMCID: PMC7200063 DOI: 10.1099/mgen.0.000318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/01/2019] [Indexed: 01/07/2023] Open
Abstract
A large European multi-country Salmonella enterica serovar Enteritidis outbreak associated with Polish eggs was characterized by whole-genome sequencing (WGS)-based analysis, with various European institutes using different analysis workflows to identify isolates potentially related to the outbreak. The objective of our study was to compare the output of six of these different typing workflows (distance matrices of either SNP-based or allele-based workflows) in terms of cluster detection and concordance. To this end, we analysed a set of 180 isolates coming from confirmed and probable outbreak cases, which were representative of the genetic variation within the outbreak, supplemented with 22 unrelated contemporaneous S. enterica serovar Enteritidis isolates. Since the definition of a cluster cut-off based on genetic distance requires prior knowledge on the evolutionary processes that govern the bacterial populations in question, we used a variety of hierarchical clustering methods (single, average and complete) and selected the optimal number of clusters based on the consensus of the silhouette, Dunn2, and McClain-Rao internal validation indices. External validation was done by calculating the concordance with the WGS-based case definition (SNP-address) for this outbreak using the Fowlkes-Mallows index. Our analysis indicates that with complete-linkage hierarchical clustering combined with the optimal number of clusters, as defined by three internal validity indices, the six different allele- and SNP-based typing workflows generate clusters with similar compositions. Furthermore, we show that even in the absence of coordinated typing procedures, but by using an unsupervised machine learning methodology for cluster delineation, the various workflows that are currently in use by six European public-health authorities can identify concordant clusters of genetically related S. enterica serovar Enteritidis isolates; thus, providing public-health researchers with comparable tools for detection of infectious-disease outbreaks.
Collapse
Affiliation(s)
- Claudia E. Coipan
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Timothy J. Dallman
- National Infections Service, Public Health England (PHE), London, England, UK
| | - Derek Brown
- Scottish Microbiology Reference Laboratory (SMiRL), Glasgow, Scotland, UK
| | - Hassan Hartman
- National Infections Service, Public Health England (PHE), London, England, UK
| | | | | | - Daniel Palm
- European Centre for Disease Prevention and Control (ECDC), Solna Municipality, Sweden
| | - Saara Kotila
- European Centre for Disease Prevention and Control (ECDC), Solna Municipality, Sweden
| | - Tom van Wijk
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Eelco Franz
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, Bilthoven, The Netherlands
| |
Collapse
|
3
|
Setup, Validation, and Quality Control of a Centralized Whole-Genome-Sequencing Laboratory: Lessons Learned. J Clin Microbiol 2018; 56:JCM.00261-18. [PMID: 29695528 DOI: 10.1128/jcm.00261-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Routine use of whole-genome analysis for infectious diseases can be used to enlighten various scenarios pertaining to public health, including identification of microbial pathogens, relating individual cases to an outbreak of infectious disease, establishing an association between an outbreak of food poisoning and a specific food vehicle, inferring drug susceptibility, source tracing of contaminants, and study of variations in the genome that affect pathogenicity/virulence. We describe the setup, validation, and ongoing verification of a centralized whole-genome-sequencing (WGS) laboratory to carry out sequencing for these public health functions for the National Infection Services, Public Health England, in the United Kingdom. The performance characteristics and quality control metrics measured during validation and verification of the entire end-to-end process (accuracy, precision, reproducibility, and repeatability) are described and include information regarding the automated pass and release of data to service users without intervention.
Collapse
|
4
|
Baker KS, Dallman TJ, Behar A, Weill FX, Gouali M, Sobel J, Fookes M, Valinsky L, Gal-Mor O, Connor TR, Nissan I, Bertrand S, Parkhill J, Jenkins C, Cohen D, Thomson NR. Travel- and Community-Based Transmission of Multidrug-Resistant Shigella sonnei Lineage among International Orthodox Jewish Communities. Emerg Infect Dis 2018; 22:1545-53. [PMID: 27532625 PMCID: PMC4994374 DOI: 10.3201/eid2209.151953] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Shigellae are sensitive indicator species for studying trends in the international transmission of antimicrobial-resistant Enterobacteriaceae. Orthodox Jewish communities (OJCs) are a known risk group for shigellosis; Shigella sonnei is cyclically epidemic in OJCs in Israel, and sporadic outbreaks occur in OJCs elsewhere. We generated whole-genome sequences for 437 isolates of S. sonnei from OJCs and non-OJCs collected over 22 years in Europe (the United Kingdom, France, and Belgium), the United States, Canada, and Israel and analyzed these within a known global genomic context. Through phylogenetic and genomic analysis, we showed that strains from outbreaks in OJCs outside of Israel are distinct from strains in the general population and relate to a single multidrug-resistant sublineage of S. sonnei that prevails in Israel. Further Bayesian phylogenetic analysis showed that this strain emerged approximately 30 years ago, demonstrating the speed at which antimicrobial drug-resistant pathogens can spread widely through geographically dispersed, but internationally connected, communities.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Community-Acquired Infections/epidemiology
- Community-Acquired Infections/history
- Community-Acquired Infections/microbiology
- Community-Acquired Infections/transmission
- Disease Outbreaks
- Drug Resistance, Multiple, Bacterial
- Dysentery, Bacillary/epidemiology
- Dysentery, Bacillary/history
- Dysentery, Bacillary/microbiology
- Dysentery, Bacillary/transmission
- Genes, Bacterial
- Genome, Bacterial
- Global Health
- History, 20th Century
- History, 21st Century
- Humans
- Jews
- Microbial Sensitivity Tests
- Population Surveillance
- Risk Factors
- Shigella sonnei/classification
- Shigella sonnei/drug effects
- Shigella sonnei/genetics
- Shigella sonnei/isolation & purification
- Travel
- Whole Genome Sequencing
Collapse
|
5
|
Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Inbanathan FY, Veeraraghavan B. Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies. New Microbes New Infect 2017; 21:58-62. [PMID: 29204286 PMCID: PMC5711669 DOI: 10.1016/j.nmni.2017.09.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/07/2017] [Accepted: 09/19/2017] [Indexed: 12/09/2022] Open
Abstract
Shigella spp. and Escherichia coli are closely related; both belong to the family Enterobacteriaceae. Phenotypically, Shigella spp. and E. coli share many common characteristics, yet they have separate entities in epidemiology and clinical disease, which poses a diagnostic challenge. We collated information for the best possible approach to differentiate clinically relevant E. coli from Shigella spp. We found that a molecular approach is required for confirmation. High discriminatory potential is seen with whole genome sequencing analysed for k-mers and single nucleotide polymorphism. Among these, identification using single nucleotide polymorphism is easy to perform and analyse, and it thus appears more promising. Among the nonmolecular methods, matrix-assisted desorption ionization–time of flight mass spectrometry may be applicable when data analysis is assisted with advanced analytic tools.
Collapse
Affiliation(s)
| | | | - F Y Inbanathan
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - B Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| |
Collapse
|
6
|
Shen P, Fan J, Guo L, Li J, Li A, Zhang J, Ying C, Ji J, Xu H, Zheng B, Xiao Y. Genome sequence of Shigella flexneri strain SP1, a diarrheal isolate that encodes an extended-spectrum β-lactamase (ESBL). Ann Clin Microbiol Antimicrob 2017; 16:37. [PMID: 28499446 PMCID: PMC5429569 DOI: 10.1186/s12941-017-0212-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/04/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Shigellosis is the most common cause of gastrointestinal infections in developing countries. In China, the species most frequently responsible for shigellosis is Shigella flexneri. S. flexneri remains largely unexplored from a genomic standpoint and is still described using a vocabulary based on biochemical and serological properties. Moreover, increasing numbers of ESBL-producing Shigella strains have been isolated from clinical samples. Despite this, only a few cases of ESBL-producing Shigella have been described in China. Therefore, a better understanding of ESBL-producing Shigella from a genomic standpoint is required. In this study, a S. flexneri type 1a isolate SP1 harboring blaCTX-M-14, which was recovered from the patient with diarrhea, was subjected to whole genome sequencing. RESULTS The draft genome assembly of S. flexneri strain SP1 consisted of 4,592,345 bp with a G+C content of 50.46%. RAST analysis revealed the genome contained 4798 coding sequences (CDSs) and 100 RNA-encoding genes. We detected one incomplete prophage and six candidate CRISPR loci in the genome. In vitro antimicrobial susceptibility testing demonstrated that strain SP1 is resistant to ampicillin, amoxicillin/clavulanic acid, cefazolin, ceftriaxone and trimethoprim. In silico analysis detected genes mediating resistance to aminoglycosides, β-lactams, phenicol, tetracycline, sulphonamides, and trimethoprim. The bla CTX-M-14 gene was located on an IncFII2 plasmid. A series of virulence factors were identified in the genome. CONCLUSIONS In this study, we report the whole genome sequence of a blaCTX-M-14-encoding S. flexneri strain SP1. Dozens of resistance determinants were detected in the genome and may be responsible for the multidrug-resistance of this strain, although further confirmation studies are warranted. Numerous virulence factors identified in the strain suggest that isolate SP1 is potential pathogenic. The availability of the genome sequence and comparative analysis with other S. flexneri strains provides the basis to further address the evolution of drug resistance mechanisms and pathogenicity in S. flexneri.
Collapse
Affiliation(s)
- Ping Shen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianzhong Fan
- Department of Clinical Laboratory, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Lihua Guo
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiahua Li
- Department of Hospital Infection Control, Zhucheng People's Hospital, Zhucheng, 252300, China
| | - Ang Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jing Zhang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chaoqun Ying
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jinru Ji
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yonghong Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
7
|
Keddy KH, Smith AM, Page NA. GEMS extend understanding of childhood diarrhoea. Lancet 2016; 388:1252-4. [PMID: 27673454 DOI: 10.1016/s0140-6736(16)31664-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Karen H Keddy
- Centre for Enteric Diseases, National Institute for Communicable Diseases, 2131 Sandringham, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases, 2131 Sandringham, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicola A Page
- Centre for Enteric Diseases, National Institute for Communicable Diseases, 2131 Sandringham, Johannesburg, South Africa; Department of Medical Virology, Faculty of Health Sciences, Pretoria, South Africa
| |
Collapse
|
8
|
Baker KS, Dallman TJ, Behar A, Weill FX, Gouali M, Sobel J, Fookes M, Valinsky L, Gal-Mor O, Connor TR, Nissan I, Bertrand S, Parkhill J, Jenkins C, Cohen D, Thomson NR. Travel- and Community-Based Transmission of Multidrug-Resistant ShigellasonneiLineage among International Orthodox Jewish Communities. Emerg Infect Dis 2016. [DOI: 10.3201/eid2209.1511953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Connor TR, Barker CR, Baker KS, Weill FX, Talukder KA, Smith AM, Baker S, Gouali M, Pham Thanh D, Jahan Azmi I, Dias da Silveira W, Semmler T, Wieler LH, Jenkins C, Cravioto A, Faruque SM, Parkhill J, Wook Kim D, Keddy KH, Thomson NR. Species-wide whole genome sequencing reveals historical global spread and recent local persistence in Shigella flexneri. eLife 2015; 4:e07335. [PMID: 26238191 PMCID: PMC4522646 DOI: 10.7554/elife.07335] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/04/2015] [Indexed: 12/15/2022] Open
Abstract
Shigella flexneri is the most common cause of bacterial dysentery in low-income countries. Despite this, S. flexneri remains largely unexplored from a genomic standpoint and is still described using a vocabulary based on serotyping reactions developed over half-a-century ago. Here we combine whole genome sequencing with geographical and temporal data to examine the natural history of the species. Our analysis subdivides S. flexneri into seven phylogenetic groups (PGs); each containing two-or-more serotypes and characterised by distinct virulence gene complement and geographic range. Within the S. flexneri PGs we identify geographically restricted sub-lineages that appear to have persistently colonised regions for many decades to over 100 years. Although we found abundant evidence of antimicrobial resistance (AMR) determinant acquisition, our dataset shows no evidence of subsequent intercontinental spread of antimicrobial resistant strains. The pattern of colonisation and AMR gene acquisition suggest that S. flexneri has a distinct life-cycle involving local persistence.
Collapse
Affiliation(s)
- Thomas R Connor
- Cardiff School of Biosciences, Cardiff, United Kingdom
- Pathogen Genomics, Wellcome Trust Sanger Centre, Cambridge, United Kingdom
| | | | - Kate S Baker
- Pathogen Genomics, Wellcome Trust Sanger Centre, Cambridge, United Kingdom
| | | | - Kaisar Ali Talukder
- Centre for Food and Water Borne Diseases, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
- The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Malika Gouali
- Unité des Bactéries Pathogènes Entériques, Institut Pasteur, Paris, France
| | - Duy Pham Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
- The London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ishrat Jahan Azmi
- Centre for Food and Water Borne Diseases, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Wanderley Dias da Silveira
- Department of Genetics, Evolution, and Bioagents, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Torsten Semmler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie University, Berlin, Germany
- Robert Koch Institute, Berlin, Germany
| | - Lothar H Wieler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie University, Berlin, Germany
- Robert Koch Institute, Berlin, Germany
| | - Claire Jenkins
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
| | | | - Shah M Faruque
- Centre for Food and Water Borne Diseases, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Centre, Cambridge, United Kingdom
| | - Dong Wook Kim
- Department of Pharmacy, School of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Karen H Keddy
- Centre for Enteric Diseases, National Institute for Communicable Diseases and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicholas R Thomson
- Pathogen Genomics, Wellcome Trust Sanger Centre, Cambridge, United Kingdom
- The London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
10
|
Rossi O, Baker KS, Phalipon A, Weill FX, Citiulo F, Sansonetti P, Gerke C, Thomson NR. Draft genomes of Shigella strains used by the STOPENTERICS consortium. Gut Pathog 2015; 7:14. [PMID: 26042182 PMCID: PMC4454270 DOI: 10.1186/s13099-015-0061-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/11/2015] [Indexed: 01/03/2023] Open
Abstract
Background Despite a significant global burden of disease, there is still no vaccine against shigellosis widely available. One aim of the European Union funded STOPENTERICS consortium is to develop vaccine candidates against Shigella. Given the importance of translational vaccine coverage, here we aimed to characterise the Shigella strains being used by the consortium by whole genome sequencing, and report on the stability of strains cultured in different laboratories or through serial passage. Methods We sequenced, de novo assembled and annotated 20 Shigella strains being used by the consortium. These comprised 16 different isolates belonging to 7 serotypes, and 4 derivative strains. Derivative strains from common isolates were manipulated in different laboratories or had undergone multiple passages in the same laboratory. Strains were mapped against reference genomes to detect SNP variation and phylogenetic analysis was performed. Results The genomes assembled into similar total lengths (range 4.14–4.83 Mbp) and had similar numbers of predicted coding sequences (average of 4,400). Mapping analysis showed the genetic stability of strains through serial passages and culturing in different laboratories, as well as varying levels of similarity to published reference genomes. Phylogenetic analysis revealed the presence of three main clades among the strains and published references, one containing the Shigella flexneri serotype 6 strains, a second containing the remaining S. flexneri serotypes and a third comprised of Shigella sonnei strains. Conclusions This work increases the number of the publically available Shigella genomes available and specifically provides information on strains being used for vaccine development by STOPENTERICS. It also provides information on the variability among strains maintained in different laboratories and through serial passage. This work will guide the selection of strains for further vaccine development.
Collapse
Affiliation(s)
- Omar Rossi
- Novartis Vaccines Institute for Global Health, s.r.l., a GSK Company, Siena, Italy
| | | | | | | | - Francesco Citiulo
- Novartis Vaccines Institute for Global Health, s.r.l., a GSK Company, Siena, Italy
| | | | - Christiane Gerke
- Novartis Vaccines Institute for Global Health, s.r.l., a GSK Company, Siena, Italy
| | | |
Collapse
|
11
|
Bravo V, Puhar A, Sansonetti P, Parsot C, Toro CS. Distinct mutations led to inactivation of type 1 fimbriae expression in Shigella spp. PLoS One 2015; 10:e0121785. [PMID: 25811616 PMCID: PMC4374849 DOI: 10.1371/journal.pone.0121785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/04/2015] [Indexed: 02/07/2023] Open
Abstract
Shigella spp. are responsible for bacillary dysentery in humans. The acquisition or the modification of the virulence plasmid encoding factors promoting entry of bacteria into and dissemination within epithelial cells was a critical step in the evolution of these bacteria from their Escherichia coli ancestor(s). Incorporation of genomic islands (GI) and gene inactivation also shaped interactions between these pathogens and their human host. Sequence analysis of the GI inserted next to the leuX tRNA gene in S. boydii, S. dysenteriae, S. flexneri, S. sonnei and enteroinvasive E. coli (EIEC) suggests that this region initially carried the fec, yjhATS and fim gene clusters. The fim cluster encoding type I fimbriae is systematically inactivated in both reference strains and clinical isolates and distinct mutations are responsible for this inactivation in at least three phylogenetic groups. To investigate consequences of the presence of fimbriae on the outcome of the interaction of Shigella with host cells, we used a S. flexneri strain harboring a plasmid encoding the E. coli fim operon. Production of fimbriae by this recombinant strain increased the ability of bacteria to adhere to and enter into epithelial cells and had no effect on their ability to disseminate from cell to cell. The observations that production of type I fimbriae increases invasion of epithelial cells and that independent mutations abolish fimbriae production in Shigella suggest that these mutations correspond to pathoadaptive events.
Collapse
Affiliation(s)
- Verónica Bravo
- Programa de Microbiología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Puhar
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
| | - Claude Parsot
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM, Paris, France
- * E-mail: (CP); (CT)
| | - Cecilia S. Toro
- Programa de Microbiología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (CP); (CT)
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Shigella spp. are important etiologic agents of diarrhea worldwide. This review summarizes the recent findings on the epidemiology, diagnosis, virulence genes, and pathobiology of Shigella infection. RECENT FINDINGS Shigella flexneri and Shigella sonnei have been identified as the main serogroups circulating in developing and developed countries, respectively. However, a shift in the dominant species from S. flexneri to S. sonnei has been observed in countries that have experienced recent improvements in socioeconomic conditions. Despite the increasing usage of molecular methods in the diagnosis and virulence characterization of Shigella strains, researchers have been unsuccessful in finding a specific target gene for this bacillus. New research has demonstrated the role of proteins whose expressions are temperature-regulated, as well as genes involved in the processes of adhesion, invasion, dissemination, and inflammation, aiding in the clarification of the complex pathobiology of shigellosis. SUMMARY Knowledge about the epidemiologic profile of circulating serogroups of Shigella and an understanding of its pathobiology as well as of the virulence genes is important for the development of preventive measures and interventions to reduce the worldwide spread of shigellosis.
Collapse
|
13
|
Baker KS, Mather AE, McGregor H, Coupland P, Langridge GC, Day M, Deheer-Graham A, Parkhill J, Russell JE, Thomson NR. The extant World War 1 dysentery bacillus NCTC1: a genomic analysis. Lancet 2014; 384:1691-7. [PMID: 25441199 PMCID: PMC4226921 DOI: 10.1016/s0140-6736(14)61789-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Shigellosis (previously bacillary dysentery) was the primary diarrhoeal disease of World War 1, but outbreaks still occur in military operations, and shigellosis causes hundreds of thousands of deaths per year in developing nations. We aimed to generate a high-quality reference genome of the historical Shigella flexneri isolate NCTC1 and to examine the isolate for resistance to antimicrobials. METHODS In this genomic analysis, we sequenced the oldest extant Shigella flexneri serotype 2a isolate using single-molecule real-time (SMRT) sequencing technology. Isolated from a soldier with dysentery from the British forces fighting on the Western Front in World War 1, this bacterium, NCTC1, was the first isolate accessioned into the National Collection of Type Cultures. We created a reference sequence for NCTC1, investigated the isolate for antimicrobial resistance, and undertook comparative genetics with S flexneri reference strains isolated during the 100 years since World War 1. FINDINGS We discovered that NCTC1 belonged to a 2a lineage of S flexneri, with which it shares common characteristics and a large core genome. NCTC1 was resistant to penicillin and erythromycin, and contained a complement of chromosomal antimicrobial resistance genes similar to that of more recent isolates. Genomic islands gained in the S flexneri 2a lineage over time were predominately associated with additional antimicrobial resistances, virulence, and serotype conversion. INTERPRETATION This S flexneri 2a lineage is a well adapted pathogen that has continued to respond to selective pressures. We have created a valuable historical benchmark for shigellae in the form of a high-quality reference sequence for a publicly available isolate. FUNDING The Wellcome Trust.
Collapse
Affiliation(s)
- Kate S Baker
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Alison E Mather
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Hannah McGregor
- National Collection of Type Cultures, Public Health England, Porton Down, Salisbury, UK
| | - Paul Coupland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Gemma C Langridge
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Martin Day
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, UK
| | - Ana Deheer-Graham
- National Collection of Type Cultures, Public Health England, Porton Down, Salisbury, UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Julie E Russell
- National Collection of Type Cultures, Public Health England, Porton Down, Salisbury, UK
| | - Nicholas R Thomson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK; Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|