1
|
Oltulu C, Ersoy O, Akinci M, Cevikelli-Yakut ZA, Dasman M, Bakar E. Effects of sitagliptin and L-theanine combination therapy on testicular tissue in rats with experimental diabetes. Toxicol Appl Pharmacol 2024; 492:117119. [PMID: 39378959 DOI: 10.1016/j.taap.2024.117119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
This study examines the impact of the combination of sitagliptin and L-theanine on the testis tissue of rats with experimental diabetes. Diabetes mellitus, a chronic metabolic illness, significantly reduces quality of life and can cause male infertility by decreasing sperm count, motility, and testosterone levels. Rats were allocated to five separate groups: control, diabetes, L-theanine, sitagliptin, and combination therapy. The measurements encompassed blood glucose levels, body weight, serum insulin levels, and the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR). The histological examination of testicular tissue was conducted using H&E, PASH, caspase-12, and PCNA staining techniques, in addition to a TUNEL assay to detect apoptosis. Levels of oxidative stress indicators, including glutathione peroxidase (GPX), malondialdehyde (MDA), and catalase, were also evaluated. The results showed that the group of individuals with diabetes had significantly higher levels of blood glucose, apoptotic indices, GPX, catalase, and MDA levels and activities in comparison with the control group. Although both the L-theanine and sitagliptin groups exhibited some improvement, the combination therapy demonstrated the most significant decrease in histopathological damage and apoptotic markers. These results indicate that the combination of sitagliptin and L-theanine may significantly decrease testicular damage caused by diabetes, making it a promising therapeutic strategy.
Collapse
Affiliation(s)
- Cagatay Oltulu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Trakya University, Edirne, Turkey.
| | - Onur Ersoy
- Department of Pathology Laboratory Techniques, Vocational School of Health Services, Trakya University, Edirne, Turkey
| | - Melek Akinci
- Department of Pharmacology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Zatiye Ayca Cevikelli-Yakut
- Department of Pharmacology, School of Pharmacy, Marmara University, İstanbul, Turkey; Department of Pharmacognosy, School of Pharmacy, Trakya University, Edirne, Turkey
| | - Mustafa Dasman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Elvan Bakar
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| |
Collapse
|
2
|
Abd Elmaaboud MA, Kabel AM, Borg HM, Magdy AA, Kabel SM, Arafa ESA, Alsufyani SE, Arab HH. Omarigliptin/rosinidin combination ameliorates cyclophosphamide-induced lung toxicity in rats: The interaction between glucagon-like peptide-1, TXNIP/NLRP3 inflammasome signaling, and PI3K/Akt/FoxO1 axis. Biomed Pharmacother 2024; 177:117026. [PMID: 38936197 DOI: 10.1016/j.biopha.2024.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
Cyclophosphamide is an anti-neoplastic drug that has shown competence in the management of a broad range of malignant tumors. In addition, it represents a keystone agent for management of immunological conditions. Despite these unique properties, induction of lung toxicity may limit its clinical use. Omarigliptin is one of the dipeptidyl peptidase-4 inhibitors that has proven efficacy in management of diabetes mellitus. Rosinidin is an anthocyanidin flavonoid that exhibited promising results in management of diseases characterized by oxidative stress, inflammation, and apoptosis. The present work investigated the possible effects of omarigliptin with or without rosinidin on cyclophosphamide-induced lung toxicity with an exploration of the molecular mechanisms that contribute to these effects. In a rodent model of cyclophosphamide elicited lung toxicity, the potential efficacy of omarigliptin with or without rosinidin was investigated at both the biochemical and the histopathological levels. Both omarigliptin and rosinidin exhibited a synergistic ability to augment the tissue antioxidant defenses, mitigate the inflammatory pathways, restore glucagon-like peptide-1 levels, modulate high mobility group box 1 (HMGB1)/receptors of advanced glycation end products (RAGE)/nuclear factor kappa B (NF-κB) axis, downregulate the fibrogenic mediators, and create a balance between the pathways involved in apoptosis and the autophagy signals in the pulmonary tissues. In conclusion, omarigliptin/rosinidin combination may be introduced as a novel therapeutic modality that attenuates the different forms of lung toxicities induced by cyclophosphamide.
Collapse
Affiliation(s)
- Maaly A Abd Elmaaboud
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Hany M Borg
- Physiology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh 33516, Egypt
| | - Amr A Magdy
- Anesthesia and ICU Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Shaimaa M Kabel
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Shuruq E Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
3
|
Aamir K, Sethi G, Afrin MR, Hossain CF, Jusuf PR, Sarker SD, Arya A. Arjunolic acid modulate pancreatic dysfunction by ameliorating pattern recognition receptor and canonical Wnt pathway activation in type 2 diabetic rats. Life Sci 2023:121856. [PMID: 37307966 DOI: 10.1016/j.lfs.2023.121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Arjunolic acid (AA) is a potent phytochemical with multiple therapeutics effects. In this study, AA is evaluated on type 2 diabetic (T2DM) rats to understand the mechanism of β-cell linkage with Toll-like receptor 4 (TLR-4) and canonical Wnt signaling. However, its role in modulating TLR-4 and canonical Wnt/β-catenin crosstalk on insulin signaling remains unclear during T2DM. Aim The current study is aimed to examine the potential role of AA on insulin signaling and TLR-4-Wnt crosstalk in the pancreas of type 2 diabetic rats. METHOD Multiple methods were used to determine molecular cognizance of AA in T2DM rats, when treated with different dosage levels. Histopathological and histomorphometry analysis was conducted using masson trichrome and H&E stains. While, protein and mRNA expressions of TLR-4/Wnt and insulin signaling were assessed using automated Western blotting (jess), immunohistochemistry, and RT-PCR. RESULTS Histopathological findings revealed that AA had reversed back the T2DM-induced apoptosis and necrosis caused to rats pancreas. Molecular findings exhibited prominent effects of AA in downregulating the elevated level of TLR-4, MyD88, NF-κB, p-JNK, and Wnt/β-catenin by blocking TLR-4/MyD88 and canonical Wnt signaling in diabetic pancreas, while IRS-1, PI3K, and pAkt were all upregulated by altering the NF-κB and β-catenin crosstalk during T2DM. CONCLUSION Overall results, indicate that AA has potential to develop as an effective therapeutic in the treatment of T2DM associated meta-inflammation. However, future preclinical research at multiple dose level in a long-term chronic T2DM disease model is warranted to understand its clinical relevance in cardiometabolic disease.
Collapse
Affiliation(s)
- Khurram Aamir
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia; Akhtar Saeed College of Pharmacy, Canal Campus, Lahore, Pakistan
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mst Rejina Afrin
- Department of Pharmacy, Faculty of Sciences and Engineering, East West University, Dhaka 1212, Bangladesh
| | - Chowdhury Faiz Hossain
- Department of Pharmacy, Faculty of Sciences and Engineering, East West University, Dhaka 1212, Bangladesh
| | - Patricia Regina Jusuf
- School of Biosciences, Faculty of Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Satyajit D Sarker
- Centre for Natural Product Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Aditya Arya
- School of Biosciences, Faculty of Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Natural Product Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, United Kingdom; Department of Pharmacology & Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia.
| |
Collapse
|
4
|
Yu M, Gouvinhas I, Pires MJ, Neuparth MJ, Costa RMGD, Medeiros R, Bastos MMSM, Vala H, Félix L, Venâncio C, Barros AIRNA, Oliveira PA. Study on the antineoplastic and toxicological effects of pomegranate (Punica granatum L.) leaf infusion using the K14-HPV16 transgenic mouse model. Food Chem Toxicol 2023; 174:113689. [PMID: 36858299 DOI: 10.1016/j.fct.2023.113689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Punica granatum L. (pomegranate) has been used in functional foods due to its various health benefits. However, the in vivo biological potential of its leaf remains little known. This study has aimed to characterize the antineoplastic and toxicological properties of using pomegranate leaf infusion (PLI) on transgenic mice carrying human papillomavirus (HPV) type 16 oncogenes. Thirty-eight mice were divided into 3 wild-type (WT) and 3 transgenic (HPV) groups, with exposure to 0.5% PLI, 1.0% PLI, and water. The animals' body weight, drink and food consumption were recorded. Internal organs, skin samples and intracardiac blood were collected to evaluate toxicological parameters, neoplastic lesions and oxidative stress. The results indicated that PLI was safe as no mortality, no behavioural disorders and no significant differences in the levels of microhematocrit, serum biochemical markers, internal organ histology, and oxidative stress was found among the WT groups. Histological analysis revealed that HPV animals that consumed PLI exhibited reduced hepatic, renal and cutaneous lesions compared with the HPV control group. Low-dose PLI consumption significantly diminished renal hydronephrosis lesions and relieved dysplasia and carcinoma lesions in the chest skin. Oxidative stress analysis showed that low-dose PLI consumption may have more benefits than high-dose PLI. These results suggest that oral administration of PLI has the potential to alleviate non-neoplastic and neoplastic lesions against HPV16-induced organ and skin injuries, though this requires further scientific research studies.
Collapse
Affiliation(s)
- Manyou Yu
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Irene Gouvinhas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Maria J Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), TOXRUN- Toxicology Research Unit University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Maria J Neuparth
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports of the University of Porto (FADEUP), Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), TOXRUN- Toxicology Research Unit University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Rui M Gil da Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Morphology Department and University Hospital (HUUFMA), Federal University of Maranhão (UFMA), São Luís, Brazil; Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP)/RISEI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/ Porto Comprehensive Cancer Center (PortoCCC), Porto, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP)/RISEI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/ Porto Comprehensive Cancer Center (PortoCCC), Porto, Portugal
| | - Margarida M S M Bastos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Helena Vala
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Agrarian School of Viseu, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Luis Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Laboratory Animal Science, IBMC-Instituto de Biologia Molecular Celular, Universidade do Porto, 4200-135, Porto, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), TOXRUN- Toxicology Research Unit University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Ana I R N A Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences / Institute for Innovation, Capacity Building, and Sustainability of Agri-Food Production (CITAB / Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, UTAD, Vila Real, Portugal
| |
Collapse
|
5
|
McInnes N, Hall S, Hramiak I, Sigal RJ, Goldenberg R, Gupta N, Rabasa-Lhoret R, Braga M, Woo V, Sultan F, Otto R, Smith A, Sherifali D, Liu YY, Gerstein HC, McInnes N, Gerstein HC, Hall S, Blanchard S, Pinder N, Yun Liu Y, McInnes N, Sultan F, Otto R, Smith A, Sherifali D, Gerstein HC, Hramiak I, Paul T, Joy T, Watson M, Driscoll M, Sigal R, Butalia S, Rossiter B, Smith M, Tully V, Goldenberg R, Gupta N, Schlosser R, Sionit D, Talsania T, Huynh J, Birch S, Davdani S, Rabasa-Lhoret R, Bovan D, Raffray M, Braga M, McInnes N, Smith A, Tazzeo T, Otto R, Scott K, Hiltz Mackenzie K, Woo V, Berard L, Mandock C, Anderlic T. Remission of Type 2 Diabetes Following a Short-term Intensive Intervention With Insulin Glargine, Sitagliptin, and Metformin: Results of an Open-label Randomized Parallel-Design Trial. Diabetes Care 2022; 45:178-185. [PMID: 34728531 DOI: 10.2337/dc21-0278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/29/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of the study was to evaluate remission of type 2 diabetes following a short-term intervention with insulin glargine, sitagliptin/metformin, and lifestyle approaches. RESEARCH DESIGN AND METHODS In this open multicenter trial, 102 patients with type 2 diabetes were randomized to 1) a 12-week intervention with sitagliptin/metformin, insulin glargine, and lifestyle therapy or 2) control group. Participants with HbA1c <7.3% (<56 mmol/mol) at 12 weeks were asked to stop diabetes medications and were followed for evidence of relapse over 52 weeks. Diabetes relapse criteria included HbA1c ≥6.5% (≥48 mmol/mol), ≥50% of capillary glucose readings >10 mmol/L over 1 week, and reinitiation of diabetes medications with or without abnormal fasting plasma glucose (FPG) or 2-h plasma glucose on an oral glucose tolerance test (OGTT). Time-to-relapse analysis was conducted to compare the treatment groups with (primary analysis) and without (supplementary analysis) FPG/OGTT relapse criteria. RESULTS With the FPG/OGTT relapse criteria included, the hazard ratio (HR) of relapse was 0.72 (95% CI 0.47-1.10) in the intervention group compared with the control group (primary analysis), and the number of participants remaining in remission was not significantly different between treatment groups at 24, 36, 48, and 64 weeks. In the supplementary analyses without these criteria, HR of relapse was 0.60 (95% CI 0.39-0.95), and the number of participants remaining in remission was significantly higher (26 vs. 10%) in the intervention group at 36 weeks. CONCLUSIONS Although our primary outcome was not statistically significant, the tested approach deserves further study with further optimization of its components.
Collapse
Affiliation(s)
- Natalia McInnes
- 1Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,2Population Health Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada.,3Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Stephanie Hall
- 2Population Health Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Irene Hramiak
- 4Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ronald J Sigal
- 5Departments of Medicine, Cardiac Sciences and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Nikhil Gupta
- 6LMC Diabetes and Endocrinology, Concord, Ontario, Canada
| | - Remi Rabasa-Lhoret
- 7Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Manoela Braga
- 1Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Vincent Woo
- 8Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Farah Sultan
- 3Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Rose Otto
- 1Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ada Smith
- 1Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Diana Sherifali
- 9School of Nursing, McMaster University, Hamilton, Ontario, Canada
| | - Yan Yun Liu
- 2Population Health Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Hertzel C Gerstein
- 1Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,2Population Health Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada.,3Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mikov M, Pavlović N, Stanimirov B, Đanić M, Goločorbin-Kon S, Stankov K, Al-Salami H. DPP-4 Inhibitors: Renoprotective Potential and Pharmacokinetics in Type 2 Diabetes Mellitus Patients with Renal Impairment. Eur J Drug Metab Pharmacokinet 2020; 45:1-14. [PMID: 31385198 DOI: 10.1007/s13318-019-00570-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The continuously increasing incidence of diabetes worldwide has attracted the attention of the scientific community and driven the development of a novel class of antidiabetic drugs that can be safely and effectively used in diabetic patients. Of particular interest in this context are complications associated with diabetes, such as renal impairment, which is the main cause of high cardiovascular morbidity and mortality in diabetic patients. Intensive control of glucose levels and other risk factors associated with diabetes and metabolic syndrome provides the foundations for both preventing and treating diabetic nephropathy. Dipeptidyl peptidase-4 (DPP-4) inhibitors represent a highly promising novel class of oral agents used in the treatment of type 2 diabetes mellitus that may be successfully combined with currently available antidiabetic therapeutics in order to achieve blood glucose goals. Beyond glycemic control, emerging evidence suggests that DPP-4 inhibitors may have desirable off-target effects, including renoprotection. All type 2 diabetes mellitus patients with impaired renal function require dose adjustment of any DPP-4 inhibitor administered except for linagliptin, for which renal excretion is a minor elimination pathway. Thus, linagliptin is the drug most frequently chosen to treat type 2 diabetes mellitus patients with renal failure.
Collapse
Affiliation(s)
- Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia.
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Svetlana Goločorbin-Kon
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Vojvodina, Serbia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Biosciences Research Precinct, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
7
|
Shawky LM, Morsi AA, El Bana E, Hanafy SM. The Biological Impacts of Sitagliptin on the Pancreas of a Rat Model of Type 2 Diabetes Mellitus: Drug Interactions with Metformin. BIOLOGY 2019; 9:E6. [PMID: 31881657 PMCID: PMC7167819 DOI: 10.3390/biology9010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
Sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, is a beneficial class of antidiabetic drugs. However, a major debate about the risk of developing pancreatitis is still existing. The aim of the work was to study the histological and immunohistochemical effects of sitagliptin on both endocrine and exocrine pancreases in a rat model of type 2 diabetes mellitus and to correlate these effects with the biochemical findings. Moreover, a possible synergistic effect of sitagliptin, in combination with metformin, was also evaluated. Fifty adult male rats were used and assigned into five equal groups. Group 1 served as control. Group 2 comprised of untreated diabetic rats. Group 3 diabetic rats received sitagliptin. Group 4 diabetic rats received metformin. Group 5 diabetic rats received both combined. Treatments were given for 4 weeks after the induction of diabetes. Blood samples were collected for biochemical assay before the sacrification of rats. Pancreases were removed, weighed, and were processed for histological and immunohistochemical examination. In the untreated diabetic group, the islets appeared shrunken with disturbed architecture and abnormal immunohistochemical reactions for insulin, caspase-3, and inducible nitric oxide synthase (iNOS). The biochemical findings were also disturbed. Morphometrically, there was a significant decrease in the islet size and islet number. Treatment with sitagliptin, metformin, and their combination showed an improvement, with the best response in the combined approach. No evidence of pancreatic injury was identified in the sitagliptin-treated groups. In conclusion, sitagliptin had a cytoprotective effect on beta-cell damage. Furthermore, the data didn't indicate any detrimental effects of sitagliptin on the exocrine pancreas.
Collapse
Affiliation(s)
- Lamiaa M. Shawky
- Department of Histology and Cell Biology, Benha Faculty of Medicine, Benha University, Benha 13511, Egypt;
| | - Ahmed A. Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt
| | - Eman El Bana
- Department of Anatomy, Benha Faculty of Medicine, Benha University, Benha 13511, Egypt;
| | - Safaa Masoud Hanafy
- Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11865, Egypt;
| |
Collapse
|
8
|
Samaha MM, Said E, Salem HA. A comparative study of the role of crocin and sitagliptin in attenuation of STZ-induced diabetes mellitus and the associated inflammatory and apoptotic changes in pancreatic β-islets. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103238. [PMID: 31394428 DOI: 10.1016/j.etap.2019.103238] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Type 1 diabetes mellitus (T1DM) describes a complex group of metabolic disorders associated with elevated blood glucose levels and increased risks of complications development. Exploring new drug therapies would reduce the increased diabetes-associated morbidity and mortality and will reduce the excessive health care costs. Crocin is the major active ingredient of saffron. In the current study, DM was induced by single intraperitoneal injection of streptozocin (50 mg/kg).DM progression was associated with a significant increase in blood glucose level with reduced insulin and increased glucagon secretion. Pancreatic malondialdehyde (MDA) content significantly escalated, while superoxide dismutase (SOD) activity, reduced glutathione (GSH) concentration, catalase activity, thioredoxin level and serum total antioxidant capacity significantly declined. This was associated with a significant increase in pancreatic caspase-3 contents and pancreatic infiltration with inflammatory cells in β-islets. Both sitagliptin and crocin significantly reduced blood glucose levels, enhanced pancreatic insulin expression and secretion and suppressed glucagon secretion with enhancement of anti-oxidant defenses and reduction of oxidative burden, with evident anti-inflammatory impacts. Interestingly, the effect of crocin on DM indices, inflammatory and apoptotic changes was comparable to that of sitagliptin; the standard oral hypoglycemic agent. Nevertheless, crocin had a superior effect compared to sitagliptin on blood sugar level, β-islets diameter and insulin immune-reactivity. In conclusion, crocin reduced blood glucose level mainly via reduction of oxidative burden, modulation of apoptotic pathway and attenuation of pancreatic inflammation.
Collapse
Affiliation(s)
- Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| | - Hatem A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
9
|
Sitagliptin ameliorates thioacetamide-induced acute liver injury via modulating TLR4/NF-KB signaling pathway in mice. Life Sci 2019; 228:266-273. [DOI: 10.1016/j.lfs.2019.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/01/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
|
10
|
Teodoro JS, Nunes S, Rolo AP, Reis F, Palmeira CM. Therapeutic Options Targeting Oxidative Stress, Mitochondrial Dysfunction and Inflammation to Hinder the Progression of Vascular Complications of Diabetes. Front Physiol 2019; 9:1857. [PMID: 30705633 PMCID: PMC6344610 DOI: 10.3389/fphys.2018.01857] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Type 2 diabetes mellitus is a leading cause of morbidity and mortality worldwide, given its serious associated complications. Despite constant efforts and intensive research, an effective, ubiquitous treatment still eludes the scientific community. As such, the identification of novel avenues of research is key to the potential discovery of this evasive "silver bullet." We focus on this review on the matter of diabetic injury to endothelial tissue and some of the pivotal underlying mechanisms, including hyperglycemia and hyperlipidemia evoked oxidative stress and inflammation. In this sense, we revisited the most promising therapeutic interventions (both non-pharmacological and antidiabetic drugs) targeting oxidative stress and inflammation to hinder progression of vascular complications of diabetes. This review article gives particular attention to the relevance of mitochondrial function, an often ignored and understudied organelle in the vascular endothelium. We highlight the importance of mitochondrial function and number homeostasis in diabetic conditions and discuss the work conducted to address the aforementioned issue by the use of various therapeutic strategies. We explore here the functional, biochemical and bioenergetic alterations provoked by hyperglycemia in the endothelium, from elevated oxidative stress to inflammation and cell death, as well as loss of tissue function. Furthermore, we synthetize the literature regarding the current and promising approaches into dealing with these alterations. We discuss how known agents and therapeutic behaviors (as, for example, metformin, dietary restriction or antioxidants) can restore normality to mitochondrial and endothelial function, preserving the tissue's function and averting the aforementioned complications.
Collapse
Affiliation(s)
- João S Teodoro
- Center for Neurosciences and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sara Nunes
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
| | - Anabela P Rolo
- Center for Neurosciences and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Helal MG, Zaki MMAF, Said E. Nephroprotective effect of saxagliptin against gentamicin-induced nephrotoxicity, emphasis on anti-oxidant, anti-inflammatory and anti-apoptic effects. Life Sci 2018; 208:64-71. [DOI: 10.1016/j.lfs.2018.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 02/02/2023]
|
12
|
Abbas SS, Mahmoud HM, Schaalan MF, El-Abhar HS. Involvement of brain natriuretic peptide signaling pathway in the cardioprotective action of sitagliptin. Pharmacol Rep 2018; 70:720-729. [PMID: 29935398 DOI: 10.1016/j.pharep.2018.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 01/18/2018] [Accepted: 02/06/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The current study is focusing on the role of brain natriuretic peptide (BNP), a substrate of dipeptidyl peptidase-4 (DPP-4) enzyme, and its signaling survival pathway in the cardioprotective mechanism of sitagliptin, a DPP-4 inhibitor. METHODS Male Wistar rats were randomized into 7 groups, sham, I/R, KT-5823 (selective protein kinase (PK) G inhibitor), 5-HD (selective mito-KATP channel blocker), sitagliptin (300mg/kg, po), sitagliptin+KT-5823, and sitagliptin+5-HD. Sitagliptin was administered for 3 days prior to induction of coronary I/R, while either KT-5823 or 5-HD was administered intravenously 5min before coronary ligation. RESULTS Pretreatment with sitagliptin provided significant protection against I/R injury as manifested by decreasing, percentage of infarct size, suppressing the elevated ST segment, reducing the increased cardiac enzymes, as well as DPP-4 activity and elevating both heart rate (HR) and left ventricular developed pressure (LVDP). However, the addition of either blocker to sitagliptin regimen reversed partly its cardioprotective effects. Although I/R increased BNP content, it unexpectedly decreased that of cGMP; nevertheless, sitagliptin elevated both parameters, an effect that was not affected by the use of the two blockers. On the molecular level, sitagliptin decreased caspase-3 activity and downregulated the mRNA levels of BNP, Bax, and Cyp D, while upregulated that of Bcl2. The use of either KT-5823 or 5-HD with sitagliptin hindered its effect on the molecular markers tested. CONCLUSIONS The results of the present study suggest that the cardioprotective effect of sitagliptin is mediated partly, but not solely, through the BNP/cGMP/PKG survival signaling pathway.
Collapse
Affiliation(s)
- Samah S Abbas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Hesham M Mahmoud
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona F Schaalan
- Department of Biochemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Qiao S, Mao G, Li H, Ma Z, Hong L, Zhang H, Wang C, An J. DPP-4 Inhibitor Sitagliptin Improves Cardiac Function and Glucose Homeostasis and Ameliorates β-Cell Dysfunction Together with Reducing S6K1 Activation and IRS-1 and IRS-2 Degradation in Obesity Female Mice. J Diabetes Res 2018; 2018:3641516. [PMID: 30116740 PMCID: PMC6079488 DOI: 10.1155/2018/3641516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic overnutrition leads to cardiac dysfunction and insulin (INS) resistance. Dipeptidyl peptidase-4 (DPP-4) improves glucose metabolism and insulin sensitivity in both human and animal models. In this study, we explored whether DPP-4 inhibitor sitagliptin (SIT) is involved in the protection of cardiac function and β-cell function using an obesity female mouse model. METHODS Six-week-old C57BL6/J mice were fed a high fat and fructose Western diet with DPP-4 inhibitor SIT for 12 weeks. Cardiac function was examined by echocardiography. Body weight, plasma glucose, and insulin concentrations were measured. The contents of total S6 kinase 1 (S6K1), phosphorylation of S6K1 activation, and INS docking proteins INS receptor substrates 1 and 2 (IRS-1, IRS-2) were assayed, and histology of heart tissue was performed. RESULTS Chronic Western diet consumption elevated plasma glucose and insulin and caused obesity, diastolic dysfunction, and β-cell dysfunction. DPP-4 inhibition with SIT resulted in reduction in body weight, fasting glucose, and plasma insulin, and improved cardiac diastolic dysfunction. SIT also decreased mTOR/S6K1 activation and prevented the degradation of IRS-1 and IRS-2. CONCLUSIONS This study revealed pleiotropic protective effects of DPP-4 inhibitor SIT on cardiac function, glycemia, and β-cell function together with reducing S6K1 activation and IRS-1 and IRS-2 degradation in the obesity female mouse model.
Collapse
Affiliation(s)
- Shigang Qiao
- Institute of Clinical Medicine Research, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, No. 1 Lijiang Road, Suzhou 215153, China
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, No. 1 Lijiang Road, Suzhou 215153, China
- Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, No. 199 Renai Road, Suzhou 215123, China
| | - Guofang Mao
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, No. 1 Lijiang Road, Suzhou 215153, China
| | - Hua Li
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, No. 1 Lijiang Road, Suzhou 215153, China
| | - Zhimin Ma
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, No. 1 Lijiang Road, Suzhou 215153, China
| | - Lei Hong
- Institute of Clinical Medicine Research, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, No. 1 Lijiang Road, Suzhou 215153, China
| | - Huiling Zhang
- Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, No. 199 Renai Road, Suzhou 215123, China
| | - Chen Wang
- Institute of Clinical Medicine Research, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, No. 1 Lijiang Road, Suzhou 215153, China
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, No. 1 Lijiang Road, Suzhou 215153, China
| | - Jianzhong An
- Institute of Clinical Medicine Research, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Science and Technology Town Hospital, No. 1 Lijiang Road, Suzhou 215153, China
| |
Collapse
|
14
|
Abstract
AIM Extracts from Ephedra species have been reported to be effective as antidiabetics. A previous in silico study predicted that ephedrine and five ephedrine derivatives could contribute to the described antidiabetic effect of Ephedra extracts by inhibiting dipeptidyl peptidase IV (DPP-IV). Finding selective DPP-IV inhibitors is a current therapeutic strategy for Type 2 diabetes mellitus management. Therefore, the main aim of this work is to experimentally determine whether these alkaloids are DPP-IV inhibitors. Materials & methods: The DPP-IV inhibition of Ephedra's alkaloids was determined via a competitive-binding assay. Then, computational analyses were used in order to find out the protein-ligand interactions and to perform a lead optimization. RESULTS Our results show that all six molecules are DPP-IV inhibitors, with IC50 ranging from 124 μM for ephedrine to 28 mM for N-methylpseudoephedrine. CONCLUSION Further computational analysis shows how Ephedra's alkaloids could be used as promising lead molecules for designing more potent and selective DPP-IV inhibitors.
Collapse
|
15
|
|
16
|
Mega C, Teixeira-de-Lemos E, Fernandes R, Reis F. Renoprotective Effects of the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin: A Review in Type 2 Diabetes. J Diabetes Res 2017; 2017:5164292. [PMID: 29098166 PMCID: PMC5643039 DOI: 10.1155/2017/5164292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is now the single commonest cause of end-stage renal disease (ESRD) worldwide and one of the main causes of death in diabetic patients. It is also acknowledged as an independent risk factor for cardiovascular disease (CVD). Since sitagliptin was approved, many studies have been carried out revealing its ability to not only improve metabolic control but also ameliorate dysfunction in various diabetes-targeted organs, especially the kidney, due to putative underlying cytoprotective properties, namely, its antiapoptotic, antioxidant, anti-inflammatory, and antifibrotic properties. Despite overall recommendations, many patients spend a long time well outside the recommended glycaemic range and, therefore, have an increased risk for developing micro- and macrovascular complications. Currently, it is becoming clearer that type 2 diabetes mellitus (T2DM) management must envision not only the improvement in glycaemic control but also, and particularly, the prevention of pancreatic deterioration and the evolution of complications, such as DN. This review aims to provide an overview of the current knowledge in the field of renoprotective actions of sitagliptin, namely, improvement in diabetic dysmetabolism, hemodynamic factors, renal function, diabetic kidney lesions, and cytoprotective properties.
Collapse
Affiliation(s)
- Cristina Mega
- Agrarian School of Viseu (ESAV), Polytechnic Institute of Viseu (IPV), 3500-606 Viseu, Portugal
- Centre for the Study of Education, Technologies and Health (CI&DETS), Polytechnic Institute of Viseu (IPV), 3500-606 Viseu, Portugal
- Institute of Pharmacology and Experimental Therapeutics and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Edite Teixeira-de-Lemos
- Agrarian School of Viseu (ESAV), Polytechnic Institute of Viseu (IPV), 3500-606 Viseu, Portugal
- Centre for the Study of Education, Technologies and Health (CI&DETS), Polytechnic Institute of Viseu (IPV), 3500-606 Viseu, Portugal
| | - Rosa Fernandes
- Institute of Pharmacology and Experimental Therapeutics and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Research Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI Research Consortium, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
17
|
Wang H, Zhou Y, Guo Z, Dong Y, Xu J, Huang H, Liu H, Wang W. Sitagliptin Attenuates Endothelial Dysfunction of Zucker Diabetic Fatty Rats: Implication of the Antiperoxynitrite and Autophagy. J Cardiovasc Pharmacol Ther 2017; 23:66-78. [PMID: 28618859 DOI: 10.1177/1074248417715001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the contributions of sitagliptin to endothelial function in diabetes mellitus were previously reported, the potential mechanisms still remain undefined. Our research was intended to explore the underlying mechanisms of protective effects of sitagliptin treatment on endothelial dysfunction in Zucker diabetic fatty (ZDF) rats. Male lean nondiabetic Zucker rats were used as control and male obese ZDF rats were randomly divided into ZDF and ZDF + sitagliptin groups. The significant decrease in endothelium-dependent relaxation induced by acetylcholine was observed in mesenteric arteries and thoracic aorta rings of ZDF rats. The administration of sitagliptin restored the vascular function effectively. The morphology study showed severe endothelial injuries in thoracic aortas of ZDF rats, and sitagliptin treatment attenuated these changes. The increased malondialdehyde levels and decreased superoxide dismutase activities in serum of ZDF rats were reversed by sitagliptin treatment. Sitagliptin also increased the expression of endothelial nitric oxide synthase and microtubule-associated protein 1 light chain 3 (LC3) and decreased the expression of inducible nitric oxide synthase, 3-nitrotyrosine, and p62 in ZDF rats. After giving Fe (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride porphyrin pentachloride (FeTMPyP, a peroxynitrite [ONOO-] scavenger) or sitagliptin to high-glucose (30 mmol/L, 48 hours) cultured human umbilical vein endothelial cells (HUVECs), the increased levels of Beclin-1 and lysosome-associated membrane protein type 2 were detected. Both FeTMPyP and sitagliptin also significantly increased the number of mRFP-GFP-LC3 dots per cell, suggesting that autophagic flux was increased in HUVECs. Our study indicated that sitagliptin treatment can improve the endothelium-dependent relaxation and attenuate the endothelial impairment of ZDF rats. The protective effects of sitagliptin are possibly related to antiperoxynitrite and promoting autophagy.
Collapse
Affiliation(s)
- Huanyuan Wang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Yi Zhou
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Zhiying Guo
- 2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China.,3 Department of Pathophysiology, School of Basic Medical Sciences, Jining Medical University, Jining, China
| | - Yu Dong
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Jiahui Xu
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Haixia Huang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Huirong Liu
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Wen Wang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| |
Collapse
|
18
|
Kagal UA, Angadi NB, Matule SM. Effect of dipeptidyl peptidase 4 inhibitors on acute and subacute models of inflammation in male Wistar rats: An experimental study. Int J Appl Basic Med Res 2017; 7:26-31. [PMID: 28251104 PMCID: PMC5327602 DOI: 10.4103/2229-516x.198516] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Introduction: The prevalence of Type 2 diabetes mellitus (T2DM) has reached alarming proportions due to the rapidly increasing rates of this disease worldwide. Preclinical and clinical studies have revealed elevated levels of inflammatory markers in a vast number of illnesses such as T2DM, obesity, and atherothrombosis collectively called metabolic syndrome leading to adverse cardiovascular events. Dipeptidyl peptidase 4 (DPP-4) inhibitors which are the enhancers of glucagon-like peptide 1 (GLP -1), could have anti-inflammatory potential which could help in reducing cardiovascular complications of diabetes and benefit patients suffering from the metabolic syndrome. Objective: The objective of this study was to analyze the effect of DPP-4 inhibitors, namely vildagliptin and saxagliptin on acute and subacute models of inflammation. Materials and Methods: Male Wistar rats were randomly divided into control, standard, and two treatment groups (6 animals in each group, total 24 animals). The animals received the drugs orally. The effects of vildagliptin and saxagliptin on inflammation were tested in acute (carrageenan-induced paw edema method) and subacute (grass pith and cotton pellet implantation method) models of inflammation. Results: Vildagliptin and saxagliptin used in the present study showed a significant anti-inflammatory activity in acute and subacute models of inflammation. Conclusion: The present study suggests that vildagliptin and saxagliptin have significant anti-inflammatory potential. Based on the findings of the present study and the available literature, it can be concluded that the anti-inflammatory potential of DPP-4 inhibitors could help to reduce the cardiovascular complications of Type 2 diabetes and the related cluster of metabolic disorders collectively called the metabolic syndrome.
Collapse
Affiliation(s)
- Urmila Anil Kagal
- Department of Pharmacology, Jawaharlal Nehru Medical College, KLE University, Belagavi, Karnataka, India
| | - Netravathi Basavaraj Angadi
- Department of Pharmacology, Krishna Institute of Medical Sciences Deemed University, Malkapur, Karad, Satara, Maharashtra, India
| | - Somnath Mallikarjun Matule
- Department of Pharmacology, Krishna Institute of Medical Sciences Deemed University, Malkapur, Karad, Satara, Maharashtra, India
| |
Collapse
|
19
|
João AL, Reis F, Fernandes R. The incretin system ABCs in obesity and diabetes - novel therapeutic strategies for weight loss and beyond. Obes Rev 2016; 17:553-72. [PMID: 27125902 DOI: 10.1111/obr.12421] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023]
Abstract
Incretins are gastrointestinal-derived hormones released in response to a meal playing a key role in the regulation of postprandial secretion of insulin (incretin effect) and glucagon by the pancreas. Both incretins, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP-1), have several other actions by peripheral and central mechanisms. GLP-1 regulates body weight by inhibiting appetite and delaying gastric, emptying actions that are dependent on central nervous system GLP-1 receptor activation. Several other hormones and gut peptides, including leptin and ghrelin, interact with GLP-1 to modulate appetite. GLP-1 is rapidly degraded by the multifunctional enzyme dipeptidyl peptidase-4 (DPP-4). DPP-4 is involved in adipose tissue inflammation, which is associated with insulin resistance and diabetes progression, being a common pathophysiological mechanism in obesity-related complications. Furthermore, the incretin system appears to provide the basis for understanding the high weight loss efficacy of bariatric surgery, a widely used treatment for obesity, often in association with diabetes. The present review brings together new insights into obesity pathogenesis, integrating GLP-1 and DPP-4 in the complex interplay between obesity and inflammation, namely, in diabetic patients. This in turn will provide the basis for novel incretin-based therapeutic strategies for obesity and diabetes with promising benefits in addition to weight loss. © 2016 World Obesity.
Collapse
Affiliation(s)
- A L João
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine and Center for Neuroscience and Cell Biology - Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal
| | - F Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine and Center for Neuroscience and Cell Biology - Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal
| | - R Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine and Center for Neuroscience and Cell Biology - Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
20
|
Shirakawa J, Okuyama T, Kyohara M, Yoshida E, Togashi Y, Tajima K, Yamazaki S, Kaji M, Koganei M, Sasaki H, Terauchi Y. DPP-4 inhibition improves early mortality, β cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid. Diabetol Metab Syndr 2016; 8:16. [PMID: 26937254 PMCID: PMC4774120 DOI: 10.1186/s13098-016-0138-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/17/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diabetes therapy that not only lowers glucose levels but also lengthens life spans is required. We previously demonstrated that DPP-4 inhibition ameliorated β cell apoptosis and adipose tissue inflammation in β cell-specific glucokinase haploinsufficient mice fed a diet containing a combination of sucrose and linoleic acid (SL). METHODS In this study, we investigated the effects of DPP-4 inhibition in obese diabetic db/db mice fed an SL diet or a control diet containing sucrose and oleic acid (SO). We also examined the effects of DPP-4 inhibition in IRS-1-deficient mice fed an SL or SO diet as a model of insulin resistance. RESULTS DPP-4 inhibition efficiently increases the active GLP-1 levels in db/db mice. Unexpectedly, the SL diet, but not the SO diet, markedly increases mortality in the db/db mice. DPP-4 inhibition reduces the early lethality in SL-fed db/db mice. DPP-4 inhibition improves glucose tolerance, β cell function, and adipose tissue inflammation in db/db mice fed either diet. No significant changes in glycemic control or β cell mass were observed in any of the IRS-1-deficient mouse groups. CONCLUSIONS A diet containing a combination of sucrose and linoleic acid causes early lethality in obese diabetic db/db mice, but not in lean and insulin resistant IRS-1 knockout mice. DPP-4 inhibition has protective effects against the diet-induced lethality in db/db mice.
Collapse
Affiliation(s)
- Jun Shirakawa
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Tomoko Okuyama
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Mayu Kyohara
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Eiko Yoshida
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Yu Togashi
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Kazuki Tajima
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Shunsuke Yamazaki
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Mitsuyo Kaji
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| | - Megumi Koganei
- />Food Science Research Laboratories, R&D Division, Meiji Co., Ltd., Odawara, Japan
| | - Hajime Sasaki
- />Food Science Research Laboratories, R&D Division, Meiji Co., Ltd., Odawara, Japan
- />Department of Nutritional and Life Sciences, Kanagawa Institute of Technology, Atsugi, Japan
| | - Yasuo Terauchi
- />Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004 Japan
| |
Collapse
|
21
|
Tseng CH. Sitagliptin and pancreatic cancer risk in patients with type 2 diabetes. Eur J Clin Invest 2016; 46:70-9. [PMID: 26584246 DOI: 10.1111/eci.12570] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/12/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND The risk of pancreatic cancer associated with incretin-based therapies is controversial. METHODS This study retrospectively analysed the National Health Insurance database including patients with newly diagnosed type 2 diabetes mellitus at an age ≥ 25 years between 1999 and 2010. A total of 71 137 ever users of sitagliptin and 933 046 never users were followed for pancreatic cancer until 31 December 2011. A time-dependent approach was used to calculate incidence and estimate hazard ratios adjusted for propensity score using Cox regression. RESULTS During follow-up, 83 ever users and 3658 never users developed pancreatic cancer, representing an incidence of 73·6 and 55·0 per 100 000 person-years, respectively. The adjusted hazard ratio (95% confidence intervals) for ever versus never users was 1·40 (1·13-1·75). The respective adjusted hazard ratio for the first, second and third tertile of cumulative dose < 14 700, 14 700-33 700 and > 33 700 mg was 1·83 (1·28-2·62), 1·97 (1·41-2·76) and 0·72 (0·45-1·15). For average daily dose of < 50, 50-99·9 and ≥ 100 mg, the respective hazard ratio was 3·10 (1·17-8·26), 1·01 (0·63-1·61) and 1·53 (1·18-1·97). CONCLUSIONS Sitagliptin is significantly associated with a higher risk of pancreatic cancer, especially when the cumulative dose is < 33 700 mg. The risk diminished in users with a higher cumulative dose. The daily dose of sitagliptin should better be kept < 100 mg, and its use should be reconsidered in patients who suffer from severe renal impairment and thus a daily dose of < 50 mg is always recommended. Future studies are required to confirm the findings with more appropriate adjustment for smoking.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
22
|
Gómez-Solís A, Reyes-Esparza J, García-Vázquez F, Álvarez-Ayala E, Rodríguez-Fragoso L. Immuno-modulator metallo-Peptide reduces inflammatory state in obese zucker fa/fa rats. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2014; 10:172-81. [PMID: 25324698 PMCID: PMC4198424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/24/2014] [Indexed: 11/23/2022]
Abstract
Metabolic syndrome is a prothrombotic and proinflammatory chronic state. In obesity, the adipose tissue secretes various adipokines that take part in a variety of physiological and pathophysiological processes, including immunity and inflammation. Previous studies using a liver damage model treated with the immune-modulator metallo-peptide (IMMP) showed lessening in the degree of inflammation. Therefore, this study was set up to evaluate the anti-inflammatory effect of IMMP in obese Zucker fa/fa rats. We used Zucker-Lepr fa/fa and Zucker-Lean in this protocol. The groups received IMMP 50 ng/kg by i.p., three times per week for 8 weeks. Blood samples were collected by cardiac puncture and the serum was preserved at -80°C until analysis; the liver was excised and preserved in formaldehyde 4%. Analyses were performed to determine cytokine, insulin, glucose, triglyceride and cholesterol levels in serum, and histological analysis was also performed. IMMP treatment of obese rats resulted in decreased levels of proinflammatory cytokines (leptin, lL-6, IL-1betha, INF-gamma) and a chemokine (MCP-1), and increased levels of anti-inflammatory adipokine (adiponectin). In addition, treatment decreased the damage and hepatic steatosis generated in the tissue of obese rats. The IMMP exerted an anti-inflammatory effect in obese rats and therefore may be an effective and safe therapeutic alternative in the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Antonieta Gómez-Solís
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, México
| | - Jorge Reyes-Esparza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, México
| | | | - Elizabeth Álvarez-Ayala
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, México
| | | |
Collapse
|
23
|
Gonçalves A, Marques C, Leal E, Ribeiro CF, Reis F, Ambrósio AF, Fernandes R. Dipeptidyl peptidase-IV inhibition prevents blood-retinal barrier breakdown, inflammation and neuronal cell death in the retina of type 1 diabetic rats. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1454-63. [PMID: 24769045 DOI: 10.1016/j.bbadis.2014.04.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 12/21/2022]
Abstract
Diabetic retinopathy, a leading cause of vision loss in working-age population, is often associated with inflammation and apoptosis. We have previously reported that sitagliptin, a DPP-IV inhibitor, exerts beneficial effects in the retina of type 2 diabetic animals. The present study aimed to evaluate whether sitagliptin can exert protective effects in the retina of type 1 diabetic animals by a mechanism independent of insulin secretion and glycemia normalization. Streptozotocin-induced diabetic rats were treated orally with sitagliptin (5mg/kg/day) for the last two weeks of 4 weeks of diabetes. Sitagliptin treatment did not change the weight and glucose, HbA1c or insulin levels. However, it prevented the diabetes-induced increase in DPP-IV/CD26 activity and levels in serum and retina. Sitagliptin also prevented the increase in blood-retinal barrier (BRB) permeability and inhibited the changes in immunoreactivity and endothelial subcellular distribution of occludin, claudin-5 and ZO-1 proteins induced by diabetes. Furthermore, sitagliptin decreased the retinal inflammatory state and neuronal apoptosis. Sitagliptin inhibited the BRB breakdown in a type 1 diabetic animal model, by a mechanism independent of normalization of glycemia, by preventing changes in tight junctions (TJs) organization. Sitagliptin also exerted protective effects against inflammation and pro-apoptotic state in the retina of diabetic rats. Altogether, these results suggest that sitagliptin might be envisaged to be used to prevent or delay some of the alterations associated with the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Andreia Gonçalves
- Laboratory of Pharmacology and Experimental Therapeutics, IBILI - Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Portugal
| | - Catarina Marques
- Laboratory of Pharmacology and Experimental Therapeutics, IBILI - Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Portugal
| | - Ermelindo Leal
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Carlos F Ribeiro
- Laboratory of Pharmacology and Experimental Therapeutics, IBILI - Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, IBILI - Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Portugal
| | - António F Ambrósio
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Portugal; AIBILI, University of Coimbra, Portugal
| | - Rosa Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics, IBILI - Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|