1
|
Kim K, Zheng Y, Joyce BT, Nannini DR, Wang J, Qu Y, Hawkins CA, Okeke E, Lesi OA, Roberts LR, Gursel DB, Abdulkareem FB, Akanmu AS, Duguru MJ, Davwar P, Nyam DP, Adisa RA, Imade G, Wei JJ, Kocherginsky M, Kim KY, Adeyemo WL, Odeghe E, Wehbe FH, Achenbach C, Sagay A, Ogunsola F, Murphy RL, Hou L. Cell-free DNA methylation-based inflammation score as a marker for hepatocellular carcinoma among people living with HIV. Hepatol Int 2024:10.1007/s12072-024-10768-1. [PMID: 39704909 DOI: 10.1007/s12072-024-10768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND People living with the human immunodeficiency virus (HIV) are at a greater risk of developing hepatocellular carcinoma (HCC), potentially due to the stimulation of inflammation by HIV infection. Inflammation-related DNA methylation signatures obtained in liquid biopsy, such as circulating cell-free DNA (cfDNA), may serve as promising minimally invasive biomarkers that can inform diagnosis of HCC. METHODS Using data from 249 individuals with HIV (114 individuals with normal liver conditions, 69 with fibrosis, 30 with cirrhosis, and 36 with HCC), we constructed a cfDNA methylation-based inflammation score (inflammation-DNAm score) based on 54 CpGs previously associated with circulating C-reactive protein concentrations. Associations of DNAm scores with HCC were assessed using multivariable logistic regression models. Receiver operating characteristic analysis was conducted to assess the performance of discriminating HCC between the inflammation-DNAm score and alpha-fetoprotein (AFP), one of the current screening biomarkers. RESULTS A higher inflammation-DNAm score was associated with a 29% increase in the odds of HCC (OR = 1.29, 95% CI = 1.01-1.65). The association remained consistent in the models adjusted for cellular origin proportions. The DNAm score exhibited superior performance in discriminating HCC from controls (AUC = 0.94, 95% CI = 0.90-0.98), compared to AFP (AUC = 0.68, 95% CI = 0.51-0.85). CONCLUSIONS Our findings suggest that cfDNA methylation-based biomarkers may aid in the detection of HCC in people living with HIV, a population at high-risk of developing HCC.
Collapse
Affiliation(s)
- Kyeezu Kim
- Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea.
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Yinan Zheng
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brian T Joyce
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Drew R Nannini
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jun Wang
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yishu Qu
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Claudia A Hawkins
- Robert J. Harvey, MD Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | - Lewis R Roberts
- Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Demirkan B Gursel
- Robert J. Harvey, MD Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | | - Jian-Jun Wei
- Robert J. Harvey, MD Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Kwang-Youn Kim
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | - Firas H Wehbe
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chad Achenbach
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | - Robert L Murphy
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert J. Harvey, MD Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lifang Hou
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert J. Harvey, MD Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Li L, Sun Y. Circulating tumor DNA methylation detection as biomarker and its application in tumor liquid biopsy: advances and challenges. MedComm (Beijing) 2024; 5:e766. [PMID: 39525954 PMCID: PMC11550092 DOI: 10.1002/mco2.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA) methylation, an innovative liquid biopsy biomarker, has emerged as a promising tool in early cancer diagnosis, monitoring, and prognosis prediction. As a noninvasive approach, liquid biopsy overcomes the limitations of traditional tissue biopsy. Among various biomarkers, ctDNA methylation has garnered significant attention due to its high specificity and early detection capability across diverse cancer types. Despite its immense potential, the clinical application of ctDNA methylation faces substantial challenges pertaining to sensitivity, specificity, and standardization. In this review, we begin by introducing the basic biology and common detection techniques of ctDNA methylation. We then explore recent advancements and the challenges faced in the clinical application of ctDNA methylation in liquid biopsies. This includes progress in early screening and diagnosis, identification of clinical molecular subtypes, monitoring of recurrence and minimal residual disease (MRD), prediction of treatment response and prognosis, assessment of tumor burden, and determination of tissue origin. Finally, we discuss the future perspectives and challenges of ctDNA methylation detection in clinical applications. This comprehensive overview underscores the vital role of ctDNA methylation in enhancing cancer diagnostic accuracy, personalizing treatments, and effectively monitoring disease progression, providing valuable insights for future research and clinical practice.
Collapse
Affiliation(s)
- Lingyu Li
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for CancersNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Yingli Sun
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for CancersNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| |
Collapse
|
3
|
Xue X, Su L, Zhang T, Zhan J, Gu X. Effects of α-Particle Radiation on DNA Methylation in Human Hepatocytes. Dose Response 2024; 22:15593258241297871. [PMID: 39583032 PMCID: PMC11583490 DOI: 10.1177/15593258241297871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Objective: This paper explores the role of DNA methylation in α-irradiation damage at the cellular level. Methods: Human normal hepatocytes L-02 were irradiated using a 241 Am α source at doses of 0, 1.0, and 2.0 Gy. The methylation levels of the six differentially methylated genes were examined by pyrophosphate sequencing, and the mRNA expression levels of the six differentially methylated genes were examined by real-time fluorescence quantitative PCR. Results: The rate of γH2AX foci positive cells was significantly higher than that of the control group after irradiation of cells in different dose groups for 1 h and 2 h respectively (P < .05). The proportion of S-phase cells was significantly increased in the 1.0 Gy and 2.0 Gy dose groups compared with the control group (P < .05). The methylation levels of CDK2AP1, PDGFRL, PCDHB16 and FAS genes were significantly increased, while the mRNA expression levels were significantly decreased (P < .05). The expression levels of CDK2Apl, PCDHB16 and FAS were significantly negatively correlated with the methylation levels (P < .05). Conclusion: The α-particle radiation can affect gene expression at the epigenetic level, which led to the speculation that altered methylation levels of CDK2AP1, PCDHB16, and FAS genes may be involved in the α radiation damage process.
Collapse
Affiliation(s)
- Xiangming Xue
- China Institute of Radiation Protection, Taiyuan, China
| | - Lixia Su
- China Institute of Radiation Protection, Taiyuan, China
| | - Teng Zhang
- China Institute of Radiation Protection, Taiyuan, China
| | - Jingming Zhan
- China Institute of Radiation Protection, Taiyuan, China
| | - Xiaona Gu
- China Institute of Radiation Protection, Taiyuan, China
| |
Collapse
|
4
|
Adugna A, Muche Y, Melkamu A, Jemal M, Belew H, Amare GA. Current updates on the molecular and genetic signals as diagnostic and therapeutic targets for hepatitis B virus-associated hepatic malignancy. Heliyon 2024; 10:e34288. [PMID: 39100497 PMCID: PMC11295980 DOI: 10.1016/j.heliyon.2024.e34288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/28/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Liver cancer caused by the hepatitis B virus (HBV) is the third most common cancer-related cause of death worldwide. Early detection of HBV-caused hepatic tumors increases the likelihood of a successful cure. Molecular and genetic signals are becoming more and more recognized as possible indicators of HBV-associated hepatic malignancy and of how well a treatment is working. As a result, we have discussed the current literature on molecular and genetic sensors, including extracellular vesicle microRNAs (EV-miRNAs), long non-coding circulating RNAs (lncRNAs), extracellular vesicles (EVs), and cell free circulating DNA (cfDNA), for the diagnosis and forecasting of HBV-related hepatic cancer. Extracellular vesicle microRNAs such as miR-335-5p, miR-172-5p, miR-1285-5p, miR-497-5p, miR-636, miR-187-5p, miR-223-3p, miR-21, miR-324-3p, miR-210-3p, miR-718, miR-122, miR-522, miR-0308-3p, and miR-375 are essential for the posttranscriptional regulation of oncogenes in hepatic cells as well as the epigenetic modulation of many internal and external signaling pathways in HBV-induced hepatic carcinogenesis. LncRNAs like lnc01977, HULC (highly up-regulated in liver cancer), MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), and HOTAIR (hox transcript antisense intergenic RNA) have been demonstrated to control hepatic-tumors cell growth, relocation, encroachment, and cell death resiliency. They are also becoming more and more involved in immune tracking, hepatic shifting, vasculature oversight, and genomic destabilization. EVs are critical mediators involved in multiple aspects of liver-tumors like angiogenesis, immunology, tumor formation, and the dissemination of malignant hepatocytes. Furthermore, cfDNA contributes to signals associated with tumors, including mutations and abnormal epigenetic changes during HBV-related hepatic tumorigenesis.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abateneh Melkamu
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
5
|
Zhang J, Chen J, Zhang Y, Chen L, Mo W, Yang Q, Zhang M, Liu H. Exploring TSPAN4 promoter methylation as a diagnostic biomarker for tuberculosis. Front Genet 2024; 15:1380828. [PMID: 38680421 PMCID: PMC11048481 DOI: 10.3389/fgene.2024.1380828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Background Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a persistent infectious disease threatening human health. The existing diagnostic methods still have significant shortcomings, including a low positivity rate in pathogen-based diagnoses and the inability of immunological diagnostics to detect active TB. Hence, it is urgent to develop new techniques to detect TB more accurate and earlier. This research aims to scrutinize and authenticate DNA methylation markers suitable for tuberculosis diagnosis. Concurrently, Providing a new approach for tuberculosis diagnosis. Methods Blood samples from patients with newly diagnosed tuberculosis and healthy controls (HC) were utilized in this study. Examining methylation microarray data from 40 whole blood samples (22TB + 18HC), we employed two procedures: signature gene methylated position analysis and signature region methylated position analysis to pinpoint distinctive methylated positions. Based on the screening results, diagnostic classifiers are constructed through machine learning, and validation was conducted through pyrosequencing in a separate queue (22TB + 18HC). Culminating in the development of a new tuberculosis diagnostic method via quantitative real-time methylation specific PCR (qMSP). Results The combination of the two procedures revealed a total of 10 methylated positions, all of which were located in the promoter region. These 10 signature methylated positions facilitated the construction of a diagnostic classifier, exhibiting robust diagnostic accuracy in both cross-validation and external test sets. The LDA model demonstrated the best classification performance, achieving an AUC of 0.83, specificity of 0.8, and sensitivity of 0.86 on the external test set. Furthermore, the validation of signature methylated positions through pyrosequencing demonstrated high agreement with screening outcomes. Additionally, qMSP detection of 2 potential hypomethylated positions (cg04552852 and cg12464638) exhibited promising results, yielding an AUC of 0.794, specificity of 0.720, and sensitivity of 0.816. Conclusion Our study demonstrates that the validated signature methylated positions through pyrosequencing emerge as plausible biomarkers for tuberculosis diagnosis. The specific methylation markers in the TSPAN4 gene, identified in whole blood samples, hold promise for improving tuberculosis diagnosis. This approach could significantly enhance diagnostic accuracy and speed, offering a new avenue for early detection and treatment.
Collapse
Affiliation(s)
- Jiahao Zhang
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jilong Chen
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Zhang
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liuchi Chen
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiwei Mo
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianting Yang
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, Southern University of Science and Technology, Shenzhen, China
| | - Mingxia Zhang
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, Southern University of Science and Technology, Shenzhen, China
| | - Haiying Liu
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Fu S, Debes JD, Boonstra A. DNA methylation markers in the detection of hepatocellular carcinoma. Eur J Cancer 2023; 191:112960. [PMID: 37473464 DOI: 10.1016/j.ejca.2023.112960] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and has a poor prognosis. Epigenetic modification has been shown to be deregulated during HCC development by dramatically impacting the differentiation, proliferation, and function of cells. One important epigenetic modification is DNA methylation during which methyl groups are added to cytosines without changing the DNA sequence itself. Studies found that methylated DNA markers can be specific for detection of HCC. On the basis of these findings, the utility of methylated DNA markers as novel biomarkers for early-stage HCC has been measured in blood, and indeed superior sensitivity and specificity have been found in several studies when compared to current surveillance methods. However, a variety of factors currently limit the immediate application of these exciting biomarkers. In this review, we provide a detailed rationalisation of the approach and basis for the use of methylation biomarkers for HCC detection and summarise recent studies on methylated DNA markers in HCC focusing on the importance of the aetiological cause of liver disease in the mechanisms leading to cancer.
Collapse
Affiliation(s)
- Siyu Fu
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands
| | - José D Debes
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands; Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - André Boonstra
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Liu M, Zhang Z, Zhang W, Liu SM. Advances in biomarker discovery using circulating cell-free DNA for early detection of hepatocellular carcinoma. WIREs Mech Dis 2023; 15:e1598. [PMID: 36697374 PMCID: PMC10176863 DOI: 10.1002/wsbm.1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/21/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
The past several decades have witnessed unprecedented progress in basic and clinical cancer research, and our understanding of the molecular mechanisms and pathogenesis of cancers have been greatly improved. More recently, with the availability of high-throughput sequencing and profiling platforms as well as sophisticated analytical tools and high-performance computing capacity, there have been tremendous advances in the development of diagnostic approaches in clinical oncology, especially the discovery of novel biomarkers for cancer early detection. Although tissue biopsy-based pathology has been the "gold standard" for cancer diagnosis, notable limitations such as the risk due to invasiveness and the bias due to intra-tumoral heterogeneity have limited its broader applications in oncology (e.g., screening, regular disease monitoring). Liquid biopsy analysis that exploits the genetic and epigenetic information contained in DNA/RNA materials from body fluids, particularly circulating cell-free DNA (cfDNA) in the blood, has been an intriguing alternative approach because of advantageous features such as sampling convenience and minimal invasiveness. Taking advantage of innovative enabling technologies, cfDNA has been demonstrated for its clinical potential in cancer early detection, including hepatocellular carcinoma (HCC), the most common liver cancer that causes serious healthcare burden globally. Hereby, we reviewed the current advances in cfDNA-based approaches for cancer biomarker discovery, with a focus on recent findings of cfDNA-based early detection of HCC. Future clinical investigations and trials are warranted to further validate these approaches for early detection of HCC, which will contribute to more effective prevention, control, and intervention strategies with the ultimate goal of reducing HCC-associated mortality. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Mingjun Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Clinical Laboratory, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong Province, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Titanji BK, Lee M, Wang Z, Chen J, Hui Q, Lo Re III V, So-Armah K, Justice AC, Xu K, Freiberg M, Gwinn M, Marconi VC, Sun YV. Epigenome-wide association study of biomarkers of liver function identifies albumin-associated DNA methylation sites among male veterans with HIV. Front Genet 2022; 13:1020871. [PMID: 36303554 PMCID: PMC9592923 DOI: 10.3389/fgene.2022.1020871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Liver disease (LD) is an important cause of morbidity and mortality for people with HIV (PWH). The molecular factors linked with LD in PWH are varied and incompletely characterized. We performed an epigenome-wide association study (EWAS) to identify associations between DNA methylation (DNAm) and biomarkers of liver function-aspartate transaminase, alanine transaminase, albumin, total bilirubin, platelet count, FIB-4 score, and APRI score-in male United States veterans with HIV. Methods: Blood samples and clinical data were obtained from 960 HIV-infected male PWH from the Veterans Aging Cohort Study. DNAm was assessed using the Illumina 450K or the EPIC 850K array in two mutually exclusive subsets. We performed a meta-analysis for each DNAm site measured by either platform. We also examined the associations between four measures of DNAm age acceleration (AA) and liver biomarkers. Results: Nine DNAm sites were positively associated with serum albumin in the meta-analysis of the EPIC and 450K EWAS after correcting for multiple testing. Four DNAm sites (cg16936953, cg18942579, cg01409343, and cg12054453), annotated within the TMEM49 and four of the remaining five sites (cg18181703, cg03546163, cg20995564, and cg23966214) annotated to SOCS3, FKBP5, ZEB2, and SAMD14 genes, respectively. The DNAm site, cg12992827, was not annotated to any known coding sequence. No significant associations were detected for the other six liver biomarkers. Higher PhenoAA was significantly associated with lower level of serum albumin (β = -0.007, p-value = 8.6 × 10-4, CI: -0.011116, -0.002884). Conclusion: We identified epigenetic associations of both individual DNAm sites and DNAm AA with liver function through serum albumin in men with HIV. Further replication analyses in independent cohorts are warranted to confirm the epigenetic mechanisms underlying liver function and LD in PWH.
Collapse
Affiliation(s)
- Boghuma K. Titanji
- Division of Infectious Disease, Emory School of Medicine, Atlanta, GA, United States
| | - Mitch Lee
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Zeyuan Wang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Qin Hui
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Vincent Lo Re III
- Division of Infectious Diseases Department of Medicine and Center for Clinical Epidemiology and Biostatistics Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Kaku So-Armah
- Boston University Medical School, Boston, MA, United States
| | - Amy C. Justice
- Connecticut Veteran Health System, West Haven, CT, United States,Yale University School of Medicine, New Haven, CT, United States
| | - Ke Xu
- Connecticut Veteran Health System, West Haven, CT, United States,Yale University School of Medicine, New Haven, CT, United States
| | - Matthew Freiberg
- Cardiovascular Medicine Division and Tennessee Valley Healthcare System, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Marta Gwinn
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Vincent C. Marconi
- Division of Infectious Disease, Emory School of Medicine, Atlanta, GA, United States,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States,Hubert Department of Global Health, Rollins School of Public Health, Atlanta, GA, United States,Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Yan V. Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States,*Correspondence: Yan V. Sun,
| |
Collapse
|
9
|
Lu H, Ping J, Zhou G, Zhao Z, Gao W, Jiang Y, Quan C, Lu Y, Zhou G. CommPath: An R package for inference and analysis of pathway-mediated cell-cell communication chain from single-cell transcriptomics. Comput Struct Biotechnol J 2022; 20:5978-5983. [PMID: 36382188 PMCID: PMC9647193 DOI: 10.1016/j.csbj.2022.10.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Single-cell transcriptomics offers opportunities to investigate ligand-receptor (LR) interactions between heterogeneous cell populations within tissues. However, most existing tools for the inference of intercellular communication do not allow prioritization of functional LR associations that provoke certain biological responses in the receiver cells. In addition, current tools do not enable the identification of the impact on the downstream cell types of the receiver cells. We present CommPath, an open-source R package and webserver, to analyze and visualize the LR interactions and pathway-mediated intercellular communication chain with single-cell transcriptomic data. CommPath curates a comprehensive signaling pathway database to interpret the consequences of LR associations and therefore infers functional LR interactions. Furthermore, CommPath determines cell-cell communication chain by considering both the upstream and downstream cells of user-defined cell populations. Applying CommPath to human hepatocellular carcinoma dataset shows its ability to decipher complex LR interaction patterns and the associated intercellular communication chain, as well as their changes in disease versus homeostasis.
Collapse
|
10
|
Lyu X, Tsui YM, Ho DWH, Ng IOL. Liquid Biopsy Using Cell-Free or Circulating Tumor DNA in the Management of Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2022; 13:1611-1624. [PMID: 35183803 PMCID: PMC9048068 DOI: 10.1016/j.jcmgh.2022.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
Abstract
Liver cancer (hepatocellular carcinoma [HCC]) is a fatal cancer worldwide and often is detected at an advanced stage when treatment options are very limited. This drives the development of techniques and platforms for early detection of HCC. In recent years, liquid biopsy has provided a means of noninvasive detection of cancers. By detecting plasma circulating tumor DNA (ctDNA) released from dying cancer cells, the presence of HCC can be detected in a noninvasive manner. In this review, we discuss the molecular characteristics of ctDNA and its various molecular landscapes in HCC. These include the mutational landscape, single-nucleotide variations, copy number variations, methylation landscape, end motif/coordinate preference, hepatitis B virus integration, and mitochondrial DNA mutations. The consistency between the plasma ctDNA and the tumor tissue genomic DNA mutational profile is pivotal for the clinical utility of ctDNA in the clinical management of HCC. With strategic use of genetic information provided from plasma ctDNA profiling and procedure standardization to facilitate implementation in clinical practice, better clinical management would become permissible through more efficient detection and diagnosis of HCC, better prognostication, precision-matched treatment guidance, and more reliable disease monitoring.
Collapse
Affiliation(s)
| | | | - Daniel Wai-Hung Ho
- Correspondence Address correspondence to: Daniel Wai-Hung Ho, PhD, Department of Pathology, L704, Laboratory Block, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong. fax: (852) 2819-5375.
| | - Irene Oi-Lin Ng
- Irene Oi-Lin Ng, MD, PhD, Department of Pathology, Room 7-13, Block T, Queen Mary Hospital, Pokfulam, Hong Kong. fax: 852-28872-5197.
| |
Collapse
|
11
|
Molecular Alterations of Circulating Cell-Free DNA in the Pathological Progression of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:3637436. [PMID: 34899905 PMCID: PMC8664522 DOI: 10.1155/2021/3637436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most malignant cancers. Early diagnosis of HCC is important to reduce the mortality rate. The aim of this study is to explore the plasma cell-free DNA (cfDNA) mutation profile in the pathological progression of HCC and to investigate the significance of plasma cfDNA mutations in the early diagnosis of HCC. Methods Thirty-seven patients with chronic hepatitis B (CHB), eight with liver cirrhosis (LC), and eleven with HCC were enrolled in this cohort. Plasma cfDNA and white blood cell DNA were isolated, and plasma cfDNA mutation profiles were detected using a targeted gene panel. Results The sequencing results of plasma cfDNA showed that HCC-related gene mutations were present in patients with CHB and LC. The mutation burden of HCC-related genes increased from CHB and LC to HCC. In patients with HCC, the average mutation burden of NRAS (10.1%), TP53 (7.4%), PTEN (4.2%), and APOB (2.6%) was the highest. The average mutation burden of PTEN, APOB, FRAS1, KDM6A, DDR2, TTK, NRAS, TP53, PTPRB, MPL, FCRL1, HN1, and SFN gradually increased from CHB and LC to HCC. The mutation burden of 18 HCC-related genes had an area under the receiver operating characteristics of 0.92 for the diagnosis of HCC. Conclusions The mutation burden of HCC-related genes increased from CHB and LC to HCC. An optimal combination of cfDNA mutations in the gene panel for diagnosing HCC in patients with CHB and LC was selected. Our study indicates that somatic mutations in plasma cfDNA may serve as potential biomarkers for early HCC diagnosis.
Collapse
|
12
|
Qin P, Zhang M, Liu X, Dong Z. Immunogenomic Landscape Analysis of Prognostic Immune-Related Genes in Hepatocellular Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3761858. [PMID: 34745496 PMCID: PMC8570866 DOI: 10.1155/2021/3761858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/16/2021] [Indexed: 12/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. HBV infection is an important risk factor for the tumorigenesis of HCC, given that the inflammatory environment is closely related to morbidity and prognosis. Consequently, it is of urgent importance to explore the immunogenomic landscape to supplement the prognosis of HCC. The expression profiles of immune-related genes (IRGs) were integrated with 377 HCC patients to generate differentially expressed IRGs based on the Cancer Genome Atlas (TCGA) dataset. These IRGs were evaluated and assessed in terms of their diagnostic and prognostic values. A total of 32 differentially expressed immune-related genes resulted as significantly correlated with the overall survival of HCC patients. The Gene Ontology functional enrichment analysis revealed that these genes were actively involved in cytokine-cytokine receptor interaction. A prognostic signature based on IRGs (HSPA4, PSME3, PSMD14, FABP6, ISG20L2, TRAF3, NDRG1, NRAS, CSPG5, and IL17D) stratified patients into high-risk versus low-risk groups in terms of overall survival and remained as an independent prognostic factor in multivariate analyses after adjusting for clinical and pathologic factors. Several IRGs (HSPA4, PSME3, PSMD14, FABP6, ISG20L2, TRAF3, NDRG1, NRAS, CSPG5, and IL17D) of clinical significance were screened in the present study, revealing that the proposed clinical-immune signature is a promising risk score for predicting the prognosis of HCC.
Collapse
Affiliation(s)
- Peng Qin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyu Zhang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue Liu
- Department of Immunotherapy, Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Ziming Dong
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
13
|
Zhang D, Guo S, Schrodi SJ. Mechanisms of DNA Methylation in Virus-Host Interaction in Hepatitis B Infection: Pathogenesis and Oncogenetic Properties. Int J Mol Sci 2021; 22:9858. [PMID: 34576022 PMCID: PMC8466338 DOI: 10.3390/ijms22189858] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV), the well-studied oncovirus that contributes to the majority of hepatocellular carcinomas (HCC) worldwide, can cause a severe inflammatory microenvironment leading to genetic and epigenetic changes in hepatocyte clones. HBV replication contributes to the regulation of DNA methyltransferase gene expression, particularly by X protein (HBx), and subsequent methylation changes may lead to abnormal transcription activation of adjacent genes and genomic instability. Undoubtedly, the altered expression of these genes has been known to cause diverse aspects of infected hepatocytes, including apoptosis, proliferation, reactive oxygen species (ROS) accumulation, and immune responses. Additionally, pollutant-induced DNA methylation changes and aberrant methylation of imprinted genes in hepatocytes also complicate the process of tumorigenesis. Meanwhile, hepatocytes also contribute to epigenetic modification of the viral genome to affect HBV replication or viral protein production. Meanwhile, methylation levels of HBV integrants and surrounding host regions also play crucial roles in their ability to produce viral proteins in affected hepatocytes. Both host and viral changes can provide novel insights into tumorigenesis, individualized responses to therapeutic intervention, disease progress, and early diagnosis. As such, DNA methylation-mediated epigenetic silencing of cancer-related genes and viral replication is a compelling therapeutic goal to reduce morbidity and mortality from liver cancer caused by chronic HBV infection. In this review, we summarize the most recent research on aberrant DNA methylation associated with HBV infection, which is involved in HCC development, and provide an outlook on the future direction of the research.
Collapse
Affiliation(s)
- Dake Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Shicheng Guo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Steven J. Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Mohamed AA, Hakeem GL, Babrs GM, Abolfotoh LE, Shehata NM, Maher SE, Mousa SM, Ismail AM, Ezzat D, Habib AG, Ghaith DM, Fawazy N, Khattab RA, Habib EES, El-Hassib DMA, Abd-Elsalam S, El-damasy DA. Epidermal Growth Factor rs4444903 A>G Gene Polymorphism Association with Chronic Hepatitis B Liver Disease Progression among Egyptian Children: A Multicenter Study. THE OPEN BIOMARKERS JOURNAL 2021; 11:63-68. [DOI: 10.2174/1875318302111010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 09/01/2023]
Abstract
Background:
Polymorphisms of genes encoding the pro-inflammatory and anti-inflammatory cytokines can affect the clinical presentation of the infection. We aimed to assess the role of EGF gene single-nucleotide polymorphism in the outcome of chronic hepatitis B virus (HBV) infection in children.
Methods:
One hundred HBV-infected children and 75 healthy matched controls were enrolled in this prospective study. Patients included 18 chronic inactive and 82 chronic active carriers. EGF rs4444903 A>G genotypes were determined using allele-specific amplification.
Results:
Significant differences regarding EGF genotypic frequency (p=0.001) in patients compared to controls (p=0.001). Eighteen percent were inactive, and 82% were active carriers. AA, AG and GG genotypic frequency were 66.7%, 33.3%, 0% and were 3.7%, 37.8% and 58.5% in the inactive and active carriers, respectively, with significant differences regarding AA, AG, GG genotypic frequency (p=0.001 for all). EGF AA, AG, GG genotypes frequency were 1.9%, 33.3%, and 64.8%, respectively, with significant differences between cirrhotic and non-cirrhotic patients regarding AA, AG, GG genotypic frequency (p=0.001 for all).
Conclusion:
Increased G allele frequency in EGF rs4444903 A > G polymorphism in HBV- Egyptian children is associated with worse outcomes.
Collapse
|
15
|
A novel DNA methylation-based model that effectively predicts prognosis in hepatocellular carcinoma. Biosci Rep 2021; 41:227938. [PMID: 33634306 PMCID: PMC7955104 DOI: 10.1042/bsr20203945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To build a novel predictive model for hepatocellular carcinoma (HCC) patients based on DNA methylation data. METHODS Four independent DNA methylation datasets for HCC were used to screen for common differentially methylated genes (CDMGs). Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to explore the biological roles of CDMGs in HCC. Univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) Cox analysis were performed to identify survival-related CDMGs (SR-CDMGs) and to build a predictive model. The importance of this model was assessed using Cox regression analysis, propensity score-matched (PSM) analysis and stratification analysis. A validation group from the Cancer Genome Atlas (TCGA) was constructed to further validate the model. RESULTS Four SR-CDMGs were identified and used to build the predictive model. The risk score of this model was calculated as follows: risk score = (0.01489826 × methylation level of WDR69) + (0.15868618 × methylation level of HOXB4) + (0.16674959 × methylation level of CDKL2) + (0.16689301 × methylation level of HOXA10). Kaplan-Meier analysis demonstrated that patients in the low-risk group had a significantly longer overall survival (OS; log-rank P-value =0.00071). The Cox model multivariate analysis and PSM analysis identified the risk score as an independent prognostic factor (P<0.05). Stratified analysis results further confirmed this model performed well. By analyzing the validation group, the results of receiver operating characteristic (ROC) curve analysis and survival analysis further validated this model. CONCLUSION Our DNA methylation-based prognosis predictive model is effective and reliable in predicting prognosis for patients with HCC.
Collapse
|
16
|
Cao LL, Han Y, Wang Y, Pei L, Yue Z, Qin L, Liu B, Cui J, Jia M, Wang H. Metabolic Profiling Identified a Novel Biomarker Panel for Metabolic Syndrome-Positive Hepatocellular Cancer. Front Endocrinol (Lausanne) 2021; 12:816748. [PMID: 35154012 PMCID: PMC8826723 DOI: 10.3389/fendo.2021.816748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic syndrome (MetS) is an independent risk factor for hepatocellular cancer (HCC). Currently, there is no highly sensitive and specific biomarkers for HCC surveillance in MetS population. Metabolomics has been reported as a powerful technology for biomarker discovery. In the present study, we aimed to explore novel biomarkers with high sensitivity and specificity for MetS-positive [MetS(+)] HCC by metabolomic analysis. At first, many serum metabolites were found dysregulated in MetS(+) HCC individuals. Validation of the dysregulated metabolites by targeted metabolite analyses revealed that serum L-glutamic acid (L-glu), pipecolic acid (PA) and 7-methylguanine (7-mG) were increased in MetS(+) HCC compared to MetS group. Then a biomarker panel including L-glu, PA and alpha-fetoprotein (AFP) was identified as a novel biomarker for the diagnosis of MetS(+) HCC. Receiver operating characteristic (ROC) curve was drawn and the area under the ROC curve (AUC) was 0.87 for discriminating MetS(+) HCC from MetS group. The biomarker panel was capable of detecting small (AUC = 0.82) and early-stage (AUC = 0.78) tumors as well. Moreover, it exhibited great diagnostic performance (AUC = 0.93) for discriminating MetS(+) HCC from other MetS-associated cancers, including colorectal cancer and gastric cancer. Collectively, our study establishes a novel diagnostic tool for MetS(+) HCC.
Collapse
Affiliation(s)
- Lin-Lin Cao
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- *Correspondence: Lin-Lin Cao,
| | - Yi Han
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yuanxiao Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Lin Pei
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Zhihong Yue
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Li Qin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Boyu Liu
- Department of Pharmacy, Peking University People’s Hospital, Beijing, China
| | - Jingwen Cui
- SCIEX Analytical Instrument Trading Co., Shanghai, China
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
17
|
Yu S, Ao Z, Wu Y, Song L, Zhang P, Li X, Liu M, Qian P, Zhang R, Li X, Chen Y, Wang X, Wang X, Ruan X, Qian G, Ji F. ZNF300 promotes chemoresistance and aggressive behaviour in non-small-cell lung cancer. Cell Prolif 2020; 53:e12924. [PMID: 33078469 PMCID: PMC7653252 DOI: 10.1111/cpr.12924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Chemoresistance induced by cisplatin has become the major impediment to lung cancer chemotherapy. This study explored the potential chemoresistant genes and underlying mechanisms of chemoresistance in NSCLC. MATERIALS AND METHODS Gene expression profile was integrated with DNA methylation profile to screen the candidate chemoresistant genes. Bioinformatic analysis and immunohistochemistry were used to analyse the association of a candidate gene with the characteristics of NSCLC patients. Recombinant lentivirus vectors were utilized to overexpress or silence candidate gene. Microarrays and immunoblotting were applied to explore the downstream targets of candidate gene. Xenograft models were established to validate the findings in vitro. RESULTS An increased ZNF300 expression was detected in three chemoresistant cell lines of NSCLC, and the higher expression of ZNF300 was associated with poor OS of NSCLC patients. Cells with upregulated ZNF300 presented chemoresistance and enhanced aggressive growth compared to cells with downregulated ZNF300. ZNF300 inhibited MAPK/ERK pathways and activated CDK1 through inhibiting WEE1 and MYT1 and modulating MYC/AURKA/BORA/PLK1 axis. ICA and ATRA improved the anti-tumour effect of cisplatin on chemoresistant cells by inducing differentiation. CONCLUSIONS ZNF300 promotes chemoresistance and aggressive behaviour of NSCLC through regulation of proliferation and differentiation by downregulating MAPK/ERK pathways and regulation of slow-cycling phenotype via activating CDK1 by inhibiting WEE1/MYT1 and modulating MYC/AURKA/BORA/PLK1 axis. Cisplatin, combined with ATRA and ICA, might be beneficial in chemoresistant cases of NSCLC.
Collapse
Affiliation(s)
- Shilong Yu
- Institute of Human Respiratory DiseaseXinqiao Hospitalthe Army Medical University (Third Military Medical University)ChongqingChina
- Department of Medical BiologySchool of Basic Medical ScienceHubei University of MedicineShiyanChina
| | - Zhi Ao
- Department of Respiratory MedicineThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yi Wu
- Department of Medical BiologySchool of Basic Medical ScienceHubei University of MedicineShiyanChina
| | - Liyuan Song
- Department of Medical BiologySchool of Basic Medical ScienceHubei University of MedicineShiyanChina
| | - Peng Zhang
- Department of Medical BiologySchool of Basic Medical ScienceHubei University of MedicineShiyanChina
| | - Xiaokang Li
- Department of Medical BiologySchool of Basic Medical ScienceHubei University of MedicineShiyanChina
| | - Min Liu
- Taihe HospitalHubei University of MedicineShiyanChina
| | - Pin Qian
- Institute of Human Respiratory DiseaseXinqiao Hospitalthe Army Medical University (Third Military Medical University)ChongqingChina
| | - Ruijie Zhang
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xihua Li
- Department of Medical BiologySchool of Basic Medical ScienceHubei University of MedicineShiyanChina
| | - Yan Chen
- Institute of Human Respiratory DiseaseXinqiao Hospitalthe Army Medical University (Third Military Medical University)ChongqingChina
| | - Xuanbin Wang
- Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchBiomedical Research InstituteHubei University of MedicineShiyanChina
| | - Xianhui Wang
- Institute of Biomedical ResearchHubei University of MedicineShiyanChina
| | - Xuzhi Ruan
- Department of Medical BiologySchool of Basic Medical ScienceHubei University of MedicineShiyanChina
| | - Guisheng Qian
- Institute of Human Respiratory DiseaseXinqiao Hospitalthe Army Medical University (Third Military Medical University)ChongqingChina
| | - Fuyun Ji
- Department of Medical BiologySchool of Basic Medical ScienceHubei University of MedicineShiyanChina
- Hubei Key Laboratory of Embryonic Stem Cell ResearchSchool of Basic Medical ScienceHubei University of MedicineShiyanChina
| |
Collapse
|
18
|
Zhang H, Dong P, Guo S, Tao C, Chen W, Zhao W, Wang J, Cheung R, Villanueva A, Fan J, Ding H, Schrodi SJ, Zhang D, Zeng C. Hypomethylation in HBV integration regions aids non-invasive surveillance to hepatocellular carcinoma by low-pass genome-wide bisulfite sequencing. BMC Med 2020; 18:200. [PMID: 32741373 PMCID: PMC7397586 DOI: 10.1186/s12916-020-01667-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA) methylation has been demonstrated to be a promising approach for non-invasive cancer diagnosis. However, the high cost of whole genome bisulfite sequencing (WGBS) hinders the clinical implementation of a methylation-based cfDNA early detection biomarker. We proposed a novel strategy in low-pass WGBS (~ 5 million reads) to detect methylation changes in circulating cell-free DNA (cfDNA) from patients with liver diseases and hepatocellular carcinoma (HCC). METHODS The effective small sequencing depth were determined by 5 pilot cfDNA samples with relative high-depth WGBS. CfDNA of 51 patients with hepatitis, cirrhosis, and HCC were conducted using low-pass WGBS. The strategy was validated in an independent WGBS cohort of 32 healthy individuals and 26 early-stage HCC patients. Fifteen paired tumor tissue and buffy coat samples were used to characterize the methylation of hepatitis B virus (HBV) integration regions and genome distribution of cfDNA. RESULTS A significant enrichment of cfDNA in intergenic and repeat regions, especially in previously reported HBV integration sites were observed, as a feature of cfDNA and the bias of cfDNA release. Methylation profiles nearby HBV integration sites were a better indicator for hypomethylation of tumor genome comparing to Alu and LINE (long interspersed nuclear element) repeats, and were able to facilitate the cfDNA-based HCC prediction. Hypomethylation nearby HBV integration sites (5 kb flanking) was detected in HCC patients, but not in patients with hepatitis and cirrhosis (MethylHBV5k, median:0.61 vs 0.72, P = 0.0003). Methylation levels of integration sites certain candidate regions exhibited an area under the receiver operation curve (AUC) value > 0.85 to discriminate HCC from non-HCC samples. The validation cohort achieved the prediction performance with an AUC of 0.954. CONCLUSIONS Hypomethylation around viral integration sites aids low-pass cfDNA WGBS to serve as a non-invasive approach for early HCC detection, and inspire future efforts on tumor surveillance for oncovirus with integration activity.
Collapse
Affiliation(s)
- Haikun Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peiling Dong
- Department of Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Beijing, 100069, China
| | - Shicheng Guo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Chengcheng Tao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Wenmin Zhao
- Department of Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Beijing, 100069, China
| | - Jiakang Wang
- Biology Department, Stonybrook University, Stonybrook, NY, USA
| | - Ramsey Cheung
- Department of Gastroenterology and Hepatology, VA Palo Alto Health Care System and Stanford University, Palo Alto, CA, USA
| | - Augusto Villanueva
- Liver Cancer Research Program, Division of Liver Diseases, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Fan
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiguo Ding
- Department of Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Beijing, 100069, China
| | - Steven J Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA. .,Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Dake Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Changqing Zeng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
19
|
Ouyang X, Wang Z, Yao L, Zhang G. Elevated CELSR3 expression is associated with hepatocarcinogenesis and poor prognosis. Oncol Lett 2020; 20:1083-1092. [PMID: 32724347 PMCID: PMC7377182 DOI: 10.3892/ol.2020.11671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) has been reported to exhibit a cancer-specific pattern. The present study aimed to investigate the clinical value and functional role of CELSR3 in hepatocellular carcinoma (HCC), and determine the underlying molecular mechanism in patients with HCC. CELSR3 expression in tumor and paracancerous HCC tissues was obtained from The Cancer Genome Atlas. Differential expression analysis was performed using the edgeR package. Pearson correlation analysis was used to analyze the correlation between methylation and mRNA levels of CELSR3. Pathways affected by aberrant CELSR3 expression were identified through Gene Set Enrichment Analysis. The results demonstrated that CELSR3 was highly expressed in the early stage of cancer and was present throughout the entire cancer process, which suggested that CELSR3 may serve a key role in the carcinogenesis of HCC. In addition, upregulation of CELSR3 was associated with its methylation level; high CELSR3 expression indicated a shorter overall survival time. Multiple candidate genes were screened by integrating differentially expressed (DE) mRNAs and target genes of DE microRNAs (miRs). Subsequent pathway enrichment analysis demonstrated that the upregulated genes were predominantly enriched in the ‘Neuroactive ligand-receptor interaction’ and ‘Cell cycle’ pathways, whereas the downregulated genes were primarily enriched in ‘Cytokine-cytokine receptor interaction’ and ‘Metabolic pathways’. CELSR3 and its connected nodes and edges were initially removed from the miRNA-mRNA regulatory network in order to prevent bias and compared with the network containing CELSR3 alone. The frequently dysregulated miRNAs were identified as miR-181 family members, and the results suggested that miR-181 and the Wnt/β-catenin signaling pathway influenced CELSR3 expression.
Collapse
Affiliation(s)
- Xiwu Ouyang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhiming Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Gewen Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
20
|
Fan J, Li J, Guo S, Tao C, Zhang H, Wang W, Zhang Y, Zhang D, Ding S, Zeng C. Genome-wide DNA methylation profiles of low- and high-grade adenoma reveals potential biomarkers for early detection of colorectal carcinoma. Clin Epigenetics 2020; 12:56. [PMID: 32317010 PMCID: PMC7175491 DOI: 10.1186/s13148-020-00851-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background Abnormal DNA methylation is a hallmark of human cancers and may be a promising biomarker for early diagnosis of human cancers. However, the majority of DNA methylation biomarkers that have been identified are based on the hypothesis that early differential methylation regions (DMRs) are maintained throughout carcinogenesis and could be detected at all stages of cancer. Methods In this study, we identified potential early biomarkers of colorectal cancer (CRC) development by genome-wide DNA methylation assay (Illumina infinium450, 450 K) of normal (N = 20) and pre-colorectal cancer samples including 18 low-grade adenoma (LGA) and 22 high-grade adenoma (HGA), integrated with GEO and ArrayExpress datasets (N = 833). Results We identified 209 and 8692 CpG sites that were significantly hyper-methylated in LGA and HGA, respectively. Pathway analysis identified nervous system-related methylation changes that are significantly associated with early adenoma development. Integration analysis revealed that DNA methylation in the promoter region of ADHFE1 has the most potential for being an early diagnostic biomarker for colorectal adenoma and cancer (sensitivity = 0.96, specificity = 0.95, area under the curve = 0.97). Conclusions Overall, we demonstrated that DNA methylation have been shown significant changes in the stage of LGA and HGA in the development of colon cancer. Genome-wide DNA methylation to LGA and HGA provided an important proxy to identify promising early diagnosis biomarkers for colorectal cancer.
Collapse
Affiliation(s)
- Jian Fan
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA.,Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, 54449, USA
| | - Chengcheng Tao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haikun Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Wang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Ying Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dake Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China.
| | - Changqing Zeng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Chen W, Zhang K, Dong P, Fanning G, Tao C, Zhang H, Guo S, Wang Z, Hong Y, Yang X, Lai S, Ding H, Zhao H, Zeng C, Protzer U, Zhang D. Noninvasive chimeric DNA profiling identifies tumor-originated HBV integrants contributing to viral antigen expression in liver cancer. Hepatol Int 2020; 14:326-337. [PMID: 32100258 DOI: 10.1007/s12072-020-10016-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/18/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Host genome integration of HBV sequence is considered to be significant in HBV antigen expression and the development of hepatocellular carcinoma (HCC). METHOD We developed a probe-based capture strategy to enrich integrated HBV DNA for deep-sequencing analysis of integration sites in paired patient samples derived from tumor, liver tissue adjacent to tumor, saliva and plasma, as a platform for exploring the correlation, significance and utility of detecting integrations in these sample types. RESULTS Most significantly, alpha fetoprotein levels significantly correlated to the amounts of integrations detected in tumor. Viral-host chimeric DNA fragments were successfully detected at high sequencing coverage in plasma rather than saliva samples from HCC patients, and each fragment of this type was only seen once in plasma from chronic hepatitis B patients. Almost all plasma chimeric fragments were derived from integrations in tumor rather than in adjacent liver tissues. Over 50% of them may produce viral-host chimeric transcripts according to deep RNA sequencing in paired tissue samples. Particularly, in patients with low HBV DNA level (< 250 UI/ml), the seemingly normal HBsAg titers may be explained by larger amounts of integrations detected. Meanwhile, we developed a strategy to predict integrants by pairing breakpoints for each integration event. Among four resolved viral patterns, the majority of Pattern I events (81.2%) retained the complete opening reading frame for HBV surface proteins. CONCLUSION We achieve the efficient enrichment of plasma cell-free chimeric DNA from integration site, and demonstrate that chimeric DNA profiling in plasma is a promising noninvasive approach to monitor HBV integration in liver cancer development and to determine the ability of integrated sequences to express viral proteins that can be targeted, e.g. by immunotherapies.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang, Beijing, 100101, China.,Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ke Zhang
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, 81675, Munich, Germany.,Janssen China Research and Development Center, Shanghai, 201210, China
| | - Peiling Dong
- Department of Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Beijing, 100069, China
| | - Gregory Fanning
- Janssen China Research and Development Center, Shanghai, 201210, China
| | - Chengcheng Tao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang, Beijing, 100101, China
| | - Haikun Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang, Beijing, 100101, China
| | - Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Zheng Wang
- Department of Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Beijing, 100069, China
| | - Yaqiang Hong
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang, Beijing, 100101, China.,Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shujuan Lai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang, Beijing, 100101, China
| | - Huiguo Ding
- Department of Hepatology, Beijing You'an Hospital Affiliated with Capital Medical University, Beijing, 100069, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Changqing Zeng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang, Beijing, 100101, China.
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, 81675, Munich, Germany. .,German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany.
| | - Dake Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang, Beijing, 100101, China. .,Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
22
|
Abstract
Breast cancer is a highly heterogeneous and dynamic disease, exhibiting unique somatic alterations that lead to disease recurrence and resistance. Tumor biopsy and conventional imaging approaches are not able to provide sufficient information regarding the early detection of recurrence and real time monitoring through tracking sensitive or resistance mechanisms to treatment. Circulating tumor DNA (ctDNA) analysis has emerged as an attractive noninvasive methodology to detect cancer-specific genetic aberrations in plasma including DNA mutations and DNA methylation patterns. Numerous studies have reported on the potential of ctDNA analysis in the management of early and advanced stages of breast cancer. Advances in high-throughput technologies, especially next generation sequencing and PCR-based assays, were highly important for the successful application of ctDNA analysis. However, before being integrated into clinical practice, ctDNA analysis needs to be standardized and validated through the performance of multicenter prospective and well-designed clinical studies. This review is focused on the clinical utility of ctDNA analysis, especially at the DNA mutation and methylation level, in breast cancer patients, incorporating the latest advances in technological approaches and involving key studies in the early and metastatic setting.
Collapse
Affiliation(s)
- Eleni Tzanikou
- Department of Chemistry, Analysis of Circulating Tumor Cells (ACTC) Lab, Laboratory of Analytical Chemistry, University of Athens, Athens, Greece
| | - Evi Lianidou
- Department of Chemistry, Analysis of Circulating Tumor Cells (ACTC) Lab, Laboratory of Analytical Chemistry, University of Athens, Athens, Greece
| |
Collapse
|
23
|
Zhang C, Huang C, Sui X, Zhong X, Yang W, Hu X, Li Y. Association between gene methylation and HBV infection in hepatocellular carcinoma: A meta-analysis. J Cancer 2019; 10:6457-6465. [PMID: 31772678 PMCID: PMC6856736 DOI: 10.7150/jca.33005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
Gene methylation is an epigenetic alteration in hepatocellular carcinoma (HCC), and hepatitis B virus (HBV) plays a crucial role in carcinogenesis of HCC. However, the association between gene methylation and HBV infection in HCC remains unclear. In our study, we conducted a comprehensive meta-analysis to evaluate the association. A total of 1,148 studies were initially retrieved from some literature database. After a four-step filtration, we obtained 69 case-control studies in this meta-analysis. Our results showed six genes (p16, RASSF1A, GSTP1, APC, p15 and SFRP1) in HBV-positive carcinoma tissues, one gene (GSTP1) in HBV-positive adjacent tissues and two gene (p16 and APC) in HBV-positive carcinoma serums, which were significantly hypermethylated. Subgroup meta-analysis by geographical populations revealed that GSTP1 methylation was significantly higher in HBV-positive carcinoma tissues in China and Japan. In addition, p16 and RASSF1A methylation was significantly higher in China but not in Japan. Our study indicated that HBV infection could induce DNA methylation in HCC and DNA methylation could lead to the development of HBV-related HCC.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Changxin Huang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xinbing Sui
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xueqing Zhong
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenjun Yang
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiangrong Hu
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yongqiang Li
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Tagawa M, Shimbo G, Inokuma H, Miyahara K. Quantification of plasma cell-free DNA levels in dogs with various tumors. J Vet Diagn Invest 2019; 31:836-843. [PMID: 31585514 DOI: 10.1177/1040638719880245] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Circulating cell-free DNA (cfDNA) is extracellular DNA released into the bloodstream by apoptotic or necrotic tumor cells, with cfDNA determination proposed as a noninvasive, sensitive marker for the diagnosis of human cancer. We evaluated cfDNA quantification as a diagnostic and prognostic tool in dogs with various tumors. We quantified plasma cfDNA concentration by absolute real-time PCR of long interspersed nuclear elements in 50 dogs with malignant tumors, 13 dogs with benign tumors or nodules, and 11 healthy controls. Six patients with malignant tumors were followed-up, and plasma cfDNA was quantified throughout disease progression. We found that plasma cfDNA concentrations were significantly elevated in dogs with malignant tumors compared with dogs with benign nodules or healthy controls. The DNA integrity index (the ratio between long and short cfDNA fragments) was significantly lower in dogs with malignant tumors compared to healthy controls. Significantly higher cfDNA levels and a lower DNA integrity index were observed in dogs with lymphoma or leukemia, hemangiosarcoma, and distant metastasis; cfDNA levels correlated well with clinical stage and tended to increase during or before periods of disease progression, suggesting potential efficacy of cfDNA for the detection of distant metastasis and to monitor the clinical stage of neoplasia.
Collapse
Affiliation(s)
- Michihito Tagawa
- Veterinary Medical Center (Tagawa, Shimbo, Miyahara), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.,Department of Clinical Veterinary Science (Inokuma), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Genya Shimbo
- Veterinary Medical Center (Tagawa, Shimbo, Miyahara), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.,Department of Clinical Veterinary Science (Inokuma), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hisashi Inokuma
- Veterinary Medical Center (Tagawa, Shimbo, Miyahara), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.,Department of Clinical Veterinary Science (Inokuma), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Kazuro Miyahara
- Veterinary Medical Center (Tagawa, Shimbo, Miyahara), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.,Department of Clinical Veterinary Science (Inokuma), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
25
|
Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16:589-604. [PMID: 31439937 PMCID: PMC6813818 DOI: 10.1038/s41575-019-0186-y] [Citation(s) in RCA: 2536] [Impact Index Per Article: 422.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related death worldwide. Risk factors for HCC include chronic hepatitis B and hepatitis C, alcohol addiction, metabolic liver disease (particularly nonalcoholic fatty liver disease) and exposure to dietary toxins such as aflatoxins and aristolochic acid. All these risk factors are potentially preventable, highlighting the considerable potential of risk prevention for decreasing the global burden of HCC. HCC surveillance and early detection increase the chance of potentially curative treatment; however, HCC surveillance is substantially underutilized, even in countries with sufficient medical resources. Early-stage HCC can be treated curatively by local ablation, surgical resection or liver transplantation. Treatment selection depends on tumour characteristics, the severity of underlying liver dysfunction, age, other medical comorbidities, and available medical resources and local expertise. Catheter-based locoregional treatment is used in patients with intermediate-stage cancer. Kinase and immune checkpoint inhibitors have been shown to be effective treatment options in patients with advanced-stage HCC. Together, rational deployment of prevention, attainment of global goals for viral hepatitis eradication, and improvements in HCC surveillance and therapy hold promise for achieving a substantial reduction in the worldwide HCC burden within the next few decades.
Collapse
Affiliation(s)
- Ju Dong Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pierre Hainaut
- Tumor Molecular Biology and Biomarkers Group, Institute for Advanced Biosciences, Inserm U 1209 CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Amina Amadou
- Tumor Molecular Biology and Biomarkers Group, Institute for Advanced Biosciences, Inserm U 1209 CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Amelie Plymoth
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
26
|
Hlady RA, Zhao X, Pan X, Yang JD, Ahmed F, Antwi SO, Giama NH, Patel T, Roberts LR, Liu C, Robertson KD. Genome-wide discovery and validation of diagnostic DNA methylation-based biomarkers for hepatocellular cancer detection in circulating cell free DNA. Am J Cancer Res 2019; 9:7239-7250. [PMID: 31695765 PMCID: PMC6831291 DOI: 10.7150/thno.35573] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is growing in incidence but treatment options remain limited, particularly for late stage disease. As liver cirrhosis is the principal risk state for HCC development, markers to detect early HCC within this patient population are urgently needed. Perturbation of epigenetic marks, such as DNA methylation (5mC), is a hallmark of human cancers, including HCC. Identification of regions with consistently altered 5mC levels in circulating cell free DNA (cfDNA) during progression from cirrhosis to HCC could therefore serve as markers for development of minimally-invasive screens of early HCC diagnosis and surveillance. Methods: To discover DNA methylation derived biomarkers of HCC in the background of liver cirrhosis, we profiled genome-wide 5mC landscapes in patient cfDNA using the Infinium HumanMethylation450k BeadChip Array. We further linked these findings to primary tissue data available from TCGA and other public sources. Using biological and statistical frameworks, we selected CpGs that robustly differentiated cirrhosis from HCC in primary tissue and cfDNA followed by validation in an additional independent cohort. Results: We identified CpGs that segregate patients with cirrhosis, from patients with HCC within a cirrhotic liver background, through genome-wide analysis of cfDNA 5mC landscapes. Lasso regression analysis pinpointed a panel of probes in our discovery cohort that were validated in two independent datasets. A panel of five CpGs (cg04645914, cg06215569, cg23663760, cg13781744, and cg07610777) yielded area under the receiver operating characteristic (AUROC) curves of 0.9525, 0.9714, and 0.9528 in cfDNA discovery and tissue validation cohorts 1 and 2, respectively. Validation of a 5-marker panel created from combining hypermethylated and hypomethylated CpGs in an independent cfDNA set by bisulfite pyrosequencing yielded an AUROC of 0.956, compared to the discovery AUROC of 0.996. Conclusion: Our finding that 5mC markers derived from primary tissue did not perform well in cfDNA, compared to those identified directly from cfDNA, reveals potential advantages of starting with cfDNA to discover high performing markers for liquid biopsy development.
Collapse
|
27
|
Salavaty A, Rezvani Z, Najafi A. Survival analysis and functional annotation of long non-coding RNAs in lung adenocarcinoma. J Cell Mol Med 2019; 23:5600-5617. [PMID: 31211495 PMCID: PMC6652661 DOI: 10.1111/jcmm.14458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a subclass of non-protein coding transcripts that are involved in several regulatory processes and are considered as potential biomarkers for almost all cancer types. This study aims to investigate the prognostic value of lncRNAs for lung adenocarcinoma (LUAD), the most prevalent subtype of lung cancer. To this end, the processed data of The Cancer Genome Atlas LUAD were retrieved from GEPIA and circlncRNAnet databases, matched with each other and integrated with the analysis results of a non-small cell lung cancer plasma RNA-Seq study. Then, the data were filtered in order to separate the differentially expressed lncRNAs that have a prognostic value for LUAD. Finally, the selected lncRNAs were functionally annotated using a bioinformatic and systems biology approach. Accordingly, we identified 19 lncRNAs as the novel LUAD prognostic lncRNAs. Also, based on our results, all 19 lncRNAs might be involved in lung cancer-related biological processes. Overall, we suggested several novel biomarkers and drug targets which could help early diagnosis, prognosis and treatment of LUAD patients.
Collapse
Affiliation(s)
- Abbas Salavaty
- Division of Biotechnology, Faculty of Chemistry, Department of Cell and Molecular BiologyUniversity of KashanKashanIran
| | - Zahra Rezvani
- Division of Biotechnology, Faculty of Chemistry, Department of Cell and Molecular BiologyUniversity of KashanKashanIran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
28
|
Zandvakili I, Lazaridis KN. Cell-free DNA testing: future applications in gastroenterology and hepatology. Therap Adv Gastroenterol 2019; 12:1756284819841896. [PMID: 31019553 PMCID: PMC6466469 DOI: 10.1177/1756284819841896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 03/04/2019] [Indexed: 02/04/2023] Open
Abstract
The application of next-generation sequencing in clinical practice is increasing as accuracy and interpretation have improved and the cost continues to decline rapidly. Cell-free DNA is a unique source for next-generation sequencing that could change routine clinical practice in gastroenterology and hepatology. Testing of cell-free DNA in blood and fecal samples is an easy, rapid, and noninvasive method to assess for premalignant, malignant, metabolic, infectious, inflammatory, and autoimmune gastrointestinal and liver diseases. In this review, we describe cell-free DNA technologies, current applications of cell-free DNA testing, and proposed cell-free DNA targets for gastrointestinal and hepatic diseases, with a specific focus on malignancy. In addition, we provide commentary on how cell-free DNA can be integrated into clinical practice and help guide diagnosis, prognosis, disease management, and therapeutic response.
Collapse
Affiliation(s)
- Inuk Zandvakili
- Division of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Konstantinos N. Lazaridis
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
29
|
He G, Chen Y, Zhu C, Zhou J, Xie X, Fei R, Wei L, Zhao H, Chen H, Zhang H. Application of plasma circulating cell-free DNA detection to the molecular diagnosis of hepatocellular carcinoma. Am J Transl Res 2019; 11:1428-1445. [PMID: 30972172 PMCID: PMC6456549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Circulating tumor DNA (ctDNA) carries genetic information consistent with tumor cells and has potential value for molecular diagnosis of tumors. The present study analysed the gene mutations of plasma circulating cell-free DNA (cfDNA) and tumor tissue DNA in hepatocellular carcinoma (HCC) patients and explored the clinical application value of plasma cfDNA as a tumor marker in HCC molecular diagnosis. Samples from 29 patients with primary HCC were collected. Hotspot mutations in 50 tumor-associated genes were analysed using amplicon sequencing technology and gene loci with a mutant allele frequency (MAF) >1% were analysed. 35 mutant genes in total were detected by deep sequencing method of which the genes with maximum mutation frequencies were TP53, ATM, and ALK. In addition, a total of 21 patients were found to have a consistent gene mutation in plasma cfDNA and tumor tissue DNA and 17 cases had consistent gene mutations in the paracancerous tissue and tumor tissue DNA. Further analysis showed that the MAFs in the TP53, CTNNB1, PIK3CA, and CDKN2A genes were higher in patients with tumor diameters >5 cm than those with tumor diameters <5 cm. And the MAFs in the TP53, RET, FGFR3 and APC genes were significantly higher in patients with multiple tumors or with metastasis than in single tumor patients. In conclusion, amplicon sequencing technology is highly sensitive for the detection of mutant genes in the plasma cfDNA of HCC patients. Plasma cfDNA might be an effective molecular marker for HCC molecular diagnosis.
Collapse
Affiliation(s)
- Gaixia He
- Peking University People’s Hospital, Peking University Hepatology Institute and Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver DiseasesBeijing 100044, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, China
| | - Yanhui Chen
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious DiseasesBeijing 100015, China
| | - Chengpei Zhu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC)Shuaifuyuan, Wangfujing, Beijing 100730, China
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Henan Tumor HospitalZhengzhou 450008, Henan, China
| | - Xingwang Xie
- Peking University People’s Hospital, Peking University Hepatology Institute and Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver DiseasesBeijing 100044, China
| | - Ran Fei
- Peking University People’s Hospital, Peking University Hepatology Institute and Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver DiseasesBeijing 100044, China
| | - Lai Wei
- Peking University People’s Hospital, Peking University Hepatology Institute and Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver DiseasesBeijing 100044, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC)Shuaifuyuan, Wangfujing, Beijing 100730, China
| | - Hongsong Chen
- Peking University People’s Hospital, Peking University Hepatology Institute and Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver DiseasesBeijing 100044, China
| | - Henghui Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious DiseasesBeijing 100015, China
- Genecast Precision Medicine Technology InstituteHuayuanbeilu 35, Beijing 100089, China
| |
Collapse
|
30
|
Wang S, Shen HW, Chai H, Liang Y. Complex harmonic regularization with differential evolution in a memetic framework for biomarker selection. PLoS One 2019; 14:e0210786. [PMID: 30763332 PMCID: PMC6375558 DOI: 10.1371/journal.pone.0210786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 01/02/2019] [Indexed: 01/23/2023] Open
Abstract
For studying cancer and genetic diseases, the issue of identifying high correlation genes from high-dimensional data is an important problem. It is a great challenge to select relevant biomarkers from gene expression data that contains some important correlation structures, and some of the genes can be divided into different groups with a common biological function, chromosomal location or regulation. In this paper, we propose a penalized accelerated failure time model CHR-DE using a non-convex regularization (local search) with differential evolution (global search) in a wrapper-embedded memetic framework. The complex harmonic regularization (CHR) can approximate to the combination ℓp(12≤p<1) and ℓq (1 ≤ q < 2) for selecting biomarkers in group. And differential evolution (DE) is utilized to globally optimize the CHR’s hyperparameters, which make CHR-DE achieve strong capability of selecting groups of genes in high-dimensional biological data. We also developed an efficient path seeking algorithm to optimize this penalized model. The proposed method is evaluated on synthetic and three gene expression datasets: breast cancer, hepatocellular carcinoma and colorectal cancer. The experimental results demonstrate that CHR-DE is a more effective tool for feature selection and learning prediction.
Collapse
Affiliation(s)
- Sai Wang
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau
| | - Hai-Wei Shen
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau
| | - Hua Chai
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau
| | - Yong Liang
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
- * E-mail:
| |
Collapse
|
31
|
Genome-Wide Plasma Cell-Free DNA Methylation Profiling Identifies Potential Biomarkers for Lung Cancer. DISEASE MARKERS 2019; 2019:4108474. [PMID: 30867848 PMCID: PMC6379867 DOI: 10.1155/2019/4108474] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/04/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022]
Abstract
As a noninvasive blood testing, the detection of cell-free DNA (cfDNA) methylation in plasma has raised an increasing interest due to diagnostic applications. Although extensively used in cfDNA methylation analysis, bisulfite sequencing is less cost-effective. In this study, we investigated the cfDNA methylation patterns in lung cancer patients by MeDIP-seq. Compared with the healthy individuals, 330 differentially methylated regions (DMRs) at gene promoters were identified in lung cancer patients with 33 hypermethylated and 297 hypomethylated regions, respectively. Moreover, these hypermethylated genes were validated with the publicly available DNA methylation data, yielding a set of ten significant differentially methylated genes in lung cancer, including B3GAT2, BCAR1, HLF, HOPX, HOXD11, MIR1203, MYL9, SLC9A3R2, SYT5, and VTRNA1-3. Our study demonstrated MeDIP-seq could be effectively used for cfDNA methylation profiling and identified a set of potential biomarker genes with clinical application for lung cancer.
Collapse
|
32
|
ZNF300 stimulates fatty acid oxidation and alleviates hepatosteatosis through regulating PPARα. Biochem J 2019; 476:385-404. [PMID: 30568000 DOI: 10.1042/bcj20180517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023]
Abstract
ZNF300 plays an important role in the regulation of HBV-related hepatocellular carcinoma. However, little is known about the role of ZNF300 in lipid metabolism and NAFLD. In the present study, we observed that ZNF300 expression was markedly decreased in free fatty acid (FFA)-induced fatty liver. Overexpressed ZNF300 alleviated hepatic lipid accumulation, whereas knockdown of ZNF300 enhanced the FFA-induced lipid accumulation. Investigations of the underlying mechanisms revealed that ZNF300 directly binds to and regulates the PPARα expression, thus promoting fatty acid oxidation. Furthermore, bisulfite pyrosequencing PCR (BSP) analysis identified the hypermethylation status of ZNF300 gene in FFA-treated hepatocytes. Importantly, the suppression of ZNF300 could be blocked by DNA methyltransferase inhibitor (5-azadC) or DNMT3a-siRNA. These results suggested that ZNF300 plays an important role in hepatic lipid metabolism via PPARα promoting fatty acid oxidation and this effect might be blocked by DNMT3a-mediated methylation of ZNF300. Therefore, in addition to ZNF300 expression levels, the methylation status of this gene also has a potential as a prognostic biomarker.
Collapse
|
33
|
Stewart CM, Tsui DWY. Circulating cell-free DNA for non-invasive cancer management. Cancer Genet 2018; 228-229:169-179. [PMID: 29625863 PMCID: PMC6598437 DOI: 10.1016/j.cancergen.2018.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 01/06/2023]
Abstract
Cell-free DNA (cfDNA) was first identified in human plasma in 1948 and is thought to be released from cells throughout the body into the circulatory system. In cancer, a portion of the cfDNA originates from tumour cells, referred to as circulating-tumour DNA (ctDNA), and can contain mutations corresponding to the patient's tumour, for instance specific TP53 alleles. Profiling of cfDNA has recently become an area of increasing clinical relevance in oncology, in particular due to advances in the sensitivity of molecular biology techniques and development of next generation sequencing technologies, as this allows tumour mutations to be identified and tracked non-invasively. This has opened up new possibilities for monitoring tumour evolution and acquisition of resistance, as well as for guiding treatment decisions when tumour biopsy tissue is insufficient or unavailable. In this review, we will discuss the biology of cell-free nucleic acids, methods of analysis, and the potential clinical uses of these techniques, as well as the on-going clinical development of ctDNA assays.
Collapse
Affiliation(s)
- Caitlin M Stewart
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana W Y Tsui
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
34
|
Zhang H, Song G, Song G, Li R, Gao M, Ye L, Zhang C. Identification of DNA methylation prognostic signature of acute myelocytic leukemia. PLoS One 2018; 13:e0199689. [PMID: 29933410 PMCID: PMC6014658 DOI: 10.1371/journal.pone.0199689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The aim of this study is to find the potential survival related DNA methylation signature capable of predicting survival time for acute myelocytic leukemia (AML) patients. METHODS DNA methylation data were downloaded. DNA methylation signature was identified in the training group, and subsequently validated in an independent validation group. The overall survival of DNA methylation signature was performed. Functional analysis was used to explore the function of corresponding genes of DNA methylation signature. Differentially methylated sites and CpG islands were also identified in poor-risk group. RESULTS A DNA methylation signature involving 8 DNA methylation sites and 6 genes were identified. Functional analysis showed that protein binding and cytoplasm were the only two enriched Gene Ontology terms. A total of 70 differentially methylated sites and 6 differentially methylated CpG islands were identified in poor-risk group. CONCLUSIONS The identified survival related DNA methylation signature adds to the prognostic value of AML.
Collapse
Affiliation(s)
- Haiguo Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
- Department of Hematology, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
| | - Guanli Song
- Department of Preventive and Health Care, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Guanbo Song
- Department of Clinical Laboratory, Jining Chinese Medicine Hospital, Jining, Shandong, P.R. China
| | - Ruolei Li
- Department of Clinical Laboratory, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
| | - Min Gao
- Department of Clinical Laboratory, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
| | - Ling Ye
- Department of Hematology, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
| | - Chengfang Zhang
- Department of Clinical Laboratory, Jining NO.1 People’s Hospital, Jining, Shandong, P.R. China
- * E-mail:
| |
Collapse
|
35
|
Wong CC, Li W, Chan B, Yu J. Epigenomic biomarkers for prognostication and diagnosis of gastrointestinal cancers. Semin Cancer Biol 2018; 55:90-105. [PMID: 29665409 DOI: 10.1016/j.semcancer.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Altered epigenetic regulation is central to many human diseases, including cancer. Over the past two decade, major advances have been made in our understanding of the role of epigenetic alterations in carcinogenesis, particularly for DNA methylation, histone modifications and non-coding RNAs. Aberrant hypermethylation of DNA at CpG islands is a well-established phenomenon that mediates transcriptional silencing of tumor suppressor genes, and it is an early event integral to gastrointestinal cancer development. As such, detection of aberrant DNA methylation is being developed as biomarkers for prognostic and diagnostic purposes in gastrointestinal cancers. Diverse tissue types are suitable for the analyses of methylated DNA, such as tumor tissues, blood, plasma, and stool, and some of these markers are already utilized in the clinical setting. Recent advances in the genome-wide epigenomic approaches are enabling the comprehensive mapping of the cancer methylome, thus providing new avenues for mining novel biomarkers for disease prognosis and diagnosis. Here, we review the current knowledge on DNA methylation biomarkers for the prognostication and non-invasive diagnosis of gastrointestinal cancers and highlight their clinical application.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| | - Weilin Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Bertina Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
36
|
Stewart CM, Kothari PD, Mouliere F, Mair R, Somnay S, Benayed R, Zehir A, Weigelt B, Dawson SJ, Arcila ME, Berger MF, Tsui DW. The value of cell-free DNA for molecular pathology. J Pathol 2018; 244:616-627. [PMID: 29380875 DOI: 10.1002/path.5048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
Over the past decade, advances in molecular biology and genomics techniques have revolutionized the diagnosis and treatment of cancer. The technological advances in tissue profiling have also been applied to the study of cell-free nucleic acids, an area of increasing interest for molecular pathology. Cell-free nucleic acids are released from tumour cells into the surrounding body fluids and can be assayed non-invasively. The repertoire of genomic alterations in circulating tumour DNA (ctDNA) is reflective of both primary tumours and distant metastatic sites, and ctDNA can be sampled multiple times, thereby overcoming the limitations of the analysis of single biopsies. Furthermore, ctDNA can be sampled regularly to monitor response to treatment, to define the evolution of the tumour genome, and to assess the acquisition of resistance and minimal residual disease. Recently, clinical ctDNA assays have been approved for guidance of therapy, which is an exciting first step in translating cell-free nucleic acid research tests into clinical use for oncology. In this review, we discuss the advantages of cell-free nucleic acids as analytes in different body fluids, including blood plasma, urine, and cerebrospinal fluid, and their clinical applications in solid tumours and haematological malignancies. We will also discuss practical considerations for clinical deployment, such as preanalytical factors and regulatory requirements. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Caitlin M Stewart
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prachi D Kothari
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pediatric Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florent Mouliere
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.,Cancer Research UK Major Centre - Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Richard Mair
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.,Cancer Research UK Major Centre - Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK.,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Saira Somnay
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia.,Centre for Cancer Research, University of Melbourne, Victoria, Australia
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Wy Tsui
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
37
|
Cheng Q, Zhao B, Huang Z, Su Y, Chen B, Yang S, Peng X, Ma Q, Yu X, Zhao B, Ke X. Epigenome-wide study for the offspring exposed to maternal HBV infection during pregnancy, a pilot study. Gene 2018. [PMID: 29526602 DOI: 10.1016/j.gene.2018.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIM Hepatitis B virus (HBV) can be transmitted to infants, and is related to infants' later disease risk. Epigenetic change (such as DNA methylation) may be mechanism underlying the relationship. In this study, we aimed to investigate whether prenatal HBV infection could alter DNA methylation status in newborns. METHOD We selected 12 neonates with intrauterine HBV infection whose mothers were HBsAg-positive during pregnancy, relative to 12 HBV-free neonates with HBsAg-negative mothers. The pattern of genome-wide DNA methylation in the umbilical cord blood was investigated by Illumina Infinium Human Methylation 450K BeadChip. RESULT The average level of global methylation in infected neonates exposed to maternal HBV infection was not significantly different from controls. However, after adjusting for multiple comparisons, we found differential significance in the cases group compared to the controls for 663 CpG sites, associated with 534 genes. Among these sites, 53.85% (357/663) had decreased methylation (ΔM < 0) and 46.15% (306/663) had increased methylation (ΔM > 0). The average percentage change (Δβ) in methylation ranged from -46% to 36%. Validated by pyrosequencing, we identified 4 significantly differentially methylated CpG sites in the KLHL35 gene and additional CpGs for the CPT1B gene. These genes play a role in the development of hepatocellular and colorectal carcinoma and fatty acid oxidation, suggesting the candidature of these genes in HBV related disease. CONCLUSION Prenatal HBV exposure, even without malformation or preterm birth, may alter the epigenome profile in newborns. We identified a set of genes with differentially methylated CpG sites presented in the cord blood of HBV-infected newborns with HBsAg-positive mothers, demonstrating that DNA methylation status at birth can be used as a biomarker of prenatal exposure. These DNA methylation differences suggest a possible role for epigenetic processes in neonatal development in response to prenatal HBV exposure.
Collapse
Affiliation(s)
- Qijun Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Fujian, China
| | - Bin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Fujian, China
| | - Zhenxiang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Fujian, China
| | - Yanhua Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Fujian, China
| | - Biqin Chen
- Women and Children's medical center, Siming District, Xiamen, Fujian, China
| | - Songjing Yang
- Women and Children's medical center, Siming District, Xiamen, Fujian, China
| | - Xueqi Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Fujian, China
| | - Qilin Ma
- Neurology Department, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiaoshan Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Fujian, China
| | - Benhua Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Fujian, China.
| | - Xiayi Ke
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Fujian, China.
| |
Collapse
|
38
|
Wang R, van Leeuwen RW, Boers A, Klip HG, de Meyer T, Steenbergen RDM, van Criekinge W, van der Zee AGJ, Schuuring E, Wisman GBA. Genome-wide methylome analysis using MethylCap-seq uncovers 4 hypermethylated markers with high sensitivity for both adeno- and squamous-cell cervical carcinoma. Oncotarget 2018; 7:80735-80750. [PMID: 27738327 PMCID: PMC5348351 DOI: 10.18632/oncotarget.12598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Background Cytology-based screening methods for cervical adenocarcinoma (ADC) and to a lesser extent squamous-cell carcinoma (SCC) suffer from low sensitivity. DNA hypermethylation analysis in cervical scrapings may improve detection of SCC, but few methylation markers have been described for ADC. We aimed to identify novel methylation markers for the early detection of both ADC and SCC. Results Genome-wide methylation profiling for 20 normal cervices, 6 ADC and 6 SCC using MethylCap-seq yielded 53 candidate regions hypermethylated in both ADC and SCC. Verification and independent validation of the 15 most significant regions revealed 5 markers with differential methylation between 17 normals and 13 cancers. Quantitative methylation-specific PCR on cervical cancer scrapings resulted in detection rates ranging between 80% and 92% while between 94% and 99% of control scrapings tested negative. Four markers (SLC6A5, SOX1, SOX14 and TBX20) detected ADC and SCC with similar sensitivity. In scrapings from women referred with an abnormal smear (n=229), CIN3+ sensitivity was between 36% and 71%, while between 71% and 93% of adenocarcinoma in situ (AdCIS) were detected; and CIN0/1 specificity was between 88% and 98%. Compared to hrHPV, the combination SOX1/SOX14 showed a similar CIN3+ sensitivity (80% vs. 75%, respectively, P>0.2), while specificity improved (42% vs. 84%, respectively, P < 10-5). Conclusion SOX1 and SOX14 are methylation biomarkers applicable for screening of all cervical cancer types.
Collapse
Affiliation(s)
- Rong Wang
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands.,Department of Laboratory Medicine, Tianjin Medical University, Tianjin, China
| | - Robert W van Leeuwen
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Aniek Boers
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Harry G Klip
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Tim de Meyer
- Department of Mathematical Modeling, Statistics and Bio-informatics, University of Ghent, Ghent, Belgium
| | | | - Wim van Criekinge
- Department of Mathematical Modeling, Statistics and Bio-informatics, University of Ghent, Ghent, Belgium
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - Ed Schuuring
- Department of Pathology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| | - G Bea A Wisman
- Department of Gynecologic Oncology, University of Groningen, University Medical Centre Groningen, Cancer Research Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
39
|
Yan L, Chen Y, Zhou J, Zhao H, Zhang H, Wang G. Diagnostic value of circulating cell-free DNA levels for hepatocellular carcinoma. Int J Infect Dis 2017; 67:92-97. [PMID: 29229500 DOI: 10.1016/j.ijid.2017.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Circulating cell-free DNA (cfDNA) is a potential biomarker for tumor diagnosis. Hepatocyte damage is a characteristic component of the pathobiology of hepatocellular carcinoma (HCC), which would be expected to result in substantial leakage of cfDNA into the circulation. However, the diagnostic value of cfDNA levels for HCC remains unclear. METHODS Plasma samples were collected from 24 HCC patients and 62 hepatitis B virus-related liver fibrosis patients. Plasma cfDNA levels were quantified by Qubit method. RESULTS Plasma cfDNA levels were associated with the degree of liver inflammation, body mass index, and alpha-fetoprotein (AFP) level, but were not associated with fibrosis stages. Plasma cfDNA levels were significantly higher in HCC patients than in non-HCC patients. Multivariate analysis revealed that age and cfDNA, rather than AFP, were independent predictors of HCC. The HCC index, a combination model including age, cfDNA, and AFP, had an area of 0.98 (95% confidence interval 0.92-1.00) under the receiver operating characteristics curve for the diagnosis of HCC at the cut-off value of 0.61, with 87.0% sensitivity and 100% specificity. The diagnostic power of the HCC index was superior to that of cfDNA alone and AFP alone. CONCLUSIONS These results suggest that the combination of cfDNA with age and AFP could improve the diagnostic performance for HCC.
Collapse
Affiliation(s)
- Linlin Yan
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Yanhui Chen
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Jingshundongjie 8, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China; Genecast Precision Medicine Technology Institute, Huayuanbeilu 35, Beijing 100089, China
| | - Jiyuan Zhou
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Hong Zhao
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Henghui Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Jingshundongjie 8, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China; Genecast Precision Medicine Technology Institute, Huayuanbeilu 35, Beijing 100089, China.
| | - Guiqiang Wang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China; The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
40
|
Shi Z, Zhou H, Pan B, Lu L, Wei Z, Shi L, Yao X, Kang Y, Feng S. Exploring the key genes and pathways of osteosarcoma with pulmonary metastasis using a gene expression microarray. Mol Med Rep 2017; 16:7423-7431. [PMID: 28944885 PMCID: PMC5865874 DOI: 10.3892/mmr.2017.7577] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/26/2017] [Indexed: 01/17/2023] Open
Abstract
Osteosarcoma is a common and highly malignant tumour in children and teenagers that is characterized by drug resistance and high metastatic potential. Patients often develop pulmonary metastasis and have a low survival rate. However, the mechanistic basis for pulmonary metastasis remains unclear. To identify key gene and pathways associated with pulmonary metastasis of osteosarcoma, the authors downloaded the gene expression dataset GSE85537 and obtained the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in primary tumours and lung metastases. Subsequently, the authors performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses and a protein-protein interaction (PPI) network was constructed and analyzed by Cytoscape software. In total, 2,493 genes were identified as DEGs. Of these, 485 genes (19.45%) were upregulated, and the remaining 2,008 genes (80.55%) were downregulated. The authors identified the predominant GO categories and KEGG pathways that were significantly over-represented in the metastatic OS samples compared with the non-metastatic OS samples. A PPI network was constructed, and the results indicated that ALB, EGFR, INS, IL6, CDH1, FYN, ERBB2, IL8, CXCL12 and RAC2 were the top 10 core genes. The enrichment analyses of the genes involved in the top three significant modules demonstrated that the DEGs were principally related to neuroactive ligand-receptor interaction, the Rap1 signaling pathway, and protein digestion and absorption. Together, these data elucidated the molecular mechanisms of OS patients with pulmonary metastasis and provide potential therapeutic targets. However, further experimental studies are needed to confirm these results.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hengxing Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bin Pan
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Lu Lu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhijian Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Linlin Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xue Yao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yi Kang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
41
|
Epigenome-wide association studies for cancer biomarker discovery in circulating cell-free DNA: technical advances and challenges. Curr Opin Genet Dev 2017; 42:48-55. [DOI: 10.1016/j.gde.2017.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/12/2017] [Accepted: 01/27/2017] [Indexed: 12/18/2022]
|
42
|
Shrinet J, Srivastava P, Sunil S. Transcriptome analysis of Aedes aegypti in response to mono-infections and co-infections of dengue virus-2 and chikungunya virus. Biochem Biophys Res Commun 2017; 492:617-623. [PMID: 28161634 DOI: 10.1016/j.bbrc.2017.01.162] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 12/24/2022]
Abstract
Chikungunya virus (CHIKV) and Dengue virus (DENV) spread via the bite of infected Aedes mosquitoes. Both these viruses exist as co-infections in the host as well as the vector and are known to exploit their cellular machinery for their replication. While there are studies reporting the changes in Aedes transcriptome when infected with DENV and CHIKV individually, the effect both these viruses have on the mosquitoes when present as co-infections is not clearly understood. In the present study, we infected Aedes aegypti mosquitoes with DENV and CHIKV individually and as co-infection through nanoinjections. We performed high throughput RNA sequencing of the infected Aedes aegypti to understand the changes in the Aedes transcriptome during the early stages of infection, i.e., 24 h post infection and compared the transcriptome profiles during DENV and CHIKV mono-infections with that of co-infections. We identified 190 significantly regulated genes identified in CHIKV infected library, 37 genes from DENV library and 100 genes from co-infected library and they were classified into different pathways. Our study reveal that distinct pathways and transcripts are being regulated during the three types of infection states in Aedes aegypti mosquitoes.
Collapse
Affiliation(s)
- Jatin Shrinet
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pratibha Srivastava
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
43
|
Ammerpohl O, Scheufele S, Siebert R. Analysen epigenetischer Marker aus Liquid Biopsies: Informationen von jenseits des Genoms. MED GENET-BERLIN 2016. [DOI: 10.1007/s11825-016-0093-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Zusammenfassung
Die Analyse epigenetischer Marker aus Liquid Biopsies erlaubt Einblicke in physiologische und pathologische Prozesse im Körper einer Person, die über die reine Sequenzinformation hinausgehen. Insbesondere das DNA-Methylierungsmuster sowie die Expressionsmuster von mRNA und ncRNA sind aus Liquid Biopsies erfassbar. Damit werden ganze Gruppen neuer potenzieller Biomarker einer nicht invasiven und ökonomischen Diagnostik zugänglich. Darüber hinaus und im Gegensatz zur reinen DNA-Sequenzanalyse von Liquid Biopsies erlaubt die hohe Gewebespezifität epigenetischer Marker auch die Bestimmung der Herkunft der analysierten Nukleinsäuren z. B. in Bezug auf ein betroffenes Organ. Angesichts der fallenden Kosten für Sequenzierungen und des technologischen Fortschritts, der die Nachweisgrenzen immer weiter zu immer sensitiveren Anwendungen verschiebt, könnten epigenetische Untersuchungen aus Liquid Biopsies den Trend zu einer Individualisierung in der Medizin weiter forcieren.
Collapse
Affiliation(s)
- Ole Ammerpohl
- Aff1 grid.9764.c 0000000121539986 Institut für Humangenetik Christian‑Albrechts‑Universität zu Kiel Schwanenweg 24 24105 Kiel Deutschland
- Aff2 grid.412468.d 0000000406462097 Universitätsklinikum Schleswig-Holstein Campus Kiel Kiel Deutschland
- Aff3 grid.452624.3 Airway Research Center North (ARCN) German Center for Lung Research (DZL) Gießen Deutschland
| | - Swetlana Scheufele
- Aff1 grid.9764.c 0000000121539986 Institut für Humangenetik Christian‑Albrechts‑Universität zu Kiel Schwanenweg 24 24105 Kiel Deutschland
- Aff2 grid.412468.d 0000000406462097 Universitätsklinikum Schleswig-Holstein Campus Kiel Kiel Deutschland
- Aff3 grid.452624.3 Airway Research Center North (ARCN) German Center for Lung Research (DZL) Gießen Deutschland
| | - Reiner Siebert
- Aff3 grid.452624.3 Airway Research Center North (ARCN) German Center for Lung Research (DZL) Gießen Deutschland
- Aff4 grid.6582.9 0000000419369748 Institut für Humangenetik Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
44
|
Zhang MH, Shen QH, Qin ZM, Wang QL, Chen X. Systematic tracking of disrupted modules identifies significant genes and pathways in hepatocellular carcinoma. Oncol Lett 2016; 12:3285-3295. [PMID: 27899995 PMCID: PMC5103943 DOI: 10.3892/ol.2016.5039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/12/2016] [Indexed: 12/17/2022] Open
Abstract
The objective of the present study is to identify significant genes and pathways associated with hepatocellular carcinoma (HCC) by systematically tracking the dysregulated modules of re-weighted protein-protein interaction (PPI) networks. Firstly, normal and HCC PPI networks were inferred and re-weighted based on Pearson correlation coefficient. Next, modules in the PPI networks were explored by a clique-merging algorithm, and disrupted modules were identified utilizing a maximum weight bipartite matching in non-increasing order. Then, the gene compositions of the disrupted modules were studied and compared with differentially expressed (DE) genes, and pathway enrichment analysis for these genes was performed based on Expression Analysis Systematic Explorer. Finally, validations of significant genes in HCC were conducted using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The present study evaluated 394 disrupted module pairs, which comprised 236 dysregulated genes. When the dysregulated genes were compared with 211 DE genes, a total of 26 common genes [including phospholipase C beta 1, cytochrome P450 (CYP) 2C8 and CYP2B6] were obtained. Furthermore, 6 of these 26 common genes were validated by RT-qPCR. Pathway enrichment analysis of dysregulated genes demonstrated that neuroactive ligand-receptor interaction, purine and drug metabolism, and metabolism of xenobiotics mediated by CYP were significantly disrupted pathways. In conclusion, the present study greatly improved the understanding of HCC in a systematic manner and provided potential biomarkers for early detection and novel therapeutic methods.
Collapse
Affiliation(s)
- Meng-Hui Zhang
- Department of General Surgery, The Fourth Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Qin-Hai Shen
- Department of Medicine, Shandong Medical College, Jinan, Shandong 250002, P.R. China
| | - Zhao-Min Qin
- Department of Nursing, Shandong Medical College, Jinan, Shandong 250002, P.R. China
| | - Qiao-Ling Wang
- Department of Ophthalmology, The Second Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - Xi Chen
- Department of Ophthalmology, The Ninth Hospital of Chongqing, Chongqing 400700, P.R. China
| |
Collapse
|
45
|
Roifman M, Choufani S, Turinsky AL, Drewlo S, Keating S, Brudno M, Kingdom J, Weksberg R. Genome-wide placental DNA methylation analysis of severely growth-discordant monochorionic twins reveals novel epigenetic targets for intrauterine growth restriction. Clin Epigenetics 2016; 8:70. [PMID: 27330572 PMCID: PMC4915063 DOI: 10.1186/s13148-016-0238-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/12/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR), which refers to reduced fetal growth in the context of placental insufficiency, is etiologically heterogeneous. IUGR is associated not only with perinatal morbidity and mortality but also with adult-onset disorders, such as cardiovascular disease and diabetes, posing a major health burden. Placental epigenetic dysregulation has been proposed as one mechanism that causes IUGR; however, the spectrum of epigenetic pathophysiological mechanisms leading to IUGR remains to be elucidated. Monozygotic monochorionic twins are particularly affected by IUGR, in the setting of severe discordant growth. Because monozygotic twins have the same genotype at conception and a shared maternal environment, they provide an ideal model system for studying epigenetic dysregulation of the placenta. RESULTS We compared genome-wide placental DNA methylation patterns of severely growth-discordant twins to identify novel candidate genes for IUGR. Snap-frozen placental samples for eight severely growth-discordant monozygotic monochorionic twin pairs were obtained at delivery from each twin. A high-resolution DNA methylation array platform was used to identify methylation differences between IUGR and normal twins. Our analysis revealed differentially methylated regions in the promoters of eight genes: DECR1, ZNF300, DNAJA4, CCL28, LEPR, HSPA1A/L, GSTO1, and GNE. The largest methylation differences between the two groups were in the promoters of DECR1 and ZNF300. The significance of these group differences was independently validated by bisulfite pyrosequencing, implicating aberrations in fatty acid beta oxidation and transcriptional regulation, respectively. Further analysis of the array data identified methylation changes most prominently affecting the Wnt and cadherin pathways in the IUGR cohort. CONCLUSIONS Our results suggest that IUGR in monozygotic twins is associated with impairments in lipid metabolism and transcriptional regulation as well as cadherin and Wnt signaling. We show that monozygotic monochorionic twins discordant for growth provide a useful model to study one type of the epigenetic placental dysregulation that drives IUGR.
Collapse
Affiliation(s)
- Maian Roifman
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario Canada ; Department of Paediatrics, University of Toronto, Toronto, Ontario Canada ; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario Canada ; The Prenatal and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Ontario Canada
| | - Sanaa Choufani
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Andrei L Turinsky
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario Canada ; Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Sascha Drewlo
- C.S. Mott Center for Human Growth and Development, Wayne State School of Medicine, Wayne State University, Detroit, MI USA
| | - Sarah Keating
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, Ontario Canada ; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario Canada
| | - Michael Brudno
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario Canada ; Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario Canada ; Department of Computer Science, University of Toronto, Toronto, Ontario Canada
| | - John Kingdom
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario Canada ; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario Canada
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario Canada ; Department of Paediatrics, University of Toronto, Toronto, Ontario Canada ; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario Canada ; Institute of Medical Science, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
46
|
Song MA, Kwee SA, Tiirikainen M, Hernandez BY, Okimoto G, Tsai NC, Wong LL, Yu H. Comparison of genome-scale DNA methylation profiles in hepatocellular carcinoma by viral status. Epigenetics 2016; 11:464-74. [PMID: 27248055 DOI: 10.1080/15592294.2016.1151586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) incidence has steadily increased in the US over the past 30 years. Our understanding of epigenetic regulation in HCC is still limited, especially the impact of hepatitis B virus (HBV) or hepatitis C virus (HCV) infection on aberrant DNA methylation. We performed genome-wide DNA methylation profiling in 33 fresh frozen tumor samples, including 10 HBV-HCC, 13 HCV-HCC, and 10 non-infected (NIV-HCC) using the Illumina HumanMethylation450 BeadChip. Gene expression profiling was also performed using the Illumina whole-genome DASL HT Assay. Biological influences and gene networks of the differentially-methylated (DM) CpG loci were predicted using the Ingenuity Pathway Analysis. Genome-wide methylation analysis identified 7, 26, and 98 DM loci between HBV-HCC vs. HCV-HCC, HBV-HCC vs. NIV-HCC, and HCV-HCC vs. NIV-HCC, respectively, at P < 5 × 10(-5) for each. Overall, the DM loci were highly enriched for enhancers (48%), promoters (37%), or CpG islands and surrounding regions (37%). Most DM loci were hypermethylated in HCV-HCC compared to HBV-HCC or NIV-HCC. The DM loci were associated with a variety of biological functions including Cell Morphology (HBV-HCC vs. NIV-HCC), Cell Death/ Survival (HBV-HCC vs. NIV-HCC), or Cellular Growth and Proliferation (HCV-HCC vs. NIV-HCC). A subset of the DM loci were correlated (either positively or negatively) with their gene expression or associated with alcohol consumption, BMI, cirrhosis, diabetes, and cigarette smoking. Our findings of differential methylation by viral infection lend insights into the potential effects of viral infection on the epigenetic regulation and further the development and progression of HCC.
Collapse
Affiliation(s)
- Min-Ae Song
- a Genomics Shared Resource , University of Hawaii Cancer Center , Honolulu , Hawaii , USA.,b Comprehensive Cancer Center, Ohio State University and James Cancer Hospital , Columbus , Ohio
| | - Sandi A Kwee
- c John A. Burns School of Medicine, University of Hawaii , Honolulu , Hawaii , USA.,d Hamamatsu/Queen's PET Imaging Center, Queen's Medical Center , Honolulu , Hawaii , USA
| | - Maarit Tiirikainen
- a Genomics Shared Resource , University of Hawaii Cancer Center , Honolulu , Hawaii , USA
| | - Brenda Y Hernandez
- e Cancer Epidemiology Program, University of Hawaii Cancer Center , Honolulu , Hawaii , USA
| | - Gordon Okimoto
- e Cancer Epidemiology Program, University of Hawaii Cancer Center , Honolulu , Hawaii , USA
| | - Naoky C Tsai
- f Cancer Biology Program, University of Hawaii Cancer Center , Honolulu , Hawaii , USA
| | - Linda L Wong
- c John A. Burns School of Medicine, University of Hawaii , Honolulu , Hawaii , USA.,f Cancer Biology Program, University of Hawaii Cancer Center , Honolulu , Hawaii , USA
| | - Herbert Yu
- e Cancer Epidemiology Program, University of Hawaii Cancer Center , Honolulu , Hawaii , USA
| |
Collapse
|
47
|
Howell JA, Sharma R. The clinical role of 'liquid biopsy' in hepatocellular carcinoma. Hepat Oncol 2015; 3:45-55. [PMID: 30191026 DOI: 10.2217/hep.15.38] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022] Open
Abstract
Circulating free tumor DNA (ctDNA) is DNA released from necrotic or apoptotic tumor cells into the bloodstream. Absolute levels of ctDNA, as well as genetic mutations and epigenetic changes detected in ctDNA are useful biomarkers of tumor biology, progression and response to therapy in many tumor types and recent evidence suggests they may be useful in hepatocellular carcinoma (HCC). ctDNA detected in blood, therefore, offers a minimally invasive, easily repeated 'liquid biopsy' of cancer, providing real-time dynamic analysis of tumor behavior and treatment response that could revolutionize both clinical and research practice in HCC. In this review, we provide a critical summary of the evidence for the utility of ctDNA as a diagnostic and prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Jessica A Howell
- Department of Hepatology, St Mary's Hospital, Imperial College, London, UK.,Centre for Population Health, MacFarlane-Burnet Institute, Melbourne, Australia.,Department of Medicine, The University of Melbourne, Melbourne, Australia.,Department of Hepatology, St Mary's Hospital, Imperial College, London, UK.,Centre for Population Health, MacFarlane-Burnet Institute, Melbourne, Australia.,Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Rohini Sharma
- Department of Oncology, Hammersmith Hospital, Imperial College, London, UK.,Department of Oncology, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|