1
|
Yao Y, Zhang H, Guo R, Fan J, Liu S, Liao J, Huang Y, Wang Z. Physiological, Cytological, and Transcriptomic Analysis of Magnesium Protoporphyrin IX Methyltransferase Mutant Reveal Complex Genetic Regulatory Network Linking Chlorophyll Synthesis and Chloroplast Development in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3785. [PMID: 37960141 PMCID: PMC10649015 DOI: 10.3390/plants12213785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Functional defects in key genes for chlorophyll synthesis usually cause abnormal chloroplast development, but the genetic regulatory network for these key genes in regulating chloroplast development is still unclear. Magnesium protoporphyrin IX methyltransferase (ChlM) is a key rate-limiting enzyme in the process of chlorophyll synthesis. Physiological analysis showed that the chlorophyll and carotenoid contents were significantly decreased in the chlm mutant. Transmission electron microscopy demonstrated that the chloroplasts of the chlm mutant were not well developed, with poor, loose, and indistinct thylakoid membranes. Hormone content analysis found that jasmonic acid, salicylic acid, and auxin accumulated in the mutant. A comparative transcriptome profiling identified 1534 differentially expressed genes (DEGs) between chlm and the wild type, including 876 up-regulated genes and 658 down-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these DEGs were highly involved in chlorophyll metabolism, chloroplast development, and photosynthesis. Protein-protein interaction network analysis found that protein translation played an essential role in the ChlM gene-regulated process. Specifically, 62 and 6 DEGs were annotated to regulate chlorophyll and carotenoid metabolism, respectively; 278 DEGs were predicted to be involved in regulating chloroplast development; 59 DEGs were found to regulate hormone regulatory pathways; 192 DEGs were annotated to regulate signal pathways; and 49 DEGs were putatively identified as transcription factors. Dozens of these genes have been well studied and reported to play essential roles in chlorophyll accumulation or chloroplast development, providing direct evidence for the reliability of the role of the identified DEGs. These findings suggest that chlorophyll synthesis and chloroplast development are actively regulated by the ChlM gene. And it is suggested that hormones, signal pathways, and transcription regulation were all involved in these regulation processes. The accuracy of transcriptome data was validated by quantitative real-time PCR (qRT-PCR) analysis. This study reveals a complex genetic regulatory network of the ChlM gene regulating chlorophyll synthesis and chloroplast development. The ChlM gene's role in retrograde signaling was discussed. Jasmonic acid, salicylic acid, or their derivatives in a certain unknown state were proposed as retrograde signaling molecules in one of the signaling pathways from the chloroplast to nucleus.
Collapse
Affiliation(s)
- Youming Yao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China; (Y.Y.); (H.Z.); (R.G.); (J.F.); (S.L.); (J.L.); (Y.H.)
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang 330045, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China; (Y.Y.); (H.Z.); (R.G.); (J.F.); (S.L.); (J.L.); (Y.H.)
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang 330045, China
| | - Rong Guo
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China; (Y.Y.); (H.Z.); (R.G.); (J.F.); (S.L.); (J.L.); (Y.H.)
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang 330045, China
| | - Jiangmin Fan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China; (Y.Y.); (H.Z.); (R.G.); (J.F.); (S.L.); (J.L.); (Y.H.)
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang 330045, China
| | - Siyi Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China; (Y.Y.); (H.Z.); (R.G.); (J.F.); (S.L.); (J.L.); (Y.H.)
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang 330045, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China; (Y.Y.); (H.Z.); (R.G.); (J.F.); (S.L.); (J.L.); (Y.H.)
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang 330045, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China; (Y.Y.); (H.Z.); (R.G.); (J.F.); (S.L.); (J.L.); (Y.H.)
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang 330045, China
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China; (Y.Y.); (H.Z.); (R.G.); (J.F.); (S.L.); (J.L.); (Y.H.)
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang 330045, China
| |
Collapse
|
2
|
Yao G, Zhang H, Leng B, Cao B, Shan J, Yan Z, Guan H, Cheng W, Liu X, Mu C. A large deletion conferring pale green leaves of maize. BMC PLANT BIOLOGY 2023; 23:360. [PMID: 37452313 PMCID: PMC10347855 DOI: 10.1186/s12870-023-04360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The structural basis of chloroplast and the regulation of chloroplast biogenesis remain largely unknown in maize. Gene mutations in these pathways have been linked to the abnormal leaf color phenotype observed in some mutants. Large scale structure variants (SVs) are crucial for genome evolution, but few validated SVs have been reported in maize and little is known about their functions though they are abundant in maize genomes. RESULTS In this research, a spontaneous maize mutant, pale green leaf-shandong (pgl-sd), was studied. Genetic analysis showed that the phenotype of pale green leaf was controlled by a recessive Mendel factor mapped to a 156.8-kb interval on the chromosome 1 delineated by molecular markers gy546 and gy548. There were 7 annotated genes in this interval. Reverse transcription quantitative PCR analysis, SV prediction, and de novo assembly of pgl-sd genome revealed that a 137.8-kb deletion, which was verified by Sanger sequencing, might cause the pgl-sd phenotype. This deletion contained 5 annotated genes, three of which, including Zm00001eb031870, Zm00001eb031890 and Zm00001eb031900, were possibly related to the chloroplast development. Zm00001eb031870, encoding a Degradation of Periplasmic Proteins (Deg) homolog, and Zm00001eb031900, putatively encoding a plastid pyruvate dehydrogenase complex E1 component subunit beta (ptPDC-E1-β), might be the major causative genes for the pgl-sd mutant phenotype. Plastid Degs play roles in protecting the vital photosynthetic machinery and ptPDCs provide acetyl-CoA and NADH for fatty acid biosynthesis in plastids, which were different from functions of other isolated maize leaf color associated genes. The other two genes in the deletion were possibly associated with DNA repair and disease resistance, respectively. The pgl-sd mutation decreased contents of chlorophyll a, chlorophyll b, carotenoids by 37.2%, 22.1%, and 59.8%, respectively, and led to abnormal chloroplast. RNA-seq revealed that the transcription of several other genes involved in the structure and function of chloroplast was affected in the mutant. CONCLUSIONS It was identified that a 137.8-kb deletion causes the pgl-sd phenotype. Three genes in this deletion were possibly related to the chloroplast development, which may play roles different from that of other isolated maize leaf color associated genes.
Collapse
Affiliation(s)
- Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Hua Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Bing Cao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Juan Shan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Haiying Guan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Wen Cheng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China.
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China.
- National Maize Improvement Sub-Center, Jinan, 250100, China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China.
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China.
- National Maize Improvement Sub-Center, Jinan, 250100, China.
| |
Collapse
|
3
|
Han H, Zhou Y, Liu H, Chen X, Wang Q, Zhuang H, Sun X, Ling Q, Zhang H, Wang B, Wang J, Tang Y, Wang H, Liu H. Transcriptomics and Metabolomics Analysis Provides Insight into Leaf Color and Photosynthesis Variation of the Yellow-Green Leaf Mutant of Hami Melon ( Cucumis melo L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1623. [PMID: 37111847 PMCID: PMC10143263 DOI: 10.3390/plants12081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/16/2023]
Abstract
Leaf color mutants are ideal materials for studying the regulatory mechanism of chloroplast development and photosynthesis. We isolated a cucumis melo spontaneous mutant (MT), which showed yellow-green leaf phenotype in the whole growing period and could be inherited stably. We compared its leaves with the wild type (WT) in terms of cytology, physiology, transcriptome and metabolism. The results showed that the thylakoid grana lamellae of MT were loosely arranged and fewer in number than WT. Physiological experiments also showed that MT had less chlorophyll content and more accumulation of reactive oxygen species (ROS) than WT. Furthermore, the activity of several key enzymes in C4 photosynthetic carbon assimilation pathway was more enhanced in MT than WT. Transcriptomic and metabolomic analyses showed that differential expression genes and differentially accumulated metabolites in MT were mainly co-enriched in the pathways related to photosystem-antenna proteins, central carbon metabolism, glutathione metabolism, phenylpropanoid biosynthesis and flavonoid metabolism. We also analyzed several key proteins in photosynthesis and chloroplast transport by Western blot. In summary, the results may provide a new insight into the understanding of how plants respond to the impaired photosynthesis by regulating chloroplast development and photosynthetic carbon assimilation pathways.
Collapse
Affiliation(s)
- Hongwei Han
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Yuan Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200030, China
| | - Huifang Liu
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Xianjun Chen
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| | - Qiang Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Hongmei Zhuang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Xiaoxia Sun
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| | - Qihua Ling
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200030, China
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei 235000, China
| | - Baike Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Juan Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Yaping Tang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Hao Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Huiying Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| |
Collapse
|
4
|
Caddell D, Langenfeld NJ, Eckels MJH, Zhen S, Klaras R, Mishra L, Bugbee B, Coleman-Derr D. Photosynthesis in rice is increased by CRISPR/Cas9-mediated transformation of two truncated light-harvesting antenna. FRONTIERS IN PLANT SCIENCE 2023; 14:1050483. [PMID: 36743495 PMCID: PMC9893291 DOI: 10.3389/fpls.2023.1050483] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Plants compete for light partly by over-producing chlorophyll in leaves. The resulting high light absorption is an effective strategy for out competing neighbors in mixed communities, but it prevents light transmission to lower leaves and limits photosynthesis in dense agricultural canopies. We used a CRISPR/Cas9-mediated approach to engineer rice plants with truncated light-harvesting antenna (TLA) via knockout mutations to individual antenna assembly component genes CpSRP43, CpSRP54a, and its paralog, CpSRP54b. We compared the photosynthetic contributions of these components in rice by studying the growth rates of whole plants, quantum yield of photosynthesis, chlorophyll density and distribution, and phenotypic abnormalities. Additionally, we investigated a Poales-specific duplication of CpSRP54. The Poales are an important family that includes staple crops such as rice, wheat, corn, millet, and sorghum. Mutations in any of these three genes involved in antenna assembly decreased chlorophyll content and light absorption and increased photosynthesis per photon absorbed (quantum yield). These results have significant implications for the improvement of high leaf-area-index crop monocultures.
Collapse
Affiliation(s)
- Daniel Caddell
- Plant Gene Expression Center, United States Department of Agriculture - Agricultural Research Service (USDA ARS), Albany, CA, United States
- Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA, United States
| | - Noah J. Langenfeld
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT, United States
| | - Madigan JH. Eckels
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT, United States
| | - Shuyang Zhen
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Klaras
- Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA, United States
| | - Laxmi Mishra
- Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA, United States
| | - Bruce Bugbee
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT, United States
| | - Devin Coleman-Derr
- Plant Gene Expression Center, United States Department of Agriculture - Agricultural Research Service (USDA ARS), Albany, CA, United States
- Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA, United States
| |
Collapse
|
5
|
Zhang A, Zhao T, Hu X, Zhou Y, An Y, Pei H, Sun D, Sun G, Li C, Ren X. Identification of QTL underlying the main stem related traits in a doubled haploid barley population. FRONTIERS IN PLANT SCIENCE 2022; 13:1063988. [PMID: 36531346 PMCID: PMC9751491 DOI: 10.3389/fpls.2022.1063988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Lodging reduces grain yield in cereal crops. The height, diameter and strength of stem are crucial for lodging resistance, grain yield, and photosynthate transport in barley. Understanding the genetic basis of stem benefits barley breeding. Here, we evaluated 13 stem related traits after 28 days of heading in a barley DH population in two consecutive years. Significant phenotypic correlations between lodging index (LI) and other stem traits were observed. Three mapping methods using the experimental data and the BLUP data, detected 27 stable and major QTLs, and 22 QTL clustered regions. Many QTLs were consistent with previously reported traits for grain filling rate, internodes, panicle and lodging resistance. Further, candidate genes were predicted for stable and major QTLs and were associated with plant development and adverse stress in the transition from vegetative stage to reproductive stage. This study provided potential genetic basis and new information for exploring barley stem morphology, and laid a foundation for map-based cloning and further fine mapping of these QTLs.
Collapse
Affiliation(s)
- Anyong Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ting Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xue Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yue An
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haiyi Pei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Genlou Sun
- Department of Biology, Saint Mary’s University, Halifax, NS, Canada
| | - Chengdao Li
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
6
|
Li T, Yang H, Lu Y, Dong Q, Liu G, Chen F, Zhou Y. Comparative transcriptome analysis of differentially expressed genes related to the physiological changes of yellow-green leaf mutant of maize. PeerJ 2021; 9:e10567. [PMID: 33628629 PMCID: PMC7894110 DOI: 10.7717/peerj.10567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
Chlorophylls, green pigments in chloroplasts, are essential for photosynthesis. Reduction in chlorophyll content may result in retarded growth, dwarfism, and sterility. In this study, a yellow-green leaf mutant of maize, indicative of abnormity in chlorophyll content, was identified. The physiological parameters of this mutant were measured. Next, global gene expression of this mutant was determined using transcriptome analysis and compared to that of wild-type maize plants. The yellow-green leaf mutant of maize was found to contain lower contents of chlorophyll a, chlorophyll b and carotenoid compounds. It contained fewer active PSII centers and displayed lower values of original chlorophyll fluorescence parameters than the wild-type plants. The real-time fluorescence yield, the electron transport rate, and the net photosynthetic rate of the mutant plants showed reduction as well. In contrast, the maximum photochemical quantum yield of PSII of the mutant plants was similar to that of the wild-type plants. Comparative transcriptome analysis of the mutant plants and wild-type plants led to the identification of differentially expressed 1,122 genes, of which 536 genes were up-regulated and 586 genes down-regulated in the mutant. Five genes in the chlorophyll metabolism pathway, nine genes in the tricarboxylic acid cycle and seven genes related to the conversion of sucrose to starch displayed down-regulated expression. In contrast, genes encoding a photosystem II reaction center PsbP family protein and the PGR5-like protein 1A (PGRL1A) exhibited increased transcript abundance.
Collapse
Affiliation(s)
- Tingchun Li
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China.,Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Huaying Yang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Qing Dong
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Guihu Liu
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Yingbing Zhou
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
7
|
Xiong E, Li Z, Zhang C, Zhang J, Liu Y, Peng T, Chen Z, Zhao Q. A study of leaf-senescence genes in rice based on a combination of genomics, proteomics and bioinformatics. Brief Bioinform 2020; 22:5998850. [PMID: 33257942 DOI: 10.1093/bib/bbaa305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Leaf senescence is a highly complex, genetically regulated and well-ordered process with multiple layers and pathways. Delaying leaf senescence would help increase grain yields in rice. Over the past 15 years, more than 100 rice leaf-senescence genes have been cloned, greatly improving the understanding of leaf senescence in rice. Systematically elucidating the molecular mechanisms underlying leaf senescence will provide breeders with new tools/options for improving many important agronomic traits. In this study, we summarized recent reports on 125 rice leaf-senescence genes, providing an overview of the research progress in this field by analyzing the subcellular localizations, molecular functions and the relationship of them. These data showed that chlorophyll synthesis and degradation, chloroplast development, abscisic acid pathway, jasmonic acid pathway, nitrogen assimilation and ROS play an important role in regulating the leaf senescence in rice. Furthermore, we predicted and analyzed the proteins that interact with leaf-senescence proteins and achieved a more profound understanding of the molecular principles underlying the regulatory mechanisms by which leaf senescence occurs, thus providing new insights for future investigations of leaf senescence in rice.
Collapse
Affiliation(s)
- Erhui Xiong
- College of Agriculture, Henan Agricultural University (HAU), China
| | - Zhiyong Li
- Academy for Advanced Interdisciplinary Studies, South University of Science and Technology, Shenzhen, China
| | - Chen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | - Ye Liu
- College of Agriculture, HAU
| | | | | | | |
Collapse
|
8
|
Saidi A, Hajibarat Z. Application of Next Generation Sequencing, GWAS, RNA seq, WGRS, for genetic improvement of potato (Solanum tuberosum L.) under drought stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Shi Y, He Y, Lv X, Wei Y, Zhang X, Xu X, Li L, Wu JL. Chloroplast SRP54s are Essential for Chloroplast Development in Rice. RICE (NEW YORK, N.Y.) 2020; 13:54. [PMID: 32761436 PMCID: PMC7410889 DOI: 10.1186/s12284-020-00415-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The chloroplast signal recognition particle 54 (cpSRP54) is known for targeting the light-harvesting complex proteins to thylakoids and plays a critical role for chloroplast development in Arabidopsis, but little is known in rice. Here, we reported two homologous cpSRP54s that affect chloroplast development and plant survival in rice. RESULTS Two rice cpSRP54 homologues, OscpSRP54a and OscpSRP54b, were identified in present study. The defective OscpSRP54a (LOC_Os11g05552) was responsible for the pale green leaf phenotype of the viable pale green leaf 14 (pgl14) mutant. A single nucleotide substitution from G to A at the position 278, the first intron splicing site, was detected in LOC_Os11g05552 in pgl14. The wild type allele could rescue the mutant phenotype. Knockout lines of OscpSRP54b (LOC_Os11g05556) exhibited similar pale green phenotype to pgl14 with reduced chlorophyll contents and impaired chloroplast development, but showed apparently arrested-growth and died within 3 weeks. Both OscpSRP54a and OscpSRP54b were constitutively expressed mainly in shoots and leaves at the vegetative growth stage. Subcellular location indicated that both OscpSRP54a and OscpSRP54b were chloroplast-localized. Both OscpSRP54a and OscpSRP54b were able to interact with OscpSRP43, respectively. The transcript level of OscpSRP43 was significantly reduced while the transcript level of OscpSRP54b was apparently increased in pgl14. In contrast, the transcript levels of OscpSRP54a, OscpSRP43 and OscpSRP54b were all significantly decreased in OscpSRP54b knockout lines. CONCLUSION Our study demonstrated that both OscpSRP54a and OscpSRP54b were essential for normal chloroplast development by interacting with OscpSRP43 in rice. OscpSRP54a and OscpSRP54b might play distinct roles in transporting different chloroplast proteins into thylakoids through cpSRP-mediated pathway.
Collapse
Affiliation(s)
- Yongfeng Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yan He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xiangguang Lv
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yanlin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xiaobo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xia Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Liangjian Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Jian-li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
10
|
Zhu X, Ze M, Yin J, Chern M, Wang M, Zhang X, Deng R, Li Y, Liao H, Wang L, Tu B, Song L, He M, Li S, Wang WM, Chen X, Wang J, Li W. A phosphofructokinase B-type carbohydrate kinase family protein, PFKB1, is essential for chloroplast development at early seedling stage in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110295. [PMID: 31779907 DOI: 10.1016/j.plantsci.2019.110295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Among the phosphofructokinase B-type carbohydrate kinase (PCK) family proteins, only few proteins, like the FRUCTOKINASE-LIKE 1 and 2, have been functionally characterized in regulation of chloroplast development. Here, we report the involvement of a PCK protein PFKB1 in chloroplast development by identification of a new rice mutant, revertible early yellowing Kitaake 2 [rey(k2)]. The mutant rey(k2) shows yellow leaf phenotype, reduced photosynthetic pigments, and retarded chloroplast development during early stages of seedlings, but gradually recovered at later stages. The phenotype of rey(k2) is resulted from the disruption of the PFKB1 protein. The Pfkb1 gene is ubiquitously expressed, and its protein is mainly targeted to the chloroplast and, in some cells, to the nucleus. In addition, the PFKB1 protein possesses phosphofructokinase activity in vitro. The rey(k2) mutant affects RNA levels of chloroplast-associated genes. In particular, the nuclear-encoded RNA polymerase (NEP)-dependent genes are expressed at a sustained high level in rey(k2) even after turning green, indicating that PFKB1 is essential for suppressing the expression of NEP-dependent genes. Taken together, our study suggests that PFKB1 functions as a novel regulator indispensable for early chloroplast development, at least partly by regulating chloroplast-associated genes.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Mu Ze
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Mingrui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Xiang Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Rui Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Yongzhen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Haicheng Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China.
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China.
| |
Collapse
|
11
|
Zhao Y, Qiang C, Wang X, Chen Y, Deng J, Jiang C, Sun X, Chen H, Li J, Piao W, Zhu X, Zhang Z, Zhang H, Li Z, Li J. New alleles for chlorophyll content and stay-green traits revealed by a genome wide association study in rice (Oryza sativa). Sci Rep 2019; 9:2541. [PMID: 30796281 PMCID: PMC6384888 DOI: 10.1038/s41598-019-39280-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/11/2019] [Indexed: 11/17/2022] Open
Abstract
Higher chlorophyll content (CC) and strong stay-green (SG) traits are conducive for improvement of photosynthetic efficiency in plants. Exploration of natural elite alleles for CC and SG, and highly resolved gene haplotypes are beneficial to rational design of breeding for high-photosynthetic efficiency. Phenotypic analysis of 368 rice accessions showed no significant correlation between CC and SG, and higher CC and stronger SG in japonica than in indica. Genome-wide association studies of six indices for CC and SG identified a large number of association signals, among which 14 were identified as pleiotropic regions for CC and SG. Twenty-five known genes and pleiotropic candidate gene OsSG1 accounted for natural variation in CC and SG. Further analysis indicated that 20 large-effect, non-synonymous SNPs within six known genes around GWAS signals and three SNPs in the promoter of OsSG1 could be functional causing significant phenotypic differences between alleles. Superior haplotypes were identified based on these potentially functional SNPs. Population analyses of 368 cultivated accessions and 446 wild accessions based on SNPs within genes for CC and SG suggested that these genes had been subjected to strong positive selection in japonica in the process of spreading from its subtropical origin to the North China temperate zone. Our studies point to important genes that account for natural variation and provide superior haplotypes of possible functional SNPs that will be beneficial in breeding for high-photosynthetic efficiency in rice.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chenggen Qiang
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xueqiang Wang
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yanfa Chen
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinqiang Deng
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Conghui Jiang
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xingming Sun
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Haiyang Chen
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jin Li
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilan Piao
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaoyang Zhu
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhanying Zhang
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education, and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Zhao J, Xu J, Chen B, Cui W, Zhou Z, Song X, Chen Z, Zheng H, Lin L, Peng J, Lu Y, Deng Z, Chen J, Yan F. Characterization of Proteins Involved in Chloroplast Targeting Disturbed by Rice Stripe Virus by Novel Protoplast⁻Chloroplast Proteomics. Int J Mol Sci 2019; 20:E253. [PMID: 30634635 PMCID: PMC6358847 DOI: 10.3390/ijms20020253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
Rice stripe virus (RSV) is one of the most devastating viral pathogens in rice and can also cause the general chlorosis symptom in Nicotiana benthamiana plants. The chloroplast changes associated with chlorosis symptom suggest that RSV interrupts normal chloroplast functions. Although the change of proteins of the whole cell or inside the chloroplast in response to RSV infection have been revealed by proteomics, the mechanisms resulted in chloroplast-related symptoms and the crucial factors remain to be elucidated. RSV infection caused the malformation of chloroplast structure and a global reduction of chloroplast membrane protein complexes in N. benthamiana plants. Here, both the protoplast proteome and the chloroplast proteome were acquired simultaneously upon RSV infection, and the proteins in each fraction were analyzed. In the protoplasts, 1128 proteins were identified, among which 494 proteins presented significant changes during RSV; meanwhile, 659 proteins were identified from the chloroplasts, and 279 of these chloroplast proteins presented significant change. According to the label-free LC⁻MS/MS data, 66 nucleus-encoded chloroplast-related proteins (ChRPs), which only reduced in chloroplast but not in the whole protoplast, were identified, indicating that these nuclear-encoded ChRPswere not transported to chloroplasts during RSV infection. Gene ontology (GO) enrichment analysis confirmed that RSV infection changed the biological process of protein targeting to chloroplast, where 3 crucial ChRPs (K4CSN4, K4CR23, and K4BXN9) were involved in the regulation of protein targeting into chloroplast. In addition to these 3 proteins, 41 among the 63 candidate proteins were characterized to have chloroplast transit peptides. These results indicated that RSV infection changed the biological process of protein targeting into chloroplast and the location of ChRPs through crucial protein factors, which illuminated a new layer of RSV⁻host interaction that might contribute to the symptom development.
Collapse
Affiliation(s)
- Jinping Zhao
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Texas A&M University AgriLife Research Center at Dallas, Dallas, TX 75252, USA.
| | - Jingjing Xu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Binghua Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
- Center of Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Weijun Cui
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Zhongjing Zhou
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Xijiao Song
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhuo Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Center of Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Zhiping Deng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Jianping Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
13
|
Ye J, Yang YL, Wei XH, Niu XJ, Wang S, Xu Q, Yuan XP, Yu HY, Wang YP, Feng Y, Wang S. PGL3 is required for chlorophyll synthesis and impacts leaf senescence in rice. J Zhejiang Univ Sci B 2018; 19:263-273. [PMID: 29616502 DOI: 10.1631/jzus.b1700337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rice leaf color mutants play a great role in research about the formation and development of chloroplasts and the genetic mechanism of the chlorophyll (Chl) metabolism pathway. pgl3 is a rice leaf color mutant derived from Xiushui11 (Oryza sativa L. spp. japonica), treated with ethyl methane sulfonate (EMS). The mutant exhibited a pale-green leaf (pgl) phenotype throughout the whole development as well as reduced grain quality. Map-based cloning of PGL3 revealed that it encodes the chloroplast signal recognition particle 43 kDa protein (cpSRP43). PGL3 affected the Chl synthesis by regulating the expression levels of the Chl synthesis-associated genes. Considerable reactive oxygen species were accumulated in the leaves of pgl3, and the transcription levels of its scavenging genes were down-regulated, indicating that pgl3 can accelerate senescence. In addition, high temperatures could inhibit the plant's growth and facilitate the process of senescence in pgl3.
Collapse
Affiliation(s)
- Jing Ye
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.,State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yao-Long Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xing-Hua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiao-Jun Niu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Shan Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qun Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiao-Ping Yuan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Han-Yong Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yi-Ping Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yue Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
14
|
Deng QW, Luo XD, Chen YL, Zhou Y, Zhang FT, Hu BL, Xie JK. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.). Biol Res 2018; 51:7. [PMID: 29544529 PMCID: PMC5853122 DOI: 10.1186/s40659-018-0155-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. Results In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. Conclusion The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus deficiency tolerance in Dongxiang wild rice. Electronic supplementary material The online version of this article (10.1186/s40659-018-0155-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qian-Wen Deng
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiang-Dong Luo
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| | - Ya-Ling Chen
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Yi Zhou
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Fan-Tao Zhang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Biao-Lin Hu
- Rice Research Institute, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China
| | - Jian-Kun Xie
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
15
|
Song M, Wei Q, Wang J, Fu W, Qin X, Lu X, Cheng F, Yang K, Zhang L, Yu X, Li J, Chen J, Lou Q. Fine Mapping of CsVYL, Conferring Virescent Leaf Through the Regulation of Chloroplast Development in Cucumber. FRONTIERS IN PLANT SCIENCE 2018; 9:432. [PMID: 29681911 PMCID: PMC5897749 DOI: 10.3389/fpls.2018.00432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/21/2018] [Indexed: 05/19/2023]
Abstract
Leaf color mutants in higher plants are ideal materials for investigating the structure and function of photosynthetic system. In this study, we identified a cucumber vyl (virescent-yellow leaf) mutant in the mutant library, which exhibited reduced pigment contents and delayed chloroplast development process. F2 and BC1 populations were constructed from the cross between vyl mutant and cucumber inbred line 'Hazerd' to identify that the vyl trait is controlled by a simply recessive gene designated as CsVYL. The CsVYL gene was mapped to a 3.8 cM interval on chromosome 4 using these 80 F2 individuals and BSA (bulked segregation analysis) approach. Fine genetic map was conducted with 1542 F2 plants and narrowed down the vyl locus to an 86.3 kb genomic region, which contains a total of 11 genes. Sequence alignment between the wild type (WT) and vyl only identified one single nucleotide mutation (C→T) in the first exon of gene Csa4G637110, which encodes a DnaJ-like zinc finger protein. Gene Expression analysis confirmed the differences in transcription level of Csa4G637110 between wild type and mutant plants. Map-based cloning of the CsVYL gene could accelerate the study of chloroplast development and chlorophyll synthesis of cucumber.
Collapse
|
16
|
Physiological and transcriptomic analyses of a yellow-green mutant with high photosynthetic efficiency in wheat (Triticum aestivum L.). Funct Integr Genomics 2017; 18:175-194. [DOI: 10.1007/s10142-017-0583-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/31/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
|
17
|
Wang R, Yang F, Zhang XQ, Wu D, Tan C, Westcott S, Broughton S, Li C, Zhang W, Xu Y. Characterization of a Thermo-Inducible Chlorophyll-Deficient Mutant in Barley. FRONTIERS IN PLANT SCIENCE 2017; 8:1936. [PMID: 29184561 PMCID: PMC5694490 DOI: 10.3389/fpls.2017.01936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/27/2017] [Indexed: 06/01/2023]
Abstract
Leaf color is an important trait for not only controlling crop yield but also monitoring plant status under temperature stress. In this study, a thermo-inducible chlorophyll-deficient mutant, named V-V-Y, was identified from a gamma-radiated population of the barley variety Vlamingh. The leaves of the mutant were green under normal growing temperature but turned yellowish under high temperature in the glasshouse experiment. The ratio of chlorophyll a and chlorophyll b in the mutant declined much faster in the first 7-9 days under heat treatment. The leaves of V-V-Y turned yellowish but took longer to senesce under heat stress in the field experiment. Genetic analysis indicated that a single nuclear gene controlled the mutant trait. The mutant gene (vvy) was mapped to the long arm of chromosome 4H between SNP markers 1_0269 and 1_1531 with a genetic distance of 2.2 cM and a physical interval of 9.85 Mb. A QTL for grain yield was mapped to the same interval and explained 10.4% of the yield variation with a LOD score of 4. This QTL is coincident with the vvy gene interval that is responsible for the thermo-inducible chlorophyll-deficient trait. Fine mapping, based on the barley reference genome sequence, further narrowed the vvy gene to a physical interval of 0.428 Mb with 11 annotated genes. This is the first report of fine mapping a thermo-inducible chlorophyll-deficient gene in barley.
Collapse
Affiliation(s)
- Rong Wang
- Hubei Collaborative Innovation Centre for Grain Industry and Hubei Key Laboratory of Waterlogging Disaster and Agriculture Use of Wetland, College of Agriculture, Yangtze University, Jingzhou, China
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA, Australia
| | - Fei Yang
- Department of Genetics and Cell Biology, Yangtze University, Jingzhou, China
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA, Australia
- Western Australian Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Dianxin Wu
- Hubei Collaborative Innovation Centre for Grain Industry and Hubei Key Laboratory of Waterlogging Disaster and Agriculture Use of Wetland, College of Agriculture, Yangtze University, Jingzhou, China
- Institute of Nuclear Agricultural Science, Zhejiang University, Hangzhou, China
| | - Cong Tan
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA, Australia
| | - Sharon Westcott
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Sue Broughton
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA, Australia
- Western Australian Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Wenying Zhang
- Hubei Collaborative Innovation Centre for Grain Industry and Hubei Key Laboratory of Waterlogging Disaster and Agriculture Use of Wetland, College of Agriculture, Yangtze University, Jingzhou, China
| | - Yanhao Xu
- Hubei Collaborative Innovation Centre for Grain Industry and Hubei Key Laboratory of Waterlogging Disaster and Agriculture Use of Wetland, College of Agriculture, Yangtze University, Jingzhou, China
- Western Barley Genetics Alliance, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
18
|
Zhang H, Yue M, Zheng X, Xie C, Zhou H, Li L. Physiological Effects of Single- and Multi-Walled Carbon Nanotubes on Rice Seedlings. IEEE Trans Nanobioscience 2017. [DOI: 10.1109/tnb.2017.2715359] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice ( Oryza rufipogon). Biosci Rep 2017; 37:BSR20160509. [PMID: 28424372 PMCID: PMC6434088 DOI: 10.1042/bsr20160509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/05/2017] [Accepted: 04/19/2017] [Indexed: 11/17/2022] Open
Abstract
Drought is a serious constraint to rice production throughout the world, and although Dongxiang wild rice (Oryza rufipogon, DXWR) possesses a high degree of drought resistance, the underlying mechanisms of this trait remains unclear. In the present study, cDNA libraries were constructed from the leaf and root tissues of drought-stressed and untreated DXWR seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in drought-stress response. The results indicated that 11231 transcripts were differentially expressed in the leaves (4040 up-regulated and 7191 down-regulated) and 7025 transcripts were differentially expressed in the roots (3097 up-regulated and 3928 down-regulated). Among these differentially expressed genes (DEGs), the detection of many transcriptional factors and functional genes demonstrated that multiple regulatory pathways were involved in drought resistance. Meanwhile, the DEGs were also annotated with gene ontology (GO) terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping, respectively. A set of the most interesting candidate genes was then identified by combining the DEGs with previously identified drought-resistant quantitative trait loci (QTL). The present work provides abundant genomic information for functional dissection of the drought resistance of DXWR, and findings will further help the current understanding of the biological regulatory mechanisms of drought resistance in plants and facilitate the breeding of new drought-resistant rice cultivars.
Collapse
|
20
|
Mei J, Li F, Liu X, Hu G, Fu Y, Liu W. Newly identified CSP41b gene localized in chloroplasts affects leaf color in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:39-45. [PMID: 28167036 DOI: 10.1016/j.plantsci.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 05/05/2023]
Abstract
A rice mutant with light-green leaves was discovered from a transgenic line of Oryza sativa. The mutant has reduced chlorophyll content and abnormal chloroplast morphology throughout its life cycle. Genetic analysis revealed that a single nuclear-encoded recessive gene is responsible for the mutation, here designated as lgl1. To isolate the lgl1 gene, a high-resolution physical map of the chromosomal region around the lgl1 gene was made using a mapping population consisting of 1984 mutant individuals. The lgl1 gene was mapped in the 76.5kb region between marker YG4 and marker YG5 on chromosome 12. Sequence analysis revealed that there was a 39bp deletion within the fourth exon of the candidate gene Os12g0420200 (TIGR locus Os12g23180) encoding a chloroplast stem-loop-binding protein of 41kDa b (CSP41b). The lgl1 mutation was rescued by transformation with the wild type CSP41b gene. Accordingly, the CSP41b gene is identified as the LGL1 gene. CSP41b was transcribed in various tissues and was mainly expressed in leaves. Expression of CSP41b-GFP fusion protein indicated that CSP41b is localized in chloroplasts. The expression levels of some key genes involved in chlorophyll biosynthesis and photosynthesis, such as ChlD, ChlI, Hema1, Ygl1, POR, Cab1R, Cab2R, PsaA, and rbcL, was significantly changed in the lgl1 mutant. Our results demonstrate that CSP41b is a novel gene required for normal leaf color and chloroplast morphology in rice.
Collapse
Affiliation(s)
- Jiasong Mei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Feifei Li
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xuri Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Guocheng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Yaping Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Wenzhen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
21
|
Miao H, Zhang S, Wang M, Wang Y, Weng Y, Gu X. Fine Mapping of Virescent Leaf Gene v-1 in Cucumber (Cucumis sativus L.). Int J Mol Sci 2016; 17:ijms17101602. [PMID: 27669214 PMCID: PMC5085635 DOI: 10.3390/ijms17101602] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 12/02/2022] Open
Abstract
Leaf color mutants are common in higher plants that can be used as markers in crop breeding or as an important tool in understanding regulatory mechanisms in chlorophyll biosynthesis and chloroplast development. In virescent leaf mutants, young leaves are yellow in color, which gradually return to normal green when the seedlings grow large. In the present study, we conducted phenotypic characterization and genetic mapping of the cucumber virescent leaf mutant 9110Gt conferred by the v-1 locus. Total chlorophyll and carotenoid content in 9110Gt was reduced by 44% and 21%, respectively, as compared with its wild type parental line 9110G. Electron microscopic investigation revealed fewer chloroplasts per cell and thylakoids per chloroplast in 9110Gt than in 9110G. Fine genetic mapping allowed for the assignment of the v-1 locus to a 50.4 kb genomic DNA region in chromosome 6 with two flanking markers that were 0.14 and 0.16 cM away from v-1, respectively. Multiple lines of evidence supported CsaCNGCs as the only candidate gene for the v-1 locus, which encoded a cyclic-nucleotide-gated ion channel protein. A single nucleotide change in the promoter region of v-1 seemed to be associated with the virescent color change in 9110Gt. Real-time PCR revealed significantly lower expression of CsaCNGCs in the true leaves of 9110Gt than in 9110G. This was the first report that connected the CsaCNGCs gene to virescent leaf color change, which provided a useful tool to establish linkages among virescent leaf color change, chloroplast development, chlorophyll biosynthesis, and the functions of the CsaCNGCs gene.
Collapse
Affiliation(s)
- Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI 53706, USA.
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Min Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ye Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI 53706, USA.
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
22
|
Ma C, Cao J, Li J, Zhou B, Tang J, Miao A. Phenotypic, histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis. Sci Rep 2016; 6:33369. [PMID: 27633059 PMCID: PMC5025893 DOI: 10.1038/srep33369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/26/2016] [Indexed: 11/20/2022] Open
Abstract
Leaf colour variation is observed in several plants. We obtained two types of branches with yellow and variegated leaves from Camellia sinensis. To reveal the mechanisms that underlie the leaf colour variations, combined morphological, histological, ionomic and proteomic analyses were performed using leaves from abnormal branches (variants) and normal branches (CKs). The measurement of the CIE-Lab coordinates showed that the brightness and yellowness of the variants were more intense than the CKs. When chloroplast profiles were analysed, HY1 (branch with yellow leaves) and HY2 (branch with variegated leaves) displayed abnormal chloroplast structures and a reduced number and size compared with the CKs, indicating that the abnormal chloroplast development might be tightly linked to the leaf colour variations. Moreover, the concentration of elemental minerals was different between the variants and the CKs. Furthermore, DEPs (differentially expressed proteins) were identified in the variants and the CKs by a quantitative proteomics analysis using the label-free approach. The DEPs were significantly involved in photosynthesis and included PSI, PSII, cytochrome b6/f complex, photosynthetic electron transport, LHC and F-type ATPase. Our results suggested that a decrease in the abundance of photosynthetic proteins might be associated with the changes of leaf colours in tea plants.
Collapse
Affiliation(s)
- Chengying Ma
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Bo Zhou
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| | - Aiqing Miao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation &Utilization, Guangzhou 510640, China
| |
Collapse
|
23
|
Guan H, Xu X, He C, Liu C, Liu Q, Dong R, Liu T, Wang L. Fine Mapping and Candidate Gene Analysis of the Leaf-Color Gene ygl-1 in Maize. PLoS One 2016; 11:e0153962. [PMID: 27100184 PMCID: PMC4839758 DOI: 10.1371/journal.pone.0153962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 04/06/2016] [Indexed: 11/24/2022] Open
Abstract
A novel yellow-green leaf mutant yellow-green leaf-1 (ygl-1) was isolated in self-pollinated progenies from the cross of maize inbred lines Ye478 and Yuanwu02. The mutant spontaneously showed yellow-green character throughout the lifespan. Meanwhile, the mutant reduced contents of chlorophyll and Car, arrested chloroplast development and lowered the capacity of photosynthesis compared with the wild-type Lx7226. Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. The ygl-1 locus was initially mapped to an interval of about 0.86 Mb in bin 1.01 on the short arm of chromosome 1 using 231 yellow-green leaf individuals of an F2 segregating population from ygl-1/Lx7226. Utilizing four new polymorphic SSR markers, the ygl-1 locus was narrowed down to a region of about 48 kb using 2930 and 2247 individuals of F2 and F3 mapping populations, respectively. Among the three predicted genes annotated within this 48 kb region, GRMZM2G007441, which was predicted to encode a cpSRP43 protein, had a 1-bp nucleotide deletion in the coding region of ygl-1 resulting in a frame shift mutation. Semi-quantitative RT-PCR analysis revealed that YGL-1 was constitutively expressed in all tested tissues and its expression level was not significantly affected in the ygl-1 mutant from early to mature stages, while light intensity regulated its expression both in the ygl-1 mutant and wild type seedlings. Furthermore, the mRNA levels of some genes involved in chloroplast development were affected in the six-week old ygl-1 plants. These findings suggested that YGL-1 plays an important role in chloroplast development of maize.
Collapse
Affiliation(s)
- Haiying Guan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
| | - Xiangbo Xu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
| | - Chunmei He
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
| | - Chunxiao Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
| | - Qiang Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
| | - Rui Dong
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
| | - Tieshan Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
- * E-mail: (TSL); (LMW)
| | - Liming Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
- * E-mail: (TSL); (LMW)
| |
Collapse
|
24
|
Li C, Hu Y, Huang R, Ma X, Wang Y, Liao T, Zhong P, Xiao F, Sun C, Xu Z, Deng X, Wang P. Mutation of FdC2 gene encoding a ferredoxin-like protein with C-terminal extension causes yellow-green leaf phenotype in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:127-34. [PMID: 26259181 DOI: 10.1016/j.plantsci.2015.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 05/07/2023]
Abstract
Ferredoxins (Fds) are small iron-sulfur proteins that mediate electron transfer in a wide range of metabolic reactions. Besides Fds, there is a type of Fd-like proteins designated as FdC, which have conserved elements of Fds, but contain a significant C-terminal extension. So far, only two FdC genes of Arabidopsis (Arabidopsis thaliana) have been identified in higher plants and thus the functions of FdC proteins remain largely unknown. In this study, we isolated a yellow-green leaf mutant, 501ys, in rice (Oryza sativa). The mutant exhibited yellow-green leaf phenotype and reduced chlorophyll level. The phenotype of 501ys was caused by mutation of a gene on rice chromosome 3. Map-based cloning of this mutant resulted in identification of OsFdC2 gene (LOC_Os03g48040) showing high identity with Arabidopsis FdC2 gene (AT1G32550). OsFdC2 was expressed most abundantly in leaves and its encoded protein was targeted to the chloroplast. In 501ys mutant, a missense mutation was detected in DNA sequence of the gene, resulting in an amino acid change in the encoded protein. The mutant phenotype was rescued by introduction of the wild-type gene. Therefore, we successfully identified FdC2 gene via map-based cloning approach, and demonstrated that mutation of this gene caused yellow-green leaf phenotype in rice.
Collapse
Affiliation(s)
- Chunmei Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Hu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Huang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaozhi Ma
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Liao
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Zhong
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fuliang Xiao
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Changhui Sun
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaojian Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
25
|
Whole-genome resequencing and transcriptomic analysis to identify genes involved in leaf-color diversity in ornamental rice plants. PLoS One 2015; 10:e0124071. [PMID: 25897514 PMCID: PMC4405343 DOI: 10.1371/journal.pone.0124071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/25/2015] [Indexed: 12/26/2022] Open
Abstract
Rice field art is a large-scale art form in which people design rice fields using various kinds of ornamental rice plants with different leaf colors. Leaf color-related genes play an important role in the study of chlorophyll biosynthesis, chloroplast structure and function, and anthocyanin biosynthesis. Despite the role of different metabolites in the traditional relationship between leaf and color, comprehensive color-specific metabolite studies of ornamental rice have been limited. We performed whole-genome resequencing and transcriptomic analysis of regulatory patterns and genetic diversity among different rice cultivars to discover new genetic mechanisms that promote enhanced levels of various leaf colors. We resequenced the genomes of 10 rice leaf-color accessions to an average of 40× reads depth and >95% coverage and performed 30 RNA-seq experiments using the 10 rice accessions sampled at three developmental stages. The sequencing results yielded a total of 1,814 × 106 reads and identified an average of 713,114 SNPs per rice accession. Based on our analysis of the DNA variation and gene expression, we selected 47 candidate genes. We used an integrated analysis of the whole-genome resequencing data and the RNA-seq data to divide the candidate genes into two groups: genes related to macronutrient (i.e., magnesium and sulfur) transport and genes related to flavonoid pathways, including anthocyanidin biosynthesis. We verified the candidate genes with quantitative real-time PCR using transgenic T-DNA insertion mutants. Our study demonstrates the potential of integrated screening methods combined with genetic-variation and transcriptomic data to isolate genes involved in complex biosynthetic networks and pathways.
Collapse
|
26
|
Guo P, Qi YP, Yang LT, Ye X, Jiang HX, Huang JH, Chen LS. cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity. BMC PLANT BIOLOGY 2014; 14:284. [PMID: 25348611 PMCID: PMC4219002 DOI: 10.1186/s12870-014-0284-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/14/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Boron (B)-toxicity is an important disorder in agricultural regions across the world. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were fertigated every other day until drip with 10 μM (control) or 400 μM (B-toxic) H3BO3 in a complete nutrient solution for 15 weeks. The aims of this study were to elucidate the adaptive mechanisms of citrus plants to B-toxicity and to identify B-tolerant genes. RESULTS B-toxicity-induced changes in seedlings growth, leaf CO2 assimilation, pigments, total soluble protein, malondialdehyde (MDA) and phosphorus were less pronounced in C. sinensis than in C. grandis. B concentration was higher in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. Here we successfully used cDNA-AFLP to isolate 67 up-regulated and 65 down-regulated transcript-derived fragments (TDFs) from B-toxic C. grandis leaves, whilst only 31 up-regulated and 37 down-regulated TDFs from B-toxic C. sinensis ones, demonstrating that gene expression is less affected in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. These differentially expressed TDFs were related to signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein and amino acid metabolism, lipid metabolism, cell wall and cytoskeleton modification, stress responses and cell transport. The higher B-tolerance of C. sinensis might be related to the findings that B-toxic C. sinensis leaves had higher expression levels of genes involved in photosynthesis, which might contribute to the higher photosyntheis and light utilization and less excess light energy, and in reactive oxygen species (ROS) scavenging compared to B-toxic C. grandis leaves, thus preventing them from photo-oxidative damage. In addition, B-toxicity-induced alteration in the expression levels of genes encoding inorganic pyrophosphatase 1, AT4G01850 and methionine synthase differed between the two species, which might play a role in the B-tolerance of C. sinensis. CONCLUSIONS C. sinensis leaves could tolerate higher level of B than C. grandis ones, thus improving the B-tolerance of C. sinensis plants. Our findings reveal some novel mechanisms on the tolerance of plants to B-toxicity at the gene expression level.
Collapse
Affiliation(s)
- Peng Guo
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yi-Ping Qi
- />Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001 China
| | - Lin-Tong Yang
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xin Ye
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Huan-Xin Jiang
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jing-Hao Huang
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Fruit Tree Science, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 China
| | - Li-Song Chen
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
27
|
Deng XJ, Zhang HQ, Wang Y, He F, Liu JL, Xiao X, Shu ZF, Li W, Wang GH, Wang GL. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS One 2014; 9:e99564. [PMID: 24932524 PMCID: PMC4059691 DOI: 10.1371/journal.pone.0099564] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/15/2014] [Indexed: 01/06/2023] Open
Abstract
Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7) is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640) which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98) all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7.
Collapse
Affiliation(s)
- Xiao-juan Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
| | - Hai-qing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory of Hybrid Rice, Hunan, China
- * E-mail:
| | - Yue Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
| | - Feng He
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin-ling Liu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiao Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhi-feng Shu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Wei Li
- College of Plant Preservation, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-huai Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-liang Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
28
|
Fox SE, Geniza M, Hanumappa M, Naithani S, Sullivan C, Preece J, Tiwari VK, Elser J, Leonard JM, Sage A, Gresham C, Kerhornou A, Bolser D, McCarthy F, Kersey P, Lazo GR, Jaiswal P. De novo transcriptome assembly and analyses of gene expression during photomorphogenesis in diploid wheat Triticum monococcum. PLoS One 2014; 9:e96855. [PMID: 24821410 PMCID: PMC4018402 DOI: 10.1371/journal.pone.0096855] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/12/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Triticum monococcum (2n) is a close ancestor of T. urartu, the A-genome progenitor of cultivated hexaploid wheat, and is therefore a useful model for the study of components regulating photomorphogenesis in diploid wheat. In order to develop genetic and genomic resources for such a study, we constructed genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T. monococcum ssp. aegilopoides (accession G3116) and the domesticated spring wheat T. monococcum ssp. monococcum (accession DV92) by generating de novo assemblies of RNA-Seq data derived from both etiolated and green seedlings. PRINCIPAL FINDINGS The de novo transcriptome assemblies of DV92 and G3116 represent 120,911 and 117,969 transcripts, respectively. We successfully mapped ∼90% of these transcripts from each accession to barley and ∼95% of the transcripts to T. urartu genomes. However, only ∼77% transcripts mapped to the annotated barley genes and ∼85% transcripts mapped to the annotated T. urartu genes. Differential gene expression analyses revealed 22% more light up-regulated and 35% more light down-regulated transcripts in the G3116 transcriptome compared to DV92. The DV92 and G3116 mRNA sequence reads aligned against the reference barley genome led to the identification of ∼500,000 single nucleotide polymorphism (SNP) and ∼22,000 simple sequence repeat (SSR) sites. CONCLUSIONS De novo transcriptome assemblies of two accessions of the diploid wheat T. monococcum provide new empirical transcriptome references for improving Triticeae genome annotations, and insights into transcriptional programming during photomorphogenesis. The SNP and SSR sites identified in our analysis provide additional resources for the development of molecular markers.
Collapse
Affiliation(s)
- Samuel E. Fox
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Matthew Geniza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Mamatha Hanumappa
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Chris Sullivan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Vijay K. Tiwari
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Jeffrey M. Leonard
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Abigail Sage
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Cathy Gresham
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Arnaud Kerhornou
- European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | - Dan Bolser
- European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | - Fiona McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Paul Kersey
- European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | - Gerard R. Lazo
- USDA-ARS, Western Regional Research Center, Albany, California, United States of America
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
29
|
Deng XJ, Zhang HQ, Wang Y, He F, Liu JL, Xiao X, Shu ZF, Li W, Wang GH, Wang GL. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS One 2014. [PMID: 24932524 DOI: 10.1371/journal.pone.00] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7) is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640) which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98) all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7.
Collapse
Affiliation(s)
- Xiao-juan Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China; Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
| | - Hai-qing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China; State Key Laboratory of Hybrid Rice, Hunan, China
| | - Yue Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China; Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China
| | - Feng He
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin-ling Liu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiao Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhi-feng Shu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Wei Li
- College of Plant Preservation, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-huai Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-liang Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China; Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, Hunan, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|