1
|
Utzeri VJ, Cilli E, Fontani F, Zoboli D, Orsini M, Ribani A, Latorre A, Lissovsky AA, Pillola GL, Bovo S, Gruppioni G, Luiselli D, Fontanesi L. Ancient DNA re-opens the question of the phylogenetic position of the Sardinian pika Prolagus sardus (Wagner, 1829), an extinct lagomorph. Sci Rep 2023; 13:13635. [PMID: 37604894 PMCID: PMC10442435 DOI: 10.1038/s41598-023-40746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Palaeogenomics is contributing to refine our understanding of many major evolutionary events at an unprecedented resolution, with relevant impacts in several fields, including phylogenetics of extinct species. Few extant and extinct animal species from Mediterranean regions have been characterised at the DNA level thus far. The Sardinian pika, Prolagus sardus (Wagner, 1829), was an iconic lagomorph species that populated Sardinia and Corsica and became extinct during the Holocene. There is a certain scientific debate on the phylogenetic assignment of the extinct genus Prolagus to the family Ochotonidae (one of the only two extant families of the order Lagomorpha) or to a separated family Prolagidae, or to the subfamily Prolaginae within the family Ochotonidae. In this study, we successfully reconstructed a portion of the mitogenome of a Sardinian pika dated to the Neolithic period and recovered from the Cabaddaris cave, an archaeological site in Sardinia. Our calibrated phylogeny may support the hypothesis that the genus Prolagus is an independent sister group to the family Ochotonidae that diverged from the Ochotona genus lineage about 30 million years ago. These results may contribute to refine the phylogenetic interpretation of the morphological peculiarities of the Prolagus genus already described by palaeontological studies.
Collapse
Affiliation(s)
- Valerio Joe Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy.
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy.
| | - Francesco Fontani
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Daniel Zoboli
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042, Monserrato, Italy
| | - Massimiliano Orsini
- Laboratory of Microbial Ecology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'università 10, 35120, Legnaro, Italy
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Adriana Latorre
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Andrey A Lissovsky
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Gian Luigi Pillola
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042, Monserrato, Italy
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Giorgio Gruppioni
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
2
|
Sato JJ, Bradford TM, Armstrong KN, Donnellan SC, Echenique-Diaz LM, Begué-Quiala G, Gámez-Díez J, Yamaguchi N, Nguyen ST, Kita M, Ohdachi SD. Post K-Pg diversification of the mammalian order Eulipotyphla as suggested by phylogenomic analyses of ultra-conserved elements. Mol Phylogenet Evol 2019; 141:106605. [PMID: 31479732 DOI: 10.1016/j.ympev.2019.106605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022]
Abstract
The origin of the mammalian order Eulipotyphla has been debated intensively with arguments around whether they began diversifying before or after the Cretaceous-Palaeogene (K-Pg) boundary at 66 Ma. Here, we used an in-solution nucleotide capture method and next generation DNA sequencing to determine the sequence of hundreds of ultra-conserved elements (UCEs), and conducted phylogenomic and molecular dating analyses for the four extant eulipotyphlan lineages-Erinaceidae, Solenodontidae, Soricidae, and Talpidae. Concatenated maximum-likelihood analyses with single or partitioned models and a coalescent species-tree analysis showed that divergences among the four major eulipotyphlan lineages occurred within a short period of evolutionary time, but did not resolve the interrelationships among them. Alternative suboptimal phylogenetic hypotheses received consistently the same amount of support from different UCE loci, and were not significantly different from the maximum likelihood tree topology, suggesting the prevalence of stochastic lineage sorting. Molecular dating analyses that incorporated among-lineage evolutionary rate differences supported a scenario where the four eulipotyphlan families diversified between 57.8 and 63.2 Ma. Given short branch lengths with low support values, traces of rampant genome-wide stochastic lineage sorting, and post K-Pg diversification, we concluded that the crown eulipotyphlan lineages arose through a rapid diversification after the K-Pg boundary when novel niches were created by the mass extinction of species.
Collapse
Affiliation(s)
- Jun J Sato
- Laboratory of Animal Cell Technology, Faculty of Life Science and Technology, Fukuyama University, Higashimuracho, Aza, Sanzo, 985, Fukuyama 729-0292, Japan; School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Tessa M Bradford
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia; South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Kyle N Armstrong
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia; South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Stephen C Donnellan
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia; South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Lazaro M Echenique-Diaz
- Environmental Education Center, Miyagi University of Education, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Gerardo Begué-Quiala
- Unidad Presupuestada Parque Nacional Alejandro de Humboldt (CITMA), Calle Abogado 14 e/12 y 13 Norte, Guantanamo 95200, Cuba
| | - Jorgelino Gámez-Díez
- Estación Ecológica La Melba, Unidad Presupuestada Parque Nacional Alejandro de Humboldt, CITMA-Guantánamo, Cuba
| | - Nobuyuki Yamaguchi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Son Truong Nguyen
- Institute of Ecology and Biological Resources and Graduate University of Science and Technology, Vietnam Academy of Sciences and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Masaki Kita
- Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Satoshi D Ohdachi
- Institute of Low Temperature Science, Hokkaido University, Kita-19 Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
3
|
Six Impossible Things before Breakfast: Assumptions, Models, and Belief in Molecular Dating. Trends Ecol Evol 2019; 34:474-486. [PMID: 30904189 DOI: 10.1016/j.tree.2019.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 01/16/2023]
Abstract
Confidence in molecular dating analyses has grown with the increasing sophistication of the methods. Some problematic cases where molecular dates disagreed with paleontological estimates appear to have been resolved with a growing agreement between molecules and fossils. But we cannot relax just yet. The growing analytical sophistication of many molecular dating methods relies on an increasingly large number of assumptions about evolutionary history and processes. Many of these assumptions are based on statistical tractability rather than being informed by improved understanding of molecular evolution, yet changing the assumptions can influence molecular dates. How can we tell if the answers we get are driven more by the assumptions we make than by the molecular data being analyzed?
Collapse
|
4
|
Cameron J, Shelley SL, Williamson TE, Brusatte SL. The Brain and Inner Ear of the Early Paleocene “Condylarth”
Carsioptychus coarctatus
: Implications for Early Placental Mammal Neurosensory Biology and Behavior. Anat Rec (Hoboken) 2018; 302:306-324. [DOI: 10.1002/ar.23903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Joe Cameron
- School of GeoSciences University of Edinburgh, Grant Institute Edinburgh Scotland UK
| | - Sarah L. Shelley
- School of GeoSciences University of Edinburgh, Grant Institute Edinburgh Scotland UK
| | | | - Stephen L. Brusatte
- School of GeoSciences University of Edinburgh, Grant Institute Edinburgh Scotland UK
- New Mexico Museum of Natural History and Science Albuquerque New Mexico
| |
Collapse
|
5
|
Kurabi A, Schaerer D, Noack V, Bernhardt M, Pak K, Alexander T, Husseman J, Nguyen Q, Harris JP, Ryan AF. Active Transport of Peptides Across the Intact Human Tympanic Membrane. Sci Rep 2018; 8:11815. [PMID: 30087425 PMCID: PMC6081404 DOI: 10.1038/s41598-018-30031-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
We previously identified peptides that are actively transported across the intact tympanic membrane (TM) of rats with infected middle ears. To assess the possibility that this transport would also occur across the human TM, we first developed and validated an assay to evaluate transport in vitro using fragments of the TM. Using this assay, we demonstrated the ability of phage bearing a TM-transiting peptide to cross freshly dissected TM fragments from infected rats or from uninfected rats, guinea pigs and rabbits. We then evaluated transport across fragments of the human TM that were discarded during otologic surgery. Human trans-TM transport was similar to that seen in the animal species. Finally, we found that free peptide, unconnected to phage, was transported across the TM at a rate comparable to that seen for peptide-bearing phage. These studies provide evidence supporting the concept of peptide-mediated drug delivery across the intact TM and into the middle ears of patients.
Collapse
Affiliation(s)
- Arwa Kurabi
- University of California, San Diego, Division of Otolaryngology, Department of Surgery, La Jolla, CA, 92093, USA.
- San Diego Veterans Affairs Healthcare System, Research Department, San Diego, CA, 92130, USA.
| | - Daniel Schaerer
- University of California, San Diego, Division of Otolaryngology, Department of Surgery, La Jolla, CA, 92093, USA
| | - Volker Noack
- Ruhr-Universitat Bochum, Department of ENT, Bochum, NRW, Germany
| | - Marlen Bernhardt
- Universitätsklinik Würzburg, Department of ENT, Würzburg, 97070, Germany
| | - Kwang Pak
- University of California, San Diego, Division of Otolaryngology, Department of Surgery, La Jolla, CA, 92093, USA
- San Diego Veterans Affairs Healthcare System, Research Department, San Diego, CA, 92130, USA
| | - Thomas Alexander
- University of California, San Diego, Division of Otolaryngology, Department of Surgery, La Jolla, CA, 92093, USA
| | - Jacob Husseman
- University of California, San Diego, Division of Otolaryngology, Department of Surgery, La Jolla, CA, 92093, USA
| | - Quyen Nguyen
- University of California, San Diego, Division of Otolaryngology, Department of Surgery, La Jolla, CA, 92093, USA
| | - Jeffrey P Harris
- University of California, San Diego, Division of Otolaryngology, Department of Surgery, La Jolla, CA, 92093, USA
| | - Allen F Ryan
- University of California, San Diego, Division of Otolaryngology, Department of Surgery, La Jolla, CA, 92093, USA
- San Diego Veterans Affairs Healthcare System, Research Department, San Diego, CA, 92130, USA
| |
Collapse
|
6
|
Kollmar M, Mühlhausen S. Myosin repertoire expansion coincides with eukaryotic diversification in the Mesoproterozoic era. BMC Evol Biol 2017; 17:211. [PMID: 28870165 PMCID: PMC5583752 DOI: 10.1186/s12862-017-1056-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The last eukaryotic common ancestor already had an amazingly complex cell possessing genomic and cellular features such as spliceosomal introns, mitochondria, cilia-dependent motility, and a cytoskeleton together with several intracellular transport systems. In contrast to the microtubule-based dyneins and kinesins, the actin-filament associated myosins are considerably divergent in extant eukaryotes and a unifying picture of their evolution has not yet emerged. RESULTS Here, we manually assembled and annotated 7852 myosins from 929 eukaryotes providing an unprecedented dense sequence and taxonomic sampling. For classification we complemented phylogenetic analyses with gene structure comparisons resulting in 79 distinct myosin classes. The intron pattern analysis and the taxonomic distribution of the classes suggest two myosins in the last eukaryotic common ancestor, a class-1 prototype and another myosin, which is most likely the ancestor of all other myosin classes. The sparse distribution of class-2 and class-4 myosins outside their major lineages contradicts their presence in the last eukaryotic common ancestor but instead strongly suggests early eukaryote-eukaryote horizontal gene transfer. CONCLUSIONS By correlating the evolution of myosin diversity with the history of Earth we found that myosin innovation occurred in independent major "burst" events in the major eukaryotic lineages. Most myosin inventions happened in the Mesoproterozoic era. In the late Neoproterozoic era, a process of extensive independent myosin loss began simultaneously with further eukaryotic diversification. Since the Cambrian explosion, myosin repertoire expansion is driven by lineage- and species-specific gene and genome duplications leading to subfunctionalization and fine-tuning of myosin functions.
Collapse
Affiliation(s)
- Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Stefanie Mühlhausen
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
7
|
Castel G, Tordo N, Plyusnin A. Estimation of main diversification time-points of hantaviruses using phylogenetic analyses of complete genomes. Virus Res 2017; 233:60-69. [PMID: 28315705 DOI: 10.1016/j.virusres.2017.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 11/17/2022]
Abstract
Because of the great variability of their reservoir hosts, hantaviruses are excellent models to evaluate the dynamics of virus-host co-evolution. Intriguing questions remain about the timescale of the diversification events that influenced this evolution. In this paper we attempted to estimate the first ever timing of hantavirus diversification based on thirty five available complete genomes representing five major groups of hantaviruses and the assumption of co-speciation of hantaviruses with their respective mammal hosts. Phylogenetic analyses were used to estimate the main diversification points during hantavirus evolution in mammals while host diversification was mostly estimated from independent calibrators taken from fossil records. Our results support an earlier developed hypothesis of co-speciation of known hantaviruses with their respective mammal hosts and hence a common ancestor for all hantaviruses carried by placental mammals.
Collapse
Affiliation(s)
- Guillaume Castel
- INRA-UMR 1062 CBGP, 755 Avenue Campus Agropolis, CS30016, 34988 Montferrier sur Lez, France.
| | - Noël Tordo
- Unit Antiviral Strategies, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France; Institut Pasteur de Guinée, Gamal Abdel Nasser University, Conakry, Guinea.
| | | |
Collapse
|
8
|
A Digital Endocranial Cast of the Early Paleocene (Puercan) 'Archaic' Mammal Onychodectes tisonensis (Eutheria: Taeniodonta). J MAMM EVOL 2017; 25:179-195. [PMID: 29755252 PMCID: PMC5938319 DOI: 10.1007/s10914-017-9381-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Eutherian mammals-placentals and their closest extinct relatives-underwent a major radiation following the end-Cretaceous extinction, during which they evolved disparate anatomy and established new terrestrial ecosystems. Much about the timing, pace, and causes of this radiation remain unclear, in large part because we still know very little about the anatomy, phylogenetic relationships, and biology of the so-called 'archaic' eutherians that prospered during the ~10 million years after the extinction. We describe the first digital endocranial cast of a taeniodont, a bizarre group of eutherians that flourished in the early Paleogene, reconstructed from a computed tomography (CT) scan of a late Puercan (65.4 million year old) specimen of Onychodectes tisonensis that recovered most of the forebrain and midbrain and portions of the inner ear. Notable features of the endocast include long, broad olfactory bulbs, dorsally-positioned rhinal fissures, and a lissencephalic cerebrum. Comparison with other taxa shows that Onychodectes possessed some of the largest olfactory bulbs (relative to cerebral size) of any known mammal. Statistical analysis of modern mammals shows that relative olfactory bulb dimensions are not strongly correlated with body size or fossorial digging for shelter, but relative bulb width is significantly greater in taxa that habitually dig to forage for food. The anatomical description and statistical results allow us to present an ecological model for Onychodectes and similar taeniodonts, in which they are animals of simple behavior that rely on a strong sense of smell to locate buried food before extracting and processing it with their specialized skeletal anatomy.
Collapse
|
9
|
Halliday TJD, Upchurch P, Goswami A. Resolving the relationships of Paleocene placental mammals. Biol Rev Camb Philos Soc 2017; 92:521-550. [PMID: 28075073 PMCID: PMC6849585 DOI: 10.1111/brv.12242] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 01/25/2023]
Abstract
The 'Age of Mammals' began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous-Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small-to-large-bodied, diverse taxa has driven a hypothesis that the end-Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of 'condylarths'. Protungulatum is resolved as a stem eutherian, meaning that no crown-placental mammal unambiguously pre-dates the Cretaceous-Palaeogene boundary. Our results support an Atlantogenata-Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic. The inclusion of Paleocene taxa in a placental phylogeny alters interpretations of relationships and key events in mammalian evolutionary history. Paleocene mammals are an essential source of data for understanding fully the biotic dynamics associated with the end-Cretaceous mass extinction. The relationships presented here mark a critical first step towards accurate reconstruction of this important interval in the evolution of the modern fauna.
Collapse
Affiliation(s)
- Thomas J. D. Halliday
- Department of Earth SciencesUniversity College LondonGower StreetLondonWC1E 6BTU.K.
- Department of Genetics, Evolution and EnvironmentUniversity College LondonGower StreetLondonWC1E 6BTU.K.
| | - Paul Upchurch
- Department of Earth SciencesUniversity College LondonGower StreetLondonWC1E 6BTU.K.
| | - Anjali Goswami
- Department of Earth SciencesUniversity College LondonGower StreetLondonWC1E 6BTU.K.
- Department of Genetics, Evolution and EnvironmentUniversity College LondonGower StreetLondonWC1E 6BTU.K.
| |
Collapse
|
10
|
Halliday TJD, Upchurch P, Goswami A. Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous-Palaeogene mass extinction. Proc Biol Sci 2016; 283:20153026. [PMID: 27358361 PMCID: PMC4936024 DOI: 10.1098/rspb.2015.3026] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/26/2016] [Indexed: 11/13/2022] Open
Abstract
The effect of the Cretaceous-Palaeogene (K-Pg) mass extinction on the evolution of many groups, including placental mammals, has been hotly debated. The fossil record suggests a sudden adaptive radiation of placentals immediately after the event, but several recent quantitative analyses have reconstructed no significant increase in either clade origination rates or rates of character evolution in the Palaeocene. Here we use stochastic methods to date a recent phylogenetic analysis of Cretaceous and Palaeocene mammals and show that Placentalia likely originated in the Late Cretaceous, but that most intraordinal diversification occurred during the earliest Palaeocene. This analysis reconstructs fewer than 10 placental mammal lineages crossing the K-Pg boundary. Moreover, we show that rates of morphological evolution in the 5 Myr interval immediately after the K-Pg mass extinction are three times higher than background rates during the Cretaceous. These results suggest that the K-Pg mass extinction had a marked impact on placental mammal diversification, supporting the view that an evolutionary radiation occurred as placental lineages invaded new ecological niches during the Early Palaeocene.
Collapse
Affiliation(s)
- Thomas John Dixon Halliday
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Paul Upchurch
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Anjali Goswami
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
11
|
Zhu Q, Hastriter MW, Whiting MF, Dittmar K. Fleas (Siphonaptera) are Cretaceous, and evolved with Theria. Mol Phylogenet Evol 2015; 90:129-39. [DOI: 10.1016/j.ympev.2015.04.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/16/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
|
12
|
Averianov AO, Lopatin AV. High-level systematics of placental mammals: Current status of the problem. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014090039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Hipsley CA, Müller J. Beyond fossil calibrations: realities of molecular clock practices in evolutionary biology. Front Genet 2014; 5:138. [PMID: 24904638 PMCID: PMC4033271 DOI: 10.3389/fgene.2014.00138] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/27/2014] [Indexed: 01/22/2023] Open
Abstract
Molecular-based divergence dating methods, or molecular clocks, are the primary neontological tool for estimating the temporal origins of clades. While the appropriate use of vertebrate fossils as external clock calibrations has stimulated heated discussions in the paleontological community, less attention has been given to the quality and implementation of other calibration types. In lieu of appropriate fossils, many studies rely on alternative sources of age constraints based on geological events, substitution rates and heterochronous sampling, as well as dates secondarily derived from previous analyses. To illustrate the breadth and frequency of calibration types currently employed, we conducted a literature survey of over 600 articles published from 2007 to 2013. Over half of all analyses implemented one or more fossil dates as constraints, followed by geological events and secondary calibrations (15% each). Vertebrate taxa were subjects in nearly half of all studies, while invertebrates and plants together accounted for 43%, followed by viruses, protists and fungi (3% each). Current patterns in calibration practices were disproportionate to the number of discussions on their proper use, particularly regarding plants and secondarily derived dates, which are both relatively neglected in methodological evaluations. Based on our survey, we provide a comprehensive overview of the latest approaches in clock calibration, and outline strengths and weaknesses associated with each. This critique should serve as a call to action for researchers across multiple communities, particularly those working on clades for which fossil records are poor, to develop their own guidelines regarding selection and implementation of alternative calibration types. This issue is particularly relevant now, as time-calibrated phylogenies are used for more than dating evolutionary origins, but often serve as the backbone of investigations into biogeography, diversity dynamics and rates of phenotypic evolution.
Collapse
Affiliation(s)
- Christy A. Hipsley
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und BiodiversitätsforschungBerlin, Germany
| | - Johannes Müller
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und BiodiversitätsforschungBerlin, Germany
- Berlin-Brandenburg Institute of Avanced Biodiversity ResearchBerlin, Germany
| |
Collapse
|
14
|
Bennett CV, Goswami A. Statistical support for the hypothesis of developmental constraint in marsupial skull evolution. BMC Biol 2013; 11:52. [PMID: 23622087 PMCID: PMC3660189 DOI: 10.1186/1741-7007-11-52] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/23/2013] [Indexed: 11/23/2022] Open
Abstract
Background In contrast to placental neonates, in which all cranial bones are ossified, marsupial young have only the bones of the oral region and the exoccipital ossified at birth, in order to facilitate suckling at an early stage of development. In this study, we investigated whether this heterochronic shift in the timing of cranial ossification constrains cranial disparity in marsupials relative to placentals. Methods We collected three-dimensional (3D) landmark data about the crania of a wide range of extant placentals and marsupials, and from six fossil metatherians (the clade including extant marsupials and their stem relatives), using a laser scanner and a 3D digitizer. Principal components analysis and delta variance tests were used to investigate the distribution and disparity of cranial morphology between different landmark sets (optimizing either number of landmarks or number of taxa) of the whole skull and of individual developmental or functional regions (neurocranium, viscerocranium, oral region) for extant placentals and marsupials. Marsupial and placental data was also compared based on shared ecological aspects including diet, habitat, and time of peak activity. Results We found that the extant marsupial taxa investigated here occupy a much smaller area of morphospace than the placental taxa, with a significantly (P<0.01) smaller overall variance. Inclusion of fossil taxa did not significantly increase the variance of metatherian cranial shape. Fossil forms generally plotted close to or within the realm of their extant marsupial relatives. When the disparities of cranial regions were investigated separately, significant differences between placentals and marsupials were seen for the viscerocranial and oral regions, but not for the neurocranial region. Conclusion These results support the hypothesis of developmental constraint limiting the evolution of the marsupial skull, and further suggest that the marsupial viscerocranium as a whole, rather than just the early-ossifying oral region, is developmentally constrained.
Collapse
Affiliation(s)
- C Verity Bennett
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | |
Collapse
|
15
|
Sánchez-Villagra MR. Why are There Fewer Marsupials than Placentals? On the Relevance of Geography and Physiology to Evolutionary Patterns of Mammalian Diversity and Disparity. J MAMM EVOL 2012. [DOI: 10.1007/s10914-012-9220-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|