1
|
Kraus JEM, Busengdal H, Kraus Y, Hausen H, Rentzsch F. Doublecortin-like kinase is required for cnidocyte development in Nematostella vectensis. Neural Dev 2024; 19:11. [PMID: 38909268 PMCID: PMC11193195 DOI: 10.1186/s13064-024-00188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
The complex morphology of neurons requires precise control of their microtubule cytoskeleton. This is achieved by microtubule-associated proteins (MAPs) that regulate the assembly and stability of microtubules, and transport of molecules and vesicles along them. While many of these MAPs function in all cells, some are specifically or predominantly involved in regulating microtubules in neurons. Here we use the sea anemone Nematostella vectensis as a model organism to provide new insights into the early evolution of neural microtubule regulation. As a cnidarian, Nematostella belongs to an outgroup to all bilaterians and thus occupies an informative phylogenetic position for reconstructing the evolution of nervous system development. We identified an ortholog of the microtubule-binding protein doublecortin-like kinase (NvDclk1) as a gene that is predominantly expressed in neurons and cnidocytes (stinging cells), two classes of cells belonging to the neural lineage in cnidarians. A transgenic NvDclk1 reporter line revealed an elaborate network of neurite-like processes emerging from cnidocytes in the tentacles and the body column. A transgene expressing NvDclk1 under the control of the NvDclk1 promoter suggests that NvDclk1 localizes to microtubules and therefore likely functions as a microtubule-binding protein. Further, we generated a mutant for NvDclk1 using CRISPR/Cas9 and show that the mutants fail to generate mature cnidocytes. Our results support the hypothesis that the elaboration of programs for microtubule regulation occurred early in the evolution of nervous systems.
Collapse
Affiliation(s)
- Johanna E M Kraus
- Michael Sars Centre, University of Bergen, Thormøhlensgt 55, Bergen, 5006, Norway
| | - Henriette Busengdal
- Michael Sars Centre, University of Bergen, Thormøhlensgt 55, Bergen, 5006, Norway
| | - Yulia Kraus
- Department of Evolutionary Biology, Biological Faculty, Moscow State University, Leninskiye gory 1/12, Moscow, 119234, Russia
| | - Harald Hausen
- Michael Sars Centre, University of Bergen, Thormøhlensgt 55, Bergen, 5006, Norway
- Department of Earth Science, University of Bergen, Allégaten 41, Bergen, 5007, Norway
| | - Fabian Rentzsch
- Michael Sars Centre, University of Bergen, Thormøhlensgt 55, Bergen, 5006, Norway.
- Department for Biological Sciences, University of Bergen, Thormøhlensgate 53, Bergen, 5006, Norway.
| |
Collapse
|
2
|
Sheloukhova L, Watanabe H. Evolution of glial cells: a non-bilaterian perspective. Neural Dev 2024; 19:10. [PMID: 38907299 PMCID: PMC11193209 DOI: 10.1186/s13064-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians. Non-bilaterian animals have been largely overlooked in glial studies and have been subjected only to morphological analysis. Here, we provide a comprehensive overview of conservation of the bilateral gliogenic genetic repertoire of non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera). We overview molecular and functional features of bilaterian glial cell types and discuss their possible evolutionary history. We then examine which glial features are present in non-bilaterians. Of these, cnidarians show the highest degree of gliogenic program conservation and may therefore be crucial to answer questions about glial evolution.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
3
|
Knabl P, Schauer A, Pomreinke AP, Zimmermann B, Rogers KW, Čapek D, Müller P, Genikhovich G. Analysis of SMAD1/5 target genes in a sea anemone reveals ZSWIM4-6 as a novel BMP signaling modulator. eLife 2024; 13:e80803. [PMID: 38323609 PMCID: PMC10849676 DOI: 10.7554/elife.80803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/28/2024] [Indexed: 02/08/2024] Open
Abstract
BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling. To address this, we generated a genome-wide list of direct pSMAD1/5 target genes in the anthozoan Nematostella vectensis, several of which were conserved in Drosophila and Xenopus. Our ChIP-seq analysis revealed that many of the regulatory molecules with documented bilaterally symmetric expression in Nematostella are directly controlled by BMP signaling. We identified several so far uncharacterized BMP-dependent transcription factors and signaling molecules, whose bilaterally symmetric expression may be indicative of their involvement in secondary axis patterning. One of these molecules is zswim4-6, which encodes a novel nuclear protein that can modulate the pSMAD1/5 gradient and potentially promote BMP-dependent gene repression.
Collapse
Affiliation(s)
- Paul Knabl
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of ViennaViennaAustria
| | - Alexandra Schauer
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
- University of KonstanzKonstanzGermany
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| |
Collapse
|
4
|
Najle SR, Grau-Bové X, Elek A, Navarrete C, Cianferoni D, Chiva C, Cañas-Armenteros D, Mallabiabarrena A, Kamm K, Sabidó E, Gruber-Vodicka H, Schierwater B, Serrano L, Sebé-Pedrós A. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 2023; 186:4676-4693.e29. [PMID: 37729907 PMCID: PMC10580291 DOI: 10.1016/j.cell.2023.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.
Collapse
Affiliation(s)
- Sebastián R Najle
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Chiva
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Arrate Mallabiabarrena
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany; Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany; American Museum of Natural History, Richard Gilder Graduate School, NY, USA
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
5
|
Lemaître QIB, Bartsch N, Kouzel IU, Busengdal H, Richards GS, Steinmetz PRH, Rentzsch F. NvPrdm14d-expressing neural progenitor cells contribute to non-ectodermal neurogenesis in Nematostella vectensis. Nat Commun 2023; 14:4854. [PMID: 37563174 PMCID: PMC10415408 DOI: 10.1038/s41467-023-39789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/29/2023] [Indexed: 08/12/2023] Open
Abstract
Neurogenesis has been studied extensively in the ectoderm, from which most animals generate the majority of their neurons. Neurogenesis from non-ectodermal tissue is, in contrast, poorly understood. Here we use the cnidarian Nematostella vectensis as a model to provide new insights into the molecular regulation of non-ectodermal neurogenesis. We show that the transcription factor NvPrdm14d is expressed in a subpopulation of NvSoxB(2)-expressing endodermal progenitor cells and their NvPOU4-expressing progeny. Using a new transgenic reporter line, we show that NvPrdm14d-expressing cells give rise to neurons in the body wall and in close vicinity of the longitudinal retractor muscles. RNA-sequencing of NvPrdm14d::GFP-expressing cells and gene knockdown experiments provide candidate genes for the development and function of these neurons. Together, the identification of a population of endoderm-specific neural progenitor cells and of previously undescribed putative motoneurons in Nematostella provide new insights into the regulation of non-ectodermal neurogenesis.
Collapse
Affiliation(s)
- Quentin I B Lemaître
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Natascha Bartsch
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
- Department for Biological Sciences, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Ian U Kouzel
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Henriette Busengdal
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Gemma Sian Richards
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | | | - Fabian Rentzsch
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
- Department for Biological Sciences, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
6
|
Notch Signaling in Acute Inflammation and Sepsis. Int J Mol Sci 2023; 24:ijms24043458. [PMID: 36834869 PMCID: PMC9967996 DOI: 10.3390/ijms24043458] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Notch signaling, a highly conserved pathway in mammals, is crucial for differentiation and homeostasis of immune cells. Besides, this pathway is also directly involved in the transmission of immune signals. Notch signaling per se does not have a clear pro- or anti-inflammatory effect, but rather its impact is highly dependent on the immune cell type and the cellular environment, modulating several inflammatory conditions including sepsis, and therefore significantly impacts the course of disease. In this review, we will discuss the contribution of Notch signaling on the clinical picture of systemic inflammatory diseases, especially sepsis. Specifically, we will review its role during immune cell development and its contribution to the modulation of organ-specific immune responses. Finally, we will evaluate to what extent manipulation of the Notch signaling pathway could be a future therapeutic strategy.
Collapse
|
7
|
Schwaiger M, Andrikou C, Dnyansagar R, Murguia PF, Paganos P, Voronov D, Zimmermann B, Lebedeva T, Schmidt HA, Genikhovich G, Benvenuto G, Arnone MI, Technau U. An ancestral Wnt-Brachyury feedback loop in axial patterning and recruitment of mesoderm-determining target genes. Nat Ecol Evol 2022; 6:1921-1939. [PMID: 36396969 DOI: 10.1038/s41559-022-01905-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Transcription factors are crucial drivers of cellular differentiation during animal development and often share ancient evolutionary origins. The T-box transcription factor Brachyury plays a pivotal role as an early mesoderm determinant and neural repressor in vertebrates; yet, the ancestral function and key evolutionary transitions of the role of this transcription factor remain obscure. Here, we present a genome-wide target-gene screen using chromatin immunoprecipitation sequencing in the sea anemone Nematostella vectensis, an early branching non-bilaterian, and the sea urchin Strongylocentrotus purpuratus, a representative of the sister lineage of chordates. Our analysis reveals an ancestral gene regulatory feedback loop connecting Brachyury, FoxA and canonical Wnt signalling involved in axial patterning that predates the cnidarian-bilaterian split about 700 million years ago. Surprisingly, we also found that part of the gene regulatory network controlling the fate of neuromesodermal progenitors in vertebrates was already present in the common ancestor of cnidarians and bilaterians. However, while several endodermal and neuronal Brachyury target genes are ancestrally shared, hardly any of the key mesodermal downstream targets in vertebrates are found in the sea anemone or the sea urchin. Our study suggests that a limited number of target genes involved in mesoderm formation were newly acquired in the vertebrate lineage, leading to a dramatic shift in the function of this ancestral developmental regulator.
Collapse
Affiliation(s)
- Michaela Schwaiger
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
- Friedrich Miescher Institute for Biomedical Research, Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Carmen Andrikou
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Rohit Dnyansagar
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | - Patricio Ferrer Murguia
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | | | - Danila Voronov
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | - Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | - Heiko A Schmidt
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | | | | | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria.
- Max Perutz Labs, University of Vienna, Vienna, Austria.
- Research Platform 'Single Cell Regulation of Stem Cells', University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Mittal V, Reid RW, Machado DJ, Mashanov V, Janies DA. EchinoDB: an update to the web-based application for genomic and transcriptomic data on echinoderms. BMC Genom Data 2022; 23:75. [PMID: 36274129 PMCID: PMC9590158 DOI: 10.1186/s12863-022-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Here we release a new version of EchinoDB, EchinoDB v2.0 ( https://echinodb.uncc.edu ). EchinoDB is a database of genomic and transcriptomic data on echinoderms. The initial database consisted of groups of 749,397 orthologous and paralogous transcripts arranged in orthoclusters by sequence similarity. RESULTS The updated version of EchinoDB includes two new major datasets: the RNA-Seq data of the brittle star Ophioderma brevispinum and the high-quality genomic assembly data of the green sea urchin Lytechinus variegatus. In addition, we enabled keyword searches for annotated data and installed an updated version of Sequenceserver to allow Basic Local Alignment Search Tool (BLAST) searches. The data are downloadable in FASTA format. The first version of EchinoDB appeared in 2016 and was implemented in GO on a local server. The new version has been updated using R Shiny to include new features and improvements in the application. Furthermore, EchinoDB now runs entirely in the cloud for increased reliability and scaling. CONCLUSION EchinoDB serves a user base drawn from the fields of phylogenetics, developmental biology, genomics, physiology, neurobiology, and regeneration. As use cases, we illustrate the function of EchinoDB in retrieving components of signaling pathways involved in the tissue regeneration process of different echinoderms, including the emerging model species Ophioderma brevispinum. Moreover, we use EchinoDB to shed light on the conservation of the molecular components involved in two echinoderm-specific phenomena: spicule matrix proteins involved in the formation of stereom endoskeleton and the tensilin protein that contributes to the capacity of the connective tissues to quickly change its mechanical properties. The genes involved in the former had been previously studied in echinoids, while gene sequences involved in the latter had been previously described in holothuroids. Specifically, we ask (a) if the biomineralization-related proteins previously reported only in sea urchins are also present in other, non-echinoid, echinoderms and (b) if tensilin, the protein responsible for the control of stiffness of the mutable collagenous tissue, previously described in sea cucumbers, is conserved across the phylum.
Collapse
Affiliation(s)
- Varnika Mittal
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA.
| | - Robert W Reid
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA
| | - Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, 91 Technology Way NE, Winston-Salem, NC, 27101, USA
| | - Daniel A Janies
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA
| |
Collapse
|
9
|
Mashanov V, Machado DJ, Reid R, Brouwer C, Kofsky J, Janies DA. Twinkle twinkle brittle star: the draft genome of Ophioderma brevispinum (Echinodermata: Ophiuroidea) as a resource for regeneration research. BMC Genomics 2022; 23:574. [PMID: 35953768 PMCID: PMC9367165 DOI: 10.1186/s12864-022-08750-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
Background Echinoderms are established models in experimental and developmental biology, however genomic resources are still lacking for many species. Here, we present the draft genome of Ophioderma brevispinum, an emerging model organism in the field of regenerative biology. This new genomic resource provides a reference for experimental studies of regenerative mechanisms. Results We report a de novo nuclear genome assembly for the brittle star O. brevispinum and annotation facilitated by the transcriptome assembly. The final assembly is 2.68 Gb in length and contains 146,703 predicted protein-coding gene models. We also report a mitochondrial genome for this species, which is 15,831 bp in length, and contains 13 protein-coding, 22 tRNAs, and 2 rRNAs genes, respectively. In addition, 29 genes of the Notch signaling pathway are identified to illustrate the practical utility of the assembly for studies of regeneration. Conclusions The sequenced and annotated genome of O. brevispinum presented here provides the first such resource for an ophiuroid model species. Considering the remarkable regenerative capacity of this species, this genome will be an essential resource in future research efforts on molecular mechanisms regulating regeneration. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08750-y).
Collapse
Affiliation(s)
- Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, 27101, NC, USA. .,University of North Florida, Department of Biology, 1 UNF Drive, Jacksonville, 32224, FL, USA.
| | - Denis Jacob Machado
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Robert Reid
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Cory Brouwer
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Janice Kofsky
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Daniel A Janies
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| |
Collapse
|
10
|
Tournière O, Gahan JM, Busengdal H, Bartsch N, Rentzsch F. Insm1-expressing neurons and secretory cells develop from a common pool of progenitors in the sea anemone Nematostella vectensis. SCIENCE ADVANCES 2022; 8:eabi7109. [PMID: 35442742 PMCID: PMC9020782 DOI: 10.1126/sciadv.abi7109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/02/2022] [Indexed: 06/01/2023]
Abstract
Neurons are highly specialized cells present in nearly all animals, but their evolutionary origin and relationship to other cell types are not well understood. We use here the sea anemone Nematostella vectensis as a model system for early-branching animals to gain fresh insights into the evolutionary history of neurons. We generated a transgenic reporter line to show that the transcription factor NvInsm1 is expressed in postmitotic cells that give rise to various types of neurons and secretory cells. Expression analyses, double transgenics, and gene knockdown experiments show that the NvInsm1-expressing neurons and secretory cells derive from a common pool of NvSoxB(2)-positive progenitor cells. These findings, together with the requirement for Insm1 for the development of neurons and endocrine cells in vertebrates, support a close evolutionary relationship of neurons and secretory cells.
Collapse
Affiliation(s)
- Océane Tournière
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - James M. Gahan
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - Henriette Busengdal
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - Natascha Bartsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
| |
Collapse
|
11
|
Manzari-Tavakoli A, Babajani A, Farjoo MH, Hajinasrollah M, Bahrami S, Niknejad H. The Cross-Talks Among Bone Morphogenetic Protein (BMP) Signaling and Other Prominent Pathways Involved in Neural Differentiation. Front Mol Neurosci 2022; 15:827275. [PMID: 35370542 PMCID: PMC8965007 DOI: 10.3389/fnmol.2022.827275] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
The bone morphogenetic proteins (BMPs) are a group of potent morphogens which are critical for the patterning, development, and function of the central nervous system. The appropriate function of the BMP pathway depends on its interaction with other signaling pathways involved in neural differentiation, leading to synergistic or antagonistic effects and ultimately favorable biological outcomes. These opposite or cooperative effects are observed when BMP interacts with fibroblast growth factor (FGF), cytokines, Notch, Sonic Hedgehog (Shh), and Wnt pathways to regulate the impact of BMP-induced signaling in neural differentiation. Herein, we review the cross-talk between BMP signaling and the prominent signaling pathways involved in neural differentiation, emphasizing the underlying basic molecular mechanisms regarding the process of neural differentiation. Knowing these cross-talks can help us to develop new approaches in regenerative medicine and stem cell based therapy. Recently, cell therapy has received significant attention as a promising treatment for traumatic or neurodegenerative diseases. Therefore, it is important to know the signaling pathways involved in stem cell differentiation toward neural cells. Our better insight into the cross-talk of signaling pathways during neural development would improve neural differentiation within in vitro tissue engineering approaches and pre-clinical practices and develop futuristic therapeutic strategies for patients with neurological disease.
Collapse
Affiliation(s)
- Asma Manzari-Tavakoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University, Mashhad, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hajinasrollah
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Hassan Niknejad
| |
Collapse
|
12
|
Gahan JM, Kouzel IU, Jansen KO, Burkhardt P, Rentzsch F. Histone demethylase Lsd1 is required for the differentiation of neural cells in Nematostella vectensis. Nat Commun 2022; 13:465. [PMID: 35075108 PMCID: PMC8786827 DOI: 10.1038/s41467-022-28107-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Chromatin regulation is a key process in development but its contribution to the evolution of animals is largely unexplored. Chromatin is regulated by a diverse set of proteins, which themselves are tightly regulated in a cell/tissue-specific manner. Using the cnidarian Nematostella vectensis as a basal metazoan model, we explore the function of one such chromatin regulator, Lysine specific demethylase 1 (Lsd1). We generated an endogenously tagged allele and show that NvLsd1 expression is developmentally regulated and higher in differentiated neural cells than their progenitors. We further show, using a CRISPR/Cas9 generated mutant that loss of NvLsd1 leads to developmental abnormalities. This includes the almost complete loss of differentiated cnidocytes, cnidarian-specific neural cells, as a result of a cell-autonomous requirement for NvLsd1. Together this suggests that the integration of chromatin modifying proteins into developmental regulation predates the split of the cnidarian and bilaterian lineages and constitutes an ancient feature of animal development. The evolutionary point where chromatin modifier function integrated into regulation of specific cell types is unclear. In the cnidarian Nematostella vectensis, the authors here show that lysine specific demethylase Lsd1 is developmentally regulated and required for normal development including cnidocyte differentiation.
Collapse
Affiliation(s)
- James M Gahan
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5006, Bergen, Norway.
| | - Ian U Kouzel
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5006, Bergen, Norway
| | - Kamilla Ormevik Jansen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5006, Bergen, Norway
| | - Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5006, Bergen, Norway
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5006, Bergen, Norway. .,Department for Biological Sciences, University of Bergen, Thormøhlensgt 53, 5006, Bergen, Norway.
| |
Collapse
|
13
|
Seguro Paula F, Delgado Alves J. The role of the Notch pathway in the pathogenesis of systemic sclerosis: clinical implications. Expert Rev Clin Immunol 2021; 17:1257-1267. [PMID: 34719325 DOI: 10.1080/1744666x.2021.2000391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a chronic debilitating disease characterized by vascular insufficiency, widespread fibrosis and immune activation. Current understanding of its pathophysiology remains incomplete, which translates into inefficient therapies. Notch signaling is a central player in the development of physiological and pathological fibrosis not only in general but also in the context of SSc and is most likely involved in the vascular dysfunction that characterizes the disease. AREAS COVERED This review explores the role of the Notch pathway in the pathophysiology of SSc and the potential implications for the diagnosis, evaluation, and management of this yet incurable disease. EXPERT OPINION Although major issues still exist about the comprehension of SSc and the design of effective treatments, the knowledge of the role of the Notch pathway in fibrogenesis and vascular biology has shed light and enthusiasm over the field. Drugs that target components of Notch signaling are currently in development including already some in clinical trials. As such, Notch may become a very important topic in the near future (considering both the pathophysiology and treatment perspectives), not only in the context of SSc but also in the vascular-dependent fibrotic processes present in a multitude of diseases.
Collapse
Affiliation(s)
- Filipe Seguro Paula
- Immune Response and Vascular Disease, Chronic Diseases Research Center (CEDOC), Nova Medical School, Lisbon, Portugal.,Systemic Immune-mediated Diseases Unit, Fernando Fonseca Hospital, Amadora, Portugal
| | - José Delgado Alves
- Immune Response and Vascular Disease, Chronic Diseases Research Center (CEDOC), Nova Medical School, Lisbon, Portugal.,Systemic Immune-mediated Diseases Unit, Fernando Fonseca Hospital, Amadora, Portugal
| |
Collapse
|
14
|
Moneer J, Siebert S, Krebs S, Cazet J, Prexl A, Pan Q, Juliano C, Böttger A. Differential gene regulation in DAPT-treated Hydra reveals candidate direct Notch signalling targets. J Cell Sci 2021; 134:jcs258768. [PMID: 34346482 PMCID: PMC8353520 DOI: 10.1242/jcs.258768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Abstract
In Hydra, Notch inhibition causes defects in head patterning and prevents differentiation of proliferating nematocyte progenitor cells into mature nematocytes. To understand the molecular mechanisms by which the Notch pathway regulates these processes, we performed RNA-seq and identified genes that are differentially regulated in response to 48 h of treating the animals with the Notch inhibitor DAPT. To identify candidate direct regulators of Notch signalling, we profiled gene expression changes that occur during subsequent restoration of Notch activity and performed promoter analyses to identify RBPJ transcription factor-binding sites in the regulatory regions of Notch-responsive genes. Interrogating the available single-cell sequencing data set revealed the gene expression patterns of Notch-regulated Hydra genes. Through these analyses, a comprehensive picture of the molecular pathways regulated by Notch signalling in head patterning and in interstitial cell differentiation in Hydra emerged. As prime candidates for direct Notch target genes, in addition to Hydra (Hy)Hes, we suggest Sp5 and HyAlx. They rapidly recovered their expression levels after DAPT removal and possess Notch-responsive RBPJ transcription factor-binding sites in their regulatory regions.
Collapse
Affiliation(s)
- Jasmin Moneer
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Stefan Krebs
- Ludwig-Maximilians-University Munich, Gene Center Munich, Feodor-Lynen-Str. 25 81377 Munich, Germany
| | - Jack Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Andrea Prexl
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| | - Qin Pan
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| | - Celina Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Angelika Böttger
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| |
Collapse
|
15
|
Tournière O, Dolan D, Richards GS, Sunagar K, Columbus-Shenkar YY, Moran Y, Rentzsch F. NvPOU4/Brain3 Functions as a Terminal Selector Gene in the Nervous System of the Cnidarian Nematostella vectensis. Cell Rep 2021; 30:4473-4489.e5. [PMID: 32234481 DOI: 10.1016/j.celrep.2020.03.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/08/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Terminal selectors are transcription factors that control the morphological, physiological, and molecular features that characterize distinct cell types. Here, we show that, in the sea anemone Nematostella vectensis, NvPOU4 is expressed in post-mitotic cells that give rise to a diverse set of neural cell types, including cnidocytes and NvElav1-expressing neurons. Morphological analyses of NvPOU4 mutants crossed to transgenic reporter lines show that the loss of NvPOU4 does not affect the initial specification of neural cells. Transcriptomes derived from the mutants and from different neural cell populations reveal that NvPOU4 is required for the execution of the terminal differentiation program of these neural cells. These findings suggest that POU4 genes have ancient functions as terminal selectors for morphologically and functionally disparate types of neurons and they provide experimental support for the relevance of terminal selectors for understanding the evolution of cell types.
Collapse
Affiliation(s)
- Océane Tournière
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - David Dolan
- Computational Biology Unit, Department for Informatics, University of Bergen, 5006 Bergen, Norway
| | - Gemma Sian Richards
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - Kartik Sunagar
- Department of Ecology, Evolution and Behaviour, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel; Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Yaara Y Columbus-Shenkar
- Department of Ecology, Evolution and Behaviour, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behaviour, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway; Department for Biological Sciences, University of Bergen, 5006 Bergen, Norway.
| |
Collapse
|
16
|
Stone MC, Kothe GO, Rolls MM, Jegla T. Cytoskeletal and synaptic polarity of LWamide-like+ ganglion neurons in the sea anemone Nematostella vectensis. J Exp Biol 2020; 223:jeb233197. [PMID: 32968001 PMCID: PMC7673360 DOI: 10.1242/jeb.233197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
The centralized nervous systems of bilaterian animals rely on directional signaling facilitated by polarized neurons with specialized axons and dendrites. It is not known whether axo-dendritic polarity is exclusive to bilaterians or was already present in early metazoans. We therefore examined neurite polarity in the starlet sea anemone Nematostella vectensis (Cnidaria). Cnidarians form a sister clade to bilaterians and share many neuronal building blocks characteristic of bilaterians, including channels, receptors and synaptic proteins, but their nervous systems comprise a comparatively simple net distributed throughout the body. We developed a tool kit of fluorescent polarity markers for live imaging analysis of polarity in an identified neuron type, large ganglion cells of the body column nerve net that express the LWamide-like neuropeptide. Microtubule polarity differs in bilaterian axons and dendrites, and this in part underlies polarized distribution of cargo to the two types of processes. However, in LWamide-like+ neurons, all neurites had axon-like microtubule polarity suggesting that they may have similar contents. Indeed, presynaptic and postsynaptic markers trafficked to all neurites and accumulated at varicosities where neurites from different neurons often crossed, suggesting the presence of bidirectional synaptic contacts. Furthermore, we could not identify a diffusion barrier in the plasma membrane of any of the neurites like the axon initial segment barrier that separates the axonal and somatodendritic compartments in bilaterian neurons. We conclude that at least one type of neuron in Nematostella vectensis lacks the axo-dendritic polarity characteristic of bilaterian neurons.
Collapse
Affiliation(s)
- Michelle C Stone
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory O Kothe
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Timothy Jegla
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Reverse Genetic Approaches to Investigate the Neurobiology of the Cnidarian Sea Anemone Nematostella vectensis. Methods Mol Biol 2020; 2047:25-43. [PMID: 31552647 DOI: 10.1007/978-1-4939-9732-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cnidarian sea anemone Nematostella vectensis has grown in popularity as a model system to complement the ongoing work in traditional bilaterian model species (e.g. Drosophila, C. elegans, vertebrate). The driving force behind developing cnidarian model systems is the potential of this group of animals to impact EvoDevo studies aimed at better determining the origin and evolution of bilaterian traits, such as centralized nervous systems. However, it is becoming apparent that cnidarians have the potential to impact our understanding of regenerative neurogenesis and systems neuroscience. Next-generation sequencing and the development of reverse genetic approaches led to functional genetics becoming routine in the Nematostella system. As a result, researchers are beginning to understand how cnidarian nerve nets are related to the bilaterian nervous systems. This chapter describes the methods for morpholino and mRNA injections to knockdown or overexpress genes of interest, respectively. Carrying out these techniques in Nematostella requires obtaining and preparing embryos for microinjection, designing and generating effective morpholino and mRNA molecules with controls for injection, and optimizing injection conditions.
Collapse
|
18
|
Mashanov V, Akiona J, Khoury M, Ferrier J, Reid R, Machado DJ, Zueva O, Janies D. Active Notch signaling is required for arm regeneration in a brittle star. PLoS One 2020; 15:e0232981. [PMID: 32396580 PMCID: PMC7217437 DOI: 10.1371/journal.pone.0232981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and cell death. Specific functions of the pathway are, however, highly context-dependent and are not well characterized in post-traumatic regeneration. Here, we use a small-molecule inhibitor of the pathway (DAPT) to demonstrate that Notch signaling is required for proper arm regeneration in the brittle star Ophioderma brevispina, a highly regenerative member of the phylum Echinodermata. We also employ a transcriptome-wide gene expression analysis (RNA-seq) to characterize the downstream genes controlled by the Notch pathway in the brittle star regeneration. We demonstrate that arm regeneration involves an extensive cross-talk between the Notch pathway and other cell signaling pathways. In the regrowing arm, Notch regulates the composition of the extracellular matrix, cell migration, proliferation, and apoptosis, as well as components of the innate immune response. We also show for the first time that Notch signaling regulates the activity of several transposable elements. Our data also suggests that one of the possible mechanisms through which Notch sustains its activity in the regenerating tissues is via suppression of Neuralized1.
Collapse
Affiliation(s)
- Vladimir Mashanov
- Department of Biology, University of North Florida, Jacksonville, FL, United states of America
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United states of America
- * E-mail:
| | - Jennifer Akiona
- Department of Biology, University of North Florida, Jacksonville, FL, United states of America
| | - Maleana Khoury
- Department of Biology, University of North Florida, Jacksonville, FL, United states of America
| | - Jacob Ferrier
- University of North Carolina at Charlotte, Charlotte, NC, United states of America
| | - Robert Reid
- University of North Carolina at Charlotte, Charlotte, NC, United states of America
| | - Denis Jacob Machado
- University of North Carolina at Charlotte, Charlotte, NC, United states of America
| | - Olga Zueva
- Department of Biology, University of North Florida, Jacksonville, FL, United states of America
| | - Daniel Janies
- University of North Carolina at Charlotte, Charlotte, NC, United states of America
| |
Collapse
|
19
|
Rentzsch F, Juliano C, Galliot B. Modern genomic tools reveal the structural and cellular diversity of cnidarian nervous systems. Curr Opin Neurobiol 2019; 56:87-96. [PMID: 30654234 DOI: 10.1016/j.conb.2018.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
Cnidarians shared a common ancestor with bilaterians more than 600 million years ago. This sister group relationship gives them an informative phylogenetic position for understanding the fascinating morphological and molecular cell type diversity of bilaterian nervous systems. Moreover, cnidarians display novel features such as endodermal neurogenesis and independently evolved centralizations, which provide a platform for understanding the evolution of nervous system innovations. In recent years, the application of modern genomic tools has significantly advanced our understanding of cnidarian nervous system structure and function. For example, transgenic reporter lines and gene knockdown experiments in several cnidarian species reveal a significant degree of conservation in the neurogenesis gene regulatory program, while single cell RNA sequencing projects are providing a much deeper understanding of cnidarian neural cell type diversity. At the level of neural function, the physiological properties of ion channels have been described and calcium imaging of the nervous system in whole animals has allowed for the identification of neural circuits underlying specific behaviours. Cnidarians have arrived in the modern era of molecular neurobiology and are primed to provide exciting new insights into the early evolution of nervous systems.
Collapse
Affiliation(s)
- Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, Norway; Department for Biological Sciences, University of Bergen, Norway.
| | - Celina Juliano
- Department of Molecular and Cellular Biology, University of California Davis, CA 95616, United States.
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Switzerland.
| |
Collapse
|
20
|
Favarolo MB, López SL. Notch signaling in the division of germ layers in bilaterian embryos. Mech Dev 2018; 154:122-144. [PMID: 29940277 DOI: 10.1016/j.mod.2018.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023]
Abstract
Bilaterian embryos are triploblastic organisms which develop three complete germ layers (ectoderm, mesoderm, and endoderm). While the ectoderm develops mainly from the animal hemisphere, there is diversity in the location from where the endoderm and the mesoderm arise in relation to the animal-vegetal axis, ranging from endoderm being specified between the ectoderm and mesoderm in echinoderms, and the mesoderm being specified between the ectoderm and the endoderm in vertebrates. A common feature is that part of the mesoderm segregates from an ancient bipotential endomesodermal domain. The process of segregation is noisy during the initial steps but it is gradually refined. In this review, we discuss the role of the Notch pathway in the establishment and refinement of boundaries between germ layers in bilaterians, with special focus on its interaction with the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- María Belén Favarolo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina.
| |
Collapse
|
21
|
Warner JF, Guerlais V, Amiel AR, Johnston H, Nedoncelle K, Röttinger E. NvERTx: a gene expression database to compare embryogenesis and regeneration in the sea anemone Nematostella vectensis. Development 2018; 145:dev.162867. [PMID: 29739837 DOI: 10.1242/dev.162867] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/25/2018] [Indexed: 01/28/2023]
Abstract
For over a century, researchers have been comparing embryogenesis and regeneration hoping that lessons learned from embryonic development will unlock hidden regenerative potential. This problem has historically been a difficult one to investigate because the best regenerative model systems are poor embryonic models and vice versa. Recently, however, there has been renewed interest in this question, as emerging models have allowed researchers to investigate these processes in the same organism. This interest has been further fueled by the advent of high-throughput transcriptomic analyses that provide virtual mountains of data. Here, we present Nematostella vectensis Embryogenesis and Regeneration Transcriptomics (NvERTx), a platform for comparing gene expression during embryogenesis and regeneration. NvERTx consists of close to 50 transcriptomic data sets spanning embryogenesis and regeneration in Nematostella These data were used to perform a robust de novo transcriptome assembly, with which users can search, conduct BLAST analyses, and plot the expression of multiple genes during these two developmental processes. The site is also home to the results of gene clustering analyses, to further mine the data and identify groups of co-expressed genes. The site can be accessed at http://nvertx.kahikai.org.
Collapse
Affiliation(s)
- Jacob F Warner
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Vincent Guerlais
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Aldine R Amiel
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Hereroa Johnston
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Karine Nedoncelle
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| |
Collapse
|
22
|
Perea-Atienza E, Sprecher SG, Martínez P. Characterization of the bHLH family of transcriptional regulators in the acoel S. roscoffensis and their putative role in neurogenesis. EvoDevo 2018; 9:8. [PMID: 29610658 PMCID: PMC5875013 DOI: 10.1186/s13227-018-0097-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022] Open
Abstract
Background The basic helix-loop-helix (bHLH) family of transcription factors is one of the largest superfamilies of regulatory transcription factors and is widely used in eukaryotic organisms. They play an essential role in a range of metabolic, physiological, and developmental processes, including the development of the nervous system (NS). These transcription factors have been studied in many metazoans, especially in vertebrates but also in early branching metazoan clades such as the cnidarians and sponges. However, currently very little is known about their expression in the most basally branching bilaterian group, the xenacoelomorphs. Recently, our laboratory has characterized the full complement of bHLH in the genome of two members of the Xenacoelomorpha, the xenoturbellid Xenoturbella bocki and the acoel Symsagittifera roscoffensis. Understanding the patterns of bHLH gene expression in members of this phylum (in space and time) provides critical new insights into the conserved roles of the bHLH and their putative specificities in this group. Our focus is on deciphering the specific roles that these genes have in the process of neurogenesis. Results Here, we analyze the developmental expression of the whole complement of bHLH genes identified in the acoel S. roscoffensis. Based on their expression patterns, several members of bHLH class A appear to have specific conserved roles in neurogenesis, while other class A genes (as well as members of other classes) have likely taken on more generalized functions. All gene expression patterns are described in embryos and early juveniles. Conclusion Our results suggest that the main roles of the bHLH genes of S. roscoffensis are evolutionarily conserved, with a specific subset dedicated to patterning the nervous system: SrAscA, SrAscB, SrHes/Hey, SrNscl, SrSrebp, SrE12/E47 and SrOlig. Electronic supplementary material The online version of this article (10.1186/s13227-018-0097-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Perea-Atienza
- 1Departament de Genètica, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - S G Sprecher
- 3Department of Biology, University of Fribourg, 10, ch. Du Musée, 1700 Fribourg, Switzerland
| | - P Martínez
- 1Departament de Genètica, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.,2Institut Català de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| |
Collapse
|
23
|
Cnidarian Zic Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29442315 DOI: 10.1007/978-981-10-7311-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
To understand the ancestral and evolved roles of zic homologs, it is important to reconstruct the putative roles of ancient zic homologs in the animal phylogeny. Most studies of zic genes have been conducted in model systems that are members of the bilaterian phylum. However, two additional phyla have zic homologs encoded in their genomes. The three animal phyla that contain zic homologs all share a common ancestor and collectively are termed the parahoxozoans (cnidarians (corals, sea anemones, and jellyfish), placozoans (Trichoplax adhaerens), and bilaterians (chordates, insects, nematodes, annelids, echinoderms, etc.). In this chapter we briefly discuss our understanding of zic genes in the parahoxozoans with a particular focus on how expression of cnidarian zic homologs in the medusozoan Hydra vulgaris and the anthozoan Nematostella vectensis informs our understanding of the putative ancestral roles zic homologs played in the cnidarian-bilaterian common ancestor.
Collapse
|
24
|
Gazave E, Lemaître QIB, Balavoine G. The Notch pathway in the annelid Platynereis: insights into chaetogenesis and neurogenesis processes. Open Biol 2017; 7:rsob.160242. [PMID: 28148821 PMCID: PMC5356439 DOI: 10.1098/rsob.160242] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Notch is a key signalling pathway playing multiple and varied functions during development. Notch regulates the selection of cells with a neurogenic fate and maintains a pool of yet uncommitted precursors through lateral inhibition, both in insects and in vertebrates. Here, we explore the functions of Notch in the annelid Platynereis dumerilii (Lophotrochozoa). Conserved components of the pathway are identified and a scenario for their evolution in metazoans is proposed. Unexpectedly, neither Notch nor its ligands are expressed in the neurogenic epithelia of the larva at the time when massive neurogenesis begins. Using chemical inhibitors and neural markers, we demonstrate that Notch plays no major role in the general neurogenesis of larvae. Instead, we find Notch components expressed in nascent chaetal sacs, the organs that produce the annelid bristles. Impairing Notch signalling induces defects in chaetal sac formation, abnormalities in chaetae producing cells and a change of identity of chaeta growth accessory cells. This is the first bilaterian species in which the early neurogenesis processes appear to occur without a major involvement of the Notch pathway. Instead, Notch is co-opted to pattern annelid-specific organs, likely through a lateral inhibition process. These features reinforce the view that Notch signalling has been recruited multiple times in evolution due to its remarkable ‘toolkit’ nature.
Collapse
Affiliation(s)
- Eve Gazave
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Quentin I B Lemaître
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Guillaume Balavoine
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| |
Collapse
|
25
|
Havrilak JA, Faltine-Gonzalez D, Wen Y, Fodera D, Simpson AC, Magie CR, Layden MJ. Characterization of NvLWamide-like neurons reveals stereotypy in Nematostella nerve net development. Dev Biol 2017; 431:336-346. [DOI: 10.1016/j.ydbio.2017.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/25/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022]
|
26
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 617] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
27
|
Busengdal H, Rentzsch F. Unipotent progenitors contribute to the generation of sensory cell types in the nervous system of the cnidarian Nematostella vectensis. Dev Biol 2017; 431:59-68. [PMID: 28827097 DOI: 10.1016/j.ydbio.2017.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022]
Abstract
Nervous systems often consist of a large number of different types of neurons which are generated from neural stem and progenitor cells by a series of symmetric and asymmetric divisions. The origin and early evolution of these neural progenitor systems is not well understood. Here we use a cnidarian model organism, Nematostella vectensis, to gain insight into the generation of neural cell type diversity in a non-bilaterian animal. We identify NvFoxQ2d as a transcription factor that is expressed in a population of spatially restricted, proliferating ectodermal cells that are derived from NvSoxB(2)-expressing neural progenitor cells. Using a transgenic reporter line we show that the NvFoxQ2d cells undergo a terminal, symmetric division to generate a morphologically homogeneous population of putative sensory cells. The abundance of these cells, but not their proliferation status is affected by treatment with the γ-secretase inhibitor DAPT, suggesting regulation by Notch signalling. Our data suggest that intermediate progenitor cells and symmetric divisions contribute to the formation of the seemingly simple nervous system of a sea anemone.
Collapse
Affiliation(s)
- Henriette Busengdal
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5006 Bergen, Norway
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, 5006 Bergen, Norway.
| |
Collapse
|
28
|
Abdol AM, Röttinger E, Jansson F, Kaandorp JA. A novel technique to combine and analyse spatial and temporal expression datasets: A case study with the sea anemone Nematostella vectensis to identify potential gene interactions. Dev Biol 2017; 428:204-214. [PMID: 28602952 DOI: 10.1016/j.ydbio.2017.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/28/2017] [Accepted: 06/02/2017] [Indexed: 11/30/2022]
Abstract
Understanding genetic interactions during early development of a given organism, is the first step toward unveiling gene regulatory networks (GRNs) that govern a biological process of interest. Predicting such interactions from large expression datasets by performing targeted knock-down/knock-out approaches is a challenging task. We use the currently available expression datasets (in situ hybridization images & qPCR time series) for a basal anthozoan the sea anemone N. vectensis to construct continuous spatiotemporal gene expression patterns during its early development. Moreover, by combining cluster results from each dataset we develop a method that provides testable hypotheses about potential genetic interactions. We show that the analysis of spatial gene expression patterns reveals functional regions of the embryo during the gastrulation. The clustering results from qPCR time series unveils significant temporal events and highlights genes potentially involved in N. vectensis gastrulation. Furthermore, we introduce a method for merging the clustering results from spatial and temporal datasets by which we can group genes that are expressed in the same region and at the time. We demonstrate that the merged clusters can be used to identify GRN interactions involved in various processes and to predict possible activators or repressors of any gene in the dataset. Finally, we validate our methods and results by predicting the repressor effect of NvErg on NvBra in the central domain during the gastrulation that has recently been confirmed by functional analysis.
Collapse
Affiliation(s)
- Amir M Abdol
- Computational Science Lab, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Nice, France.
| | - Fredrik Jansson
- Computational Science Lab, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jaap A Kaandorp
- Computational Science Lab, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Gahan JM, Schnitzler CE, DuBuc TQ, Doonan LB, Kanska J, Gornik SG, Barreira S, Thompson K, Schiffer P, Baxevanis AD, Frank U. Functional studies on the role of Notch signaling in Hydractinia development. Dev Biol 2017; 428:224-231. [PMID: 28601529 DOI: 10.1016/j.ydbio.2017.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 11/19/2022]
Abstract
The function of Notch signaling was previously studied in two cnidarians, Hydra and Nematostella, representing the lineages Hydrozoa and Anthozoa, respectively. Using pharmacological inhibition in Hydra and a combination of pharmacological and genetic approaches in Nematostella, it was shown in both animals that Notch is required for tentacle morphogenesis and for late stages of stinging cell maturation. Surprisingly, a role for Notch in neural development, which is well documented in bilaterians, was evident in embryonic Nematostella but not in adult Hydra. Adult neurogenesis in the latter seemed to be unaffected by DAPT, a drug that inhibits Notch signaling. To address this apparent discrepancy, we studied the role of Notch in Hydractinia echinata, an additional hydrozoan, in all life stages. Using CRISPR-Cas9 mediated mutagenesis, transgenesis, and pharmacological interference we show that Notch is dispensable for Hydractinia normal neurogenesis in all life stages but is required for the maturation of stinging cells and for tentacle morphogenesis. Our results are consistent with a conserved role for Notch in morphogenesis and nematogenesis across Cnidaria, and a lineage-specific loss of Notch dependence in neurogenesis in hydrozoans.
Collapse
Affiliation(s)
- James M Gahan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 320803, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA; Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timothy Q DuBuc
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Liam B Doonan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Justyna Kanska
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sebastian G Gornik
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sofia Barreira
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, National University of Ireland, Galway, Galway, Ireland
| | - Philipp Schiffer
- Department for Genetics Environment and Evolution, University College London, London, UK
| | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Uri Frank
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
30
|
Babonis LS, Martindale MQ. Phylogenetic evidence for the modular evolution of metazoan signalling pathways. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150477. [PMID: 27994120 PMCID: PMC5182411 DOI: 10.1098/rstb.2015.0477] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Communication among cells was paramount to the evolutionary increase in cell type diversity and, ultimately, the origin of large body size. Across the diversity of Metazoa, there are only few conserved cell signalling pathways known to orchestrate the complex cell and tissue interactions regulating development; thus, modification to these few pathways has been responsible for generating diversity during the evolution of animals. Here, we summarize evidence for the origin and putative function of the intracellular, membrane-bound and secreted components of seven metazoan cell signalling pathways with a special focus on early branching metazoans (ctenophores, poriferans, placozoans and cnidarians) and basal unikonts (amoebozoans, fungi, filastereans and choanoflagellates). We highlight the modular incorporation of intra- and extracellular components in each signalling pathway and suggest that increases in the complexity of the extracellular matrix may have further promoted the modulation of cell signalling during metazoan evolution. Most importantly, this updated view of metazoan signalling pathways highlights the need for explicit study of canonical signalling pathway components in taxa that do not operate a complete signalling pathway. Studies like these are critical for developing a deeper understanding of the evolution of cell signalling.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| |
Collapse
|
31
|
Rentzsch F, Layden M, Manuel M. The cellular and molecular basis of cnidarian neurogenesis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 6. [PMID: 27882698 PMCID: PMC6680159 DOI: 10.1002/wdev.257] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/30/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
Neurogenesis initiates during early development and it continues through later developmental stages and in adult animals to enable expansion, remodeling, and homeostasis of the nervous system. The generation of nerve cells has been analyzed in detail in few bilaterian model organisms, leaving open many questions about the evolution of this process. As the sister group to bilaterians, cnidarians occupy an informative phylogenetic position to address the early evolution of cellular and molecular aspects of neurogenesis and to understand common principles of neural development. Here we review studies in several cnidarian model systems that have revealed significant similarities and interesting differences compared to neurogenesis in bilaterian species, and between different cnidarian taxa. Cnidarian neurogenesis is currently best understood in the sea anemone Nematostella vectensis, where it includes epithelial neural progenitor cells that express transcription factors of the soxB and atonal families. Notch signaling regulates the number of these neural progenitor cells, achaete‐scute and dmrt genes are required for their further development and Wnt and BMP signaling appear to be involved in the patterning of the nervous system. In contrast to many vertebrates and Drosophila, cnidarians have a high capacity to generate neurons throughout their lifetime and during regeneration. Utilizing this feature of cnidarian biology will likely allow gaining new insights into the similarities and differences of embryonic and regenerative neurogenesis. The use of different cnidarian model systems and their expanding experimental toolkits will thus continue to provide a better understanding of evolutionary and developmental aspects of nervous system formation. WIREs Dev Biol 2017, 6:e257. doi: 10.1002/wdev.257 This article is categorized under:
Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Comparative Development and Evolution > Organ System Comparisons Between Species
Collapse
Affiliation(s)
- Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Michaël Manuel
- Sorbonne Universités, UMPC Univ Paris 06, CNRS, Evolution Paris-Seine, Institut de Biologie Paris-Seine (IBPS), Paris, France
| |
Collapse
|
32
|
Kelava I, Rentzsch F, Technau U. Evolution of eumetazoan nervous systems: insights from cnidarians. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0065. [PMID: 26554048 PMCID: PMC4650132 DOI: 10.1098/rstb.2015.0065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system—in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution.
Collapse
Affiliation(s)
- Iva Kelava
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Fabian Rentzsch
- Sars Centre, Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
33
|
Koenig KM, Sun P, Meyer E, Gross JM. Eye development and photoreceptor differentiation in the cephalopod Doryteuthis pealeii. Development 2016; 143:3168-81. [PMID: 27510978 DOI: 10.1242/dev.134254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Photoreception is a ubiquitous sensory ability found across the Metazoa, and photoreceptive organs are intricate and diverse in their structure. Although the morphology of the compound eye in Drosophila and the single-chambered eye in vertebrates have elaborated independently, the amount of conservation within the 'eye' gene regulatory network remains controversial, with few taxa studied. To better understand the evolution of photoreceptive organs, we established the cephalopod Doryteuthis pealeii as a lophotrochozoan model for eye development. Utilizing histological, transcriptomic and molecular assays, we characterize eye formation in Doryteuthis pealeii Through lineage tracing and gene expression analyses, we demonstrate that cells expressing Pax and Six genes incorporate into the lens, cornea and iris, and the eye placode is the sole source of retinal tissue. Functional assays demonstrate that Notch signaling is required for photoreceptor cell differentiation and retinal organization. This comparative approach places the canon of eye research in traditional models into perspective, highlighting complexity as a result of both conserved and convergent mechanisms.
Collapse
Affiliation(s)
- Kristen M Koenig
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Peter Sun
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Eli Meyer
- Department of Zoology, Oregon State University, Cordley Hall 3029, Corvallis, OR 97331, USA
| | - Jeffrey M Gross
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
34
|
Layden MJ, Johnston H, Amiel AR, Havrilak J, Steinworth B, Chock T, Röttinger E, Martindale MQ. MAPK signaling is necessary for neurogenesis in Nematostella vectensis. BMC Biol 2016; 14:61. [PMID: 27480076 PMCID: PMC4968017 DOI: 10.1186/s12915-016-0282-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/04/2016] [Indexed: 11/16/2022] Open
Abstract
Background The nerve net of Nematostella is generated using a conserved cascade of neurogenic transcription factors. For example, NvashA, a homolog of the achaete-scute family of basic helix-loop-helix transcription factors, is necessary and sufficient to specify a subset of embryonic neurons. However, positive regulators required for the expression of neurogenic transcription factors remain poorly understood. Results We show that treatment with the MEK/MAPK inhibitor U0126 severely reduces the expression of known neurogenic genes, Nvath-like, NvsoxB(2), and NvashA, and known markers of differentiated neurons, suggesting that MAPK signaling is necessary for neural development. Interestingly, ectopic NvashA fails to rescue the expression of neural markers in U0126-treated animals. Double fluorescence in situ hybridization and transgenic analysis confirmed that NvashA targets represent both unique and overlapping populations of neurons. Finally, we used a genome-wide microarray to identify additional patterning genes downstream of MAPK that might contribute to neurogenesis. We identified 18 likely neural transcription factors, and surprisingly identified ~40 signaling genes and transcription factors that are expressed in either the aboral domain or animal pole that gives rise to the endomesoderm at late blastula stages. Conclusions Together, our data suggest that MAPK is a key early regulator of neurogenesis, and that it is likely required at multiple steps. Initially, MAPK promotes neurogenesis by positively regulating expression of NvsoxB(2), Nvath-like, and NvashA. However, we also found that MAPK is necessary for the activity of the neurogenic transcription factor NvashA. Our forward molecular approach provided insight about the mechanisms of embryonic neurogenesis. For instance, NvashA suppression of Nvath-like suggests that inhibition of progenitor identity is an active process in newly born neurons, and we show that downstream targets of NvashA reflect multiple neural subtypes rather than a uniform neural fate. Lastly, analysis of the MAPK targets in the early embryo suggests that MAPK signaling is critical not only to neurogenesis, but also endomesoderm formation and aboral patterning. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0282-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| | - Hereroa Johnston
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Aldine R Amiel
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Jamie Havrilak
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Bailey Steinworth
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA
| | - Taylor Chock
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA
| | - Eric Röttinger
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Mark Q Martindale
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA.
| |
Collapse
|
35
|
Rentzsch F, Technau U. Genomics and development of Nematostella vectensis and other anthozoans. Curr Opin Genet Dev 2016; 39:63-70. [PMID: 27318695 DOI: 10.1016/j.gde.2016.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/14/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
Due to their rather simple body plan with only few organs and a low number of cell types, cnidarians have long been recognized as an important animal group for evolutionary comparisons of animal body plans. Recent studies have shown, however, that the genomes of cnidarians and their epigenetic and posttranscriptional regulation are more complex than their morphology might suggest. How these complex genomes are deployed during embryonic development is an open question. With a focus on the sea anemone Nematostella vectensis we describe new findings about the development of the nervous system from neural progenitor cells and how Wnt and BMP signalling control axial patterning. These studies show that beyond evolutionary comparisons, cnidarian model organisms can provide new insights into generic questions in developmental biology.
Collapse
Affiliation(s)
- Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5008 Bergen, Norway.
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
36
|
Layden MJ, Rentzsch F, Röttinger E. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:408-28. [PMID: 26894563 PMCID: PMC5067631 DOI: 10.1002/wdev.222] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 11/28/2015] [Indexed: 02/01/2023]
Abstract
Reverse genetics and next‐generation sequencing unlocked a new era in biology. It is now possible to identify an animal(s) with the unique biology most relevant to a particular question and rapidly generate tools to functionally dissect that biology. This review highlights the rise of one such novel model system, the starlet sea anemone Nematostella vectensis. Nematostella is a cnidarian (corals, jellyfish, hydras, sea anemones, etc.) animal that was originally targeted by EvoDevo researchers looking to identify a cnidarian animal to which the development of bilaterians (insects, worms, echinoderms, vertebrates, mollusks, etc.) could be compared. Studies in Nematostella have accomplished this goal and informed our understanding of the evolution of key bilaterian features. However, Nematostella is now going beyond its intended utility with potential as a model to better understand other areas such as regenerative biology, EcoDevo, or stress response. This review intends to highlight key EvoDevo insights from Nematostella that guide our understanding about the evolution of axial patterning mechanisms, mesoderm, and nervous systems in bilaterians, as well as to discuss briefly the potential of Nematostella as a model to better understand the relationship between development and regeneration. Lastly, the sum of research to date in Nematostella has generated a variety of tools that aided the rise of Nematostella to a viable model system. We provide a catalogue of current resources and techniques available to facilitate investigators interested in incorporating Nematostella into their research. WIREs Dev Biol 2016, 5:408–428. doi: 10.1002/wdev.222 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), CNRS UMR 7284, INSERM U1081, Université de Nice-Sophia-Antipolis, Nice, France
| |
Collapse
|
37
|
Richards GS, Rentzsch F. Regulation of Nematostella neural progenitors by SoxB, Notch and bHLH genes. Development 2016; 142:3332-42. [PMID: 26443634 PMCID: PMC4631755 DOI: 10.1242/dev.123745] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Notch signalling, SoxB and Group A bHLH 'proneural' genes are conserved regulators of the neurogenic program in many bilaterians. However, the ancestry of their functions and interactions is not well understood. We address this question in the sea anemone Nematostella vectensis, a representative of the Cnidaria, the sister clade to the Bilateria. It has previously been found that the SoxB orthologue NvSoxB(2) is expressed in neural progenitor cells (NPCs) in Nematostella and promotes the development of both neurons and nematocytes, whereas Notch signalling has been implicated in the negative regulation of neurons and the positive regulation of nematocytes. Here, we clarify the role of Notch by reporting that inhibition of Notch signalling increases the numbers of both neurons and nematocytes, as well as increasing the number of NvSoxB(2)-expressing cells. This suggests that Notch restricts neurogenesis by limiting the generation of NPCs. We then characterise NvAth-like (Atonal/Neurogenin family) as a positive regulator of neurogenesis that is co-expressed with NvSoxB(2) in a subset of dividing NPCs, while we find that NvAshA (Achaete-scute family) and NvSoxB(2) are co-expressed in non-dividing cells only. Reciprocal knockdown experiments reveal a mutual requirement for NvSoxB(2) and NvAth-like in neural differentiation; however, the primary expression of each gene is independent of the other. Together, these data demonstrate that Notch signalling and NvSoxB(2) regulate Nematostella neural progenitors via parallel yet interacting mechanisms; with different aspects of these interactions being shared with Drosophila and/or vertebrate neurogenesis.
Collapse
Affiliation(s)
- Gemma Sian Richards
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen N-5008, Norway
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen N-5008, Norway
| |
Collapse
|
38
|
Li XY, Zhai WJ, Teng CB. Notch Signaling in Pancreatic Development. Int J Mol Sci 2015; 17:ijms17010048. [PMID: 26729103 PMCID: PMC4730293 DOI: 10.3390/ijms17010048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promotes premature differentiation of the endocrine pancreas. However, there is still the contrary opinion that Notch signaling specifies the endocrine lineage. Here, we review the current knowledge of the Notch signaling pathway in pancreatic development and its crosstalk with the Wingless and INT-1 (Wnt) and fibroblast growth factor (FGF) pathways.
Collapse
Affiliation(s)
- Xu-Yan Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Wen-Jun Zhai
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
39
|
Baker EC, Layden MJ, van Rossum DB, Kamel B, Medina M, Simpson E, Jegla T. Functional Characterization of Cnidarian HCN Channels Points to an Early Evolution of Ih. PLoS One 2015; 10:e0142730. [PMID: 26555239 PMCID: PMC4640657 DOI: 10.1371/journal.pone.0142730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/26/2015] [Indexed: 11/24/2022] Open
Abstract
HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa) to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps.
Collapse
Affiliation(s)
- Emma C. Baker
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Michael J. Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Damian B. van Rossum
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
- Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
| | - Bishoy Kamel
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Monica Medina
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Eboni Simpson
- Penn State University Graduate School, Summer Research Opportunities Program (SROP), University Park, Pennsylvania, United States of America
| | - Timothy Jegla
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
- Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Zeng C, Xing R, Liu J, Xing F. Role of CSL-dependent and independent Notch signaling pathways in cell apoptosis. Apoptosis 2015; 21:1-12. [DOI: 10.1007/s10495-015-1188-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
SINKOVICS JOSEPHG. The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores (Review). Int J Oncol 2015; 47:1211-29. [PMID: 26239915 PMCID: PMC4583530 DOI: 10.3892/ijo.2015.3102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/26/2015] [Indexed: 01/09/2023] Open
Abstract
The cell survival pathways of the diploblastic early multicellular eukaryotic hosts contain and operate the molecular machinery resembling those of malignantly transformed individual cells of highly advanced multicellular hosts (including Homo). In the present review, the STAT/NF-κB pathway of the cnidarian Nematostella vectensis is compared with that of human tumors (malignant lymphomas, including Reed-Sternberg cells) pointing out similarities, including possible viral initiation in both cases. In the ctenophore genome and proteome, β-catenin gains intranuclear advantages due to a physiologically weak destructive complex in the cytoplasm, and lack of natural inhibitors (the dickkopfs). Thus, a scenario similar to what tumor cells initiate and achieve is presented through several constitutive loss-of-function type mutations in the destructive complex and in the elimination of inhibitors. Vice versa, malignantly transformed individual cells of advanced multicellular hosts assume pheno-genotypic resemblance to cells of unicellular or early multicellular hosts, and presumably to their ancient predecessors, by returning to the semblance of immortality and to the resumption of the state of high degree of resistance to physicochemical insults. Human leukemogenic and oncogenic pathways are presented for comparisons. The supreme bioengineers RNA/DNA complex encoded both the malignantly transformed immortal cell and the human cerebral cortex. The former generates molecules for the immortality of cellular life in the Universe. The latter invents the inhibitors of the process in order to gain control over it.
Collapse
Affiliation(s)
- JOSEPH G. SINKOVICS
- St. Joseph Hospital's Cancer Institute Affiliated with the H.L. Moffitt Comprehensive Cancer Center; Department of Molecular Medicine, The University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
42
|
Technau U, Schwaiger M. Recent advances in genomics and transcriptomics of cnidarians. Mar Genomics 2015; 24 Pt 2:131-8. [PMID: 26421490 DOI: 10.1016/j.margen.2015.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 01/05/2023]
Abstract
The advent of the genomic era has provided important and surprising insights into the deducted genetic composition of the common ancestor of cnidarians and bilaterians. This has changed our view of how genomes of metazoans evolve and when crucial gene families arose and diverged in animal evolution. Sequencing of several cnidarian genomes showed that cnidarians share a great part of their gene repertoire as well as genome synteny with vertebrates, with less gene losses in the anthozoan cnidarian lineage than for example in ecdysozoans like Drosophila melanogaster or Caenorhabditis elegans. The Hydra genome on the other hand has evolved more rapidly indicated by more divergent sequences, more cases of gene losses and many taxonomically restricted genes. Cnidarian genomes also contain a rich repertoire of transcription factors, including those that in bilaterian model organisms regulate the development of key bilaterian traits such as mesoderm, nervous system development and bilaterality. The sea anemone Nematostella vectensis, and possibly cnidarians in general, does not only share its complex gene repertoire with bilaterians, but also the regulation of crucial developmental regulatory genes via distal enhancer elements. In addition, epigenetic modifications on DNA and chromatin are shared among eumetazoans. This suggests that most conserved genes present in our genomes today, as well as the mechanisms guiding their expression, evolved before the divergence of cnidarians and bilaterians about 600 Myr ago.
Collapse
Affiliation(s)
- Ulrich Technau
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Michaela Schwaiger
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
43
|
Kidd S, Struhl G, Lieber T. Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit. PLoS Genet 2015; 11:e1005244. [PMID: 26011623 PMCID: PMC4444342 DOI: 10.1371/journal.pgen.1005244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/26/2015] [Indexed: 12/20/2022] Open
Abstract
Olfactory receptor neurons (ORNs) convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs). We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl) in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse. Appropriate behavioral responses to changing environmental signals, such as odors, are essential for an organism’s survival. In Drosophila odors are detected by olfactory receptor neurons (ORNs) that synapse with second order projection neurons (PNs) and local interneurons in morphologically identifiable neuropils in the antennal lobe called glomeruli. Chronic odor exposure leads to changes in animal behavior as well as to changes in the activity of neurons in the olfactory circuit and increases in the volume of glomeruli. Here, we establish that Notch, an evolutionarily conserved transmembrane receptor that plays profound and pervasive roles in animal development, is required in adult Drosophila ORNs for functional and morphological plasticity in response to chronic odor exposure. These findings are significant because they point to a role for Notch in regulating activity dependent plasticity. Furthermore, we show that in regulating the odor dependent change in glomerular volume, Notch acts by both non-canonical, cleavage-independent and canonical, cleavage-dependent mechanisms, with the Notch ligand Delta in PNs switching the balance between the pathways. Because both the Notch pathway and the processing of olfactory information are highly conserved between flies and vertebrates these findings are likely to be of general relevance.
Collapse
Affiliation(s)
- Simon Kidd
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Gary Struhl
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Toby Lieber
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- * E-mail:
| |
Collapse
|