1
|
Wan L, Ge X, Xu Q, Huang G, Yang T, Campbell KP, Yan Z, Wu J. Structure and assembly of the dystrophin glycoprotein complex. Nature 2024:10.1038/s41586-024-08310-2. [PMID: 39663450 DOI: 10.1038/s41586-024-08310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
The dystrophin glycoprotein complex (DGC) has a crucial role in maintaining cell membrane stability and integrity by connecting the intracellular cytoskeleton with the surrounding extracellular matrix1-3. Dysfunction of dystrophin and its associated proteins results in muscular dystrophy, a disorder characterized by progressive muscle weakness and degeneration4,5. Despite the important roles of the DGC in physiology and pathology, its structural details remain largely unknown, hindering a comprehensive understanding of its assembly and function. Here we isolated the native DGC from mouse skeletal muscle and obtained its high-resolution structure. Our findings unveil a markedly divergent structure from the previous model of DGC assembly. Specifically, on the extracellular side, β-, γ- and δ-sarcoglycans co-fold to form a specialized, extracellular tower-like structure, which has a central role in complex assembly by providing binding sites for α-sarcoglycan and dystroglycan. In the transmembrane region, sarcoglycans and sarcospan flank and stabilize the single transmembrane helix of dystroglycan, rather than forming a subcomplex as previously proposed6-8. On the intracellular side, sarcoglycans and dystroglycan engage in assembly with the dystrophin-dystrobrevin subcomplex through extensive interaction with the ZZ domain of dystrophin. Collectively, these findings enhance our understanding of the structural linkage across the cell membrane and provide a foundation for the molecular interpretation of many muscular dystrophy-related mutations.
Collapse
Affiliation(s)
- Li Wan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaofei Ge
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qikui Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tiandi Yang
- Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
2
|
Mokhonova EI, Malik R, Mamsa H, Walker J, Gibbs EM, Crosbie RH. The Development of Robust Antibodies to Sarcospan, a Dystrophin- and Integrin-Associated Protein, for Basic and Translational Research. Int J Mol Sci 2024; 25:6121. [PMID: 38892308 PMCID: PMC11173052 DOI: 10.3390/ijms25116121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Sarcospan (SSPN) is a 25-kDa transmembrane protein that is broadly expressed at the cell surface of many tissues, including, but not limited to, the myofibers from skeletal and smooth muscles, cardiomyocytes, adipocytes, kidney epithelial cells, and neurons. SSPN is a core component of the dystrophin-glycoprotein complex (DGC) that links the intracellular actin cytoskeleton with the extracellular matrix. It is also associated with integrin α7β1, the predominant integrin expressed in skeletal muscle. As a tetraspanin-like protein with four transmembrane spanning domains, SSPN functions as a scaffold to facilitate protein-protein interactions at the cell membrane. Duchenne muscular dystrophy, Becker muscular dystrophy, and X-linked dilated cardiomyopathy are caused by the loss of dystrophin at the muscle cell surface and a concomitant loss of the entire DGC, including SSPN. SSPN overexpression ameliorates Duchenne muscular dystrophy in the mdx murine model, which supports SSPN being a viable therapeutic target. Other rescue studies support SSPN as a biomarker for the proper assembly and membrane expression of the DGC. Highly specific and robust antibodies to SSPN are needed for basic research on the molecular mechanisms of SSPN rescue, pre-clinical studies, and biomarker evaluations in human samples. The development of SSPN antibodies is challenged by the presence of its four transmembrane domains and limited antigenic epitopes. To address the significant barrier presented by limited commercially available antibodies, we aimed to generate a panel of robust SSPN-specific antibodies that can serve as a resource for the research community. We created antibodies to three SSPN protein epitopes, including the intracellular N- and C-termini as well as the large extracellular loop (LEL) between transmembrane domains 3 and 4. We developed a panel of rabbit antibodies (poly- and monoclonal) against an N-terminal peptide fragment of SSPN. We used several assays to show that the rabbit antibodies recognize mouse SSPN with a high functional affinity and specificity. We developed mouse monoclonal antibodies against the C-terminal peptide and the large extracellular loop of human SSPN. These antibodies are superior to commercially available antibodies and outperform them in various applications, including immunoblotting, indirect immunofluorescence analysis, immunoprecipitation, and an ELISA. These newly developed antibodies will significantly improve the quality and ease of SSPN detection for basic and translational research.
Collapse
Affiliation(s)
- Ekaterina I. Mokhonova
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ravinder Malik
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hafsa Mamsa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jackson Walker
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth M. Gibbs
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rachelle H. Crosbie
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Long AM, Lee G, Demonbreun AR, McNally EM. Extracellular matrix contribution to disease progression and dysfunction in myopathy. Am J Physiol Cell Physiol 2023; 325:C1244-C1251. [PMID: 37746696 PMCID: PMC10855263 DOI: 10.1152/ajpcell.00182.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Myopathic processes affect skeletal muscle and heart. In the muscular dystrophies, which are a subset of myopathies, muscle cells are gradually replaced by fibrosis and fat, impairing muscle function as well as regeneration and repair. In addition to skeletal muscle, these genetic disorders often also affect the heart, where fibrofatty infiltration progressively accumulates in the myocardium, impairing heart function. Although considerable effort has focused on gene-corrective and gene-replacement approaches to stabilize myofibers and cardiomyocytes, the continual and ongoing deposition of extracellular matrix itself contributes to tissue and organ dysfunction. Transcriptomic and proteomic profiling, along with high-resolution imaging and biophysical measurements, have been applied to define extracellular matrix components and their role in contributing to cardiac and skeletal muscle weakness. More recently, decellularization methods have been adapted to an on-slide format to preserve the spatial geography of the extracellular matrix, allowing new insight into matrix remodeling and its direct role in suppressing regeneration in muscle. This review highlights recent literature with focus on the extracellular matrix and molecular mechanisms that contribute to muscle and heart fibrotic disorders. We will also compare how the myopathic matrix differs from healthy matrix, emphasizing how the pathological matrix contributes to disease.
Collapse
Affiliation(s)
- Ashlee M Long
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - GaHyun Lee
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| |
Collapse
|
4
|
High-Throughput Screening to Identify Modulators of Sarcospan. Methods Mol Biol 2022; 2587:479-493. [PMID: 36401045 DOI: 10.1007/978-1-0716-2772-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High-throughput screening enables the discovery of disease-modifying small molecules. Here, we describe the development of a scalable, cell-based assay to screen for small molecules that modulate sarcospan for the treatment of Duchenne muscular dystrophy. We detail the hit validation pipeline, which includes secondary screening, gene/protein quantification, and an in vitro membrane stability assay.
Collapse
|
5
|
dos Santos PK, Sigoli E, Bragança LJ, Cornachione AS. The Musculoskeletal Involvement After Mild to Moderate COVID-19 Infection. Front Physiol 2022; 13:813924. [PMID: 35492595 PMCID: PMC9040683 DOI: 10.3389/fphys.2022.813924] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
COVID-19, a disease caused by the novel coronavirus SARS-CoV-2, has been drastically affecting the daily lives of millions of people. COVID-19 is described as a multiorgan disease that affects not only the respiratory tract of infected individuals, but it has considerable effects on the musculoskeletal system, causing excessive fatigue, myalgia, arthralgia, muscle weakness and skeletal muscle damage. These symptoms can persist for months, decreasing the quality of life of numerous individuals. Curiously, most studies in the scientific literature focus on patients who were hospitalized due to SARS-CoV-2 infection and little is known about the mechanism of action of COVID-19 on skeletal muscles, especially of individuals who had the mild to moderate forms of the disease (non-hospitalized patients). In this review, we focus on the current knowledge about the musculoskeletal system in COVID-19, highlighting the lack of researches investigating the mild to moderate cases of infection and pointing out why it is essential to care for these patients. Also, we will comment about the need of more experimental data to assess the musculoskeletal manifestations on COVID-19-positive individuals.
Collapse
Affiliation(s)
- Patty K. dos Santos
- Muscle Physiology and Biophysics Laboratory, Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | | | | | - Anabelle S. Cornachione
- Muscle Physiology and Biophysics Laboratory, Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
6
|
Mamsa H, Stark RL, Shin KM, Beedle AM, Crosbie RH. Sarcospan increases laminin-binding capacity of α-dystroglycan to ameliorate DMD independent of Galgt2. Hum Mol Genet 2022; 31:718-732. [PMID: 34581784 PMCID: PMC8895749 DOI: 10.1093/hmg/ddab276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/14/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), mutations in dystrophin result in a loss of the dystrophin-glycoprotein complex (DGC) at the myofiber membrane, which functions to connect the extracellular matrix with the intracellular actin cytoskeleton. The dystroglycan subcomplex interacts with dystrophin and spans the sarcolemma where its extensive carbohydrates (matriglycan and CT2 glycan) directly interact with the extracellular matrix. In the current manuscript, we show that sarcospan overexpression enhances the laminin-binding capacity of dystroglycan in DMD muscle by increasing matriglycan glycosylation of α-dystroglycan. Furthermore, we find that this modification is not affected by loss of Galgt2, a glycotransferase, which catalyzes the CT2 glycan. Our findings reveal that the matriglycan carbohydrates, and not the CT2 glycan, are necessary for sarcospan-mediated amelioration of DMD. Overexpression of Galgt2 in the DMD mdx murine model prevents muscle pathology by increasing CT2 modified α-dystroglycan. Galgt2 also increases expression of utrophin, which compensates for the loss of dystrophin in DMD muscle. We found that combined loss of Galgt2 and dystrophin reduced utrophin expression; however, it did not interfere with sarcospan rescue of disease. These data reveal a partial dependence of sarcospan on Galgt2 for utrophin upregulation. In addition, sarcospan alters the cross-talk between the adhesion complexes by decreasing the association of integrin β1D with dystroglycan complexes. In conclusion, sarcospan functions to re-wire the cell to matrix connections by strengthening the cellular adhesion and signaling, which, in turn, increases the resilience of the myofiber membrane.
Collapse
Affiliation(s)
- Hafsa Mamsa
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
| | - Rachelle L Stark
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
| | - Kara M Shin
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
| | - Aaron M Beedle
- Department of Pharmaceutical Sciences, Binghamton University State University of New York, New York 13902, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology & Physiology, University of California, Los Angeles 90095, USA
- Broad Stem Cell Institute, University of California, Los Angeles 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
- Molecular Biology Institute, University of California, Los Angeles 90095, USA
| |
Collapse
|
7
|
Mello MG, Westerhausen MT, Singh P, Doble PA, Wanagat J, Bishop DP. Assessing the reproducibility of labelled antibody binding in quantitative multiplexed immuno-mass spectrometry imaging. Anal Bioanal Chem 2021; 413:5509-5516. [PMID: 34304281 DOI: 10.1007/s00216-021-03536-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 11/27/2022]
Abstract
Immuno-mass spectrometry imaging (iMSI) uses laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to determine the spatial expression of biomolecules in tissue sections following immunolabelling with antibodies conjugated to a metal reporter. As with all immunolabelling techniques, the binding efficiency of multiplexed staining can be affected by a number of factors including epitope blocking and other forms of steric hindrance. To date, the effects on the binding of metal-conjugated antibodies to their epitopes in a multiplexed analysis have yet to be quantitatively explored by iMSI. Here we describe a protocol to investigate the effects of multiplexing on reproducible binding using the muscle proteins, dystrophin, sarcospan, and myosin as a model, with antibodies conjugated with Maxpar® reagents before histological application to murine quadriceps sections using standard immunolabelling protocols and imaging with LA-ICP-MS. The antibodies were each individually applied to eight sections, and multiplexed to another eight sections. The average concentrations of the lanthanide analytes were determined, before statistical analyses found there was no significant difference between the individual and multiplexed application of the antibodies. These analyses provide a framework for ensuring reproducibility of antibody binding during multiplexed iMSI, which will allow quantitative exploration of protein-protein interactions and provide a greater understanding of fundamental biological processes during healthy and diseased states.
Collapse
Affiliation(s)
- Monique G Mello
- Atomic Medicine Initiative, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - Mika T Westerhausen
- Atomic Medicine Initiative, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - Prashina Singh
- Atomic Medicine Initiative, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - Philip A Doble
- Atomic Medicine Initiative, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| | - David P Bishop
- Atomic Medicine Initiative, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
8
|
Cellular pathology of the human heart in Duchenne muscular dystrophy (DMD): lessons learned from in vitro modeling. Pflugers Arch 2021; 473:1099-1115. [DOI: 10.1007/s00424-021-02589-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
|
9
|
Lü Z, Gong L, Ren Y, Chen Y, Wang Z, Liu L, Li H, Chen X, Li Z, Luo H, Jiang H, Zeng Y, Wang Y, Wang K, Zhang C, Jiang H, Wan W, Qin Y, Zhang J, Zhu L, Shi W, He S, Mao B, Wang W, Kong X, Li Y. Large-scale sequencing of flatfish genomes provides insights into the polyphyletic origin of their specialized body plan. Nat Genet 2021; 53:742-751. [PMID: 33875864 PMCID: PMC8110480 DOI: 10.1038/s41588-021-00836-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/05/2021] [Indexed: 11/09/2022]
Abstract
The evolutionary and genetic origins of the specialized body plan of flatfish are largely unclear. We analyzed the genomes of 11 flatfish species representing 9 of the 14 Pleuronectiforme families and conclude that Pleuronectoidei and Psettodoidei do not form a monophyletic group, suggesting independent origins from different percoid ancestors. Genomic and transcriptomic data indicate that genes related to WNT and retinoic acid pathways, hampered musculature and reduced lipids might have functioned in the evolution of the specialized body plan of Pleuronectoidei. Evolution of Psettodoidei involved similar but not identical genes. Our work provides valuable resources and insights for understanding the genetic origins of the unusual body plan of flatfishes.
Collapse
Affiliation(s)
- Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Yandong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yongjiu Chen
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xianqing Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhenzhu Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Hairong Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hui Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yifan Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Chen Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Haifeng Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wenting Wan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yanli Qin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jianshe Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China
| | - Liang Zhu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wei Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Shunping He
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Xiaoyu Kong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
10
|
The PKA-p38MAPK-NFAT5-Organic Osmolytes Pathway in Duchenne Muscular Dystrophy: From Essential Player in Osmotic Homeostasis, Inflammation and Skeletal Muscle Regeneration to Therapeutic Target. Biomedicines 2021; 9:biomedicines9040350. [PMID: 33808305 PMCID: PMC8066813 DOI: 10.3390/biomedicines9040350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), the absence of dystrophin from the dystrophin-associated protein complex (DAPC) causes muscle membrane instability, which leads to myofiber necrosis, hampered regeneration, and chronic inflammation. The resulting disabled DAPC-associated cellular pathways have been described both at the molecular and the therapeutical level, with the Toll-like receptor nuclear factor kappa-light-chain-enhancer of activated B cells pathway (NF-ƘB), Janus kinase/signal transducer and activator of transcription proteins, and the transforming growth factor-β pathways receiving the most attention. In this review, we specifically focus on the protein kinase A/ mitogen-activated protein kinase/nuclear factor of activated T-cells 5/organic osmolytes (PKA-p38MAPK-NFAT5-organic osmolytes) pathway. This pathway plays an important role in osmotic homeostasis essential to normal cell physiology via its regulation of the influx/efflux of organic osmolytes. Besides, NFAT5 plays an essential role in cell survival under hyperosmolar conditions, in skeletal muscle regeneration, and in tissue inflammation, closely interacting with the master regulator of inflammation NF-ƘB. We describe the involvement of the PKA-p38MAPK-NFAT5-organic osmolytes pathway in DMD pathophysiology and provide a clear overview of which therapeutic molecules could be of potential benefit to DMD patients. We conclude that modulation of the PKA-p38MAPK-NFAT5-organic osmolytes pathway could be developed as supportive treatment for DMD in conjunction with genetic therapy.
Collapse
|
11
|
Dowling P, Gargan S, Murphy S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. The Dystrophin Node as Integrator of Cytoskeletal Organization, Lateral Force Transmission, Fiber Stability and Cellular Signaling in Skeletal Muscle. Proteomes 2021; 9:9. [PMID: 33540575 PMCID: PMC7931087 DOI: 10.3390/proteomes9010009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
The systematic bioanalytical characterization of the protein product of the DMD gene, which is defective in the pediatric disorder Duchenne muscular dystrophy, led to the discovery of the membrane cytoskeletal protein dystrophin. Its full-length muscle isoform Dp427-M is tightly linked to a sarcolemma-associated complex consisting of dystroglycans, sarcoglyans, sarcospan, dystrobrevins and syntrophins. Besides these core members of the dystrophin-glycoprotein complex, the wider dystrophin-associated network includes key proteins belonging to the intracellular cytoskeleton and microtubular assembly, the basal lamina and extracellular matrix, various plasma membrane proteins and cytosolic components. Here, we review the central role of the dystrophin complex as a master node in muscle fibers that integrates cytoskeletal organization and cellular signaling at the muscle periphery, as well as providing sarcolemmal stabilization and contractile force transmission to the extracellular region. The combination of optimized tissue extraction, subcellular fractionation, advanced protein co-purification strategies, immunoprecipitation, liquid chromatography and two-dimensional gel electrophoresis with modern mass spectrometry-based proteomics has confirmed the composition of the core dystrophin complex at the sarcolemma membrane. Importantly, these biochemical and mass spectrometric surveys have identified additional members of the wider dystrophin network including biglycan, cavin, synemin, desmoglein, tubulin, plakoglobin, cytokeratin and a variety of signaling proteins and ion channels.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| | - Sandra Murphy
- Newcastle Fibrosis Research Group, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE24HH, UK;
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, University of Bonn, D53113 Bonn, Germany; (M.Z.); (H.S.)
| | - Hemmen Sabir
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, University of Bonn, D53113 Bonn, Germany; (M.Z.); (H.S.)
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
12
|
Moore TM, Lin AJ, Strumwasser AR, Cory K, Whitney K, Ho T, Ho T, Lee JL, Rucker DH, Nguyen CQ, Yackly A, Mahata SK, Wanagat J, Stiles L, Turcotte LP, Crosbie RH, Zhou Z. Mitochondrial Dysfunction Is an Early Consequence of Partial or Complete Dystrophin Loss in mdx Mice. Front Physiol 2020; 11:690. [PMID: 32636760 PMCID: PMC7317021 DOI: 10.3389/fphys.2020.00690] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by rapid wasting of skeletal muscle. Mitochondrial dysfunction is a well-known pathological feature of DMD. However, whether mitochondrial dysfunction occurs before muscle fiber damage in DMD pathology is not well known. Furthermore, the impact upon heterozygous female mdx carriers (mdx/+), who display dystrophin mosaicism, has received little attention. We hypothesized that dystrophin deletion leads to mitochondrial dysfunction, and that this may occur before myofiber necrosis. As a secondary complication to mitochondrial dysfunction, we also hypothesized metabolic abnormalities prior to the onset of muscle damage. In this study, we detected aberrant mitochondrial morphology, reduced cristae number, and large mitochondrial vacuoles from both male and female mdx mice prior to the onset of muscle damage. Furthermore, we systematically characterized mitochondria during disease progression starting before the onset of muscle damage, noting additional changes in mitochondrial DNA copy number and regulators of mitochondrial size. We further detected mild metabolic and mitochondrial impairments in female mdx carrier mice that were exacerbated with high-fat diet feeding. Lastly, inhibition of the strong autophagic program observed in adolescent mdx male mice via administration of the autophagy inhibitor leupeptin did not improve skeletal muscle pathology. These results are in line with previous data and suggest that before the onset of myofiber necrosis, mitochondrial and metabolic abnormalities are present within the mdx mouse.
Collapse
Affiliation(s)
- Timothy M. Moore
- Department of Biological Sciences, Dana & David Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amanda J. Lin
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kevin Cory
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kate Whitney
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Theodore Ho
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Timothy Ho
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph L. Lee
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel H. Rucker
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christina Q. Nguyen
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aidan Yackly
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sushil K. Mahata
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Linsey Stiles
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lorraine P. Turcotte
- Department of Biological Sciences, Dana & David Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Rachelle H. Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
Xu X, Deobagkar-Lele M, Bull KR, Crockford TL, Mead AJ, Cribbs AP, Sims D, Anzilotti C, Cornall RJ. An ontogenetic switch drives the positive and negative selection of B cells. Proc Natl Acad Sci U S A 2020; 117:3718-3727. [PMID: 32019891 PMCID: PMC7035474 DOI: 10.1073/pnas.1915247117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Developing B cells can be positively or negatively selected by self-antigens, but the mechanisms that determine these outcomes are incompletely understood. Here, we show that a B cell intrinsic switch between positive and negative selection during ontogeny is determined by a change from Lin28b to let-7 gene expression. Ectopic expression of a Lin28b transgene in murine B cells restored the positive selection of autoreactive B-1 B cells by self-antigen in adult bone marrow. Analysis of antigen-specific immature B cells in early and late ontogeny identified Lin28b-dependent genes associated with B-1 B cell development, including Arid3a and Bhleh41, and Lin28b-independent effects are associated with the presence or absence of self-antigen. These findings identify cell intrinsic and extrinsic determinants of B cell fate during ontogeny and reconcile lineage and selection theories of B cell development. They explain how changes in the balance of positive and negative selection may be able to adapt to meet the immunological needs of an individual during its lifetime.
Collapse
Affiliation(s)
- Xijin Xu
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Mukta Deobagkar-Lele
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Katherine R Bull
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Tanya L Crockford
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Adam J Mead
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Adam P Cribbs
- Medical Research Council, Weatherall Institute of Molecular Medicine, Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - David Sims
- Medical Research Council, Weatherall Institute of Molecular Medicine, Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Consuelo Anzilotti
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Richard J Cornall
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom;
| |
Collapse
|
14
|
Shu C, Kaxon-Rupp AN, Collado JR, Damoiseaux R, Crosbie RH. Development of a high-throughput screen to identify small molecule enhancers of sarcospan for the treatment of Duchenne muscular dystrophy. Skelet Muscle 2019; 9:32. [PMID: 31831063 PMCID: PMC6907331 DOI: 10.1186/s13395-019-0218-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is caused by loss of sarcolemma connection to the extracellular matrix. Transgenic overexpression of the transmembrane protein sarcospan (SSPN) in the DMD mdx mouse model significantly reduces disease pathology by restoring membrane adhesion. Identifying SSPN-based therapies has the potential to benefit patients with DMD and other forms of muscular dystrophies caused by deficits in muscle cell adhesion. METHODS Standard cloning methods were used to generate C2C12 myoblasts stably transfected with a fluorescence reporter for human SSPN promoter activity. Assay development and screening were performed in a core facility using liquid handlers and imaging systems specialized for use with a 384-well microplate format. Drug-treated cells were analyzed for target gene expression using quantitative PCR and target protein expression using immunoblotting. RESULTS We investigated the gene expression profiles of SSPN and its associated proteins during myoblast differentiation into myotubes, revealing an increase in expression after 3 days of differentiation. We created C2C12 muscle cells expressing an EGFP reporter for SSPN promoter activity and observed a comparable increase in reporter levels during differentiation. Assay conditions for high-throughput screening were optimized for a 384-well microplate format and a high-content imager for the visualization of reporter levels. We conducted a screen of 3200 compounds and identified seven hits, which include an overrepresentation of L-type calcium channel antagonists, suggesting that SSPN gene activity is sensitive to calcium. Further validation of a select hit revealed that the calcium channel inhibitor felodipine increased SSPN transcript and protein levels in both wild-type and dystrophin-deficient myotubes, without increasing differentiation. CONCLUSIONS We developed a stable muscle cell line containing the promoter region of the human SSPN protein fused to a fluorescent reporter. Using the reporter cells, we created and validated a scalable, cell-based assay that is able to identify compounds that increase SSPN promoter reporter, transcript, and protein levels in wild-type and dystrophin-deficient muscle cells.
Collapse
Affiliation(s)
- Cynthia Shu
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, USA.,Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.,Center for Duchenne Muscular Dystrophy, University of California Los Angeles, Los Angeles, USA
| | - Ariana N Kaxon-Rupp
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
| | - Judd R Collado
- Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA
| | - Robert Damoiseaux
- Department of Molecular and Medicinal Pharmacology, University of California Los Angeles, Los Angeles, USA.,California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Rachelle H Crosbie
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, USA. .,Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA. .,Center for Duchenne Muscular Dystrophy, University of California Los Angeles, Los Angeles, USA. .,Department of Neurology David Geffen School of Medicine, University of California Los Angeles, 610 Charles E. Young Drive East, Terasaki Life Sciences Building, Los Angeles, CA, 90095, USA.
| |
Collapse
|
15
|
Abstract
Dystrophin is the largest protein isoform (427 kDa) expressed from the gene defective in Duchenne muscular dystrophy, a lethal muscle-wasting and genetically inherited disease. Dystrophin, localized within a cytoplasmic lattice termed costameres, connects the intracellular cytoskeleton of a myofiber through the cell membrane (sarcolemma) to the surrounding extracellular matrix. In spite of its mechanical regulation roles in stabilizing the sarcolemma during muscle contraction, the underlying molecular mechanism is still elusive. Here, we systematically investigated the mechanical stability and kinetics of the force-bearing central domain of human dystrophin that contains 24 spectrin repeats using magnetic tweezers. We show that the stochastic unfolding and refolding of central domain of dystrophin is able to keep the forces below 25 pN over a significant length change up to ∼800 nm in physiological level of pulling speeds. These results suggest that dystrophin may serve as a molecular shock absorber that defines the physiological level of force in the dystrophin-mediated force-transmission pathway during muscle contraction/stretch, thereby stabilizing the sarcolemma.
Collapse
Affiliation(s)
- Shimin Le
- Department of Physics, National University of Singapore, Singapore, 117551
| | - Miao Yu
- Mechanobiology Institute, National University of Singapore, Singapore, 117411
| | - Ladislav Hovan
- Mechanobiology Institute, National University of Singapore, Singapore, 117411
| | - Zhihai Zhao
- Department of Physics, National University of Singapore, Singapore, 117551
| | - James Ervasti
- College of Biological Sciences, University of Minnesota, MN, USA, 55455
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore, 117551
- Mechanobiology Institute, National University of Singapore, Singapore, 117411
- Centre for BioImaging Sciences, National University of Singapore, Singapore, 117546
| |
Collapse
|
16
|
Keller M, Klös M, Rohde K, Krüger J, Kurze T, Dietrich A, Schön MR, Gärtner D, Lohmann T, Dreßler M, Stumvoll M, Blüher M, Kovacs P, Böttcher Y. DNA methylation of SSPN is linked to adipose tissue distribution and glucose metabolism. FASEB J 2018; 32:fj201800528R. [PMID: 29932866 DOI: 10.1096/fj.201800528r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
DNA methylation is a crucial epigenetic mechanism in obesity and fat distribution. We explored the Sarcospan ( SSPN) gene locus by using genome-wide data sets comprising methylation and expression data, pyrosequencing analysis in the promoter region, and genetic analysis of an SNP variant rs718314, which was previously reported to associate with waist-to-hip ratio. We found that DNA methylation influences several clinical variables related to fat distribution and glucose metabolism, while SSPN mRNA levels showed directionally opposite effects on these traits. Complete DNA methylation of the SSPN promoter construct suppressed the gene expression of firefly luciferase in MCF7 cells. Moreover, rs718314 was associated with waist and with DNA methylation at CpG sites. Our data strongly support the role of the SSPN locus in body fat composition and glucose homeostasis, and suggest that this is most likely the result of changes in DNA methylation of SSPN in adipose tissue.-Keller, M., Klös, M., Rohde, K., Krüger, J., Kurze, T., Dietrich, A., Schön, M. R., Gärtner, D., Lohmann, T., Dreßler, M., Stumvoll, M., Blüher, M., Kovacs, P., Böttcher, Y. DNA methylation of SSPN is linked to adipose tissue distribution and glucose metabolism.
Collapse
Affiliation(s)
- Maria Keller
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Matthias Klös
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Kerstin Rohde
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Institute of Clinical Medicine, Akershus University Hospital, University of Oslo, Lørenskog, Norway
| | | | - Tabea Kurze
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Arne Dietrich
- Department of Surgery, University of Leipzig, Leipzig, Germany
| | - Michael R Schön
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, Karlsruhe, Germany; and
| | - Daniel Gärtner
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, Karlsruhe, Germany; and
| | | | | | | | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Yvonne Böttcher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Institute of Clinical Medicine, Akershus University Hospital, University of Oslo, Lørenskog, Norway
| |
Collapse
|
17
|
Mata López S, Hammond JJ, Rigsby MB, Balog-Alvarez CJ, Kornegay JN, Nghiem PP. A novel canine model for Duchenne muscular dystrophy (DMD): single nucleotide deletion in DMD gene exon 20. Skelet Muscle 2018; 8:16. [PMID: 29843823 PMCID: PMC5975675 DOI: 10.1186/s13395-018-0162-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Background Boys with Duchenne muscular dystrophy (DMD) have DMD gene mutations, with associated loss of the dystrophin protein and progressive muscle degeneration and weakness. Corticosteroids and palliative support are currently the best treatment options. The long-term benefits of recently approved compounds such as eteplirsen and ataluren remain to be seen. Dogs with naturally occurring dystrophinopathies show progressive disease akin to that of DMD. Accordingly, canine DMD models are useful for studies of pathogenesis and preclinical therapy development. A dystrophin-deficient, male border collie dog was evaluated at the age of 5 months for progressive muscle weakness and dysphagia. Case presentation Dramatically increased serum creatine kinase levels (41,520 U/L; normal range 59–895 U/L) were seen on a biochemistry panel. Histopathologic changes characteristic of dystrophinopathy were seen. Dystrophin was absent in the skeletal muscle on immunofluorescence microscopy and western blot. Whole genome sequencing, polymerase chain reaction, and Sanger sequencing revealed a frameshift, single nucleotide deletion in canine DMD exon 20, position 27,626,466 (c.2841delT mRNA), resulting in a stop codon six nucleotides downstream. Semen was archived for future line perpetuation. Conclusions This spontaneous canine dystrophinopathy occurred due to a novel mutation in the minor DMD mutation hotspot (between exons 2 through 20). Perpetuating this line could allow for preclinical testing of genetic therapies targeted to this area of the DMD gene. Electronic supplementary material The online version of this article (10.1186/s13395-018-0162-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Mata López
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - James J Hammond
- Department of Neurology and Neurosurgery, Pieper Memorial Veterinary Center, Middletown, CT, 06457, USA
| | - Madison B Rigsby
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Cynthia J Balog-Alvarez
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Peter P Nghiem
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA.
| |
Collapse
|
18
|
Leyva-Leyva M, Sandoval A, Felix R, González-Ramírez R. Biochemical and Functional Interplay Between Ion Channels and the Components of the Dystrophin-Associated Glycoprotein Complex. J Membr Biol 2018; 251:535-550. [PMID: 29779049 DOI: 10.1007/s00232-018-0036-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
Dystrophin is a cytoskeleton-linked membrane protein that binds to a larger multiprotein assembly called the dystrophin-associated glycoprotein complex (DGC). The deficiency of dystrophin or the components of the DGC results in the loss of connection between the cytoskeleton and the extracellular matrix with significant pathophysiological implications in skeletal and cardiac muscle as well as in the nervous system. Although the DGC plays an important role in maintaining membrane stability, it can also be considered as a versatile and flexible molecular complex that contribute to the cellular organization and dynamics of a variety of proteins at specific locations in the plasma membrane. This review deals with the role of the DGC in transmembrane signaling by forming supramolecular assemblies for regulating ion channel localization and activity. These interactions are relevant for cell homeostasis, and its alterations may play a significant role in the etiology and pathogenesis of various disorders affecting muscle and nerve function.
Collapse
Affiliation(s)
- Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Alejandro Sandoval
- Faculty of Superior Studies Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| | - Ricardo Felix
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico.
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico.
| |
Collapse
|
19
|
Humanizing the mdx mouse model of DMD: the long and the short of it. NPJ Regen Med 2018; 3:4. [PMID: 29479480 PMCID: PMC5816599 DOI: 10.1038/s41536-018-0045-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 12/26/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common fatal heritable myopathy, with cardiorespiratory failure occurring by the third decade of life. There is no specific treatment for DMD cardiomyopathy, in large part due to a lack of understanding of the mechanisms underlying the cardiac failure. Mdx mice, which have the same dystrophin mutation as human patients, are of limited use, as they do not develop early dilated cardiomyopathy as seen in patients. Here we summarize the usefulness of the various commonly used DMD mouse models, highlight a model with shortened telomeres like humans, and identify directions that warrant further investigation.
Collapse
|
20
|
Gawor M, Prószyński TJ. The molecular cross talk of the dystrophin-glycoprotein complex. Ann N Y Acad Sci 2017; 1412:62-72. [DOI: 10.1111/nyas.13500] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Marta Gawor
- Laboratory of Synaptogenesis; Nencki Institute of Experimental Biology; Polish Academy of Sciences Warsaw Poland
| | - Tomasz J. Prószyński
- Laboratory of Synaptogenesis; Nencki Institute of Experimental Biology; Polish Academy of Sciences Warsaw Poland
| |
Collapse
|
21
|
Bhat HF, Mir SS, Dar KB, Bhat ZF, Shah RA, Ganai NA. ABC of multifaceted dystrophin glycoprotein complex (DGC). J Cell Physiol 2017; 233:5142-5159. [DOI: 10.1002/jcp.25982] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/01/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Hina F. Bhat
- Division of BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir SKUAST‐KShuhama, SrinagarJammu and KashmirIndia
| | - Saima S. Mir
- Department of BiotechnologyUniversity of KashmirHazratbal, SrinagarJammu and KashmirIndia
| | - Khalid B. Dar
- Department of BiochemistryUniversity of KashmirHazratbal, SrinagarJammu and KashmirIndia
| | - Zuhaib F. Bhat
- Division of Livestock Products and TechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST‐J), R.S. PoraJammuJammu and KashmirIndia
| | - Riaz A. Shah
- Division of BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir SKUAST‐KShuhama, SrinagarJammu and KashmirIndia
| | - Nazir A. Ganai
- Division of BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir SKUAST‐KShuhama, SrinagarJammu and KashmirIndia
| |
Collapse
|
22
|
Nance ME, Hakim CH, Yang NN, Duan D. Nanotherapy for Duchenne muscular dystrophy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28398005 DOI: 10.1002/wnan.1472] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/09/2017] [Accepted: 03/11/2017] [Indexed: 12/14/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked childhood muscle wasting disease caused by mutations in the dystrophin gene. Nanobiotechnology-based therapies (such as synthetic nanoparticles and naturally existing viral and nonviral nanoparticles) hold great promise to replace and repair the mutated dystrophin gene and significantly change the disease course. While a majority of DMD nanotherapies are still in early preclinical development, several [such as adeno-associated virus (AAV)-mediated systemic micro-dystrophin gene therapy] are advancing for phase I clinical trials. Recent regulatory approval of Ataluren (a nonsense mutation read-through chemical) in Europe and Exondys51 (an exon-skipping antisense oligonucleotide drug) in the United States shall offer critical insight in how to move DMD nanotherapy to human patients. Progress in novel, optimized nano-delivery systems may further improve emerging molecular therapeutic modalities for DMD. Despite these progresses, DMD nanotherapy faces a number of unique challenges. Specifically, the dystrophin gene is one of the largest genes in the genome while nanoparticles have an inherent size limitation per definition. Furthermore, muscle is the largest tissue in the body and accounts for 40% of the body mass. How to achieve efficient bodywide muscle targeting in human patients with nanomedication remains a significant translational hurdle. New creative approaches in the design of the miniature micro-dystrophin gene, engineering of muscle-specific synthetic AAV capsids, and novel nanoparticle-mediated exon-skipping are likely to result in major breakthroughs in DMD therapy. WIREs Nanomed Nanobiotechnol 2018, 10:e1472. doi: 10.1002/wnan.1472 This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Michael E Nance
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Chady H Hakim
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Dongsheng Duan
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,Department of Neurology, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
23
|
Manole E, Bastian AE, Butoianu N, Goebel HH. Myositis non-inflammatory mechanisms: An up-dated review. J Immunoassay Immunochem 2017; 38:115-126. [DOI: 10.1080/15321819.2017.1298525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Emilia Manole
- “Victor Babes” National Institute of Pathology, Bucharest, Romania
- Research Center, Colentina Clinical Hospital, Bucharest, Romania
| | - Alexandra E. Bastian
- Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Niculina Butoianu
- Pediatric Neurology Department, Clinical Hospital “Prof. Dr. Al. Obregia”, Bucharest, Romania
| | - Hans H. Goebel
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
24
|
Deletion of the Ste20-like kinase SLK in skeletal muscle results in a progressive myopathy and muscle weakness. Skelet Muscle 2017; 7:3. [PMID: 28153048 PMCID: PMC5288853 DOI: 10.1186/s13395-016-0119-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022] Open
Abstract
Background The Ste20-like kinase, SLK, plays an important role in cell proliferation and cytoskeletal remodeling. In fibroblasts, SLK has been shown to respond to FAK/Src signaling and regulate focal adhesion turnover through Paxillin phosphorylation. Full-length SLK has also been shown to be essential for embryonic development. In myoblasts, the overexpression of a dominant negative SLK is sufficient to block myoblast fusion. Methods In this study, we crossed the Myf5-Cre mouse model with our conditional SLK knockout model to delete SLK in skeletal muscle. A thorough analysis of skeletal muscle tissue was undertaken in order to identify defects in muscle development caused by the lack of SLK. Isometric force analysis was performed on adult knockout mice and compared to age-matched wild-type mice. Furthermore, cardiotoxin injections were performed followed by immunohistochemistry for myogenic markers to assess the efficiency muscle regeneration following SLK deletion. Results We show here that early deletion of SLK from the myogenic lineage does not markedly impair skeletal muscle development but delays the regenerative process. Interestingly, adult mice (~6 months) display an increase in the proportion of central nuclei and increased p38 activation. Furthermore, mice as young as 3 months old present with decreased force generation, suggesting that the loss of SLK impairs myofiber stability and function. Assessment of structural components revealed aberrant localization of focal adhesion proteins, such as FAK and paxillin. Our data show that the loss of SLK results in unstable myofibers resulting in a progressive myopathy. Additionally, the loss of SLK resulted in a delay in muscle regeneration following cardiotoxin injections. Conclusions Our results show that SLK is dispensable for muscle development and regeneration but is required for myofiber stability and optimal force generation. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0119-1) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
|
26
|
Abstract
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. It is caused by mutations of the DMD gene, leading to progressive muscle weakness, loss of independent ambulation by early teens, and premature death due to cardiorespiratory complications. The diagnosis can usually be made after careful review of the history and examination of affected boys presenting with developmental delay, proximal weakness, and elevated serum creatine kinase, plus confirmation by muscle biopsy or genetic testing. Precise characterization of the DMD mutation is important for genetic counseling and individualized treatment. Current standard of care includes the use of corticosteroids to prolong ambulation and to delay the onset of secondary complications. Early use of cardioprotective agents, noninvasive positive pressure ventilation, and other supportive strategies has improved the life expectancy and health-related quality of life for many young adults with DMD. New emerging treatment includes viral-mediated microdystrophin gene replacement, exon skipping to restore the reading frame, and nonsense suppression therapy to allow translation and production of a modified dystrophin protein. Other potential therapeutic targets involve upregulation of compensatory proteins, reduction of the inflammatory cascade, and enhancement of muscle regeneration. So far, data from DMD clinical trials have shown limited success in delaying disease progression; unforeseen obstacles included immune response against the generated mini-dystrophin, inconsistent evidence of dystrophin production in muscle biopsies, and failure to demonstrate a significant improvement in the primary outcome measure, as defined by the 6-minute walk test in some studies. The long-term safety and efficacy of emerging treatments will depend on the selection of appropriate clinical end points and sensitive biomarkers to detect meaningful changes in disease progression. Correction of the underlying mutations using new gene-editing technologies and corticosteroid analogs with better safety profiles offers renewed hope for many individuals with DMD and their families.
Collapse
Affiliation(s)
- Jean K Mah
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Abstract
The dystrophin complex stabilizes the plasma membrane of striated muscle cells. Loss of function mutations in the genes encoding dystrophin, or the associated proteins, trigger instability of the plasma membrane, and myofiber loss. Mutations in dystrophin have been extensively cataloged, providing remarkable structure-function correlation between predicted protein structure and clinical outcomes. These data have highlighted dystrophin regions necessary for in vivo function and fueled the design of viral vectors and now, exon skipping approaches for use in dystrophin restoration therapies. However, dystrophin restoration is likely more complex, owing to the role of the dystrophin complex as a broad cytoskeletal integrator. This review will focus on dystrophin restoration, with emphasis on the regions of dystrophin essential for interacting with its associated proteins and discuss the structural implications of these approaches.
Collapse
Affiliation(s)
- Quan Q Gao
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, Chicago, Illinois, USA
| |
Collapse
|
28
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
29
|
Parvatiyar MS, Marshall JL, Nguyen RT, Jordan MC, Richardson VA, Roos KP, Crosbie-Watson RH. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy. J Am Heart Assoc 2015; 4:JAHA.115.002481. [PMID: 26702077 PMCID: PMC4845268 DOI: 10.1161/jaha.115.002481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin‐associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin‐binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. Methods and Results SSPN‐null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β‐adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN‐null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α‐, δ‐, and γ‐subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdxTG) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. Conclusions SSPN regulates sarcolemmal expression of laminin‐binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy.
Collapse
Affiliation(s)
- Michelle S Parvatiyar
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Reginald T Nguyen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.)
| | - Maria C Jordan
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA (M.C.J., K.P.R.)
| | - Vanitra A Richardson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.)
| | - Kenneth P Roos
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA (M.C.J., K.P.R.)
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA (M.S.P., J.L.M., R.T.N., V.A.R., R.H.C.W.) Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA (M.S.P., J.L.M., M.C.J., V.A.R., K.P.R., R.H.C.W.) Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA (R.H.C.W.)
| |
Collapse
|
30
|
Vander Heide RS. Mending a Broken Heart: The Role of Sarcospan in Duchenne Muscular Dystrophy-Associated Cardiomyopathy. J Am Heart Assoc 2015; 4:JAHA.115.002928. [PMID: 26702081 PMCID: PMC4845299 DOI: 10.1161/jaha.115.002928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Richard S Vander Heide
- Department of Pathology, Louisiana State University Health Science Center, New Orleans, LA (R.S.V.H.)
| |
Collapse
|
31
|
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a relatively common inherited disorder caused by defective expression of the protein dystrophin. The most direct approach to treating this disease would be to restore dystrophin production in muscle. Recent progress has greatly increased the prospects for successful gene therapy of DMD, and here we summarize the most promising developments. AREAS COVERED Gene transfer using vectors derived from adeno-associated virus (AAV) has emerged as a promising method to restore dystrophin production in muscles bodywide, and represents a treatment option applicable to all DMD patients. Using information gleaned from PubMed searches of the literature, attendance at scientific conferences and results from our own lab, we provide an overview of the potential for gene therapy of DMD using AAV vectors including a summary of promising developments and issues that need to be resolved prior to large-scale therapeutic implementation. EXPERT OPINION Of the many approaches being pursued to treat DMD and BMD, gene therapy based on AAV-mediated delivery of microdystrophin is the most direct and promising method to treat the cause of the disorder. The major challenges to this approach are ensuring that microdystrophin can be delivered safely and efficiently without eliciting an immune response.
Collapse
Affiliation(s)
- Julian Ramos
- University of Washington, Wellstone Muscular Dystrophy Research Center, Department of Neurology, Seattle, WA, 98195-7720, USA
| | - Jeffrey S Chamberlain
- University of Washington, Wellstone Muscular Dystrophy Research Center, Department of Neurology, Seattle, WA, 98195-7720, USA
| |
Collapse
|
32
|
Von Roemeling CA, Marlow LA, Radisky DC, Rohl A, Larsen HE, Wei J, Sasinowska H, Zhu H, Drake R, Sasinowski M, Tun HW, Copland JA. Functional genomics identifies novel genes essential for clear cell renal cell carcinoma tumor cell proliferation and migration. Oncotarget 2015; 5:5320-34. [PMID: 24979721 PMCID: PMC4170622 DOI: 10.18632/oncotarget.2097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Currently there is a lack of targeted therapies that lead to long-term attenuation or regression of disease in patients with advanced clear cell renal cell carcinoma (ccRCC). Our group has implemented a high-throughput genetic analysis coupled with a high-throughput proliferative screen in order to investigate the genetic contributions of a large cohort of overexpressed genes at the functional level in an effort to better understand factors involved in tumor initiation and progression. Patient gene array analysis identified transcripts that are consistently elevated in patient ccRCC as compared to matched normal renal tissues. This was followed by a high-throughput lentivirus screen, independently targeting 195 overexpressed transcripts identified in the gene array in four ccRCC cell lines. This revealed 31 ‘hits’ that contribute to ccRCC cell proliferation. Many of the hits identified are not only presented in the context of ccRCC for the first time, but several have not been previously linked to cancer. We further characterize the function of a group of hits in tumor cell invasion. Taken together these findings reveal pathways that may be critical in ccRCC tumorigenicity, and identifies novel candidate factors that could serve as targets for therapeutic intervention or diagnostic/prognostic biomarkers for patients with advanced ccRCC.
Collapse
Affiliation(s)
| | - Laura A Marlow
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Austin Rohl
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Hege Ekeberg Larsen
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Johnny Wei
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | | | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Jacksonville, Florida
| | | | | | - Han W Tun
- Division of Hematology and Oncology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| |
Collapse
|
33
|
Goody MF, Sher RB, Henry CA. Hanging on for the ride: adhesion to the extracellular matrix mediates cellular responses in skeletal muscle morphogenesis and disease. Dev Biol 2015; 401:75-91. [PMID: 25592225 DOI: 10.1016/j.ydbio.2015.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
Abstract
Skeletal muscle specification and morphogenesis during early development are critical for normal physiology. In addition to mediating locomotion, skeletal muscle is a secretory organ that contributes to metabolic homeostasis. Muscle is a highly adaptable tissue, as evidenced by the ability to increase muscle cell size and/or number in response to weight bearing exercise. Conversely, muscle wasting can occur during aging (sarcopenia), cancer (cancer cachexia), extended hospital stays (disuse atrophy), and in many genetic diseases collectively known as the muscular dystrophies and myopathies. It is therefore of great interest to understand the cellular and molecular mechanisms that mediate skeletal muscle development and adaptation. Muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction. This process requires carefully orchestrated interactions between cells and their extracellular matrix microenvironment. These interactions are dynamic, allowing muscle cells to sense biophysical, structural, organizational, and/or signaling changes within their microenvironment and respond appropriately. In many musculoskeletal diseases, these cell adhesion interactions are disrupted to such a degree that normal cellular adaptive responses are not sufficient to compensate for accumulating damage. Thus, one major focus of current research is to identify the cell adhesion mechanisms that drive muscle morphogenesis, with the hope that understanding how muscle cell adhesion promotes the intrinsic adaptability of muscle tissue during development may provide insight into potential therapeutic approaches for muscle diseases. Our objectives in this review are to highlight recent studies suggesting conserved roles for cell-extracellular matrix adhesion in vertebrate muscle morphogenesis and cellular adaptive responses in animal models of muscle diseases.
Collapse
Affiliation(s)
- Michelle F Goody
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States
| | - Roger B Sher
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States; Institute for Molecular Biophysics, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
34
|
Marshall JL, Oh J, Chou E, Lee JA, Holmberg J, Burkin DJ, Crosbie-Watson RH. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin. Hum Mol Genet 2014; 24:2011-22. [PMID: 25504048 DOI: 10.1093/hmg/ddu615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in loss of the dystrophin-glycoprotein complex, a laminin receptor that connects the myofiber to its surrounding extracellular matrix. Utrophin, a dystrophin ortholog that is normally localized to the neuromuscular junction, is naturally upregulated in DMD muscle, which partially compensates for the loss of dystrophin. Transgenic overexpression of utrophin causes broad sarcolemma localization of utrophin, restoration of laminin binding and amelioration of disease in the mdx mouse model of DMD. We previously demonstrated that overexpression of sarcospan, a dystrophin- and utrophin-binding protein, ameliorates mdx muscular dystrophy. Sarcospan boosts levels of utrophin to therapeutic levels at the sarcolemma, where attachment to laminin is restored. However, understanding the compensatory mechanism is complicated by concomitant upregulation of α7β1 integrin, which also binds laminin. Similar to the effects of utrophin, transgenic overexpression of α7 integrin prevents DMD disease in mice and is accompanied by increased abundance of utrophin around the extra-synaptic sarcolemma. In order to investigate the mechanisms underlying sarcospan 'rescue' of muscular dystrophy, we created double-knockout mice to test the contributions of utrophin or α7 integrin. We show that sarcospan-mediated amelioration of muscular dystrophy in DMD mice is dependent on the presence of both utrophin and α7β1 integrin, even when they are individually expressed at therapeutic levels. Furthermore, we found that association of sarcospan into laminin-binding complexes is dependent on utrophin and α7β1 integrin.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Jennifer Oh
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Eric Chou
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Joy A Lee
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Johan Holmberg
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy
| | - Dean J Burkin
- Department of Pharmacology, Center for Molecular Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Rachelle H Crosbie-Watson
- Department of Integrative Biology and Physiology, Center for Duchenne Muscular Dystrophy, Molecular Biology Institute, Department of Neurology, University of California, Los Angeles, CA 90095, USA and
| |
Collapse
|
35
|
Townsend D. Finding the sweet spot: assembly and glycosylation of the dystrophin-associated glycoprotein complex. Anat Rec (Hoboken) 2014; 297:1694-705. [PMID: 25125182 PMCID: PMC4135523 DOI: 10.1002/ar.22974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/27/2014] [Indexed: 01/12/2023]
Abstract
The dystrophin-associated glycoprotein complex (DGC) is a collection of glycoproteins that are essential for the normal function of striated muscle and many other tissues. Recent genetic studies have implicated the components of this complex in over a dozen forms of muscular dystrophy. Furthermore, disruption of the DGC has been implicated in many forms of acquired disease. This review aims to summarize the current state of knowledge regarding the processing and assembly of dystrophin-associated proteins with a focus primarily on the dystroglycan heterodimer and the sarcoglycan complex. These proteins form the transmembrane portion of the DGC and undergo a complex multi-step processing with proteolytic cleavage, differential assembly, and both N- and O-glycosylation. The enzymes responsible for this processing and a model describing the sequence and subcellular localization of these events are discussed.
Collapse
Affiliation(s)
- Dewayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
36
|
Dystrophin complex functions as a scaffold for signalling proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:635-42. [DOI: 10.1016/j.bbamem.2013.08.023] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/22/2013] [Accepted: 08/28/2013] [Indexed: 11/23/2022]
|
37
|
Wyatt EJ, Sweeney HL, McNally EM. Meeting Report: New Directions in the Biology and Disease of Skeletal Muscle 2014. J Neuromuscul Dis 2014; 1:197-206. [PMID: 26207203 PMCID: PMC4508866 DOI: 10.3233/jnd-149003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The New Directions in the Biology and Disease of Skeletal Muscle is a scientific meeting, held every other year, with the stated purpose of bringing together scientists, clinicians, industry representatives and patient advocacy groups to disseminate new discovery useful for treatment inherited forms of neuromuscular disease, primarily the muscular dystrophies. This meeting originated as a response the Muscular Dystrophy Care Act in order to provide a venue for the free exchange of information, with the emphasis on unpublished or newly published data. Highlights of this years' meeting included results from early phase clinical trials for Duchenne Muscular Dystrophy, progress in understanding the epigenetic defects in Fascioscapulohumeral Muscular Dystrophy and new mechanisms of muscle membrane repair. The following is a brief report of the highlights from the conference.
Collapse
Affiliation(s)
- Eugene J Wyatt
- Department of Medicine, The University of Chicago, Chicago, IL USA
| | - H Lee Sweeney
- Department of Physiology, The University of Pennsylvania, Philadelphia, PA USA
| | - Elizabeth M McNally
- Department of Medicine, The University of Chicago, Chicago, IL USA ; Department of Human Genetics, The University of Chicago, Chicago, IL USA
| |
Collapse
|
38
|
Van Ry PM, Minogue P, Hodges BL, Burkin DJ. Laminin-111 improves muscle repair in a mouse model of merosin-deficient congenital muscular dystrophy. Hum Mol Genet 2013; 23:383-96. [PMID: 24009313 DOI: 10.1093/hmg/ddt428] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a severe and fatal muscle-wasting disease with no cure. MDC1A patients and the dy(W-/-) mouse model exhibit severe muscle weakness, demyelinating neuropathy, failed muscle regeneration and premature death. We have recently shown that laminin-111, a form of laminin found in embryonic skeletal muscle, can substitute for the loss of laminin-211/221 and prevent muscle disease progression in the dy(W-/-) mouse model. What is unclear from these studies is whether laminin-111 can restore failed regeneration to laminin-α2-deficient muscle. To investigate the potential of laminin-111 protein therapy to improve muscle regeneration, laminin-111 or phosphate-buffered saline-treated laminin-α2-deficient muscle was damaged with cardiotoxin and muscle regeneration quantified. Our results show laminin-111 treatment promoted an increase in myofiber size and number, and an increased expression of α7β1 integrin, Pax7, myogenin and embryonic myosin heavy chain, indicating a restoration of the muscle regenerative program. Together, our results show laminin-111 restores muscle regeneration to laminin-α2-deficient muscle and further supports laminin-111 protein as a therapy for the treatment of MDC1A.
Collapse
Affiliation(s)
- Pam M Van Ry
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA and
| | | | | | | |
Collapse
|
39
|
Marshall JL, Kwok Y, McMorran BJ, Baum LG, Crosbie-Watson RH. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy. FEBS J 2013; 280:4210-29. [PMID: 23601082 DOI: 10.1111/febs.12295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/12/2013] [Indexed: 12/23/2022]
Abstract
Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|