1
|
Jiang L, Liu C, Fan Y, Wu Q, Ye X, Li Q, Wan Y, Sun Y, Zou L, Xiang D, Lv Z. Dynamic transcriptome analysis suggests the key genes regulating seed development and filling in Tartary buckwheat (Fagopyrum tataricum Garetn.). Front Genet 2022; 13:990412. [PMID: 36072657 PMCID: PMC9441574 DOI: 10.3389/fgene.2022.990412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tartary buckwheat is highly attractive for the richness of nutrients and quality, yet post-embryonic seed abortion greatly halts the yield. Seed development is crucial for determining grain yield, whereas the molecular basis and regulatory network of Tartary buckwheat seed development and filling is not well understood at present. Here, we assessed the transcriptional dynamics of filling stage Tartary buckwheat seeds at three developmental stages by RNA sequencing. Among the 4249 differentially expressed genes (DEGs), genes related to seed development were identified. Specifically, 88 phytohormone biosynthesis signaling genes, 309 TFs, and 16 expansin genes participating in cell enlargement, 37 structural genes involved in starch biosynthesis represented significant variation and were candidate key seed development genes. Cis-element enrichment analysis indicated that the promoters of differentially expressed expansin genes and starch biosynthesis genes are rich of hormone-responsive (ABA-, AUX-, ET-, and JA-), and seed growth-related (MYB, MYC and WRKY) binding sites. The expansin DEGs showed strong correlations with DEGs in phytohormone pathways and transcription factors (TFs). In total, phytohormone ABA, AUX, ET, BR and CTK, and related TFs could substantially regulate seed development in Tartary buckwheat through targeting downstream expansin genes and structural starch biosynthetic genes. This transcriptome data could provide a theoretical basis for improving yield of Tartary buckwheat.
Collapse
Affiliation(s)
- Liangzhen Jiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yanxia Sun
- College of Tourism and Culture Industry, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Dabing Xiang, ; Zhibin Lv,
| | - Zhibin Lv
- Department of Medical Instruments and Information, College of Biomedical Engineering, Sichuan University, Chengdu, China
- *Correspondence: Dabing Xiang, ; Zhibin Lv,
| |
Collapse
|
2
|
Niu L, Du C, Wang W, Zhang M, Wang W, Liu H, Zhang J, Wu X. Transcriptome and co-expression network analyses of key genes and pathways associated with differential abscisic acid accumulation during maize seed maturation. BMC PLANT BIOLOGY 2022; 22:359. [PMID: 35869440 PMCID: PMC9308322 DOI: 10.1186/s12870-022-03751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Currently, mechanical maize kernel harvesting has not been fully utilized in developing countries including China, partly due to the absence of suitable cultivars capable of rapid desiccation during seed maturation. The initiation of rapid desiccation during seed maturation is regulated by abscisic acid (ABA). For further characterization of ABA-regulated key genes and cellular events, it is necessary to perform transcriptome analysis of maize developing embryos. The ABA synthesis-deficient mutant (vp5) and normal maize (Vp5) seeds are suitable materials for such purpose. RESULTS In the present work, developing vp5 and Vp5 embryos were compared by ABA content and transcriptome analyses. Quantitative analysis revealed the significant difference in ABA synthesis between both genotypes. From 29 days after pollination (DAP), ABA content increased rapidly in Vp5 embryos, but decreased gradually in vp5 embryos. At 36 DAP, ABA level in vp5 decreased to 1/4 that of Vp5, suggesting that the differential ABA levels would affect seed maturation. Comparative transcriptomic analysis has found 1019 differentially expressed genes (DEGs) between both genotypes, with the most DEGs (818) at 36 DAP. Further, weighted correlation network analysis (WGCNA) revealed eight DEGs co-expression modules. Particularly, a module was negatively correlated with ABA content in vp5 embryos. The module was mainly involved in metabolic and cellular processes, and its hub genes encoded thiamine, NPF proteins, calmodulin, metallothionein etc. Moreover, the expression of a set of key genes regulated by ABA was further verified by RT-qPCR. The results of the present work suggested that because of ABA deficiency, the vp5 seeds maintained strong metabolic activities and lacked dormancy initiation during seed maturation. CONCLUSION Transcriptome and WGCNA analyses revealed significant ABA-related changes in metabolic pathways and DEGs between vp5 and Vp5 during seed maturation. The results would provide insights for elucidating the molecular mechanism of ABA signaling and developing high dehydration tolerance maize suitable for mechanical harvesting.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Cui Du
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenrui Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Man Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Zhang M, Zhong X, Li M, Yang X, Abou Elwafa SF, Albaqami M, Tian H. Genome-wide analyses of the Nodulin-like gene family in bread wheat revealed its potential roles during arbuscular mycorrhizal symbiosis. Int J Biol Macromol 2022; 201:424-436. [PMID: 35041884 DOI: 10.1016/j.ijbiomac.2022.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/05/2022]
Abstract
Nodulin-like (NL) genes are involved in transporting of various substances and may play key roles during the establishment of symbiosis in legumes plants. However, basic biological information of NL genes in the wheat genome is still largely unknown. Here, we identified and characterized NL genes in wheat via integrating genomic information, collinearity analysis, co-expression network analysis (WGCNA) and transcriptome analysis. In addition, we analyzed the polymorphisms and the roles of NL genes during arbuscular mycorrhizal (AM) symbiosis using a large wheat panel consists of 259 wheat genotypes. We identified 181 NL genes in the wheat genome, which were classified into SWEET, Early Nodulin-Like (ENODL), Major Facilitator Superfamily-Nodulin (MFS), Vacuolar Iron Transporter (VIT) and Early nodulin 93 (ENOD93) subfamily. The expansion of NL genes was mainly driven by segmental duplication. The bHLH genes are potential unrecognized transcription factors regulating NL genes. Moreover, two NL genes were more sensitive than other NL genes to AM colonization. The polymorphisms of NL genes are mainly due to random drift, and the natural mutation of NL genes led to significant differences in the mycorrhizal dependence of wheat in phosphorus uptake. The results concluded that NL genes potentially play important roles during AM symbiosis with wheat.
Collapse
Affiliation(s)
- Mingming Zhang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiong Zhong
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengjiao Li
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuming Yang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Salah F Abou Elwafa
- Agronomy department, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hui Tian
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Kourani M, Mohareb F, Rezwan FI, Anastasiadi M, Hammond JP. Genetic and Physiological Responses to Heat Stress in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:832147. [PMID: 35449889 PMCID: PMC9016328 DOI: 10.3389/fpls.2022.832147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/04/2022] [Indexed: 05/07/2023]
Abstract
Given the current rise in global temperatures, heat stress has become a major abiotic challenge affecting the growth and development of various crops and reducing their productivity. Brassica napus, the second largest source of vegetable oil worldwide, experiences a drastic reduction in seed yield and quality in response to heat. This review outlines the latest research that explores the genetic and physiological impact of heat stress on different developmental stages of B. napus with a special attention to the reproductive stages of floral progression, organogenesis, and post flowering. Several studies have shown that extreme temperature fluctuations during these crucial periods have detrimental effects on the plant and often leading to impaired growth and reduced seed production. The underlying mechanisms of heat stress adaptations and associated key regulatory genes are discussed. Furthermore, an overview and the implications of the polyploidy nature of B. napus and the regulatory role of alternative splicing in forming a priming-induced heat-stress memory are presented. New insights into the dynamics of epigenetic modifications during heat stress are discussed. Interestingly, while such studies are scarce in B. napus, opposite trends in expression of key genetic and epigenetic components have been identified in different species and in cultivars within the same species under various abiotic stresses, suggesting a complex role of these genes and their regulation in heat stress tolerance mechanisms. Additionally, omics-based studies are discussed with emphasis on the transcriptome, proteome and metabolome of B. napus, to gain a systems level understanding of how heat stress alters its yield and quality traits. The combination of omics approaches has revealed crucial interactions and regulatory networks taking part in the complex machinery of heat stress tolerance. We identify key knowledge gaps regarding the impact of heat stress on B. napus during its yield determining reproductive stages, where in-depth analysis of this subject is still needed. A deeper knowledge of heat stress response components and mechanisms in tissue specific models would serve as a stepping-stone to gaining insights into the regulation of thermotolerance that takes place in this important crop species and support future breeding of heat tolerant crops.
Collapse
Affiliation(s)
- Mariam Kourani
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - Fady Mohareb
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
- *Correspondence: Fady Mohareb,
| | - Faisal I. Rezwan
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - Maria Anastasiadi
- Bioinformatics Group, Cranfield University, Cranfield, United Kingdom
| | - John P. Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
- John P. Hammond,
| |
Collapse
|
5
|
Ahmad M, Waraich EA, Skalicky M, Hussain S, Zulfiqar U, Anjum MZ, Habib ur Rahman M, Brestic M, Ratnasekera D, Lamilla-Tamayo L, Al-Ashkar I, EL Sabagh A. Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:767150. [PMID: 34975951 PMCID: PMC8714756 DOI: 10.3389/fpls.2021.767150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 05/16/2023]
Abstract
Temperature is one of the decisive environmental factors that is projected to increase by 1. 5°C over the next two decades due to climate change that may affect various agronomic characteristics, such as biomass production, phenology and physiology, and yield-contributing traits in oilseed crops. Oilseed crops such as soybean, sunflower, canola, peanut, cottonseed, coconut, palm oil, sesame, safflower, olive etc., are widely grown. Specific importance is the vulnerability of oil synthesis in these crops against the rise in climatic temperature, threatening the stability of yield and quality. The natural defense system in these crops cannot withstand the harmful impacts of heat stress, thus causing a considerable loss in seed and oil yield. Therefore, a proper understanding of underlying mechanisms of genotype-environment interactions that could affect oil synthesis pathways is a prime requirement in developing stable cultivars. Heat stress tolerance is a complex quantitative trait controlled by many genes and is challenging to study and characterize. However, heat tolerance studies to date have pointed to several sophisticated mechanisms to deal with the stress of high temperatures, including hormonal signaling pathways for sensing heat stimuli and acquiring tolerance to heat stress, maintaining membrane integrity, production of heat shock proteins (HSPs), removal of reactive oxygen species (ROS), assembly of antioxidants, accumulation of compatible solutes, modified gene expression to enable changes, intelligent agricultural technologies, and several other agronomic techniques for thriving and surviving. Manipulation of multiple genes responsible for thermo-tolerance and exploring their high expressions greatly impacts their potential application using CRISPR/Cas genome editing and OMICS technology. This review highlights the latest outcomes on the response and tolerance to heat stress at the cellular, organelle, and whole plant levels describing numerous approaches applied to enhance thermos-tolerance in oilseed crops. We are attempting to critically analyze the scattered existing approaches to temperature tolerance used in oilseeds as a whole, work toward extending studies into the field, and provide researchers and related parties with useful information to streamline their breeding programs so that they can seek new avenues and develop guidelines that will greatly enhance ongoing efforts to establish heat stress tolerance in oilseeds.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
- Horticultural Sciences Department, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL, United States
| | | | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zohaib Anjum
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Habib ur Rahman
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University Bonn, Bonn, Germany
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Disna Ratnasekera
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| |
Collapse
|
6
|
Martínez-Andújar C, Martínez-Pérez A, Ferrández-Ayela A, Albacete A, Martínez-Melgarejo PA, Dodd IC, Thompson AJ, Pérez-Pérez JM, Pérez-Alfocea F. Impact of overexpression of 9-cis-epoxycarotenoid dioxygenase on growth and gene expression under salinity stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110268. [PMID: 32534608 DOI: 10.1016/j.plantsci.2019.110268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 06/11/2023]
Abstract
To better understand abscisic acid (ABA)'s role in the salinity response of tomato (Solanum lycopersicum L.), two independent transgenic lines, sp5 and sp12, constitutively overexpressing the LeNCED1 gene (encoding 9-cis-epoxycarotenoid dioxygenase, a key enzyme in ABA biosynthesis) and the wild type (WT) cv. Ailsa Craig, were cultivated hydroponically with or without the addition of 100 mM NaCl. Independent of salinity, LeNCED1 overexpression (OE) increased ABA concentration in leaves and xylem sap, and salinity interacted with the LeNCED1 transgene to enhance ABA accumulation in xylem sap and roots. Under control conditions, LeNCED1 OE limited root and shoot biomass accumulation, which was correlated with decreased leaf gas exchange. In salinized plants, LeNCED1 OE reduced the percentage loss in shoot and root biomass accumulation, leading to a greater total root length than WT. Root qPCR analysis of the sp12 line under control conditions revealed upregulated genes related to ABA, jasmonic acid and ethylene synthesis and signalling, gibberellin and auxin homeostasis and osmoregulation processes. Under salinity, LeNCED1 OE prevented the induction of genes involved in ABA metabolism and GA and auxin deactivation that occurred in WT, but the induction of ABA signalling and stress-adaptive genes was maintained. Thus, complex changes in phytohormone and stress-related gene expression are associated with constitutive upregulation of a single ABA biosynthesis gene, alleviating salinity-dependent growth limitation.
Collapse
Affiliation(s)
| | | | | | | | | | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | | |
Collapse
|
7
|
Zhao Y, Zou Z. Genomics analysis of genes encoding respiratory burst oxidase homologs (RBOHs) in jatropha and the comparison with castor bean. PeerJ 2019; 7:e7263. [PMID: 31338257 PMCID: PMC6626655 DOI: 10.7717/peerj.7263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/31/2019] [Indexed: 11/20/2022] Open
Abstract
Respiratory burst oxidase homologs (RBOHs), which catalyze the production of superoxide from oxygen and NADPH, play key roles in plant growth and development, hormone signaling, and stress responses. Compared with extensive studies in model plants arabidopsis and rice, little is known about RBOHs in other species. This study presents a genome-wide analysis of Rboh family genes in jatropha (Jatropha curcas) as well as the comparison with castor bean (Ricinus communis), another economically important non-food oilseed crop of the Euphorbiaceae family. The family number of seven members identified from the jatropha genome is equal to that present in castor bean, and further phylogenetic analysis assigned these genes into seven groups named RBOHD, -C, -B, -E, -F, -N, and -H. In contrast to a high number of paralogs present in arabidopsis and rice that experienced several rounds of recent whole-genome duplications, no duplicate was identified in both jatropha and castor bean. Conserved synteny and one-to-one orthologous relationship were observed between jatropha and castor bean Rboh genes. Although exon-intron structures are usually highly conserved between orthologs, loss of certain introns was observed for JcRbohB, JcRbohD, and RcRbohN, supporting their divergence. Global gene expression profiling revealed diverse patterns of JcRbohs over various tissues. Moreover, expression patterns of JcRbohs during flower development as well as various stresses were also investigated. These findings will not only improve our knowledge on species-specific evolution of the Rboh gene family, but also provide valuable information for further functional analysis of Rboh genes in jatropha.
Collapse
Affiliation(s)
- Yongguo Zhao
- Guangdong University of Petrochemical Technology, Maoming, Guangdong, China.,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Zhi Zou
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
8
|
The Potential Role of Auxin and Abscisic Acid Balance and FtARF2 in the Final Size Determination of Tartary Buckwheat Fruit. Int J Mol Sci 2018; 19:ijms19092755. [PMID: 30217096 PMCID: PMC6163771 DOI: 10.3390/ijms19092755] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 01/23/2023] Open
Abstract
Tartary buckwheat is a type of cultivated medicinal and edible crop with good economic and nutritional value. Knowledge of the final fruit size of buckwheat is critical to its yield increase. In this study, the fruit development of two species of Tartary buckwheat in the Polygonaceae was analyzed. During fruit development, the size/weight, the contents of auxin (AUX)/abscisic acid (ABA), the number of cells, and the changes of embryo were measured and observed; and the two fruit materials were compared to determine the related mechanisms that affected fruit size and the potential factors that regulated the final fruit size. The early events during embryogenesis greatly influenced the final fruit size, and the difference in fruit growth was primarily due to the difference in the number of cells, implicating the effect of cell division rate. Based on our observations and recent reports, the balance of AUX and ABA might be the key factor that regulated the cell division rate. They induced the response of auxin response factor 2 (FtARF2) and downstream small auxin upstream RNA (FtSAURs) through hormone signaling pathway to regulate the fruit size of Tartary buckwheat. Further, through the induction of fruit expansion by exogenous auxin, FtARF2b was significantly downregulated. The FtARF2b is a potential target for molecular breeding or gene editing.
Collapse
|
9
|
Yan A, Chen Z. The pivotal role of abscisic acid signaling during transition from seed maturation to germination. PLANT CELL REPORTS 2017; 36:689-703. [PMID: 27882409 DOI: 10.1007/s00299-016-2082-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/15/2016] [Indexed: 05/22/2023]
Abstract
Seed maturation and germination are two continuous developmental processes that link two distinct generations in spermatophytes; the precise genetic control of these two processes is, therefore, crucially important for the survival of the next generation. Pieces of experimental evidence accumulated so far indicate that a concerted action of endogenous signals and environmental cues is required to govern these processes. Plant hormone abscisic acid (ABA) has been suggested to play a predominant role in directing seed maturation and maintaining seed dormancy under unfavorable environmental conditions until antagonized by gibberellins (GA) and certain environmental cues to allow the commencement of seed germination when environmental conditions are favorable; therefore, the balance of ABA and GA is a major determinant of the timing of seed germination. Due to the advent of new technologies and system biology approaches, molecular studies are beginning to draw a picture of the sophisticated genetic network that drives seed maturation during the past decade, though the picture is still incomplete and many details are missing. In this review, we summarize recent advances in ABA signaling pathway in the regulation of seed maturation as well as the transition from seed maturation to germination, and highlight the importance of system biology approaches in the study of seed maturation.
Collapse
Affiliation(s)
- An Yan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore.
| |
Collapse
|
10
|
Analysis of Large Seeds from Three Different Medicago truncatula Ecotypes Reveals a Potential Role of Hormonal Balance in Final Size Determination of Legume Grains. Int J Mol Sci 2016; 17:ijms17091472. [PMID: 27618017 PMCID: PMC5037750 DOI: 10.3390/ijms17091472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 11/16/2022] Open
Abstract
Legume seeds are important as protein and oil source for human diet. Understanding how their final seed size is determined is crucial to improve crop yield. In this study, we analyzed seed development of three accessions of the model legume, Medicago truncatula, displaying contrasted seed size. By comparing two large seed accessions to the reference accession A17, we described mechanisms associated with large seed size determination and potential factors modulating the final seed size. We observed that early events during embryogenesis had a major impact on final seed size and a delayed heart stage embryo development resulted to large seeds. We also observed that the difference in seed growth rate was mainly due to a difference in embryo cell number, implicating a role of cell division rate. Large seed accessions could be explained by an extended period of cell division due to a longer embryogenesis phase. According to our observations and recent reports, we observed that auxin (IAA) and abscisic acid (ABA) ratio could be a key determinant of cell division regulation at the end of embryogenesis. Overall, our study highlights that timing of events occurring during early seed development play decisive role for final seed size determination.
Collapse
|
11
|
Kumar A, Sharma A, Upadhyaya KC. Vegetable Oil: Nutritional and Industrial Perspective. Curr Genomics 2016; 17:230-40. [PMID: 27252590 PMCID: PMC4869010 DOI: 10.2174/1389202917666160202220107] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/26/2022] Open
Abstract
Oils of plant origin have been predominantly used for food-based applications. Plant oils not only represent a non-polluting renewable resource but also provide a wide diversity in fatty acids (FAs) composition with diverse applications. Besides being edible, they are now increasingly being used in industrial applications such as paints, lubricants, soaps, biofuels etc. In addition, plants can be engineered to produce fatty acids which are nutritionally beneficial to human health. Thus these oils have potential to 1) substitute ever increasing demand of non –renewable petroleum sources for industrial application and 2) also spare the marine life by providing an alternative source to nutritionally and medically important long chain polyunsaturated fatty acids or ‘Fish oil’. The biochemical pathways producing storage oils in plants have been extensively characterized, but the factors regulating fatty acid synthesis and controlling total oil content in oilseed crops are still poorly understood. Thus understanding of plant lipid metabolism is fundamental to its manipulation and increased production. This review on oils discusses fatty acids of nutritional and industrial importance, and approaches for achieving future designer vegetable oil for both edible and non-edible uses. The review will discuss the success and bottlenecks in efficient production of novel FAs in non-native plants using genetic engineering as a tool.
Collapse
Affiliation(s)
- Aruna Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Aarti Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Kailash C Upadhyaya
- Amity Institute of Molecular Biology and Genomics, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
12
|
Zou Z, Yang L, Wang D, Huang Q, Mo Y, Xie G. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.). PLoS One 2016; 11:e0148243. [PMID: 26849139 PMCID: PMC4743969 DOI: 10.1371/journal.pone.0148243] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/16/2016] [Indexed: 11/25/2022] Open
Abstract
WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.
Collapse
Affiliation(s)
- Zhi Zou
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Lifu Yang
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Danhua Wang
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Qixing Huang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P. R. China
| | - Yeyong Mo
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| | - Guishui Xie
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, P. R. China
| |
Collapse
|
13
|
Analysis of Polygala tenuifolia Transcriptome and Description of Secondary Metabolite Biosynthetic Pathways by Illumina Sequencing. Int J Genomics 2015; 2015:782635. [PMID: 26543847 PMCID: PMC4620389 DOI: 10.1155/2015/782635] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 12/29/2022] Open
Abstract
Radix polygalae, the dried roots of Polygala tenuifolia and P. sibirica, is one of the most well-known traditional Chinese medicinal plants. Radix polygalae contains various saponins, xanthones, and oligosaccharide esters and these compounds are responsible for several pharmacological properties. To provide basic breeding information, enhance molecular biological analysis, and determine secondary metabolite biosynthetic pathways of P. tenuifolia, we applied Illumina sequencing technology and de novo assembly. We also applied this technique to gain an overview of P. tenuifolia transcriptome from samples with different years. Using Illumina sequencing, approximately 67.2% of unique sequences were annotated by basic local alignment search tool similarity searches against public sequence databases. We classified the annotated unigenes by using Nr, Nt, GO, COG, and KEGG databases compared with NCBI. We also obtained many candidates CYP450s and UGTs by the analysis of genes in the secondary metabolite biosynthetic pathways, including putative terpenoid backbone and phenylpropanoid biosynthesis pathway. With this transcriptome sequencing, future genetic and genomics studies related to the molecular mechanisms associated with the chemical composition of P. tenuifolia may be improved. Genes involved in the enrichment of secondary metabolite biosynthesis-related pathways could enhance the potential applications of P. tenuifolia in pharmaceutical industries.
Collapse
|
14
|
Kilaru A, Cao X, Dabbs PB, Sung HJ, Rahman MM, Thrower N, Zynda G, Podicheti R, Ibarra-Laclette E, Herrera-Estrella L, Mockaitis K, Ohlrogge JB. Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea Americana mesocarp. BMC PLANT BIOLOGY 2015. [PMID: 26276496 DOI: 10.1186/s12870-015-0586-582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND The mechanism by which plants synthesize and store high amounts of triacylglycerols (TAG) in tissues other than seeds is not well understood. The comprehension of controls for carbon partitioning and oil accumulation in nonseed tissues is essential to generate oil-rich biomass in perennial bioenergy crops. Persea americana (avocado), a basal angiosperm with unique features that are ancestral to most flowering plants, stores ~ 70 % TAG per dry weight in its mesocarp, a nonseed tissue. Transcriptome analyses of select pathways, from generation of pyruvate and leading up to TAG accumulation, in mesocarp tissues of avocado was conducted and compared with that of oil-rich monocot (oil palm) and dicot (rapeseed and castor) tissues to identify tissue- and species-specific regulation and biosynthesis of TAG in plants. RESULTS RNA-Seq analyses of select lipid metabolic pathways of avocado mesocarp revealed patterns similar to that of other oil-rich species. However, only some predominant orthologs of the fatty acid biosynthetic pathway genes in this basal angiosperm were similar to those of monocots and dicots. The accumulation of TAG, rich in oleic acid, was associated with higher transcript levels for a putative stearoyl-ACP desaturase and endoplasmic reticulum (ER)-associated acyl-CoA synthetases, during fruit development. Gene expression levels for enzymes involved in terminal steps to TAG biosynthesis in the ER further indicated that both acyl-CoA-dependent and -independent mechanisms might play a role in TAG assembly, depending on the developmental stage of the fruit. Furthermore, in addition to the expression of an ortholog of WRINKLED1 (WRI1), a regulator of fatty acid biosynthesis, high transcript levels for WRI2-like and WRI3-like suggest a role for additional transcription factors in nonseed oil accumulation. Plastid pyruvate necessary for fatty acid synthesis is likely driven by the upregulation of genes involved in glycolysis and transport of its intermediates. Together, a comparative transcriptome analyses for storage oil biosynthesis in diverse plants and tissues suggested that several distinct and conserved features in this basal angiosperm species might contribute towards its rich TAG content. CONCLUSIONS Our work represents a comprehensive transcriptome resource for a basal angiosperm species and provides insight into their lipid metabolism in mesocarp tissues. Furthermore, comparison of the transcriptome of oil-rich mesocarp of avocado, with oil-rich seed and nonseed tissues of monocot and dicot species, revealed lipid gene orthologs that are highly conserved during evolution. The orthologs that are distinctively expressed in oil-rich mesocarp tissues of this basal angiosperm, such as WRI2, ER-associated acyl-CoA synthetases, and lipid-droplet associated proteins were also identified. This study provides a foundation for future investigations to increase oil-content and has implications for metabolic engineering to enhance storage oil content in nonseed tissues of diverse species.
Collapse
Affiliation(s)
- Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Xia Cao
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- Bayer CropSciences, Morrisville, NC, 27560, USA.
| | - Parker B Dabbs
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Ha-Jung Sung
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Nicholas Thrower
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Greg Zynda
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47408, USA.
| | - Ram Podicheti
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47408, USA.
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, Mexico.
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.
| | | | - John B Ohlrogge
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
15
|
Kilaru A, Cao X, Dabbs PB, Sung HJ, Rahman MM, Thrower N, Zynda G, Podicheti R, Ibarra-Laclette E, Herrera-Estrella L, Mockaitis K, Ohlrogge JB. Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea Americana mesocarp. BMC PLANT BIOLOGY 2015; 15:203. [PMID: 26276496 PMCID: PMC4537532 DOI: 10.1186/s12870-015-0586-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/29/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The mechanism by which plants synthesize and store high amounts of triacylglycerols (TAG) in tissues other than seeds is not well understood. The comprehension of controls for carbon partitioning and oil accumulation in nonseed tissues is essential to generate oil-rich biomass in perennial bioenergy crops. Persea americana (avocado), a basal angiosperm with unique features that are ancestral to most flowering plants, stores ~ 70 % TAG per dry weight in its mesocarp, a nonseed tissue. Transcriptome analyses of select pathways, from generation of pyruvate and leading up to TAG accumulation, in mesocarp tissues of avocado was conducted and compared with that of oil-rich monocot (oil palm) and dicot (rapeseed and castor) tissues to identify tissue- and species-specific regulation and biosynthesis of TAG in plants. RESULTS RNA-Seq analyses of select lipid metabolic pathways of avocado mesocarp revealed patterns similar to that of other oil-rich species. However, only some predominant orthologs of the fatty acid biosynthetic pathway genes in this basal angiosperm were similar to those of monocots and dicots. The accumulation of TAG, rich in oleic acid, was associated with higher transcript levels for a putative stearoyl-ACP desaturase and endoplasmic reticulum (ER)-associated acyl-CoA synthetases, during fruit development. Gene expression levels for enzymes involved in terminal steps to TAG biosynthesis in the ER further indicated that both acyl-CoA-dependent and -independent mechanisms might play a role in TAG assembly, depending on the developmental stage of the fruit. Furthermore, in addition to the expression of an ortholog of WRINKLED1 (WRI1), a regulator of fatty acid biosynthesis, high transcript levels for WRI2-like and WRI3-like suggest a role for additional transcription factors in nonseed oil accumulation. Plastid pyruvate necessary for fatty acid synthesis is likely driven by the upregulation of genes involved in glycolysis and transport of its intermediates. Together, a comparative transcriptome analyses for storage oil biosynthesis in diverse plants and tissues suggested that several distinct and conserved features in this basal angiosperm species might contribute towards its rich TAG content. CONCLUSIONS Our work represents a comprehensive transcriptome resource for a basal angiosperm species and provides insight into their lipid metabolism in mesocarp tissues. Furthermore, comparison of the transcriptome of oil-rich mesocarp of avocado, with oil-rich seed and nonseed tissues of monocot and dicot species, revealed lipid gene orthologs that are highly conserved during evolution. The orthologs that are distinctively expressed in oil-rich mesocarp tissues of this basal angiosperm, such as WRI2, ER-associated acyl-CoA synthetases, and lipid-droplet associated proteins were also identified. This study provides a foundation for future investigations to increase oil-content and has implications for metabolic engineering to enhance storage oil content in nonseed tissues of diverse species.
Collapse
Affiliation(s)
- Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Xia Cao
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- Bayer CropSciences, Morrisville, NC, 27560, USA.
| | - Parker B Dabbs
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Ha-Jung Sung
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Nicholas Thrower
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Greg Zynda
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47408, USA.
| | - Ram Podicheti
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47408, USA.
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, Mexico.
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.
| | | | - John B Ohlrogge
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
16
|
Brunel-Muguet S, D'Hooghe P, Bataillé MP, Larré C, Kim TH, Trouverie J, Avice JC, Etienne P, Dürr C. Heat stress during seed filling interferes with sulfur restriction on grain composition and seed germination in oilseed rape (Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2015; 6:213. [PMID: 25914702 PMCID: PMC4392296 DOI: 10.3389/fpls.2015.00213] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/16/2015] [Indexed: 05/04/2023]
Abstract
In coming decades, increasing temperatures are expected to impact crop yield and seed quality. To develop low input systems, the effects of temperature and sulfur (S) nutrition in oilseed rape, a high S demanding crop, need to be jointly considered. In this study, we investigated the effects of temperatures [High Temperature (HT), 33°C/day, 19°C/night vs. Control Temperature (Ctrl T), 20°C/day, 15°C/day] and S supply [High S (HS), 500 μm SO(2-) 4 vs. Low S (LS), 8.7 μM SO(2-) 4] during seed filling on (i) yield components [seed number, seed dry weight (SDW) and seed yield], (ii) grain composition [nitrogen (N) and S contents] and quality [fatty acid (FA) composition and seed storage protein (SSP) accumulation] and (iii) germination characteristics (pre-harvest sprouting, germination rates and abnormal seedlings). Abscisic acid (ABA), soluble sugar contents and seed conductivity were also measured. HT and LS decreased the number of seeds per plant. SDW was less affected due to compensatory effects since the number of seeds decreased under stress conditions. While LS had negative effects on seed composition by reducing the FA contents and increasing the ratio S-poor SSPs (12S globulins)/S-rich SSPs (2S albumins) ratio, HT had positive effects by increasing S and FA contents and decreasing the C18:2/C18:3 ratio and the 12S/2S protein ratio. Seeds produced under HT showed high pre-harvest sprouting rates along with decreased ABA contents and high rates of abnormal seedlings. HT and LS restriction significantly accelerated germination times. High conductivity, which indicates poor seed storage capacity, was higher in HT seeds. Consistently, the lower ratio of (raffinose + stachyose)/sucrose in HT seeds indicated low seed storage capacity. We demonstrated the effects of HT and LS on grain and on germination characteristics. These results suggest that hormonal changes might control several seed characteristics simultaneously.
Collapse
Affiliation(s)
- Sophie Brunel-Muguet
- INRA, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie et Nutritions N.C.S.Caen, France
- *Correspondence: Sophie Brunel-Muguet, UMR 950 EVA-, Université Caen-Basse Normandie, Esplanade de la Paix, 14032 Caen, France
| | - Philippe D'Hooghe
- UCBN, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie et Nutritions N.C.S.Caen, France
| | - Marie-Paule Bataillé
- UCBN, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie et Nutritions N.C.S.Caen, France
| | - Colette Larré
- INRA UR 1268 BIA, Rue de la GéraudièreNantes, France
| | - Tae-Hwan Kim
- UCBN, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie et Nutritions N.C.S.Caen, France
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National UniversityGwangju, South Korea
| | - Jacques Trouverie
- UCBN, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie et Nutritions N.C.S.Caen, France
| | - Jean-Christophe Avice
- UCBN, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie et Nutritions N.C.S.Caen, France
| | - Philippe Etienne
- UCBN, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie et Nutritions N.C.S.Caen, France
| | - Carolyne Dürr
- INRA, UMR 1345, Institute of Research on Horticulture and Seeds, SFR QUASAVBeaucouzé, France
| |
Collapse
|
17
|
Liu Y, Fang Y, Huang M, Jin Y, Sun J, Tao X, Zhang G, He K, Zhao Y, Zhao H. Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:64. [PMID: 25873998 PMCID: PMC4396169 DOI: 10.1186/s13068-015-0245-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/24/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND Landoltia punctata is a widely distributed duckweed species with great potential to accumulate enormous amounts of starch for bioethanol production. We found that L. punctata can accumulate starch rapidly accompanied by alterations in endogenous hormone levels after uniconazole application, but the relationship between endogenous hormones and starch accumulation is still unclear. RESULTS After spraying fronds with 800 mg/L uniconazole, L. punctata can accumulate starch quickly, with a dry weight starch content of up to 48% after 240 h of growth compared to 15.7% in the control group. Electron microscopy showed that the starch granule content was elevated after uniconazole application. The activities of key enzymes involved in starch synthesis were also significantly increased. Moreover, the expression of regulatory elements of the cytokinin (CK), abscisic acid (ABA) and gibberellin (GA) signaling pathways that are involved in chlorophyll and starch metabolism also changed correspondingly. Importantly, the expression levels of key enzymes involved in starch biosynthesis were up-regulated, while transcript-encoding enzymes involved in starch degradation and other carbohydrate metabolic branches were down-regulated. CONCLUSION The increase of endogenous ABA and CK levels positively promoted the activity of ADP-glucose pyrophosphorylase (AGPase) and chlorophyll content, while the decrease in endogenous GA levels inactivated α-amylase. Thus, the alterations of endogenous hormone levels resulted in starch accumulation due to regulation of the expression of genes involved in the starch metabolism pathway.
Collapse
Affiliation(s)
- Yang Liu
- />Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049 Beijing, China
- />Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Environmental Microbiology Key Laboratory of Sichuan Province, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
| | - Yang Fang
- />Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Environmental Microbiology Key Laboratory of Sichuan Province, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
| | - Mengjun Huang
- />Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049 Beijing, China
- />Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Environmental Microbiology Key Laboratory of Sichuan Province, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
| | - Yanling Jin
- />Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Environmental Microbiology Key Laboratory of Sichuan Province, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
| | - Jiaolong Sun
- />Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Environmental Microbiology Key Laboratory of Sichuan Province, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
| | - Xiang Tao
- />Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Environmental Microbiology Key Laboratory of Sichuan Province, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
| | - Guohua Zhang
- />Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Environmental Microbiology Key Laboratory of Sichuan Province, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
| | - Kaize He
- />Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Environmental Microbiology Key Laboratory of Sichuan Province, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
| | - Yun Zhao
- />Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, N0.24 South Section 1, Yihuan Road, 610064 Chengdu, China
| | - Hai Zhao
- />Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
- />Environmental Microbiology Key Laboratory of Sichuan Province, No.9 Section 4, Renmin Nan Road, 610041 Chengdu, China
| |
Collapse
|