1
|
Singh N, Sharma S, Ghosh KK, Gupta B, Kuca K. Prominent Perspective on Existing Biological Hallmarks of Alzheimer's Disease. Curr Top Med Chem 2024; 24:1120-1133. [PMID: 38591203 DOI: 10.2174/0115680266292514240404040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Biomarkers are the most significant diagnosis tools tending towards unique approaches and solutions for the prevention and cure of Alzheimer's Disease (AD). The current report provides a clear perception of the concept of various biomarkers and their prominent features through analysis to provide a possible solution for the inhibition of events in AD. Scientists around the world truly believe that crucial hallmarks can serve as critical tools in the early diagnosis, cure, and prevention, as well as the future of medicine. The awareness and understanding of such biomarkers would provide solutions to the puzzled mechanism of this neuronal disorder. Some of the argued biomarkers in the present article are still in an experimental phase as they need to undergo specific clinical trials before they can be considered for treatment.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Engineering Science, Ramrao Adik Institute of Technology, DY Patil University, Navi Mumbai, 400706, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010 (C.G.), India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010 (C.G.), India
| | - Bhanushree Gupta
- Centre of Basic Sciences, Pt. Ravishankar Shukla University, Raipur, 492010 (C.G.), India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
- Research Institute for Biomedical Science, University of Hradec Králové, Antonína Dvoraka 451/1, 500 02 Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Devasani K, Yao Y. Expression and functions of adenylyl cyclases in the CNS. Fluids Barriers CNS 2022; 19:23. [PMID: 35307032 PMCID: PMC8935726 DOI: 10.1186/s12987-022-00322-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/27/2022] Open
Abstract
Adenylyl cyclases (ADCYs), by generating second messenger cAMP, play important roles in various cellular processes. Their expression, regulation and functions in the CNS, however, remain largely unknown. In this review, we first introduce the classification and structure of ADCYs, followed by a discussion of the regulation of mammalian ADCYs (ADCY1-10). Next, the expression and function of each mammalian ADCY isoform are summarized in a region/cell-specific manner. Furthermore, the effects of GPCR-ADCY signaling on blood-brain barrier (BBB) integrity are reviewed. Last, current challenges and future directions are discussed. We aim to provide a succinct review on ADCYs to foster new research in the future.
Collapse
Affiliation(s)
- Karan Devasani
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, 33612, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, 33612, USA.
| |
Collapse
|
3
|
Zaranek M, Arshad R, Zheng K, Harris CA. Response of Astrocytes to Blood Exposure due to Shunt Insertion in vitro. AIChE J 2021; 67. [PMID: 35497642 DOI: 10.1002/aic.17485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The breakdown of the ventricular zone (VZ) with the presence of blood in cerebrospinal fluid (CSF) has been shown to increase shunt catheter obstruction in the treatment of hydrocephalus, but the mechanisms by which this occurs are generally unknown. Using a custom-built incubation chamber, we immunofluorescently assayed cell attachment and morphology on shunt catheters with and without blood after 14 days. Samples exposed to blood showed significantly increased cell attachment (average total cell count 392.0±317.1 versus control of 94.7±44.5, P<0.0001). Analysis of the glial fibrillary acidic protein (GFAP) expression showed similar trends (854.4±450.7 versus control of 174.3±116.5, P<0.0001). An in vitro model was developed to represent the exposure of astrocytes to blood following an increase in BBB permeability. Exposure of astrocytes to blood increases the number of cells and their spread on the shunt.
Collapse
Affiliation(s)
- Mira Zaranek
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| | - Rooshan Arshad
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| | - Kevin Zheng
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| | - Carolyn A Harris
- Wayne State University Dept. of Chemical Engineering and Materials Science, 6135 Woodward Avenue, Detroit, MI 48202
| |
Collapse
|
4
|
Bryniarski MA, Ren T, Rizvi AR, Snyder AM, Morris ME. Targeting the Choroid Plexuses for Protein Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12100963. [PMID: 33066423 PMCID: PMC7602164 DOI: 10.3390/pharmaceutics12100963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
Delivery of therapeutic agents to the central nervous system is challenged by the barriers in place to regulate brain homeostasis. This is especially true for protein therapeutics. Targeting the barrier formed by the choroid plexuses at the interfaces of the systemic circulation and ventricular system may be a surrogate brain delivery strategy to circumvent the blood-brain barrier. Heterogenous cell populations located at the choroid plexuses provide diverse functions in regulating the exchange of material within the ventricular space. Receptor-mediated transcytosis may be a promising mechanism to deliver protein therapeutics across the tight junctions formed by choroid plexus epithelial cells. However, cerebrospinal fluid flow and other barriers formed by ependymal cells and perivascular spaces should also be considered for evaluation of protein therapeutic disposition. Various preclinical methods have been applied to delineate protein transport across the choroid plexuses, including imaging strategies, ventriculocisternal perfusions, and primary choroid plexus epithelial cell models. When used in combination with simultaneous measures of cerebrospinal fluid dynamics, they can yield important insight into pharmacokinetic properties within the brain. This review aims to provide an overview of the choroid plexuses and ventricular system to address their function as a barrier to pharmaceutical interventions and relevance for central nervous system drug delivery of protein therapeutics. Protein therapeutics targeting the ventricular system may provide new approaches in treating central nervous system diseases.
Collapse
|
5
|
Bauer B, Renfro JL, Karnaky KJ, Masereeuw R, Fricker G, Cannon RE, Hartz AMS. David S. Miller: Scientist, Mentor, Friend-a tribute and thank you. Fluids Barriers CNS 2020; 17:56. [PMID: 32928243 PMCID: PMC7491162 DOI: 10.1186/s12987-020-00220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/09/2020] [Indexed: 11/25/2022] Open
Abstract
David S. Miller was Acting Scientific Director of the Division of Intramural Research at the National Institute of Environmental Health Sciences, National Institutes of Health, and Head of the Intracellular Regulation Group in the Laboratory of Toxicology and Pharmacology before he retired in 2016. David received his Ph.D. in biochemistry from the University of Maine in 1973. David was a Group Leader at the Michigan Cancer Foundation before joining the NIEHS in 1985. His research covered a wide range from renal excretory transport mechanisms to regulation of transporters at the blood–CSF and blood–brain barriers, from fish, amphibians and birds to mammals. David was an outstanding scientist with irresistible enthusiasm for science and an incredible ability to think outside the box while being an exceptional mentor and friend.
Collapse
Affiliation(s)
- Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 333 Sanders-Brown Center on Aging, 800 S Limestone, Lexington, KY, 40536-0230, USA.
| | - J Larry Renfro
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Karl J Karnaky
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Ron E Cannon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
6
|
Benveniste H, Lee H, Volkow ND. The Glymphatic Pathway: Waste Removal from the CNS via Cerebrospinal Fluid Transport. Neuroscientist 2017; 23:454-465. [PMID: 28466758 DOI: 10.1177/1073858417691030] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The overall premise of this review is that cerebrospinal fluid (CSF) is transported within a dedicated peri-vascular network facilitating metabolic waste clearance from the central nervous system while we sleep. The anatomical profile of the network is complex and has been defined as a peri-arterial CSF influx pathway and peri-venous clearance routes, which are functionally coupled by interstitial bulk flow supported by astrocytic aquaporin 4 water channels. The role of the newly discovered system in the brain is equivalent to the lymphatic system present in other body organs and has been termed the "glymphatic pathway" or "(g)lymphatics" because of its dependence on glial cells. We will discuss and review the general anatomy and physiology of CSF from the perspective of the glymphatic pathway, a discovery which has greatly improved our understanding of key factors that control removal of metabolic waste products from the central nervous system in health and disease and identifies an additional purpose for sleep. A brief historical and factual description of CSF production and transport will precede the ensuing discussion of the glymphatic system along with a discussion of its clinical implications.
Collapse
Affiliation(s)
| | - Hedok Lee
- 1 Department of Anesthesiology, Yale University, New Haven, CT, USA
| | - Nora D Volkow
- 2 Laboratory for Neuroimaging, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD, USA
| |
Collapse
|
7
|
Lundblad C, Haanes KA, Grände G, Edvinsson L. Experimental inflammation following dural application of complete Freund's adjuvant or inflammatory soup does not alter brain and trigeminal microvascular passage. J Headache Pain 2015; 16:91. [PMID: 26512021 PMCID: PMC4627622 DOI: 10.1186/s10194-015-0575-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/21/2015] [Indexed: 01/24/2023] Open
Abstract
Background Migraine is a paroxysmal, disabling primary headache that affects 16 % of the adult population. In spite of decades of intense research, the origin and the pathophysiology mechanisms involved are still not fully known. Although triptans and gepants provide effective relief from acute migraine for many patients, their site of action remains unidentified. It has been suggested that during migraine attacks the leakiness of the blood-brain barrier (BBB) is altered, increasing the passage of anti-migraine drugs. This study aimed to investigate the effect of experimental inflammation, following dural application of complete Freund’s adjuvant (CFA) or inflammatory soup (IS) on brain and trigeminal microvascular passage. Methods In order to address this issue, we induced local inflammation in male Sprague-Dawley-rats dura mater by the addition of CFA or IS directly on the dural surface. Following 2, 24 or 48 h of inflammation we calculated permeability-surface area product (PS) for [51Cr]-EDTA in the trigeminal ganglion (TG), spinal trigeminal nucleus, cortex, periaqueductal grey and cerebellum. Results We observed that [51Cr]-EDTA did not pass into the central nervous system (CNS) in a major way. However, [51Cr]-EDTA readily passed the TG by >30 times compared to the CNS. Application of CFA or IS did not show altered transfer constants. Conclusions With these experiments we show that dural IS/CFA triggered TG inflammation, did not increase the BBB passage, and that the TG is readily exposed to circulating molecules. The TG could provide a site of anti-migraine drug interaction with effect on the trigeminal system. Electronic supplementary material The online version of this article (doi:10.1186/s10194-015-0575-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cornelia Lundblad
- Department of Medicine, Institute of Clinical Sciences, University Hospital, Lund University, 22185, Lund, Sweden
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Glostrup, Denmark
| | - Gustaf Grände
- Department of Medicine, Institute of Clinical Sciences, University Hospital, Lund University, 22185, Lund, Sweden
| | - Lars Edvinsson
- Department of Medicine, Institute of Clinical Sciences, University Hospital, Lund University, 22185, Lund, Sweden. .,Department of Clinical Experimental Research, Copenhagen University Hospital, Glostrup, Denmark.
| |
Collapse
|