1
|
Abramov AY, Myers I, Angelova PR. Carbon Monoxide: A Pleiotropic Redox Regulator of Life and Death. Antioxidants (Basel) 2024; 13:1121. [PMID: 39334780 PMCID: PMC11428877 DOI: 10.3390/antiox13091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Despite recent technological progress, carbon monoxide poisoning is still one of the leading causes of domestic and industrial morbidity and mortality. The brain is particularly vulnerable to CO toxicity, and thus the majority of survivors develop delayed movement and cognitive complications. CO binds to haemoglobin in erythrocytes, preventing oxygen delivery to tissues, and additionally inhibits mitochondrial respiration. This renders the effect of CO to be closely related to hypoxia reperfusion injury. Oxygen deprivation, as well as CO poisoning and re-oxygenation, are shown to be able to activate the production of reactive oxygen species and to induce oxidative stress. Here, we review the role of reactive oxygen species production and oxidative stress in the mechanism of neuronal cell death induced by carbon monoxide and re-oxygenation. We discuss possible protective mechanisms used by brain cells with a specific focus on the inhibition of CO-induced ROS production and oxidative stress.
Collapse
Affiliation(s)
| | | | - Plamena R. Angelova
- UCL Queen Square Institute of Neurology, Department of Clinical and Movement Neurosciences, Queen Square, London WC1N3BG, UK; (A.Y.A.); (I.M.)
| |
Collapse
|
2
|
Ali R, Sen S, Hameed R, Nazir A, Verma S. Strategies for gaseous neuromodulator release in chemical neuroscience: Experimental approaches and translational validation. J Control Release 2024; 365:132-160. [PMID: 37972768 DOI: 10.1016/j.jconrel.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Gasotransmitters are a group of short-lived gaseous signaling molecules displaying diverse biological functions depending upon their localized concentration. Nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO) are three important examples of endogenously produced gasotransmitters that play a crucial role in human neurophysiology and pathogenesis. Alterations in their optimal physiological concentrations can lead to various severe pathophysiological consequences, including neurological disorders. Exogenous administration of gasotransmitters has emerged as a prominent therapeutic approach for treating such neurological diseases. However, their gaseous nature and short half-life limit their therapeutic delivery. Therefore, developing synthetic gasotransmitter-releasing strategies having control over the release and duration of these gaseous molecules has become imperative. However, the complex chemistry of synthesis and the challenges of specific quantified delivery of these gases, make their therapeutic application a challenging task. This review article provides a focused overview of emerging strategies for delivering gasotransmitters in a controlled and sustained manner to re-establish neurophysiological homeostasis.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Shantanu Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Rohil Hameed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
3
|
Garg M, Johri S, Chakraborty K. Immunomodulatory role of mitochondrial DAMPs: a missing link in pathology? FEBS J 2023; 290:4395-4418. [PMID: 35731715 DOI: 10.1111/febs.16563] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
In accordance with the endosymbiotic theory, mitochondrial components bear characteristic prokaryotic signatures, which act as immunomodulatory molecules when released into the extramitochondrial compartment. These endogenous immune triggers, called mitochondrial damage-associated molecular patterns (mtDAMPs), have been implicated in the pathogenesis of various diseases, yet their role remains largely unexplored. In this review, we summarise the available literature on mtDAMPs in diseases, with a special focus on respiratory diseases. We highlight the need to bolster mtDAMP research using a multipronged approach, to study their effect on specific cell types, receptors and machinery in pathologies. We emphasise the lacunae in the current understanding of mtDAMPs, particularly in their cellular release and the chemical modifications they undergo. Finally, we conclude by proposing additional effects of mtDAMPs in diseases, specifically their role in modulating the immune system.
Collapse
Affiliation(s)
- Mayank Garg
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saumya Johri
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Krishnendu Chakraborty
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
4
|
Wang L, Dan Q, Xu B, Chen Y, Zheng T. Research progress on gas signal molecular therapy for Parkinson's disease. Open Life Sci 2023; 18:20220658. [PMID: 37588999 PMCID: PMC10426759 DOI: 10.1515/biol-2022-0658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 08/18/2023] Open
Abstract
The pathogenesis of Parkinson's disease (PD) remains unclear. Among the pathological manifestations is the progressive degeneration of the nigrostriatal dopaminergic pathway, leading to massive loss of neurons in the substantia nigra pars compacta and dopamine (DA) depletion. Therefore, the current drug treatment is primarily based on DA supplementation and delaying the progression of the disease. However, as patients' symptoms continue to worsen, the drug effect will gradually decrease or even disappear, thereby further aggravating clinical symptoms. Gas signaling molecules, such as hydrogen sulfide (H2S), nitric oxide (NO), carbon monoxide (CO), and hydrogen (H2), exhibit pleiotropic biological functions and play crucial roles in physiological and pathological effects. In common neurodegenerative diseases including Alzheimer's disease and PD, gas signal molecules can prevent or delay disease occurrence via the primary mechanisms of antioxidation, anti-inflammatory response, and antiapoptosis. This article reviews the therapeutic progress of gas signaling molecules in PD models and discusses the possibility of their clinical applications.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| | - Qing Dan
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| | - Bingxuan Xu
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| | - Yun Chen
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| | - Tingting Zheng
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| |
Collapse
|
5
|
Siracusa R, Voltarelli VA, Trovato Salinaro A, Modafferi S, Cuzzocrea S, Calabrese EJ, Di Paola R, Otterbein LE, Calabrese V. NO, CO and H 2S: A Trinacrium of Bioactive Gases in the Brain. Biochem Pharmacol 2022; 202:115122. [PMID: 35679892 DOI: 10.1016/j.bcp.2022.115122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Oxygen and carbon dioxide are time honored gases that have direct bearing on almost all life forms, but over the past thirty years, and in large part due to the Nobel Prize Award in Medicine for the elucidation of nitric oxide (NO) as a bioactive gas, the research and medical communities now recognize other gases as critical for survival. In addition to NO, hydrogen sulfide (H2S) and carbon monoxide (CO) have emerged as a triumvirate or Trinacrium of gases with analogous importance and that serve important homeostatic functions. Perhaps, one of the most intriguing aspects of these gases is the functional interaction between them, which is intimately linked by the enzyme systems that produce them. Despite the need to better understand NO, H2S and CO biology, the notion that these are environmental pollutants remains ever present. For this reason, incorporating the concept of hormesis becomes imperative and must be included in discussions when considering developing new therapeutics that involve these gases. While there is now an enormous literature base for each of these gasotransmitters, we provide here an overview of their respective physiologic roles in the brain.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Vanessa A Voltarelli
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
6
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Carbon monoxide and β-cell function: Implications for type 2 diabetes mellitus. Biochem Pharmacol 2022; 201:115048. [PMID: 35460631 DOI: 10.1016/j.bcp.2022.115048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
Abstract
Carbon monoxide (CO), a member of the multifunctional gasotransmitters family produced by heme oxygenases (i.e., HO-1 and HO-2), has received significant attention because of its involvement in carbohydrate metabolism. Experimental evidence indicates that both HO-2- and HO-1-derived CO stimulate insulin secretion, but the latter mainly acts as a compensatory response in pre-diabetes conditions. CO protects pancreatic β-cell against cytokine- and hypoxia-induced apoptosis and promotes β-cell regeneration. CO cross-talks with nitric oxide (NO) and hydrogen sulfide (H2S), other important gasotransmitters in carbohydrate metabolism, in regulating β-cell function and insulin secretion. These data speak in favor of the potential therapeutic application of CO in type 2 diabetes mellitus (T2DM) and preventing the progression of pre-diabetes to diabetes. Either CO (as both gaseous form and CO-releasing molecule) or pharmacological formulations made of natural HO inducers (i.e., bioactive components originating from plant-based foods) are potential candidates for developing CO-based therapeutics in T2DM. Future studies are needed to assess the safety/efficacy and potential therapeutic applications of CO in T2DM.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Abstract
Nitric oxide, studied to evaluate its role in cardiovascular physiology, has cardioprotective and therapeutic effects in cellular signaling, mitochondrial function, and in regulating inflammatory processes. Heme oxygenase (major role in catabolism of heme into biliverdin, carbon monoxide (CO), and iron) has similar effects as well. CO has been suggested as the molecule that is responsible for many of the above mentioned cytoprotective and therapeutic pathways as CO is a signaling molecule in the control of physiological functions. This is counterintuitive as toxic effects are related to its binding to hemoglobin. However, CO is normally produced in the body. Experimental evidence indicates that this toxic gas, CO, exerts cytoprotective properties related to cellular stress including the heart and is being assessed for its cytoprotective and cytotherapeutic properties. While survival of adult cardiomyocytes depends on oxidative phosphorylation (survival and resulting cardiac function is impaired by mitochondrial damage), mitochondrial biogenesis is modified by the heme oxygenase-1/CO system and can result in promotion of mitochondrial biogenesis by associating mitochondrial redox status to the redox-active transcription factors. It has been suggested that the heme oxygenase-1/CO system is important in differentiation of embryonic stem cells and maturation of cardiomyocytes which is thought to mitigate progression of degenerative cardiovascular diseases. Effects on other cardiac cells are being studied. Acute exposure to air pollution (and, therefore, CO) is associated with cardiovascular mortality, myocardial infarction, and heart failure, but changes in the endogenous heme oxygenase-1 system (and, thereby, CO) positively affect cardiovascular health. We will review the effect of CO on heart health and function in this article.
Collapse
Affiliation(s)
- Vicki L Mahan
- Department of Surgery and Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Siracusa R, Schaufler A, Calabrese V, Fuller PM, Otterbein LE. Carbon Monoxide: from Poison to Clinical Trials. Trends Pharmacol Sci 2021; 42:329-339. [PMID: 33781582 DOI: 10.1016/j.tips.2021.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
Every cell has a highly sophisticated system for regulating heme levels, which is particularly important with regard to turnover. Heme degradation generates CO and while CO has long been viewed as a metabolic waste product, and at higher concentrations cellularly lethal, we now know that CO is an indispensable gasotransmitter that participates in fundamental physiological processes necessary for survival. Irrefutable preclinical data have resulted in concerted efforts to develop CO as a safe and effective therapeutic agent, but against this notion lies dogma that CO is a poison, especially to the brain. The emergence of this debate is discussed here highlighting the neuroprotective properties of CO through its role on the central circadian clock and ongoing strategies being developed for CO administration for clinical use.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA; Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy, 98166
| | - Alexa Schaufler
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Patrick M Fuller
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA; Department of Neurological Surgery, University of California Davis Health, Sacramento, CA 95817, USA
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Thilakaratne RA, Malig BJ, Basu R. Examining the relationship between ambient carbon monoxide, nitrogen dioxide, and mental health-related emergency department visits in California, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140915. [PMID: 32745847 DOI: 10.1016/j.scitotenv.2020.140915] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Growing evidence suggests air pollutants may harm the central nervous system, potentially impacting mental health. However, such impacts of air pollutants on mental health and the sub-populations most affected remain poorly understood, especially in California. We examined the relationship between short-term ambient carbon monoxide (CO), nitrogen dioxide (NO2), and mental health-related emergency department (ED) visits in California from 2005 to 2013. Daily mean concentrations of the pollutants were acquired from the U.S. Environmental Protection Agency Air Quality System Data Mart ground monitoring data. Moving averages of pollutant concentrations were linked to counts of ED visits obtained from the California Office of Statewide Health Planning and Development. Seven mental health outcomes, defined by International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes, were studied: all mental disorders, bipolar disorder, depression, schizophrenia, substance abuse, homicide/inflicted injury, and suicide/self-harm. Monitor-level associations were estimated with quasi-Poisson regression models and combined using random-effects meta-analysis. CO and NO2 were found to be positively associated with ED visits due to homicide/inflicted injury, with the warm season (May-October) driving the CO association. An interquartile range (IQR) (0.28 ppm) increase in two-day average CO during the warm season was associated with a 3.13% (95% confidence interval (CI): 1.43, 4.84) elevation in risk of an ED visit due to homicide/inflicted injury (n = 122,749 ED visits). An IQR (10.79 ppb) increase in two-day average NO2 was associated with a 2.60% (95% CI: 1.17, 4.05) elevation in risk of an ED visit due to homicide/inflicted injury (n = 206,919 ED visits). Subgroup analyses indicated children, Hispanics, and males were particularly vulnerable. Except for an inverse relationship between NO2 and substance abuse, neither pollutant was robustly associated with visits due to other mental health morbidities. Our results suggest short-term elevations in CO and NO2 may promote violent behavior. Further investigation in other populations and ranges of air pollution exposure is warranted.
Collapse
Affiliation(s)
- Ruwan A Thilakaratne
- Air and Climate Epidemiology Section, California Office of Environmental Health Hazard Assessment, 1515 Clay Street, 16th Floor, Oakland, CA 94612, USA
| | - Brian J Malig
- Air and Climate Epidemiology Section, California Office of Environmental Health Hazard Assessment, 1515 Clay Street, 16th Floor, Oakland, CA 94612, USA
| | - Rupa Basu
- Air and Climate Epidemiology Section, California Office of Environmental Health Hazard Assessment, 1515 Clay Street, 16th Floor, Oakland, CA 94612, USA.
| |
Collapse
|
10
|
Alshami A, Einav S, Skrifvars MB, Varon J. Administration of inhaled noble and other gases after cardiopulmonary resuscitation: A systematic review. Am J Emerg Med 2020; 38:2179-2184. [PMID: 33071073 DOI: 10.1016/j.ajem.2020.06.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Inhalation of noble and other gases after cardiac arrest (CA) might improve neurological and cardiac outcomes. This article discusses up-to-date information on this novel therapeutic intervention. DATA SOURCES CENTRAL, MEDLINE, online published abstracts from conference proceedings, clinical trial registry clinicaltrials.gov, and reference lists of relevant papers were systematically searched from January 1960 till March 2019. STUDY SELECTION Preclinical and clinical studies, irrespective of their types or described outcomes, were included. DATA EXTRACTION Abstract screening, study selection, and data extraction were performed by two independent authors. Due to the paucity of human trials, risk of bias assessment was not performed DATA SYNTHESIS: After screening 281 interventional studies, we included an overall of 27. Only, xenon, helium, hydrogen, and nitric oxide have been or are being studied on humans. Xenon, nitric oxide, and hydrogen show both neuroprotective and cardiotonic features, while argon and hydrogen sulfide seem neuroprotective, but not cardiotonic. Most gases have elicited neurohistological protection in preclinical studies; however, only hydrogen and hydrogen sulfide appeared to preserve CA1 sector of hippocampus, the most vulnerable area in the brain for hypoxia. CONCLUSION Inhalation of certain gases after CPR appears promising in mitigating neurological and cardiac damage and may become the next successful neuroprotective and cardiotonic interventions.
Collapse
Affiliation(s)
- Abbas Alshami
- Jersey Shore University Medical Center, Neptune, NJ, USA; Dorrington Medical Associates, PA, Houston, TX, USA
| | - Sharon Einav
- Intensive Care Unit of the Share Zedek Medical Center and Faculty of Medicine of the Hebrew University, Jerusalem, Israel
| | - Markus B Skrifvars
- Department of Emergency Care and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Joseph Varon
- The University of Texas Health Science Center at Houston, USA; University of Texas Medical Branch at Galveston, USA; United Memorial Medical Center/United General Hospital, Houston, TX, USA.
| |
Collapse
|
11
|
Li Y, Zhang LM, Zhang DX, Zheng WC, Bai Y, Bai J, Fu L, Wang XP. CORM-3 ameliorates neurodegeneration in the amygdala and improves depression- and anxiety-like behavior in a rat model of combined traumatic brain injury and hemorrhagic shock. Neurochem Int 2020; 140:104842. [PMID: 32858089 DOI: 10.1016/j.neuint.2020.104842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Emotional disturbances characterized by depression and anxiety among survivors of traumatic brain injury (TBI) impact the quality of life severely. Currently, there is a lack of effective drug treatment for neurodegeneration induced by TBI, mainly due to failed efficacy of compounds such as corticosteroids, calcium channel blockers, and excitatory amino acid inhibitors. Thus, we sought to continue with our investigation on CORM-3, a water-soluble exogenous carbon monoxide-releasing molecule with excellent anti-inflammatory actions employed in a previous study using a rat model of combined TBI with hemorrhage shock and resuscitation (HSR). METHODS Rats were administrated with CORM-3 after induction of TBI and HSR and examined depressive and anxiety-like behaviors, along with cerebral function employing functional magnetic resonance imaging (MRI) 30-days post-trauma. Also, the following variables were measured: 1) neuronal pyroptosis and apoptosis 24 h post-trauma, 2) the roles of PKG-ERK1/2 signaling pathways with the use of the protein kinase G (PKG) specific inhibitor, KT5823. RESULTS CORM-3-treated rats displayed significant ameliorated depression- and anxiety-like behaviors, improved cerebral blood flow, and fractional anisotropy (FA), showed less neuronal pyroptosis and apoptosis in the amygdala, and upregulated the phosphorylation of Vasodilator-stimulated phosphoprotein (VASP) and ERK1/2. However, CORM-3 neuroprotective effects against trauma were only partially reversed by KT5823. CONCLUSION CORM-3 ameliorated the emotional deficits and neuronal death induced in the amygdala post-TBI and HSR rat model, and PKG-ERK1/2 signaling might be implicated in the underlying mechanism.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yang Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Jing Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Lan Fu
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
12
|
CORM-2-Solid Lipid Nanoparticles Maintain Integrity of Blood-Spinal Cord Barrier After Spinal Cord Injury in Rats. Mol Neurobiol 2020; 57:2671-2689. [DOI: 10.1007/s12035-020-01914-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
|
13
|
Mahan VL. Neurointegrity and neurophysiology: astrocyte, glutamate, and carbon monoxide interactions. Med Gas Res 2019; 9:24-45. [PMID: 30950417 PMCID: PMC6463446 DOI: 10.4103/2045-9912.254639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Astrocyte contributions to brain function and prevention of neuropathologies are as extensive as that of neurons. Astroglial regulation of glutamate, a primary neurotransmitter, is through uptake, release through vesicular and non-vesicular pathways, and catabolism to intermediates. Homeostasis by astrocytes is considered to be of primary importance in determining normal central nervous system health and central nervous system physiology - glutamate is central to dynamic physiologic changes and central nervous system stability. Gasotransmitters may affect diverse glutamate interactions positively or negatively. The effect of carbon monoxide, an intrinsic central nervous system gasotransmitter, in the complex astrocyte homeostasis of glutamate may offer insights to normal brain development, protection, and its use as a neuromodulator and neurotherapeutic. In this article, we will review the effects of carbon monoxide on astrocyte homeostasis of glutamate.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Division of Pediatric Cardiothoracic Surgery in the Department of Surgery, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
14
|
Stifter J, Ulbrich F, Goebel U, Böhringer D, Lagrèze WA, Biermann J. Neuroprotection and neuroregeneration of retinal ganglion cells after intravitreal carbon monoxide release. PLoS One 2017; 12:e0188444. [PMID: 29176876 PMCID: PMC5703485 DOI: 10.1371/journal.pone.0188444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/07/2017] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Retinal ischemia induces apoptosis leading to neurodegeneration and vision impairment. Carbon monoxide (CO) in gaseous form showed cell-protective and anti-inflammatory effects after retinal ischemia-reperfusion-injury (IRI). These effects were also demonstrated for the intravenously administered CO-releasing molecule (CORM) ALF-186. This article summarizes the results of intravitreally released CO to assess its suitability as a neuroprotective and neuroregenerative agent. METHODS Water-soluble CORM ALF-186 (25 μg), PBS, or inactivated ALF (iALF) (all 5 μl) were intravitreally applied into the left eyes of rats directly after retinal IRI for 1 h. Their right eyes remained unaffected and were used for comparison. Retinal tissue was harvested 24 h after intervention to analyze mRNA or protein expression of Caspase-3, pERK1/2, p38, HSP70/90, NF-kappaB, AIF-1 (allograft inflammatory factor), TNF-α, and GAP-43. Densities of fluorogold-prelabeled retinal ganglion cells (RGC) were examined in flat-mounted retinae seven days after IRI and were expressed as mean/mm2. The ability of RGC to regenerate their axon was evaluated two and seven days after IRI using retinal explants in laminin-1-coated cultures. Immunohistochemistry was used to analyze the different cell types growing out of the retinal explants. RESULTS Compared to the RGC-density in the contralateral right eyes (2804±214 RGC/mm2; data are mean±SD), IRI+PBS injection resulted in a remarkable loss of RGC (1554±159 RGC/mm2), p<0.001. Intravitreally injected ALF-186 immediately after IRI provided RGC protection and reduced the extent of RGC-damage (IRI+PBS 1554±159 vs. IRI+ALF 2179±286, p<0.001). ALF-186 increased the IRI-mediated phosphorylation of MAP-kinase p38. Anti-apoptotic and anti-inflammatory effects were detectable as Caspase-3, NF-kappaB, TNF-α, and AIF-1 expression were significantly reduced after IRI+ALF in comparison to IRI+PBS or IRI+iALF. Gap-43 expression was significantly increased after IRI+ALF. iALF showed effects similar to PBS. The intrinsic regenerative potential of RGC-axons was induced to nearly identical levels after IRI and ALF or iALF-treatment under growth-permissive conditions, although RGC viability differed significantly in both groups. Intravitreal CO further increased the IRI-induced migration of GFAP-positive cells out of retinal explants and their transdifferentiation, which was detected by re-expression of beta-III tubulin and nestin. CONCLUSION Intravitreal CORM ALF-186 protected RGC after IRI and stimulated their axons to regenerate in vitro. ALF conveyed anti-apoptotic, anti-inflammatory, and growth-associated signaling after IRI. CO's role in neuroregeneration and its effect on retinal glial cells needs further investigation.
Collapse
Affiliation(s)
- Julia Stifter
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix Ulbrich
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Intensive Care, Medical Center—University of Freiburg, Hugstetter Strasse 55, Freiburg, Germany
| | - Ulrich Goebel
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Anesthesiology and Intensive Care, Medical Center—University of Freiburg, Hugstetter Strasse 55, Freiburg, Germany
| | - Daniel Böhringer
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolf Alexander Lagrèze
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Biermann
- Eye Center, Medical Center—University of Freiburg, Killianstrasse 5, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Ophthalmology, University of Muenster Medical Center, Domagkstrasse 15, Muenster, Germany
| |
Collapse
|
15
|
Gomperts E, Belcher JD, Otterbein LE, Coates TD, Wood J, Skolnick BE, Levy H, Vercellotti GM. The role of carbon monoxide and heme oxygenase in the prevention of sickle cell disease vaso-occlusive crises. Am J Hematol 2017; 92:569-582. [PMID: 28378932 PMCID: PMC5723421 DOI: 10.1002/ajh.24750] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/15/2022]
Abstract
Sickle Cell Disease (SCD) is a painful, lifelong hemoglobinopathy inherited as a missense point mutation in the hemoglobin (Hb) beta-globin gene. This disease has significant impact on quality of life and mortality, thus a substantial medical need exists to reduce the vaso-occlusive crises which underlie the pathophysiology of the disease. The concept that a gaseous molecule may exert biological function has been well known for over one hundred years. Carbon monoxide (CO), although studied in SCD for over 50 years, has recently emerged as a powerful cytoprotective biological response modifier capable of regulating a host of physiologic and therapeutic processes that, at low concentrations, exerts key physiological functions in various models of tissue inflammation and injury. CO is physiologically generated by the metabolism of heme by the heme oxygenase enzymes and is measurable in blood. A substantial amount of preclinical and clinical data with CO have been generated, which provide compelling support for CO as a potential therapeutic in a number of pathological conditions. Data underlying the therapeutic mechanisms of CO, including in SCD, have been generated by a plethora of in vitro and preclinical studies including multiple SCD mouse models. These data show CO to have key signaling impacts on a host of metallo-enzymes as well as key modulating genes that in sum, result in significant anti-inflammatory, anti-oxidant and anti-apoptotic effects as well as vasodilation and anti-adhesion of cells to the endothelium resulting in preservation of vascular flow. CO may also have a role as an anti-polymerization HbS agent. In addition, considerable scientific data in the non-SCD literature provide evidence for a beneficial impact of CO on cerebrovascular complications, suggesting that in SCD, CO could potentially limit these highly problematic neurologic outcomes. Research is needed and hopefully forthcoming, to carefully elucidate the safety and benefits of this potential therapy across the age spectrum of patients impacted by the host of pathophysiological complications of this devastating disease.
Collapse
Affiliation(s)
- Edward Gomperts
- Hillhurst Biopharmaceuticals, Inc, 2029 Verdugo Blvd., #125, Montrose, CA, 91020, USA
| | - John D Belcher
- University of Minnesota, 420 Delaware Street SE, MMC 480, Minneapolis, MN, 55455, USA
| | - Leo E Otterbein
- Harvard Medical School; Beth Israel Deaconess Medical Center, 3 Blackfan Circle Center for Life Sciences, #630, Boston, MA, 02115, USA
| | - Thomas D Coates
- Children's Hospital Los Angeles; University of Southern California, 4650 Sunset Boulevard MS #54 Los Angeles, CA, 90027, USA
| | - John Wood
- Children's Hospital Los Angeles; University of Southern California, 4650 Sunset Boulevard MS #54 Los Angeles, CA, 90027, USA
| | - Brett E Skolnick
- Hillhurst Biopharmaceuticals, Inc, 2029 Verdugo Blvd., #125, Montrose, CA, 91020, USA
| | - Howard Levy
- Hillhurst Biopharmaceuticals, Inc, 2029 Verdugo Blvd., #125, Montrose, CA, 91020, USA
| | - Gregory M Vercellotti
- University of Minnesota, 420 Delaware Street SE, MMC 480, Minneapolis, MN, 55455, USA
| |
Collapse
|
16
|
Qiao L, Zhang N, Huang JL, Yang XQ. Carbon monoxide as a promising molecule to promote nerve regeneration after traumatic brain injury. Med Gas Res 2017; 7:45-47. [PMID: 28480031 PMCID: PMC5402346 DOI: 10.4103/2045-9912.202909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Carbon monoxide (CO) is known as a toxic gas. Although there have been many studies on both toxic and protective effects of CO, most of these studies lack novelty, except for Eng H Lo team's study on the therapeutic effect of CO on brain injuries. In this commentary, we summarize the potential application value of CO in the treatment of some clinical diseases, especially its protective effect and nerve regeneration in brain injuries, hoping that our interest in CO could promote related clinical application studies.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Anatomy, Center of Regenerative Medicine, the Second Military Medical University, Shanghai, China
| | - Ning Zhang
- Department of Naval Aviation, the Second Military Medical University, Shanghai, China
| | - Jun-Long Huang
- Department of Naval Aviation, the Second Military Medical University, Shanghai, China
| | - Xiang-Qun Yang
- Department of Anatomy, Center of Regenerative Medicine, the Second Military Medical University, Shanghai, China
| |
Collapse
|
17
|
Role of Gasotransmitters in Oxidative Stresses, Neuroinflammation, and Neuronal Repair. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1689341. [PMID: 28386548 PMCID: PMC5366188 DOI: 10.1155/2017/1689341] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022]
Abstract
To date, three main gasotransmitters, that is, hydrogen sulfide (H2S), carbon monoxide (CO), and nitric oxide (NO), have been discovered to play major bodily physiological roles. These gasotransmitters have multiple functional roles in the body including physiologic and pathologic functions with respect to the cellular or tissue quantities of these gases. Gasotransmitters were originally known to have only detrimental and noxious effects in the body but that notion has much changed with years; vast studies demonstrated that these gasotransmitters are precisely involved in the normal physiological functioning of the body. From neuromodulation, oxidative stress subjugation, and cardiovascular tone regulation to immunomodulation, these gases perform critical roles, which, should they deviate from the norm, can trigger the genesis of a number of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The purpose of this review is to discuss at great length physical and chemical properties and physiological actions of H2S, NO, and CO as well as shedding light on recently researched molecular targets. We particularly put emphasis on the roles in neuronal inflammation and neurodegeneration and neuronal repair.
Collapse
|
18
|
Peers C, Boyle JP. Oxidative modulation of K+ channels in the central nervous system in neurodegenerative diseases and aging. Antioxid Redox Signal 2015; 22:505-21. [PMID: 25333910 DOI: 10.1089/ars.2014.6007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Oxidative stress and damage are well-established components of neurodegenerative diseases, contributing to neuronal death during disease progression. Here, we consider key K(+) channels as target proteins that can undergo oxidative modulation, describe what is understood about how this influences disease progression, and consider regulation of these channels by gasotransmitters as a means of cellular protection. RECENT ADVANCES Oxidative regulation of the delayed rectifier Kv2.1 and the Ca(2+)- and voltage-sensitive BK channel are established, but recent studies contest how their redox sensitivity contributes to altered excitability, progression of neurodegenerative diseases, and healthy aging. CRITICAL ISSUES Both Kv2.1 and BK channels have recently been established as target proteins for regulation by the gasotransmitters carbon monoxide and hydrogen sulfide. Establishing the molecular basis of such regulation, and exactly how this influences excitability and vulnerability to apoptotic cell death will determine whether such regulation can be exploited for therapeutic benefit. FUTURE DIRECTIONS Developing a more comprehensive picture of the oxidative modulation of K(+) channels (and, indeed, other ion channels) within the central nervous system in health and disease will enable us to better understand processes associated with healthy aging as well as distinct processes underlying progression of neurodegenerative diseases. Advances in the growing understanding of how gasotransmitters can regulate ion channels, including redox-sensitive K(+) channels, are a research priority for this field, and will establish their usefulness in design of future approaches for the treatment of such diseases.
Collapse
Affiliation(s)
- Chris Peers
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds , Leeds, United Kingdom
| | | |
Collapse
|
19
|
Carbon monoxide is not always a poison gas for human organism: Physiological and pharmacological features of CO. Chem Biol Interact 2014; 222:37-43. [DOI: 10.1016/j.cbi.2014.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/02/2014] [Accepted: 08/18/2014] [Indexed: 01/21/2023]
|
20
|
Petruk AA, Vergara A, Marasco D, Bikiel D, Doctorovich F, Estrin DA, Merlino A. Interaction between Proteins and Ir Based CO Releasing Molecules: Mechanism of Adduct Formation and CO Release. Inorg Chem 2014; 53:10456-62. [DOI: 10.1021/ic501498g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ariel A. Petruk
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, University of Buenos Aires, Ciudad
Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Alessandro Vergara
- Department
of Chemical Sciences, University of Naples Federico II, via Cintia I-80126, Napoli, Italy
- CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16 I-80100, Napoli, Italy
| | - Daniela Marasco
- CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16 I-80100, Napoli, Italy
- Department of Pharmacy, CIRPEB: Centro Interuniversitario
di Ricerca sui Peptidi Bioattivi- University of Naples Federico II, DFM-Scarl, Via Mezzocannone, 16 80134, Napoli, Italy
| | - Damian Bikiel
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, University of Buenos Aires, Ciudad
Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Fabio Doctorovich
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, University of Buenos Aires, Ciudad
Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Dario A. Estrin
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, University of Buenos Aires, Ciudad
Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples Federico II, via Cintia I-80126, Napoli, Italy
- CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16 I-80100, Napoli, Italy
| |
Collapse
|
21
|
Ostrowski RP, Pucko EB. Research of medical gases in Poland. Med Gas Res 2013; 3:17. [PMID: 23916016 PMCID: PMC3750292 DOI: 10.1186/2045-9912-3-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/01/2013] [Indexed: 12/17/2022] Open
Abstract
Research of medical gases is well established in Poland and has been marked with the foundation of several professional societies. Numerous academic centers including those dealing with hyperbaric and diving medicine conduct studies of medical gases, in vast majority supported with intramural funds. In general, Polish research of medical gases is very much clinical in nature, covering new applications and safety of medical gases in medicine; on the other hand there are several academic centers pursuing preclinical studies, and elaborating basic theories of gas physiology and mathematical modeling of gas exchange. What dominates is research dealing with oxygen and ozone as well as studies of anesthetic gases and their applications. Finally, several research directions involving noble gas, hydrogen and hydrogen sulfide for cell protection, only begin to gain recognition of basic scientists and clinicians. However, further developments require more monetary spending on research and clinical testing as well as formation of new collective bodies for coordinating efforts in this matter.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Experimental and Clinical Neuropathology, M, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland.
| | | |
Collapse
|
22
|
Otterbein LE. Quoth the Raven: carbon monoxide and nothing more. Med Gas Res 2013; 3:7. [PMID: 23497398 PMCID: PMC3610149 DOI: 10.1186/2045-9912-3-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 12/19/2022] Open
Abstract
The articles contained in this review series exemplify the diverse applications and succinct biological relevance of this simple gas. Articles summarizing the important effects of carbon monoxide in preventing the rejection of an organ, in its neuroprotective properties in piglets, regulation of mycobacterial growth, in its anti-inflammatory effects in the gut and in its use in new and innovative modalities and avenues by which to harness adjuvant therapies are eloquently and precisely described and reviewed. Each of these reports offers but a glimpse of continued prudent and sound evidence that this simple diatomic gas offers astonishingly potent and extremely diverse biological and medicinal qualities.
Collapse
Affiliation(s)
- Leo E Otterbein
- Harvard Medical School and Beth Israel Deaconess Medical Center, Department of Surgery, Transplant Institute, Boston, MA, 02215, USA.
| |
Collapse
|